Laboratorio de Ingeniería de Microondas: Aplicación de Antenas Impresas UHF Para Sistema de Localización

Autores/as

María Campo Valera (ed), Departamento de Ingeniería de comunicaciones. Universidad de Málaga ; Miguel Poveda García (ed), Universidad Politécnica de Cartagena; Joaquín García Fernández (ed), Università di Siena; José Antonio López Pastor (ed), Universidad Politécnica de Cartagena; Alejandro Gil Martínez; David Cañete Rebenaque (ed), Universidad Politécnica de Cartagena

Palabras clave:

Antenas y microondas, dirección de llegada, educación en la ingeniería, RFID, enseñanza en postgrados

Sinopsis

 

En el paradigma del Internet de las Cosas (IoT), la localización de dispositivos móviles usando redes de comunicaciones inalámbricas, es una de las tecnologías habilitadoras claves para el desarrollo de nuevas aplicaciones con una mayor eficiencia energética y por lo tanto tecnologías más verdes y sostenibles.

Dentro del contexto del posicionamiento en interiores, en los últimos años se vienen desarrollando diferentes sistemas de antenas para localizar el ángulo de llegada de señales radioeléctricas realizando saltos de canal de frecuencia y comparando los niveles de RSSI recibidos en los diferentes canales. Entre las distintas tecnologías de antenas disponibles, las antenas de ondas de fuga (Leaky-Wave Antenna, LWA), presentan unas propiedades interesantes por su sencilla alimentación, estructura compacta y capacidad de generar haces directivos escaneados en frecuencia. Estos sistemas se muestran muy eficientes cuando se han aplicado en redes inalámbricas de sensores de tipo Zigbee (IEEE 802.15.4), redes de área local de tipo Wi-Fi (IEEE 802.11), sensores pasivos RFID y sensores activos LoRa en la banda de UHF, y también con radiobalizas o beacons BLE.

Además de las antenas LWA, se vienen desarrollando sistemas de antenas para localización en redes WiFi usando agrupaciones de antenas comerciales directivas, ya sea de forma distribuida, o en configuración compacta monopulso. Las LWAs permiten realizar diseños más compactos y con mejores prestaciones que las agrupaciones de antenas.

Por otra parte, el aprendizaje basado en proyectos es una metodología que permite a los estudiantes adquirir los conocimientos y competencias claves en el siglo XXI mediante la elaboración de proyectos que dan respuesta a problemas de la vida real. Se trata de una metodología activa, en la que los estudiantes son los protagonistas de su aprendizaje: investigan, crean, aprenden, aplican lo aprendido en una situación real, comparten su experiencia con otras personas y analizan los resultados.

Este libro pretende servir como una base para prácticas de laboratorio de una asignatura dentro de la rama de la Ingeniería de Microondas presente en las titulaciones de Grado de Ingeniería de Sistemas de Telecomunicación, Tecnologías de Telecomunicación, Ingeniería Electrónica o equivalentes. Se trata de una asignatura eminentemente práctica que contempla la generación de subsistemas y sistemas completos basados en microondas. Por lo que se cree necesario 30 horas de sesiones formativas para desarrollar el conocimiento práctico aplicado.

Se proponen 5 prácticas de laboratorio donde en cada una de ellas se le introduce al estudiante el problema a desarrollar en cuestión y se le hacen preguntas que tendrá que responder sobre la base de los resultados obtenidos y/o explicaciones contenidas dentro de las mismas prácticas.

Gracias a esto y mediante un enfoque de docencia orientada a proyectos, los alumnos serán capaces de realizar sus propios diseños de antenas de microondas. Posteriormente, los podrán construir mediante técnicas de fabricación manuales y realizar medidas experimentales que permitan la caracterización de las antenas fabricadas. Con todo, los estudiantes implementarán un sistema de detección similar al radar utilizando las antenas fabricadas.

 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

María Campo Valera, Departamento de Ingeniería de comunicaciones. Universidad de Málaga

MARÍA CAMPO-VALERA nació en Santa Marta, Colombia, en 1984. Recibió el grado en Ingeniería de Sonido por la Universidad de San Buenaventura, Bogotá, Colombia, en 2009. En 2016, recibió la Maestría en Ingeniería Acústica por la Universitat Politècnica de València (UPV), España y en el 2020 recibió el Doctorado de la Universidad Politécnica de Cartagena (UPCT), España. En enero de 2021 fue investigadora postdoctoral en el Grupo de Electromagnetismo Aplicado a las Telecomunicaciones de la UPCT, trabajando en el desarrollo de iniciativas educativas para la fabricación de antenas. En 2021, también fue investigadora visitante en la Escuela Naval de Cadetes Almirante Padilla (ENAP), Cartagena de Indias, Colombia. En enero de 2022 obtuvo el contrato nacional postdoctoral Margarita Salas con estancia en la Universidad de Málaga, España, en el departamento de Ingeniería de Comunicaciones durante dos años. Actualmente es profesor sustituto interino de tiempo completo en la Universidad de Málaga en el departamento de Ingeniería de Comunicaciones. Sus intereses de investigación actuales incluyen procesamiento de señales, diseño de sensores, acústica no lineal, comunicaciones acústicas submarinas y antenas.

 

Miguel Poveda García, Universidad Politécnica de Cartagena

Nacido en Pozohondo, España, en 1992. Es Doctor (Cum Laude) en Telecomunicaciones por la Universidad Politécnica de Cartagena, España, en 2021. En Agosto de 2021 comenzó su trabajo como investigador postdoctoral en el grupo de Electromagnetismo Aplicado a las Telecomunicaciones en la Universidad Politécnica de Cartagena. Desde Enero de 2022, es colaborador investigador visitante en el grupo de investigación Microwaves and Antenna Engineering Group, Heriot-Watt University, Edinburgh, U.K. Sus investigaciones están relacionadas con el antenas leaky wave y sus aplicaciones en sistemas de telecomunicaciones, el Internet de las Cosas y almacenamiento de energía. Dr. Poveda-García ha ganado una beca nacional de investigación FPI “Formación de Personal Investigador” y una beca postdoctoral llamada “Margarita Salas” en el año 2021 para colaborar con la Heriot-Watt University y con la Universidad de Sevilla. Además, ganó el premio extraordinario de doctorado por la Universidad Politécnica de Cartagena.

Joaquín García Fernández, Università di Siena
Joaquín García Fernández nació en Murcia, España, en 1997. Recibió el grado y máster en Ingeniería en sistemas de telecomunicaciones por la Universidad Politécnica de Cartagena (UPCT), en 2019 y 2021, respectivamente. Actualmente está en proceso de doctorarse dentro del programa de formación  "H2020 Marie Skłodowska-Curie Innovative Training Networks", con el que trabaja conjuntamente con la empresa Wave Up srl y la Universidad de Siena, en Siena, Italia. Sus líneas de investigación principales son el análisis y diseño de antenas de onda de fuga y el diseño de metasuperficies para redes de comunicaciones 6G basadas en RIS.
José Antonio López Pastor, Universidad Politécnica de Cartagena

José Antonio López-Pastor es Doctor (Cum Laude) en Telecomunicaciones por la Universidad Politécnica de Cartagena, España, en 2022 gracias a un proyecto de investigación con colaboración Universidad-Empresa llamado Doctorado Industrial, financiado por el Ministerio de Ciencia y la empresa Neuromobile. Durante estos años ha trabajado en la implementación de sistemas de localización de teléfonos y de sistemas de gestión de Smart-cities. Además, su investigación incluye el Desarrollo de algoritmos y sistemas de localización empleando antenas leaky-waves, redes de sensores, y dispositivos del Internet de las Cosas.

Alejandro Gil Martínez

Alejandro Gil-Martinez nació en Murcia, España en 1997. En 2019 recibió el título de Graduado en Ingeniería de Telecomunicaciones y en 2020 recibió el título de Master en Ingeniería de Telecomunicaciones por la Universidad Politécnica de Cartagena (UPCT). De 2020 a 2021 trabajó con el Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR), en Bonn, Alemania en el departamento de AEM. En 2022 llevó a cabo una colaboración de investigación con el Real Instituto de Tecnología (KTH), en Estocolmo, Suecia. En 2023 obtuvo el título internacional de Doctor en Ingeniería de Telecomunicaciones por la UPCT, donde recibió la distinción de “Cum Laude” por su trabajo realizado a lo largo de la Tesis Doctoral. Actualmente se encuentra trabajando como investigador postdoctoral en la UCPT y su área de investigación se centra principalmente en el análisis y diseño de antenas Leaky-Wave para sistemas de localización indoor, desarrollo de sistemas y aplicaciones dentro del marco del Internet de las Cosas (IoT) y desarrollo de sistemas RADAR.

David Cañete Rebenaque, Universidad Politécnica de Cartagena

Nació en Valencia, España, en el año 1976. Obtuvo el título de Ingeniero de Telecomunicaciones por la Universidad Politécnica de Valencia, Valencia, en 2000, y el título de Doctor por la  Universidad Politécnica de Cartagena, Cartagena, España, en 2009. En 2001, se incorporó a Mobile Communication Company, Valencia, como ingeniero de RF. En 2002, se incorporó al Departamento de Tecnologías de la Información y las Comunicaciones de la Universidad Politécnica de Cartagena, donde es Profesor Titular de Universidad, participa en actividades de investigación y docencia. Sus intereses de investigación actuales incluyen el análisis y diseño de circuitos de microondas y antenas.

Citas

P. Spachos, I. Papapanagiotou, and K. N. Plataniotis, "Microlocation for smart buildings in the era of the internet of things: A survey of technologies, techni- ques, and approaches," IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 140-152, 2018.

https://doi.org/10.1109/MSP.2018.2846804

J. L. Gómez-Tornero, "Smart leaky-wave antennas for iridescent IoT wireless networks," Antenna and Array Technologies for Future Wireless Ecosystems, pp. 119-181, 2022.

https://doi.org/10.1002/9781119813910.ch4

M. Poveda-García, D. Cañete-Rebenaque, and J. L. Gómez-Tornero, "Frequency-scanned monopulse pattern synthesis using leaky-wave antennas for enhanced power-based direction-of-arrival estimation," IEEE Transactions on Antennas and Propagation, vol. 67, no. 11, pp. 7071-7086, 2019.

https://doi.org/10.1109/TAP.2019.2925970

M. Poveda-García, J. Oliva-Sánchez, R. Sanchez-Iborra, D. Cañete- Rebenaque, and J. L. Gomez-Tornero, "Dynamic wireless power transfer for cost-effective wireless sensor networks using frequency-scanned beaming," IEEE Access, vol. 7, pp. 8081-8094, 2019.

https://doi.org/10.1109/ACCESS.2018.2886448

A. Gil-Martínez, M. Poveda-García, J. A. López-Pastor, J. C. Sánchez- Aarnoutse, and J. L. Gómez-Tornero, "Wi-Fi direction finding with frequency- scanned antenna and channel-hopping scheme," IEEE Sensors Journal, vol. 22, no. 6, pp. 5210-5222, 2021.

https://doi.org/10.1109/JSEN.2021.3122232

J. A. López-Pastor, A. Gil-Martínez, M. Poveda-García, D. Cañete- Rebenaque, and J. L. Gómez-Tornero, "2-D localization system for mobile iot devices using a single wi-fi access point with a passive frequency-scanned antenna," IEEE Internet of Things Journal, vol. 10, pp. 14 995-15 011, 2023.

https://doi.org/10.1109/JIOT.2023.3262830

A. Gil-Martínez, M. Poveda-García, D. Cañete-Rebenaque, and J. Gómez- Tornero, "Metasurface antenna for fast frequency scanning with application to conical direction finding," IEEE Antennas and Wireless Propagation Letters,

A. Gil-Martínez, M. Poveda-García, D. Cañete-Rebenaque, and J. L. Gómez- Tornero, "Frequency-scanned monopulse antenna for RSSI-based direction fin- ding of UHF RFID tags," IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 1, pp. 158-162, 2021.

https://doi.org/10.1109/LAWP.2021.3122233

A. Gil-Martínez, M. Poveda-García, J. García-Fernández, M. Campo-Valera, D. Cañete-Rebenaque, and J. L. G. Tornero, "Direction finding of RFID tags in UHF band using a passive beam-scanning leaky-wave antenna," IEEE Journal of Radio Frequency Identification, vol. 6, pp. 552-563, 2022.

https://doi.org/10.1109/JRFID.2022.3180285

M. Campo-Valera, M. Poveda-Garcia, J. García-Fernández, A. Gil-Martínez, D. Cañete-Rebenaque, and J. L. Gómez-Tornero, "Laboratory to develop a practical hand-made monopulse antenna for RFID localization systems," IEEE Access, vol. 10, pp. 132 108-132 120, 2022.

https://doi.org/10.1109/ACCESS.2022.3229898

J. L. Gómez-Tornero, A. G. Martínez, M. Poveda-García, and D. Cañete- Rebenaque, "ARIEL: passive beam-scanning Antenna teRminal for Iridescent and Efficient LEO satellite connectivity," IEEE Antennas and Wireless Propa- gation Letters, vol. 21, no. 11, pp. 2268-2272, 2022.

https://doi.org/10.1109/LAWP.2022.3193040

M. Poveda-García, A. Gómez-Alcaraz, D. Cañete-Rebenaque, A. S. Martinez- Sala, and J. L. Gómez-Tornero, "RSSI-based direction-of-departure estimation in bluetooth low energy using an array of frequency-steered leaky-wave an- tennas," IEEE Access, vol. 8, pp. 9380-9394, 2020.

https://doi.org/10.1109/ACCESS.2020.2965233

M. Poveda-García, A. G. Martínez, and J. L. Gómez-Tornero, "Frequency- scanned focused leaky-wave antennas for direction-of-arrival detection in pro- ximity BLE sensing applications," in 2020 14th European Conference on An- tennas and Propagation (EuCAP). IEEE, 2020, pp. 1-4.

https://doi.org/10.23919/EuCAP48036.2020.9135538

M. Poveda-García, E. Andreu-García, J. García-Fernández, D. C. Rebenaque, and J. Gómez-Tornero, "Frequency-scanned leaky-wave antenna topologies for two-dimensional direction of arrival estimation in IoT wireless networks," in 2021 15th European Conference on Antennas and Propagation (EuCAP). IEEE, 2021, pp. 1-5.

https://doi.org/10.23919/EuCAP51087.2021.9411300

J. L. Gómez-Tornero, M. Poveda-García, R. Romero-Justiniano, A. Gil- Martínez, and D. Cañete-Rebenaque, "Design of frequency-beam scanning antennas for ultra wide band impulse RADAR applications," in 2023 17th Eu- ropean Conference on Antennas and Propagation (EuCAP). IEEE, 2023, pp. 1-4.

https://doi.org/10.23919/EuCAP57121.2023.10133315

D. Zelenchuk, A. J. Martinez-Ros, T. Zvolensky, J. L. Gómez-Tornero, G. Goussetis, N. Buchanan, D. Linton, and V. Fusco, "W-band planar wide-angle scanning antenna architecture," Journal of Infrared, Millimeter, and Terahertz Waves, vol. 34, pp. 127-139, 2013.

https://doi.org/10.1007/s10762-013-9960-z

M. Poveda-García, A. Gil-Martínez, F. Salmerón, and J. L. Gómez-Tornero, "Frequency-beam-scanning mm-wave antennas for direction finding RADAR," in 2022 19th European Radar Conference (EuRAD). IEEE, 2022, pp. 293- 296.

https://doi.org/10.23919/EuRAD54643.2022.9924888

R. Guzmán-Quirós, A. Martínez-Sala, J. L. Gómez-Tornero, and J. García- Haro, "Integration of directional antennas in an RSS fingerprinting-based in- door localization system," Sensors, vol. 16, no. 1, p. 4, 2015.

https://doi.org/10.3390/s16010004

J. L. Gómez-Tornero, D. Cañete-Rebenaque, J. A. López-Pastor, and A. S. Martínez-Sala, "Hybrid analog-digital processing system for amplitude- monopulse RSSI-based MIMO WiFi direction-of-arrival estimation," IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 3, pp. 529-540, 2018.

https://doi.org/10.1109/JSTSP.2018.2827701

J. A. López-Pastor, A. Gómez-Alcaraz, D. Cañete-Rebenaque, A. S. Martínez- Sala, and J. L. Gómez-Tornero, "Near-field monopulse DoA estimation for angle-sensitive proximity WiFi readers," IEEE Access, vol. 7, pp. 88 450- 88 460, 2019.

https://doi.org/10.1109/ACCESS.2019.2925739

J. A. López-Pastor, P. Arques-Lara, J. J. Franco-Peñaranda, A. J. García- Sánchez, and J. L. Gómez-Tornero, "Wi-Fi RTT-based active monopulse RA- DAR for single access point localization," IEEE Access, vol. 9, pp. 34 755- 34 766, 2021.

https://doi.org/10.1109/ACCESS.2021.3062085

A. Gil-Martínez, J. A. López-Pastor, M. Poveda-García, A. Algaba-Brazález, D. Cañete-Rebenaque, and J. L. Gómez-Tornero, "Monopulse leaky-wave an- tennas for RSSI-based direction finding in wireless local area networks," IEEE Transactions on Antennas and Propagation, 2023.

https://doi.org/10.1109/TAP.2023.3313161

A. Oliner and K. Lee, "Microstrip leaky wave strip antennas," in 1986 Antennas and Propagation Society International Symposium, vol. 24. IEEE, 1986, pp. 443-446.

A. A. Oliner, "Leakage from higher modes on microstrip line with application to antennas," Radio Science, vol. 22, no. 6, pp. 907-912, 1987.

https://doi.org/10.1029/RS022i006p00907

K. S. Lee, "Microstrip line leaky wave antenna," Ph.D. dissertation, Polytech- nic Institute of New York, 1986.

J. L. Gómez-Tornero, D. Cañete-Rebenaque, and A. Álvarez-Melcón, "Mi- crostrip leaky-wave antenna with control of leakage rate and only one mainbeam in the azimuthal plane," IEEE transactions on antennas and propaga- tion, vol. 56, no. 2, pp. 335-344, 2008.

https://doi.org/10.1109/TAP.2007.915422

A. G. Martínez, M. P. García, and J. L. Gómez-Tornero, "Direct synthesis of frequency-scanned monopulse half-width microstrip leaky-wave antennas," in 2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020, pp. 1-4.

https://doi.org/10.23919/EuCAP48036.2020.9135317

L. Goldstone and A. Oliner, "Leaky-wave antennas i: Rectangular waveguides," IRE Transactions on Antennas and propagation, vol. 7, no. 4, pp. 307-319, 1959.

https://doi.org/10.1109/TAP.1959.1144702

J. L. Gómez-Tornero and A. Álvarez-Melcón, "Nonorthogonality relations bet- ween complex hybrid modes: An application for the leaky-wave analysis of laterally shielded top-open planar transmission lines," IEEE transactions on microwave theory and techniques, vol. 52, no. 3, pp. 760-767, 2004.

https://doi.org/10.1109/TMTT.2004.823526

J. L. Gómez-Tornero, D. Cañete-Rebenaque, and A. Álvarez-Melcón, "Printed- circuit leaky-wave antenna with pointing and illumination flexibility," IEEE microwave and wireless components letters, vol. 15, no. 8, pp. 536-538, 2005.

https://doi.org/10.1109/LMWC.2005.852801

J. L. Gómez-Tornero, G. Goussetis, A. P. Feresidis, and A. Álvarez-Melcón, "Control of leaky-mode propagation and radiation properties in hybrid dielectric-waveguide printed-circuit technology: Experimental results," IEEE transactions on antennas and propagation, vol. 54, no. 11, pp. 3383-3390, 2006.

https://doi.org/10.1109/TAP.2006.884298

M. García-Vigueras, J. L. Gómez-Tornero, G. Goussetis, J. S. Gómez-Díaz, and A. Alvarez-Melcón, "A modified pole-zero technique for the synthesis of waveguide leaky-wave antennas loaded with dipole-based FSS," IEEE Transac- tions on Antennas and Propagation, vol. 58, no. 6, pp. 1971-1979, 2010.

https://doi.org/10.1109/TAP.2010.2046856

M. García-Vigueras, J. L. Gómez-Tornero, G. Goussetis, A. R. Weily, and Y. J. Guo, "Efficient synthesis of 1-d fabry-perot antennas with low sidelobe levels," IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 869-872, 2012.

https://doi.org/10.1109/LAWP.2012.2210182

F. Xu and K. Wu, "Guided-wave and leakage characteristics of substrate inte- grated waveguide," IEEE Transactions on microwave theory and techniques, vol. 53, no. 1, pp. 66-73, 2005.

https://doi.org/10.1109/TMTT.2004.839303

D. Deslandes, "Substrate integrated waveguide leaky-wave antenna: Concept and design considerations," in Asia Pacific Microwave Conference Proc., Dec. 2005, vol. 1, 2005, pp. 346-349.

A. J. Martínez-Ros, J. L. Gómez-Tornero, and G. Goussetis, "Planar leaky- wave antenna with flexible control of the complex propagation constant," IEEE Transactions on Antennas and Propagation, vol. 60, no. 3, pp. 1625-1630, 2011.

https://doi.org/10.1109/TAP.2011.2180320

--, "Broadside radiation from radial arrays of substrate integrated leaky- wave antennas," in 2012 6th European Conference on Antennas and Propa- gation (EUCAP). IEEE, 2012, pp. 252-254.

J. L. Gómez-Tornero, A. Martínez-Ros, A. Álvarez-Melcón, F. Mesa, and F. Medina, "Substrate integrated waveguide leaky-wave antenna with reduced beam squint," in 2013 European Microwave Conference. IEEE, 2013, pp. 491-494.

A. J. Martínez-Ros, J. L. Gómez-Tornero, and G. Goussetis, "Multifunctional angular bandpass filter siw leaky-wave antenna," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 936-939, 2016.

https://doi.org/10.1109/LAWP.2016.2614914

M. Poveda-García and J. L. Gómez-Tornero, "Ambiguity resolution in amplitude-monopulse systems using broad-beam patterns," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 4, pp. 503-507, 2021.

https://doi.org/10.1109/LAWP.2021.3055275

J. L. Gómez-Tornero, M. Poveda-García, R. Guzmán-Quirós, and J. C. Sánchez-Arnause, "Design of ku-band wireless power transfer system to empo- wer light drones," in 2016 IEEE Wireless Power Transfer Conference (WPTC). IEEE, 2016, pp. 1-4.

https://doi.org/10.1109/WPT.2016.7498822

C. Song, L. Wang, M. Wagih, M. Poveda-García, and Y. Huang, "Novel mmwave wireless power transfer systems using broadband circularly polarized rectennas and leaky wave transmitters," in 2023 IEEE International Sympo- sium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI). IEEE, 2023, pp. 539-540.

https://doi.org/10.1109/USNC-URSI52151.2023.10237927

Q. Liao and L. Wang, "Switchable bidirectional/unidirectional LWA array ba- sed on half-mode substrate integrated waveguide," IEEE Antennas and Wire- less Propagation Letters, vol. 19, no. 7, pp. 1261-1265, 2020.

https://doi.org/10.1109/LAWP.2020.2997866

K. M. Morshed, D. K. Karmokar, K. P. Esselle, and L. Matekovits, "Beam- switching antennas for 5g millimeter-wave wireless terminals," Sensors, vol. 23, no. 14, p. 6285, 2023.

https://doi.org/10.3390/s23146285

J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, and R. W. Heath, "Multibeam for joint communication and radar sensing using steerable analog antenna arrays," IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 671-685, 2018.

https://doi.org/10.1109/TVT.2018.2883796

K. Wu, J. A. Zhang, X. Huang, R. W. Heath, and Y. J. Guo, "Green joint communications and sensing employing analog multi-beam antenna arrays," IEEE Communications Magazine, 2023.

https://doi.org/10.1109/MCOM.007.2200495

M. Poveda-García, J. A. López-Pastor, M. Campo-Valera, D. Cañete- Rebenaque, and J. L. Gómez-Tornero, "Compact amplitude-monopulse anten- na for joint two-dimensional direction finding and sectorized communications in the 2.4 Ghz ISM band," IEEE Open J. Antennas and Propag, 2023.

https://doi.org/10.1109/OJAP.2023.3336010

Y. Cui, F. Liu, X. Jing, and J. Mu, "Integrating sensing and communica- tions for ubiquitous iot: Applications, trends, and challenges," IEEE Network, vol. 35, no. 5, pp. 158-167, 2021.

https://doi.org/10.1109/MNET.010.2100152

Z. Wei, F. Liu, C. Masouros, N. Su, and A. P. Petropulu, "Toward multi- functional 6G wireless networks: Integrating sensing, communication, and security," IEEE Communications Magazine, vol. 60, no. 4, pp. 65-71, 2022.

https://doi.org/10.1109/MCOM.002.2100972

T. D. P. Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas, and J. Li, "Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges," IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 264-302, 2017.

https://doi.org/10.1109/COMST.2017.2783901

K. Wu, W. Ni, T. Su, R. P. Liu, and Y. J. Guo, "Efficient angle-of-arrival estimation of lens antenna arrays for wireless information and power transfer," IEEE Journal on Selected Areas in Communications, vol. 37, no. 1, pp. 116- 130, 2018.

https://doi.org/10.1109/JSAC.2018.2872363

F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, "Joint radar and communication design: Applications, state-of-the-art, and the road ahead," IEEE Transactions on Communications, vol. 68, no. 6, pp. 3834-3862, 2020.

https://doi.org/10.1109/TCOMM.2020.2973976

J. R. Whinnery, "The teaching of electromagnetics," IEEE Transactions on Education, vol. 33, no. 1, pp. 3-7, 1990.

https://doi.org/10.1109/13.53622

B. Pejcinovic and R. L. Campbell, "Active learning, hardware projects and reverse instruction in microwave/rf education," in 2013 European Radar Con- ference. IEEE, 2013, pp. 259-262.

Z. Popovic, G. Artner, G. Lasser, and C. F. Mecklenbraeuker, "Electromagnetic-wave fun using simple take-home experiments [education corner]," IEEE Antennas and Propagation Magazine, vol. 62, no. 2, pp. 100- 106, 2020.

https://doi.org/10.1109/MAP.2020.2971133

K. F. Warnick and K. T. Selvan, "Teaching and learning electromagnetics in 2020: Issues, trends, opportunities, and ideas for developing courses," IEEE Antennas and Propagation Magazine, vol. 62, no. 2, pp. 24-30, 2020.

https://doi.org/10.1109/MAP.2020.2969269

K. T. Selvan and K. F. Warnick, Teaching electromagnetics: innovative ap- proaches and pedagogical strategies. CRC Press, 2021.

https://doi.org/10.1201/9781003149231

J. L. Gómez-Tornero, D. Cañete-Rebenaque, F. D. Quesada-Pereira, and A. Álvarez-Melcón, "Interactive lab to learn radio astronomy, microwave & antenna engineering at the technical university of cartagena (spain)," Int. J. Online Eng., vol. 7, no. 1, pp. 10-18, 2011.

https://doi.org/10.3991/ijoe.v7i1.1523

P. A. Sanger and J. Ziyatdinova, "Project based learning: Real world expe- riential projects creating the 21st century engineer," in 2014 International Conference on Interactive Collaborative Learning (ICL). IEEE, 2014, pp. 541-544.

https://doi.org/10.1109/ICL.2014.7017830

A. A. Rahman, N. M. Zaid, B. Aris, Z. Abdullah, H. Mohamed, and H. Van Der Meijden, "Implementation strategy of project based learning th- rough flipped classroom method," in 2016 IEEE Conference on e-Learning, e-Management and e-Services (IC3e). IEEE, 2016, pp. 1-5.

https://doi.org/10.1109/IC3e.2016.8009030

E. Aydın and E. Kalayci, "Implementing consecutive project-based learning in an antenna and propagation course," International Journal of Electrical Engineering Education, vol. 53, no. 1, pp. 87-96, 2016.

https://doi.org/10.1177/0020720915598997

Y. Yu, Q. S. Cheng, and R. Barik, "Implementation of project-based learning in teaching an antenna and wave propagation course," in 2020 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE). IEEE, 2020, pp. 698-703.

https://doi.org/10.1109/TALE48869.2020.9368323

J. L. Besada, L. de Haro Ariet, B. Galocha, and M. A. Salas-Natera, "Asytrain: A new methodology for teaching and learning antennas," in 2013 7th European Conference on Antennas and Propagation (EuCAP). IEEE, 2013, pp. 3479- 3481.

M. B. Perotoni and M. S. Vieira, "Increasing the interest in antennas and microwave courses," The International Journal of Electrical Engineering & Education, vol. 56, no. 3, pp. 193-207, 2019.

https://doi.org/10.1177/0020720918790098

U. Bulus, "Anten'it: A hardware-based antenna design and training kit [testing ourselves]," IEEE Antennas and Propagation Magazine, vol. 62, no. 1, pp. 107-112, 2020.

https://doi.org/10.1109/MAP.2019.2955827

D. Bonefacic, J. Jancula, and N. Majurec, "Model of a monopulse radar trac- king system for student laboratory," Radioengineering, vol. 16, no. 3, p. 63, 2007.

https://doi.org/10.1109/ELMAR.2006.329549

P. Saratayon, V. Pirom, and T. Saelim, "Rssi monopulse azimuth tracking demonstration using wideband personal area network device," Int. Journal of Engineering Research and Technology, vol. 2, no. 9, pp. 663-670, 2013.

M. Poveda-García, J. A. López-Pastor, A. Gómez-Alcaraz, L. M. Martínez- Tamargo, M. Pérez-Buitrago, A. Martínez-Sala, D. Cañete-Rebenaque, and J. L. Gómez-Tornero, "Amplitude-monopulse radar lab using wifi cards," in 2018 48th European Microwave Conference (EuMC). IEEE, 2018, pp. 464- 467.

https://doi.org/10.23919/EuMC.2018.8541674

S.-G. Kim and K. Chang, "Low-cost monopulse antenna using bi-directionally- fed microstrip patch array," Electronics letters, vol. 39, no. 20, pp. 1428-1429, 2003.

https://doi.org/10.1049/el:20030963

E. Topak, J. Hasch, C. Wagner, and T. Zwick, "A novel millimeter-wave dual- fed phased array for beam steering," IEEE transactions on microwave theory and techniques, vol. 61, no. 8, pp. 3140-3147, 2013.

https://doi.org/10.1109/TMTT.2013.2267935

X. Yu and H. Xin, "Direction of arrival estimation utilizing incident angle de- pendent spectra," in 2012 IEEE/MTT-S International Microwave Symposium Digest. IEEE, 2012, pp. 1-3.

D. Patron, H. Paaso, A. Mämmelä, D. Piazza, and K. R. Dandekar, "Improved design of a crlh leaky-wave antenna and its application for doa estimation," in 2013 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). IEEE, 2013, pp. 1343-1346.

https://doi.org/10.1109/APWC.2013.6624937

H. Paaso, N. Gulati, D. Patron, A. Hakkarainen, J. Werner, K. R. Dan- dekar, M. Valkama, and A. Mämmelä, "Doa estimation using compact crlh leaky-wave antennas: Novel algorithms and measured performance," IEEE Transactions on Antennas and Propagation, vol. 65, no. 9, pp. 4836-4849, 2017.

https://doi.org/10.1109/TAP.2017.2724584

M. Campo-Valera, M. Poveda-García, J. García-Fernández, D. Cañete- Rebenaque, and J. L. Gómez-Tornero, "Handmade microstrip leaky-wave an- tenna in uhf band for educational purposes," in 2022 16th European Confe- rence on Antennas and Propagation (EuCAP). IEEE, 2022, pp. 01-05.

https://doi.org/10.23919/EuCAP53622.2022.9769271

Próximamente

16 enero 2024

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Detalles sobre el formato de publicación disponible: PDF

PDF

ISBN-13 (15)

978-84-1335-323-4