On squares and rhombi: An attainable introduction to modal logic

Authors

Alfredo Burrieza
Universidad de Málaga
https://orcid.org/0000-0002-2033-6033
Antonio Yuste-Ginel
Universidad Complutense de Madrid
https://orcid.org/0000-0002-4380-3095

Keywords:

modal logic, propositional modal logic, Kripke semantics, relational semantics, possible worlds, automated theorem proving, tableaux, natural deduction, non-classical logics

Synopsis

Modal logic is an active field of research that attracts the attention of scholars from quite diverse disciplines such as philosophy, linguistics, mathematics or computer sciences. These pages are intended to be the first open access basic textbook on modal logic written in Spanish. It is characterised by its introductory character, meaning that it has been designed to be comprehensible to any person with a minimal background in logic. Moreover, we have tried our best in making it a didactic writing, by filling some explicative gaps that more advanced books leave intentionally.

 

The book is divided into a preface, five chapters and an appendix. The preface contains a presentation of the book as well as the needed formal background. In Chapter 1, we introduce the notion of athletic modals (namely, necessity, possibility, impossibility and contingency) and we explain how they can be mutually defined from an intuitive point of view. The language and semantics of propositional modal logic are covered in Chapter 2. Chapter 3, in turn, proposes an axiomatic approach to some of the most well-known normal modal logics. Chapters 4 and 5, which can be read independently from each other, are devoted to two different methods to prove the validity of formal modal arguments. Chapter 4 focuses on modal tableaux, an automated proof method that also solves the satisfiability problem of finite sets of modal formulas. On its side, Chapter 5 introduces Jaskowski/Fitch style natural deduction calculi for the studied modal logics. The appendix contains solutions to all the exercises proposed throughout the book.

Downloads

Download data is not yet available.

References

Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Perlis, A. J., Rutishauser, H., Samelson, K., Vauquois, B., Wegstein, J. H., et al. (1960). Report on the algorithmic language ALGOL 60. Communications of the ACM, 3(5), 299-311 (vid. pág. 13).

https://doi.org/10.1145/367236.367262

Badesa, C., Jané, I., & Jansana, R. (2019). Elementos de lógica formal. Ariel. (Vid. págs. 8, 15).

van Benthem, J. (2010). Modal logic for open minds. Stanford, CACSLI Publica- tions. (Vid. pág. 71).

Blackburn, P., De Rijke, M., & Venema, Y. (2002). Modal Logic. Cambridge Uni- versity Press. (Vid. págs. 23, 71).

https://doi.org/10.1017/CBO9781107050884

Bolander, T., & Blackburn, P. (2007). Termination for hybrid tableaus. Journal of Logic and Computation, 17(3), 517-554 (vid. pág. 116).

https://doi.org/10.1093/logcom/exm014

Bolander, T., & Braüner, T. (2006). Tableau-based decision procedures for hybrid logic. Journal of Logic and Computation, 16(6), 737-763 (vid. págs. 89, 116).

https://doi.org/10.1093/logcom/exl008

Carnap, R. (1946). Modalities and quantification. The journal of symbolic logic, 11(2), 33-64 (vid. pág. 31).

https://doi.org/10.2307/2268610

Chellas, B. F. (1980). Modal logic: an introduction. Cambridge university press. (Vid. págs. 62, 71, 101).

https://doi.org/10.1017/CBO9780511621192

Deaño, A. (1975). Introducción a la lógica formal. Alianza. (Vid. págs. 8, 10, 127, 131).

Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. (1995). Reasoning about know- ledge. MIT press. (Vid. pág. 32).

https://doi.org/10.7551/mitpress/5803.001.0001

Fitch, F. B. (1952). Symbolic Logic: An Introduction. The Ronald Press Co. (Vid. pág. 127).

Fitting, M. (1983). Proof methods for modal and intuitionistic logics. Springer. (Vid. págs. 81, 89, 99, 100, 116, 121, 124).

https://doi.org/10.1007/978-94-017-2794-5

Garrido, M. (2001). Lógica simbólica (vid. págs. 10, 15, 81).

Garson, J. W. (2013). Modal logic for philosophers. Cambridge University Press. (Vid. pág. 127).

https://doi.org/10.1017/CBO9781139342117

Gasquet, O., Herzig, A., Said, B., & Schwarzentruber, F. (2014). Kripke's World. Birkhäuser. (Vid. pág. 99).

https://doi.org/10.1007/978-3-7643-8504-0

Goré, R. (1999). Tableau Methods for Modal and Temporal Logics. En M. D'Agostino, D. M. Gabbay, R. Hähnle & J. Posegga (Eds.), Handbook of Tableau Methods (pp. 297-396). Springer. https://doi.org/10.1007/978-94-017-1754-0_6 (vid. págs. 89, 100, 116).

https://doi.org/10.1007/978-94-017-1754-0_6

Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic Logic. MIT Press. (Vid. pág. 32).

https://doi.org/10.7551/mitpress/2516.001.0001

Hughes, G. E., & Cresswell, M. J. (1968). An Introduction to Modal Logic, 1968. Methuen (vid. pág. 7).

Hughes, G. E., & Cresswell, M. J. (1973). Introduccón a la Lógica Modal. Tecnos. (Vid. págs. 7, 31, 32).

Hughes, G. E., & Cresswell, M. J. (1984). A companion to modal logic. Meuthen. (Vid. pág. 71).

Hughes, G. E., & Cresswell, M. J. (1996). A new introduction to modal logic. Psychology Press. (Vid. pág. 101).

https://doi.org/10.4324/9780203290644

Jansana, R. (1990). Una introducción a la lógica modal. Tecnos. (Vid. pág. 7).

Jeffrey, R. C., & Burgess, J. P. (2006). Formal logic: Its scope and limits. Hackett Publishing. (Vid. pág. 81).

Kripke, S. A. (1959). A completeness theorem in modal logic. The journal of symbolic logic, 24(1), 1-14 (vid. pág. 30).

https://doi.org/10.2307/2964568

Kripke, S. A. (1963). Semantical analysis of modal logic I normal modal proposi- tional calculi. Mathematical Logic Quarterly, 9(5-6), 67-96 (vid. pág. 30).

https://doi.org/10.1002/malq.19630090502

Lewis, C., & Langford, C. (1932). Symbolic Logic. Dover. (Vid. pág. 23).

Lipschutz, S. (1991). Teoría de conjuntos y temas afines (vid. pág. 8). de Lorenzo, J. (1972). Iniciación a la teoría intuitiva de conjuntos. Tecnos. (Vid. pág. 8).

Massacci, F. (2000). Single step tableaux for modal logics. Journal of Automated Reasoning, 24(3), 319-364 (vid. págs. 89, 100, 116).

https://doi.org/10.1023/A:1006155811656

Mastop, R. (s.f.). Modal Logic for Artificial Intelligence. Unpublished Manuscript. (Vid. pág. 127).

Menzel, C. (2023). Possible Worlds. En E. N. Zalta & U. Nodelman (Eds.), The Stanford Encyclopedia of Philosophy (Summer 2023). Metaphysics Research Lab, Stanford University. (Vid. pág. 31).

Naur, P. (1961). A course of algol 60 programming. ALGOL Bull.,(Sup 9), 1-38 (vid. pág. 13).

https://doi.org/10.1007/BF01961950

Pelletier, F. J., & Hazen, A. (2024). Natural Deduction Systems in Logic. En E. N. Zalta & U. Nodelman (Eds.), The Stanford Encyclopedia of Philo- sophy (Spring 2024). Metaphysics Research Lab, Stanford University. (Vid. pág. 127).

Wen, X. (2020). Some common mistakes in the teaching and textbooks of modal logic. arXiv preprint arXiv:2005.10137 (vid. pág. 64).

West, D. B. (2001). Introduction to Graph Theory. (Vid. pág. 34).

Wikipedia. (2023). Notación de Backus-Naur - Wikipedia, La enciclopedia libre [[Internet; descargado 28-octubre-2019]]. (Vid. pág. 13).

Wilson, R. J. (1983). Introducción a la teoría de grafos. Alianza Editorial. (Vid. pág. 34).

Zach, R. (2019). Boxes and Diamonds: An Open Introduction to Modal Logic. (Vid. pág. 8).

Downloads

Published

December 4, 2024

Details about this monograph

ISBN-13 (15)

978-84-1335-389-0