El Internet de las Cosas Médicas (IoMT): Una Revolución Tecnológica aplicable a la Gestión de la Diabetes Mellitus Tipo 1

Authors

Ignacio Rodríguez Rodríguez
Departamento de Ingeniería de las Comunicaciones, Universidad de Málaga , Avda. Cervantes, 2, 29071 Málaga
https://orcid.org/0000-0002-0118-3406
José-Victor Rodríguez
Universidad Politécnica de Cartagena
https://orcid.org/0000-0002-3298-6439
María Campo Valera
Universidad Politécnica de Cartagena
https://orcid.org/0000-0003-0084-3844

Keywords:

Diabetes, IoMT, Machine Learning, Comunicaciones, Internet de las Cosas, Biosensores

Synopsis

La diabetes mellitus de tipo 1 (DMT1) es una afección metabólica caracterizada por una hiperglucemia persistente como consecuencia de una síntesis pancreática insuficiente de insulina. Esto obliga a los pacientes a ser conscientes de sus oscilaciones diarias del nivel de glucosa en sangre para deducir un patrón y anticipar la glucemia futura y, por tanto, decidir la cantidad de insulina que debe inyectarse exógenamente para mantener la glucemia dentro del intervalo objetivo. Este enfoque suele adolecer de una imprecisión relativamente alta, que puede resultar peligrosa. Sin embargo, los recientes avances en las tecnologías de la información y la comunicación (TIC) y los innovadores biosensores que podrían permitir una evaluación completa y en tiempo real de la salud del paciente ofrecen un nuevo punto de vista sobre el tratamiento de la DMT1. En este sentido, las tecnologías disruptivas emergentes como Big Data, Internet de las Cosas Médicas (IoMT), Cloud Computing y Machine Learning (ML) pueden desempeñar un papel importante en la gestión de la DMT1. En este trabajo, se realiza una explicación de los enfoques basados en IoMT publicados anteriormente para la gestión de la diabetes, evaluando también los obstáculos que los futuros sistemas inteligentes de gestión IoMT deben superar. Por último, proporcionamos una visión general de una propuesta integral basada en IoMT para la gestión de la DM1 que pretende abordar los límites de los estudios anteriores y, al mismo tiempo, utilizar las tecnologías disruptivas destacadas anteriormente.

Downloads

Download data is not yet available.

References

M. J. Haller, M. A. Atkinson y D. Schatz, «Type 1 diabetes mellitus: etiology, presentation, and management,» Pediatric Clinics, vol. 52, p. 1553–1578, 2005.

G. A. Gregory, T. I. G. Robinson, S. E. Linklater, F. Wang, S. Colagiuri, C. de Beaufort, K. C. Donaghue, D. J. Magliano, J. Maniam, T. J. Orchard y others, «Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study,» The Lancet Diabetes & Endocrinology, vol. 10, p. 741–760, 2022.

L. Harst, H. Lantzsch y M. Scheibe, «Theories predicting end-user acceptance of telemedicine use: systematic review,» Journal of medical Internet research, vol. 21, p. e13117, 2019.

M. C. Riddell, I. W. Gallen, C. E. Smart, C. E. Taplin, P. Adolfsson, A. N. Lumb, A. Kowalski, R. Rabasa-Lhoret, R. J. McCrimmon, C. Hume y others, «Exercise management in type 1 diabetes: a consensus statement,» The lancet Diabetes & endocrinology, vol. 5, p. 377–390, 2017.

A. M. Albisser, B. S. Leibel, T. G. Ewart, Z. Davidovac, C. K. Botz y W. Zingg, «An artificial endocrine pancreas,» Diabetes, vol. 23, p. 389–396, 1974.

T. Peyser, E. Dassau, M. Breton y J. S. Skyler, «The artificial pancreas: current status and future prospects in the management of diabetes,» Annals of the New York Academy of Sciences, vol. 1311, p. 102–123, 2014.

C. Cobelli, E. Renard y B. Kovatchev, «Artificial pancreas: past, present, future,» Diabetes, vol. 60, p. 2672–2682, 2011.

I. Rodrı́guez-Rodrı́guez, J.-V. Rodrı́guez y M.-Á. Zamora-Izquierdo, «Variables to be monitored via biomedical sensors for complete type 1 diabetes mellitus management: an extension of the “on-board” concept,» Journal of diabetes research, vol. 2018, 2018.

I. Rodrı́guez-Rodrı́guez, M.-Á. Zamora-Izquierdo y J.-V. Rodrı́guez, «Towards an ICT-based platform for type 1 diabetes mellitus management,» Applied Sciences, vol. 8, p. 511, 2018.

D. Karagiannis, K. Mitsis y K. S. Nikita, «Development of a Low-Power IoMT Portable Pillbox for Medication Adherence Improvement and Remote Treatment Adjustment,» Sensors, vol. 22, p. 5818, 2022.

C. Kaushal, M. K. Islam, A. Singla y M. Al Amin, «An IoMT-Based Smart Remote Monitoring System for Healthcare,» IoT-Enabled Smart Healthcare Systems, Services and Applications, p. 177–198, 2022.

S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith y A. Jamalipour, «Wireless body area networks: A survey,» IEEE Communications surveys & tutorials, vol. 16, p. 1658–1686, 2014.

M. S. H. Talpur, M. Z. A. Bhuiyan y G. Wang, «Energy-efficient healthcare monitoring with smartphones and IoT technologies,» International journal of high performance computing and networking, vol. 8, p. 186–194, 2015.

S. Ali, M. G. Kibria, M. A. Jarwar, S. Kumar y I. Chong, «Microservices model in WoO based IoT platform for depressive disorder assistance,» de 2017 International Conference on Information and Communication Technology Convergence (ICTC), 2017.

L. E. Romero, P. Chatterjee y R. L. Armentano, «An IoT approach for integration of computational intelligence and wearable sensors for Parkinson’s disease diagnosis and monitoring,» Health and Technology, vol. 6, p. 167–172, 2016.

A. Bajaj, M. Bhatnagar y A. Chauhan, «Recent trends in internet of medical things: a review,» Advances in machine learning and computational intelligence, p. 645–656, 2021.

M. P. Hemalatha y M. R. Vidhyalakshmi, «A study on chronic cough detection using IoT and machine learning,» International Journal of Research in Arts and Science, vol. 5, p. 151–160, 2019.

G. Matar, J.-M. Lina, J. Carrier, A. Riley y G. Kaddoum, «Internet of Things in sleep monitoring: An application for posture recognition using supervised learning,» de 2016 IEEE 18th International conference on e-Health networking, applications and services (Healthcom), 2016.

H. Magsi, A. H. Sodhro, F. A. Chachar, S. A. K. Abro, G. H. Sodhro y S. Pirbhulal, «Evolution of 5G in Internet of medical things,» de 2018 international conference on computing, mathematics and engineering technologies (iCoMET), 2018.

K. Fan, Q. Luo, H. Li y Y. Yang, «Cloud-based lightweight RFID mutual authentication protocol,» de 2017 IEEE Second International Conference on Data Science in Cyberspace (DSC), 2017.

A. Onasanya y M. Elshakankiri, «IoT implementation for cancer care and business analytics/cloud services in healthcare systems,» de Proceedings of the10th International Conference on Utility and Cloud Computing, 2017.

G. Gardašević, H. Fotouhi, I. Tomasic, M. Vahabi, M. Björkman y M. Lindén, «A heterogeneous IoT-based architecture for remote monitoring of physiological and environmental parameters,» de International Conference on IoT Technologies for HealthCare, 2017.

T. Broens, A. Van Halteren, M. Van Sinderen y K. Wac, «Towards an application framework for context-aware m-health applications,» International Journal of Internet Protocol Technology, vol. 2, p. 109–116, 2007.

M. R. Yuce, «Implementation of wireless body area networks for healthcare systems,» Sensors and Actuators A: Physical, vol. 162, p. 116–129, 2010.

D. Preuveneers y Y. Berbers, «Mobile phones assisting with health self-care: a diabetes case study,» de Proceedings of the 10th international conference on Human computer interaction with mobile devices and services, 2008.

J. C. Sieverdes, F. Treiber, C. Jenkins y K. Hermayer, «Improving diabetes management with mobile health technology,» The American journal of the medical sciences, vol. 345, p. 289–295, 2013.

G. Cappon, G. Acciaroli, M. Vettoretti, A. Facchinetti y G. Sparacino, «Wearable continuous glucose monitoring sensors: a revolution in diabetes treatment,» Electronics, vol. 6, p. 65, 2017.

L. Leelarathna y E. G. Wilmot, «Flash forward: a review of flash glucose monitoring,» Diabetic Medicine, vol. 35, p. 472–482, 2018.

L. Nachman, A. Baxi, S. Bhattacharya, V. Darera, P. Deshpande, N. Kodalapura, V. Mageshkumar, S. Rath, J. Shahabdeen y R. Acharya, «Jog falls: A pervasive healthcare platform for diabetes management,» de International Conference on Pervasive Computing, 2010.

D. Al Kukhun, B. Soukkarieh y F. Sèdes, «ADMAN: An alarm-based mobile diabetes management system for mobile geriatric teams,» de East European Conference on Advances in Databases and Information Systems, 2015.

M. A. Al-Taee, W. Al-Nuaimy, A. Al-Ataby, Z. J. Muhsin y S. N. Abood, «Mobile health platform for diabetes management based on the Internet-of-Things,» de 2015 IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT), 2015.

W. C. Hsu, K. H. K. Lau, R. Huang, S. Ghiloni, H. Le, S. Gilroy, M. Abrahamson y J. Moore, «Utilization of a cloud-based diabetes management program for insulin initiation and titration enables collaborative decision making between healthcare providers and patients,» Diabetes technology & therapeutics, vol. 18, p. 59–67, 2016.

Ö. Kafalı, S. Bromuri, M. Sindlar, T. van der Weide, E. Aguilar Pelaez, U. Schaechtle, B. Alves, D. Zufferey, E. Rodriguez-Villegas, M. I. Schumacher y others, «Commodity 12: A smart e-health environment for diabetes management,» Journal of Ambient Intelligence and Smart Environments, vol. 5, p. 479–502, 2013.

S. Vivekanandan y M. Devanand, «Remote monitoring for diabetes disorder: Pilot study using InDiaTel prototype,» European Research in Telemedicine/La Recherche Européenne en Télémédecine, vol. 4, p. 63–69, 2015.

G. Lanzola, E. Losiouk, S. Del Favero, A. Facchinetti, A. Galderisi, S. Quaglini, L. Magni y C. Cobelli, «Remote blood glucose monitoring in mHealth scenarios: A review,» Sensors, vol. 16, p. 1983, 2016.

B. P. Kovatchev, E. Renard, C. Cobelli, H. C. Zisser, P. Keith-Hynes, S. M. Anderson, S. A. Brown, D. R. Chernavvsky, M. D. Breton, A. Farret y others, «Feasibility of outpatient fully integrated closed-loop control: first studies of wearable artificial pancreas,» Diabetes care, vol. 36, p. 1851–1858, 2013.

K. J. C. Wientjes y A. J. M. Schoonen, «Determination of time delay between blood and interstitial adipose tissue glucose concentration change by microdialysis in healthy volunteers,» The International journal of artificial organs, vol. 24, p. 884–889, 2001.

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli y R. Basu, «Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,» Journal of diabetes science and technology, vol. 9, p. 63–68, 2014.

D. J. Cox, W. L. Clarke, L. Gonder-Frederick, S. Pohl, C. Hoover, A. Snyder, L. Zimbelman, W. R. Carter, S. Bobbitt y J. Pennebaker, «Accuracy of perceiving blood glucose in IDDM,» Diabetes care, vol. 8, p. 529–536, 1985.

A. Facchinetti, «Continuous glucose monitoring sensors: past, present and future algorithmic challenges,» Sensors, vol. 16, p. 2093, 2016.

A. Facchinetti, G. Sparacino y C. Cobelli, «Online denoising method to handle intraindividual variability of signal-to-noise ratio in continuous glucose monitoring,» IEEE Transactions on Biomedical Engineering, vol. 58, p. 2664–2671, 2011.

C. C. Palerm y B. W. Bequette, Hypoglycemia detection and prediction using continuous glucose monitoring—a study on hypoglycemic clamp data, SAGE Publications, 2007.

Z. Mahmoudi, M. Dencker Johansen, J. S. Christiansen y O. K. Hejlesen, «A multistep algorithm for processing and calibration of microdialysis continuous glucose monitoring data,» Diabetes Technology & Therapeutics, vol. 15, p. 825–835, 2013.

S. Guerra, A. Facchinetti, G. Sparacino, G. De Nicolao y C. Cobelli, «Enhancing the accuracy of subcutaneous glucose sensors: a real-time deconvolution-based approach,» IEEE Transactions on Biomedical Engineering, vol. 59, p. 1658–1669, 2012.

F. Barcelo-Rico, J.-L. Diez, P. Rossetti, J. Vehi y J. Bondia, «Adaptive calibration algorithm for plasma glucose estimation in continuous glucose monitoring,» IEEE Journal of Biomedical and Health Informatics, vol. 17, p. 530–538, 2013.

H. Kirchsteiger, L. Zaccarian, E. Renard y L. del Re, «LMI-based approaches for the calibration of continuous glucose measurement sensors,» IEEE Journal of Biomedical and Health Informatics, vol. 19, p. 1697–1706, 2014.

G. Sparacino, F. Zanderigo, S. Corazza, A. Maran, A. Facchinetti y C. Cobelli, «Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series,» IEEE Transactions on biomedical engineering, vol. 54, p. 931–937, 2007.

C. Zecchin, A. Facchinetti, G. Sparacino y C. Cobelli, «Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information,» Computer methods and programs in biomedicine, vol. 113, p. 144–152, 2014.

K. Zarkogianni, K. Mitsis, E. Litsa, M.-T. Arredondo, G. Fico, A. Fioravanti y K. S. Nikita, «Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring,» Medical & biological engineering & computing, vol. 53, p. 1333–1343, 2015.

E. I. Georga, V. C. Protopappas, D. Polyzos y D. I. Fotiadis, «Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models,» Medical & biological engineering & computing, vol. 53, p. 1305–1318, 2015.

D. M. Nathan y D. R. Group, «The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview,» Diabetes care, vol. 37, p. 9–16, 2014.

G. Aleppo, K. J. Ruedy, T. D. Riddlesworth, D. F. Kruger, A. L. Peters, I. Hirsch, R. M. Bergenstal, E. Toschi, A. J. Ahmann, V. N. Shah y others, «REPLACE-BG: a randomized trial comparing continuous glucose monitoring with and without routine blood glucose monitoring in adults with well-controlled type 1 diabetes,» Diabetes care, vol. 40, p. 538–545, 2017.

S. A. Weinzimer y W. V. Tamborlane, «Sensor-augmented pump therapy in type 1 diabetes,» Current Opinion in Endocrinology, Diabetes and Obesity, vol. 15, p. 118–122, 2008.

R. Nimri, J. Nir y M. Phillip, «Insulin pump therapy,» American journal of therapeutics, vol. 27, p. e30–e41, 2020.

J. C. Pickup, «Is insulin pump therapy effective in Type 1 diabetes?,» Diabetic Medicine, vol. 36, p. 269–278, 2019.

C. Berget, L. H. Messer y G. P. Forlenza, «A clinical overview of insulin pump therapy for the management of diabetes: past, present, and future of intensive therapy,» Diabetes spectrum: a publication of the American Diabetes Association, vol. 32, p. 194, 2019.

O. J. Collyns, R. A. Meier, Z. L. Betts, D. S. H. Chan, C. Frampton, C. M. Frewen, N. M. Hewapathirana, S. D. Jones, A. Roy, B. Grosman y others, «Improved glycemic outcomes with Medtronic MiniMed advanced hybrid closed-loop delivery: results from a randomized crossover trial comparing automated insulin delivery with predictive low glucose suspend in people with type 1 diabetes,» Diabetes Care, vol. 44, p. 969–975, 2021.

J. Fuchs y R. Hovorka, «Closed-loop control in insulin pumps for type-1 diabetes mellitus: safety and efficacy,» Expert review of medical devices, vol. 17, p. 707–720, 2020.

I. Rabbone, N. Minuto, R. Bonfanti, M. Marigliano, F. Cerutti, V. Cherubini, G. d'Annunzio, A. P. Frongia, D. Iafusco, G. Ignaccolo y others, «Insulin pump failures in Italian children with Type 1 diabetes: Retrospective 1-year cohort study,» Diabetic Medicine, vol. 34, p. 621–624, 2017.

A. Siafarikas, R. J. Johnston, M. K. Bulsara, P. O’Leary, T. W. Jones y E. A. Davis, «Early loss of the glucagon response to hypoglycemia in adolescents with type 1 diabetes,» Diabetes Care, vol. 35, p. 1757–1762, 2012.

G. Bolli, P. D. Feo, P. Compagnucci, M. G. Cartechini, G. Angeletti, F. Santeusanio, P. Brunetti y J. E. Gerich, «Abnormal glucose counterregulation in insulin-dependent diabetes mellitus: interaction of anti-insulin antibodies and impaired glucagon and epinephrine secretion,» Diabetes, vol. 32, p. 134–141, 1983.

Y. C. Kudva, R. E. Carter, C. Cobelli, R. Basu y A. Basu, «Closed-loop artificial pancreas systems: physiological input to enhance next-generation devices,» Diabetes care, vol. 37, p. 1184–1190, 2014.

J. R. Castle, J. M. Engle, J. E. Youssef, R. G. Massoud, K. C. J. Yuen, R. Kagan y W. K. Ward, «Novel use of glucagon in a closed-loop system for prevention of hypoglycemia in type 1 diabetes,» Diabetes care, vol. 33, p. 1282–1287, 2010.

A. Kowalski, «Pathway to artificial pancreas systems revisited: moving downstream,» Diabetes care, vol. 38, p. 1036–1043, 2015.

J. Place, A. Robert, N. Ben Brahim, P. Keith-Hynes, A. Farret, M.-J. Pelletier, B. Buckingham, M. Breton, B. Kovatchev y E. Renard, DiAs web monitoring: a real-time remote monitoring system designed for artificial pancreas outpatient trials, SAGE Publications Sage CA: Los Angeles, CA, 2013.

E. Dassau, L. Jovanovic, F. J. Doyle III y H. C. Zisser, «Enhanced 911/global position system wizard: a telemedicine application for the prevention of severe hypoglycemia—monitor, alert, and locate,» Journal of diabetes science and technology, vol. 3, p. 1501–1506, 2009.

M. Rigla, «Smart telemedicine support for continuous glucose monitoring: the embryo of a future global agent for diabetes care,» Journal of diabetes science and technology, vol. 5, p. 63–67, 2011.

S. Ding y M. Schumacher, «Sensor monitoring of physical activity to improve glucose management in diabetic patients: a review,» Sensors, vol. 16, p. 589, 2016.

M. A. Case, H. A. Burwick, K. G. Volpp y M. S. Patel, «Accuracy of smartphone applications and wearable devices for tracking physical activity data,» Jama, vol. 313, p. 625–626, 2015.

C. Marling, L. Xia, R. Bunescu y F. Schwartz, «Machine learning experiments with noninvasive sensors for hypoglycemia detection,» de Proceedings of the IJCAI Workshop on Knowledge Discovery in Healthcare Data, New York, NY, USA, 2016.

H. Kirchsteiger, R. Johansson, E. Renard y L. d. Re, «Continuous-time interval model identification of blood glucose dynamics for type 1 diabetes,» International Journal of Control, vol. 87, p. 1454–1466, 2014.

J. Bondia y J. Vehi, «Physiology-based interval models: a framework for glucose prediction under intra-patient variability,» de Prediction Methods for Blood Glucose Concentration, Springer, 2016, p. 159–181.

G. C. Estrada, L. del Re y E. Renard, «Nonlinear gain in online prediction of blood glucose profile in type 1 diabetic patients,» de 49th IEEE Conference on Decision and Control (CDC), 2010.

S. K. Garg, S. A. Weinzimer, W. V. Tamborlane, B. A. Buckingham, B. W. Bode, T. S. Bailey, R. L. Brazg, J. Ilany, R. H. Slover, S. M. Anderson y others, «Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes,» Diabetes technology & therapeutics, vol. 19, p. 155–163, 2017.

H. Kirchsteiger, H. Efendic, F. Reiterer y L. del Re, «Alternative frameworks for personalized insulin–glucose models,» Prediction Methods for Blood Glucose Concentration: Design, Use and Evaluation, p. 1–29, 2016.

G. M. Steil, K. Rebrin, C. Darwin, F. Hariri y M. F. Saad, «Feasibility of automating insulin delivery for the treatment of type 1 diabetes,» Diabetes, vol. 55, p. 3344–3350, 2006.

J. T. Devlin, M. Hirshman, E. D. Horton y E. S. Horton, «Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise,» Diabetes, vol. 36, p. 434–439, 1987.

D. Rodbard, «Continuous glucose monitoring: a review of successes, challenges, and opportunities,» Diabetes technology & therapeutics, vol. 18, p. S2–3, 2016.

N. Nordisk, Novo Nordisk receives Complete Response Letter in the US for Tresiba® and Ryzodeg®.[Press release], 2013.

S. D. Patek, L. Magni, E. Dassau, C. Karvetski, C. Toffanin, G. De Nicolao, S. Del Favero, M. Breton, C. Dalla Man, E. Renard y others, «Modular closed-loop control of diabetes,» IEEE Transactions on Biomedical Engineering, vol. 59, p. 2986–2999, 2012.

C. Ellingsen, E. Dassau, H. Zisser, B. Grosman, M. W. Percival, L. Jovanovič y F. J. Doyle III, «Safety constraints in an artificial pancreatic β cell: an implementation of model predictive control with insulin on board,» Journal of diabetes science and technology, vol. 3, p. 536–544, 2009.

L. B. Borghouts y H. A. Keizer, «Exercise and insulin sensitivity: a review,» International journal of sports medicine, vol. 21, p. 1–12, 2000.

D. S. King, P. J. Baldus, R. L. Sharp, L. D. Kesl, T. L. Feltmeyer y M. S. Riddle, «Time course for exercise-induced alterations in insulin action and glucose tolerance in middle-aged people,» Journal of applied physiology, vol. 78, p. 17–22, 1995.

C. Zecchin, A. Facchinetti, G. Sparacino, C. Dalla Man, C. Manohar, J. A. Levine, A. Basu, Y. C. Kudva y C. Cobelli, «Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring,» Diabetes technology & therapeutics, vol. 15, p. 836–844, 2013.

C. Dalla Man, R. A. Rizza y C. Cobelli, «Meal simulation model of the glucose-insulin system,» IEEE Transactions on biomedical engineering, vol. 54, p. 1740–1749, 2007.

K. J. Bell, C. E. Smart, G. M. Steil, J. C. Brand-Miller, B. King y H. A. Wolpert, «Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era,» Diabetes care, vol. 38, p. 1008–1015, 2015.

T. Hung, J. L. Sievenpiper, A. Marchie, C. W. C. Kendall y D. J. A. Jenkins, «Fat versus carbohydrate in insulin resistance, obesity, diabetes and cardiovascular disease,» Current Opinion in Clinical Nutrition & Metabolic Care, vol. 6, p. 165–176, 2003.

J. C. Lovejoy, «The influence of dietary fat on insulin resistance,» Current diabetes reports, vol. 2, p. 435–440, 2002.

T. G. Kiehm, J. W. Anderson y K. Ward, «Beneficial effects of a high carbohydrate, high fiber diet on hyperglycemic diabetic men,» The American Journal of Clinical Nutrition, vol. 29, p. 895–899, 1976.

M. Housiaux, H. Dorchy y O. Luminet, «Influence of an emotional level of conscience on the glycemic equilibrium in type 1 diabetic children and adolescents,» Diabetes & Metabolism, vol. 34, p. A33, 2008.

K. L. Knutson, K. Spiegel, P. Penev y E. Van Cauter, «The metabolic consequences of sleep deprivation,» Sleep medicine reviews, vol. 11, p. 163–178, 2007.

J. Taelman, S. Vandeput, A. Spaepen y S. V. Huffel, «Influence of mental stress on heart rate and heart rate variability,» de 4th European conference of the international federation for medical and biological engineering, 2009.

C. Alexakis, H. O. Nyongesa, R. Saatchi, N. D. Harris, C. Davies, C. Emery, R. H. Ireland y S. R. Heller, «Feature extraction and classification of electrocardiogram (ECG) signals related to hypoglycaemia,» de Computers in Cardiology, 2003, 2003.

R. Buñag, T. Tomita y S. Sasaki, «Chronic sucrose ingestion induces mild hypertension and tachycardia in rats.,» Hypertension, vol. 5, p. 218–225, 1983.

K. Johansen, S. Ellegaard y S. Wex, «Detection of nocturnal hypoglycemia in insulin-treated diabetics by a skin temperature-skin conductance meter,» Acta Medica Scandinavica, vol. 220, p. 213–217, 1986.

J. Feldman y E. Gellhorn, «The influence of fever on the vago-insulin and sympathetico-adrenal systems,» Endocrinology, vol. 29, p. 141–143, 1941.

T. Melhuish, «Linking hypothermia and hyperglycemia,» Nursing management, vol. 40, p. 42–45, 2009.

V. McAulay, I. J. Deary y B. M. Frier, «Symptoms of hypoglycaemia in people with diabetes,» Diabetic Medicine, vol. 18, p. 690–705, 2001.

A. Lurbe, J. Redon, J. M. Pascual, J. Tacons, V. Alvarez y D. C. Batlle, «Altered blood pressure during sleep in normotensive subjects with type I diabetes.,» Hypertension, vol. 21, p. 227–235, 1993.

B. Guerci, L. Meyer, I. Delbachian, M. Kolopp, O. Ziegler y P. Drouin, «Blood glucose control on Sunday in IDDM patients: intensified conventional insulin therapy versus continuous subcutaneous insulin infusion,» Diabetes research and clinical practice, vol. 40, p. 175–180, 1998.

P. Kekäläinen, M. Juuti, T. Walle y T. Laatikainen, «Pregnancy planning in type 1 diabetic women improves glycemic control and pregnancy outcomes,» The Journal of Maternal-Fetal & Neonatal Medicine, vol. 29, p. 2252–2258, 2016.

C. A. Stuenkel, S. R. Davis, A. Gompel, M. A. Lumsden, M. H. Murad, J. V. Pinkerton y R. J. Santen, «Treatment of symptoms of the menopause: an endocrine society clinical practice guideline,» The Journal of Clinical Endocrinology & Metabolism, vol. 100, p. 3975–4011, 2015.

P. R. Siddapur, A. B. Patil y V. S. Borde, «Comparison of bone mineral density, T-scores and serum zinc between diabetic and non diabetic postmenopausal women with osteoporosis,» Journal of laboratory physicians, vol. 7, p. 043–048, 2015.

J. R. Larsen, V. D. Siersma, A. S. Davidsen, F. B. Waldorff, S. Reventlow y N. de Fine Olivarius, «The excess mortality of patients with diabetes and concurrent psychiatric illness is markedly reduced by structured personal diabetes care: a 19-year follow up of the randomized controlled study Diabetes Care in General Practice (DCGP),» General Hospital Psychiatry, vol. 38, p. 42–52, 2016.

L. Tong y S. Adler, «Glycemic control of type 2 diabetes mellitus across stages of renal impairment: information for primary care providers,» Postgraduate Medicine, vol. 130, p. 381–393, 2018.

E. Y. Chew, There is level 1 evidence for intensive glycemic control for reducing the progression of diabetic retinopathy in persons with type 2 diabetes, vol. 49, Springer, 2015, p. 1–3.

R. H. Dolin, L. Alschuler, S. Boyer, C. Beebe, F. M. Behlen, P. V. Biron y A. Shabo, «HL7 clinical document architecture, release 2,» Journal of the American Medical Informatics Association, vol. 13, p. 30–39, 2006.

L. Mamykina, E. D. Mynatt y D. R. Kaufman, «Investigating health management practices of individuals with diabetes,» de Proceedings of the SIGCHI conference on Human Factors in computing systems, 2006.

H. B. Lim, Y. M. Teo, P. Mukherjee, V. T. Lam, W. F. Wong y S. See, «Sensor grid: Integration of wireless sensor networks and the grid,» de The IEEE Conference on Local Computer Networks 30th Anniversary (LCN'05) l, 2005.

J. M. Choi, B. H. Choi, J. W. Seo, R. H. Sohn, M. S. Ryu, W. Yi y K. S. Park, «A system for ubiquitous health monitoring in the bedroom via a Bluetooth network and wireless LAN,» de The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004.

T. Wu, F. Wu, J.-M. Redoute y M. R. Yuce, «An autonomous wireless body area network implementation towards IoT connected healthcare applications,» IEEE access, vol. 5, p. 11413–11422, 2017.

A. Astrin, «IEEE standard for local and metropolitan area networks part 15.6: Wireless body area networks,» IE EE Std 802.15. 6, 2012.

X. Liu, J. Yin, Y. Liu, S. Zhang, S. Guo y K. Wang, «Vital signs monitoring with RFID: Opportunities and challenges,» IEEE Network, vol. 33, p. 126–132, 2019.

A. Elsts, X. Fafoutis, P. Woznowski, E. Tonkin, G. Oikonomou, R. Piechocki y I. Craddock, «Enabling healthcare in smart homes: the SPHERE IoT network infrastructure,» IEEE Communications Magazine, vol. 56, p. 164–170, 2018.

U. Raza, P. Kulkarni y M. Sooriyabandara, «Low power wide area networks: An overview,» ieee communications surveys & tutorials, vol. 19, p. 855–873, 2017.

M. S. Hadi, A. Q. Lawey, T. E. H. El-Gorashi y J. M. H. Elmirghani, «Patient-centric cellular networks optimization using big data analytics,» IEEE Access, vol. 7, p. 49279–49296, 2019.

A. H. Omre y S. Keeping, «Bluetooth low energy: wireless connectivity for medical monitoring,» Journal of diabetes science and technology, vol. 4, p. 457–463, 2010.

R. Carroll, R. Cnossen, M. Schnell y D. Simons, «Continua: An interoperable personal healthcare ecosystem,» IEEE Pervasive Computing, vol. 6, p. 90–94, 2007.

M. P. Sathyaseelan, M. K. Chakravarthi, A. P. Sathyaseelan y S. Sudipta, «IoT based covid de-escalation system using bluetooth low level energy,» de 2021 6th International Conference on Inventive Computation Technologies (ICICT), 2021.

G. Cai, Y. Fang, J. Wen, G. Han y X. Yang, «QoS-aware buffer-aided relaying implant WBAN for healthcare IoT: Opportunities and challenges,» IEEE Network, vol. 33, p. 96–103, 2019.

K. Doyle-Delgado y J. J. Chamberlain, «Use of diabetes-related applications and digital health tools by people with diabetes and their health care providers,» Clinical Diabetes, vol. 38, p. 449–461, 2020.

I. Rodrı́guez-Rodrı́guez, J.-V. Rodrı́guez, I. Chatzigiannakis y M. A. Zamora Izquierdo, «On the possibility of predicting glycaemia ‘on the fly’with constrained IoT devices in type 1 diabetes mellitus patients,» Sensors, vol. 19, p. 4538, 2019.

G. Alfian, M. Syafrudin, M. F. Ijaz, M. A. Syaekhoni, N. L. Fitriyani y J. Rhee, «A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing,» Sensors, vol. 18, p. 2183, 2018.

S. Andreassen, J. J. Benn, R. Hovorka, K. G. Olesen y E. R. Carson, «A probabilistic approach to glucose prediction and insulin dose adjustment: description of metabolic model and pilot evaluation study,» Computer methods and programs in biomedicine, vol. 41, p. 153–165, 1994.

M. W. Percival, H. Zisser, L. Jovanovic y F. J. Doyle III, «Closed-loop control and advisory mode evaluation of an artificial pancreatic β cell: Use of proportional-integral-derivative equivalent model-based controllers,» Journal of diabetes science and technology, vol. 2, p. 636–644, 2008.

J. L. Ruiz, J. L. Sherr, E. Cengiz, L. Carria, A. Roy, G. Voskanyan, W. V. Tamborlane y S. A. Weinzimer, «Effect of insulin feedback on closed-loop glucose control: a crossover study,» Journal of diabetes science and technology, vol. 6, p. 1123–1130, 2012.

E. N. Pistikopoulos, V. Dua, N. A. Bozinis, A. Bemporad y M. Morari, «On-line optimization via off-line parametric optimization tools,» Computers & Chemical Engineering, vol. 26, p. 175–185, 2002.

P. Palumbo, S. Ditlevsen, A. Bertuzzi y A. De Gaetano, «Mathematical modeling of the glucose–insulin system: A review,» Mathematical biosciences, vol. 244, p. 69–81, 2013.

D. Rodbard, «Optimizing display, analysis, interpretation and utility of self-monitoring of blood glucose (SMBG) data for management of patients with diabetes,» Journal of Diabetes Science and Technology, vol. 1, p. 62–71, 2007.

N. Nuryani, S. S. H. Ling y H. T. Nguyen, «Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection,» Annals of biomedical engineering, vol. 40, p. 934–945, 2012.

S. M. Pappada, B. D. Cameron, P. M. Rosman, R. E. Bourey, T. J. Papadimos, W. Olorunto y M. J. Borst, «Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes,» Diabetes technology & therapeutics, vol. 13, p. 135–141, 2011.

C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao y C. Cobelli, «Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration,» IEEE transactions on biomedical engineering, vol. 59, p. 1550–1560, 2012.

B. Sudharsan, M. Peeples y M. Shomali, «Hypoglycemia prediction using machine learning models for patients with type 2 diabetes,» Journal of diabetes science and technology, vol. 9, p. 86–90, 2014.

J. P. Kandhasamy y S. J. P. C. S. Balamurali, «Performance analysis of classifier models to predict diabetes mellitus,» Procedia Computer Science, vol. 47, p. 45–51, 2015.

W. Xu, J. Zhang, Q. Zhang y X. Wei, «Risk prediction of type II diabetes based on random forest model,» de 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), 2017.

R. Bunescu, N. Struble, C. Marling, J. Shubrook y F. Schwartz, «Blood glucose level prediction using physiological models and support vector regression,» de 2013 12th International Conference on Machine Learning and Applications, 2013.

M. J. Kane, N. Price, M. Scotch y P. Rabinowitz, «Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks,» BMC bioinformatics, vol. 15, p. 1–9, 2014.

T. Zhu, K. Li, P. Herrero, J. Chen y P. Georgiou, «A Deep Learning Algorithm for Personalized Blood Glucose Prediction.,» de KHD@ IJCAI, 2018.

M. Eren-Oruklu, A. Cinar, L. Quinn y D. Smith, «Estimation of future glucose concentrations with subject-specific recursive linear models,» Diabetes technology & therapeutics, vol. 11, p. 243–253, 2009.

T. Hamdi, J. B. Ali, V. Di Costanzo, F. Fnaiech, E. Moreau y J.-M. Ginoux, «Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm,» Biocybernetics and Biomedical Engineering, vol. 38, p. 362–372, 2018.

C. Pérez-Gandı́a, A. Facchinetti, G. Sparacino, C. Cobelli, E. J. Gómez, M. Rigla, A. de Leiva y M. E. Hernando, «Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring,» Diabetes technology & therapeutics, vol. 12, p. 81–88, 2010.

K. Plis, R. Bunescu, C. Marling, J. Shubrook y F. Schwartz, «A machine learning approach to predicting blood glucose levels for diabetes management,» de Workshops at the Twenty-Eighth AAAI conference on artificial intelligence, 2014.

J. Reifman, S. Rajaraman, A. Gribok y W. K. Ward, «Predictive monitoring for improved management of glucose levels,» Journal of diabetes science and technology, vol. 1, p. 478–486, 2007.

V. Naumova, S. V. Pereverzyev y S. Sivananthan, «A meta-learning approach to the regularized learning—Case study: Blood glucose prediction,» Neural Networks, vol. 33, p. 181–193, 2012.

S. Sivananthan, V. Naumova, C. D. Man, A. Facchinetti, E. Renard, C. Cobelli y S. V. Pereverzyev, «Assessment of blood glucose predictors: the prediction-error grid analysis,» Diabetes technology & therapeutics, vol. 13, p. 787–796, 2011.

W. L. Clarke, «The original Clarke error grid analysis (EGA),» Diabetes technology & therapeutics, vol. 7, p. 776–779, 2005.

D. C. Klonoff, C. Lias, R. Vigersky, W. Clarke, J. L. Parkes, D. B. Sacks, M. S. Kirkman, B. Kovatchev y E. G. Panel, «The surveillance error grid,» Journal of diabetes science and technology, vol. 8, p. 658–672, 2014.

G. Cappon, M. Vettoretti, F. Marturano, A. Facchinetti y G. Sparacino, «A neural-network-based approach to personalize insulin bolus calculation using continuous glucose monitoring,» Journal of Diabetes Science and Technology, vol. 12, p. 265–272, 2018.

S. M. Pappada, B. D. Cameron y P. M. Rosman, «Development of a neural network for prediction of glucose concentration in type 1 diabetes patients,» Journal of diabetes science and technology, vol. 2, p. 792–801, 2008.

F. Burden y D. Winkler, «Bayesian regularization of neural networks,» Artificial neural networks, p. 23–42, 2008.

H. T. Nguyen, N. Ghevondian y T. W. Jones, «Detection of nocturnal hypoglycemic episodes (natural occurrence) in children with type 1 diabetes using an optimal Bayesian neural network algorithm,» de 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008.

C. K. I. Williams y D. Barber, «Bayesian classification with Gaussian processes,» IEEE Transactions on pattern analysis and machine intelligence, vol. 20, p. 1342–1351, 1998.

L. Ortmann, D. Shi, E. Dassau, F. J. Doyle, B. J. E. Misgeld y S. Leonhardt, «Automated insulin delivery for type 1 diabetes mellitus patients using Gaussian process-based model predictive control,» de 2019 American Control Conference (ACC), 2019.

J. Schmidhuber, «Deep learning in neural networks: An overview,» Neural networks, vol. 61, p. 85–117, 2015.

S. M. Darroudi, C. Gomez y J. Crowcroft, «Bluetooth low energy mesh networks: A standards perspective,» IEEE Communications Magazine, vol. 58, p. 95–101, 2020.

T. D. C. Minh, S. R. Oliver, J. Ngo, R. Flores, J. Midyett, S. Meinardi, M. K. Carlson, F. S. Rowland, D. R. Blake y P. R. Galassetti, «Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects,» American Journal of Physiology-Endocrinology and Metabolism, vol. 300, p. E1166–E1175, 2011.

J. S. Baba, B. D. Cameron y G. L. Cote, «Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,» Journal of biomedical optics, vol. 7, p. 321–328, 2002.

A. J. Kowalski, «Can we really close the loop and how soon? Accelerating the availability of an artificial pancreas: a roadmap to better diabetes outcomes,» Diabetes technology & therapeutics, vol. 11, p. S–113, 2009.

L. Angrisani, G. Annuzzi, P. Arpaia, L. Bozzetto, A. Cataldo, A. Corrado, E. De Benedetto, V. Di Capua, R. Prevete y E. Vallefuoco, «Neural Network-Based Prediction and Monitoring of Blood Glucose Response to Nutritional Factors in Type-1 Diabetes,» de 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2022.

D. E. Dow, M. Urrea, I. Qin y T. Pham, «Cloud Recording for Diabetes Regulation of Blood Glucose Concentrations,» de 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), 2018.

M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. S. Netto y R. Buyya, «Big Data computing and clouds: Trends and future directions,» Journal of parallel and distributed computing, vol. 79, p. 3–15, 2015.

I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani y S. U. Khan, «The rise of “big data” on cloud computing: Review and open research issues,» Information systems, vol. 47, p. 98–115, 2015.

B. Marr, «How big data is changing healthcare,» Forbes/Tech, 2015.

M. J. Rho, H. S. Kim, K. Chung y I. Y. Choi, «Factors influencing the acceptance of telemedicine for diabetes management,» Cluster Computing, vol. 18, p. 321–331, 2015.

K. Azbeg, O. Ouchetto, S. J. Andaloussi, L. Fetjah y A. Sekkaki, «Blockchain and IoT for security and privacy: A platform for diabetes self-management,» de 2018 4th international conference on cloud computing technologies and applications (Cloudtech), 2018.

S. R. Moosavi, T. N. Gia, E. Nigussie, A. M. Rahmani, S. Virtanen, H. Tenhunen y J. Isoaho, «End-to-end security scheme for mobility enabled healthcare Internet of Things,» Future Generation Computer Systems, vol. 64, p. 108–124, 2016.

E. Vayena, J. Dzenowagis, J. S. Brownstein y A. Sheikh, «Policy implications of big data in the health sector,» Bulletin of the World Health Organization, vol. 96, p. 66, 2018.

Downloads

Published

March 16, 2023

Details about this monograph

ISBN-13 (15)

978-84-1335-250-3