Tecnologías digitales disruptivas aplicadas a la gestión de la pandemia por COVID-19: Un análisis a través de la producción científica
Palabras clave:
Covid 19, TecnologíasSinopsis
Este libro presenta un estudio acerca de las tecnologías digitales disruptivas (Internet of Things, Machine Learning, Blockchain y otras) que se han aplicado a la gestión de la pandemia ocasionada por la COVID-19. La investigación se ha llevado a cabo a través de un análisis cienciométrico -basado en minería de textos- de la producción científica publicada al respecto a lo largo de un período de año y medio (2020 y mitad de 2021) y, a este respecto, se ha considerado Scopus como fuente de datos principal y Web of Science como secundaria (a efectos comparativos). De esta manera, por medio de la utilización del potente software VOSviewer, se ofrecen multitud de resultados -ilustrados por los correspondientes mapas bibliométricos- como la evolución temporal del número de publicaciones, la producción y el número de coautorías por países, los temas (topics) y autores más prolíficos o un ranking de los artículos más referenciados. En definitiva, en este libro, se pretende ofrecer una visión lo más completa y actualizada posible de cómo la inteligencia artificial y ciertas tecnologías digitales emergentes han contribuido, de manera esencial, a cuestiones de predicción, seguimiento, diagnóstico, tratamiento y prevención de la COVID-19.
Descargas
Citas
Ting, D.S.W.; Carin, L.; Dzau, V.; Wong, T.Y. Digital technology and COVID-19.Nat. Med. 2020, 26, 459–461.
Rodríguez-Rodríguez, I.; Zamora-Izquierdo, M.Á.; Rodríguez, J.V. Towards an ICT-based platform for type 1 diabetes mellitus management. Appl. Sci. 2018, 8, 511.
Calton, B.; Abedini, N.; Fratkin, M. Telemedicine in the time of coronavirus. J. Pain Symptom Manag. 2020, 60, e12–e14.
Rodríguez-Rodríguez, I.; Rodríguez, J.V.; Zamora-Izquierdo, M.Á. Variables to be monitored via biomedical sensors for complete type 1 diabetes mellitus management: An extension of the “on-board” concept. J. Diabetes Res. 2018, 2018, 4826984.
Alladi, T.; Chamola, V.; Rodrigues, J.J.; Kozlov, S.A. Blockchain in smart grids: A review on different use cases. Sensors 2019, 19, 4862.
Hernández-Ramos, J.L.; Karopoulos, G.; Geneiatakis, D.; Martin, T.; Kambourakis, G.; Fovino, I.N. Sharing pandemic vaccination certificates through blockchain: Case study and performance evaluation. arXiv 2021, arXiv:2101.04575.
Fusco, A.; Dicuonzo, G.; Dell’Atti, V.; Tatullo, M. Blockchain in healthcare: Insights on COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 7167.
Martin, T.; Karopoulos, G.; Hernández-Ramos, J.L.; Kambourakis, G.; Nai Fovino, I. Demystifying COVID-19 digital contact tracing: A survey on frameworks and mobile apps. Wirel. Commun. Mob. Comput. 2020, 2020, 8851429.
Ahmed, N.; Michelin, R.A.; Xue, W.; Ruj, S.; Malaney, R.; Kanhere, S.S.; Jha, S.K. A survey of COVID-19 contact tracing apps. IEEE Access 2020, 8, 134577– 134601.
Chamola, V.; Hassija, V.; Gupta, V.; Guizani, M. A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in managing its impact. IEEE Access 2020, 8, 90225–90265.
Pham, Q.V.; Fang, F.; Ha, V.N.; Piran, M.J.; Le, M.; Le, L.B.; Ding, Z. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access 2020, 8, 116974–117017.
Siriwardhana, Y.; Gür, G.; Ylianttila, M.; Liyanage, M. The role of 5G for digital healthcare against COVID-19 pandemic: Opportunities and challenges. ICT Express 2021, 7, 244–252.
Latif, S.; Usman, M.; Manzoor, S.; Iqbal, W.; Qadir, J.; Tyson, G.; Crowcroft, J. Leveraging data science to combat covid-19: A comprehensive review. IEEE Trans. Artif. Intell. 2020, 1, 85–103.
Colavizza, G.; Costas, R.; Traag, V.A.; van Eck, N.J.; van Leeuwen, T.; Waltman, L. A scientometric overview of CORD-19. PLoS ONE 2021, 16, e0244839.
Duan, D.; Xia, Q. Evolution of Scientific Collaboration on COVID‐19: A Bibliometric Analysis; Learned Publishing: Hoboken, NJ, USA, 2021; pp. 429–441.
Haghani, M.; Varamini, P. Temporal evolution, most influential studies and sleeping beauties of the coronavirus literature. Scientometrics 2021, 126, 1–46.
Hossain, M.M. Current status of global research on novel coronavirus disease (Covid-19): A bibliometric analysis and knowledge mapping. F1000Research 2020, 9, 374.
Pal, J.K. Visualizing the knowledge outburst in global research on COVID-19. Scientometrics 2021, 126, 4173–4193.
Carlson, R. J. The disruptive nature of personalized medicine technologies: implications for the health care system. Public Health Genomics 2009, 12(3), 180- 184.
Utterback, J. M., & Acee, H. J. Disruptive technologies: An expanded view. International journal of innovation management 2005, 9(01), 1-17.
Mintz, Y., & Brodie, R. Introduction to artificial intelligence in medicine. Minimally Invasive Therapy & Allied Technologies 2019, 28(2), 73-81.
Gartner, D., & Padman, R. Machine learning for healthcare behavioural OR: Addressing waiting time perceptions in emergency care. Journal of the Operational Research Society 2020, 71(7), 1087-1101.
Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way,
G. P., ... & Greene, C. S. Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface 2018, 15(141), 20170387.
Martin-Sanchez, F., & Verspoor, K. Big data in medicine is driving big changes.
Yearbook of medical informatics 2014, 23(01), 14-20.
Vishnu, S., Ramson, S. J., & Jegan, R. Internet of medical things (IoMT)-An overview. In 2020 5th international conference on devices, circuits and systems (ICDCS), 2020 (pp. 101-104). IEEE.
Eckert, M., Volmerg, J. S., & Friedrich, C. M. Augmented reality in medicine: systematic and bibliographic review. JMIR mHealth and uHealth 2019, 7(4), e10967.
Yetisen, A. K., Martinez‐Hurtado, J. L., Ünal, B., Khademhosseini, A., & Butt, H. Wearables in medicine. Advanced Materials 2018, 30(33), 1706910.
Elemento, O. The future of precision medicine: Towards a more predictive personalized medicine. Emerging Topics in Life Sciences 2020, 4(2), 175-177.
Chellappandi, P.; Vijayakumar, C.S. Bibliometrics, Scientometrics, Webometrics/Cybermetrics, Informetrics and Altmetrics–An Emerging Field in Library and Information Science Research. Shanlax Int. J. Educ. 2018, 7, 5–8.
Broadus, R.N. Toward a definition of “bibliometrics”. Scientometrics 1987, 12, 373–379.
Thongpapanl, N.T. The changing landscape of technology and innovation management: An updated ranking of journals in the field. Technovation 2012, 32, 257–271.
Song, M.; Ding, Y. Topic modeling: Measuring scholarly impact using a topical lens. In Measuring Scholarly Impact; Springer: Cham, Switzerland, 2014; pp. 235– 257.
Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P.; Bachrach, D.G. Scholarly influence in the field of management: A bibliometric analysis of the determinants of university and author impact in the management literature in the past quarter century. J. Manag. 2008, 34, 641–720.
Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact; Springer: Cham, Switzerland, 2014; pp. 285–320.
Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538.
Kessler, M.M. Bibliographic coupling between scientific papers. Am. Doc. 1963,
, 10–25.
Small, H. Co‐citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269.
Traag, V.A.; Waltman, L.; Van Eck, N.J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 2019, 9, 1–12.
Van Eck, N.J.; Waltman, L. VOS: A new method for visualizing similarities between objects. In Advances in Data Analysis; Springer: Berlin/Heidelberg, Germany, 2007; pp. 299–306.
Yan, E.; Ding, Y.; Jacob, E.K. Overlaying communities and topics: An analysis on publication networks. Scientometrics 2012, 90, 499–513.
Van Eck, N.; Waltman, L.; Noyons, E.; Buter, R. Automatic term identification for bibliometric mapping. Scientometrics 2010, 82, 581–596.
Huang, X., & Lai, W. (2006). Clustering graphs for visualization via node similarities. Journal of Visual Languages & Computing, 17(3), 225-253..
Boyack, K.W.; Klavans, R. Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2389–2404.
Waltman, L.; Van Eck, N.J. A new methodology for constructing a publication‐level classification system of science. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 2378– 2392.
Leydesdorff, L.; Bornmann, L. Mapping (USPTO) patent data using overlays to Google Maps. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1442–1458.
Zhu, J.; Liu, W. A Tale of Two Databases: The Use of Web of Science and Scopus in Academic Papers. Scientometrics 2020, 123, 321–335.
Li, K.; Rollins, J.; Yan, E. Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics 2018, 115, 1–20.
Harzing, A.W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics 2016, 106, 787– 804.
Ahmad, M.; Batcha, M.S. Mapping of Publications Productivity on Journal of Documentation 1989–2018: A Study Based on Clarivate Analytics–Web of Science Database. Libr. Philos. Pract. 2019, 2213.
Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a curated, high- quality bibliometric data source for academic research in quantitative science studies. Quant. Sci. Stud. 2020, 1, 377–386.
Valderrama-Zurián, J.C.; Aguilar-Moya, R.; Melero-Fuentes, D.; Aleixandre- Benavent, R. A systematic analysis of duplicate records in Scopus. J. Informetr. 2015, 9, 570–576.
Halevi, G.; Moed, H.; Bar-Ilan, J. Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the literature. J. Informetr. 2017, 11, 823–834.
Orduña Malea, E.; Martín-Martín, A.; Delgado-López-Cózar, E. Google Scholar as a source for scholarly evaluation: A bibliographic review of database errors. Rev. Esp. Doc. Cient. 2017, 40, 1–33.
Visser, M.; van Eck, N.J.; Waltman, L. Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quant. Sci. Stud. 2021, 2, 20–41.
Wouters, P.; Thelwall, M.; Kousha, K.; Waltman, L.; de Rijcke, S.; Rushforth, A.; Wouters, P. The Metric Tide: Literature Review, Supplementary Report I to the Independent Review of the Role of Metrics in Research Assessment and Management; HEFCE: London, UK, 2015.
Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228.
Aksnes, D.W.; Sivertsen, G. A criteria-based assessment of the coverage of Scopus and Web of Science. J. Data Inf. Sci. 2019, 4, 1–21.
Shnurenko, I.; Murovana, T.; Kushchu, I. Artificial Intelligence; UNESCO Institute for Information Technologies: Paris, France, 2020.
Vafea, M.T.; Atalla, E.; Georgakas, J.; Shehadeh, F.; Mylona, E.K.; Kalligeros, M.; Mylonakis, E. Emerging technologies for use in the study, diagnosis, and treatment of patients with COVID-19. Cell. Mol. Bioeng. 2020, 13, 249–257.
Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The future of healthcare internet of things: A survey of emerging technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167.
Bonaccorso, G. Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2018.
WorldBank. World Bank Group. Gross Domestic Product 2021. Available: www.worldbank.org/indicator/NY.GDP.MKTP.CD (accessed on 15 June 2021).
WorldBank. World Bank Group. Country Income Classifications. Available: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank- country-and-lending-groups / (accessed on 15 June 2021).
Van Eck, N.J.; Waltman, L. Text mining and visualization using VOSviewer. arXiv 2011, arXiv:1109.2058.
Gallacher, G.; Hossain, I. Remote work and employment dynamics under COVID- 19: Evidence from Canada. Can. Public Policy 2020, 46, S44–S54.
Leonardi, P.M. COVID‐19 and the new technologies of organizing: Digital exhaust, digital footprints, and artificial intelligence in the wake of remote work. J. Manag. Stud. 2020, 12648, Epub ahead of print, doi:10.1111/joms.12648.
Dannenberg, P.; Fuchs, M.; Riedler, T.; Wiedemann, C. Digital transition by COVID‐19 pandemic? The German food online retail. Tijdschr. Voor Econ. En Soc. Geogr. 2020, 111, 543–560.
Håkansson, A. Impact of COVID-19 on online gambling–a general population survey during the pandemic. Front. Psychol. 2020, 11, 2588.
Hoekstra, J.C.; Leeflang, P.S. Marketing in the era of COVID-19. Ital. J. Mark. 2020, 2020, 249–260.
Arechar, A.A.; Rand, D.G. Turking in the time of COVID. Behav. Res. Methods
, 1–5, doi:10.3758/s13428-021-01588-4.
Raza, K. Artificial intelligence against COVID-19: A meta-analysis of current research. In Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach; Springer: Berlin/Heidelberg, Germany, 2020; pp. 165–176.
Wang, M.; Zeng, Q.; Chen, W.; Pan, J.; Wu, H.; Sudlow, C.; Robertson, D. Building the Knowledge Graph for UK Health Data Science. 2021. Available online: https://era.ed.ac.uk/handle/1842/36684 (accessed on 25 June 2021).
Sawyer, J. Wearable Internet of Medical Things Sensor Devices 2020, Artificial Intelligence-driven Smart Healthcare Services, and Personalized Clinical Care in COVID-19 Telemedicine. Am. J. Med. Res. 2020, 7, 71–77.
Rizk-Allah, R.M.; Hassanien, A.E. COVID-19 forecasting based on an improved interior search algorithm and multi-layer feed forward neural network. arXiv 2020, arXiv:2004.05960.
Huang, C.J.; Chen, Y.H.; Ma, Y.; Kuo, P.H. Multiple-input deep convolutional neural network model for covid-19 forecasting in china. MedRxiv 2020, medRxiv:2020.03.23.20041608.
Gupta, R.; Pal, S.K. Trend Analysis and Forecasting of COVID-19 outbreak in India. MedRxiv 2020, medRxiv:2020.03.26.20044511, Singh, V.; Poonia, R.C.; Kumar, S.; Dass, P.; Agarwal, P.; Bhatnagar, V.; Raja, L. Prediction of COVID-19 corona virus pandemic based on time series data using Support Vector Machine. J. Discret. Math. Sci. Cryptogr. 2020, 23, 1583–1597.
Rodríguez-Rodríguez, I.; Chatzigiannakis, I.; Rodríguez, J.V.; Maranghi, M.; Gentili, M.; Zamora-Izquierdo, M.Á. Utility of big data in predicting short-term blood glucose levels in type 1 diabetes mellitus through machine learning techniques. Sensors 2019, 19, 4482.
Saba, T.; Abunadi, I.; Shahzad, M.N.; Khan, A.R. Machine learning techniques to detect and forecast the daily total COVID‐19 infected and deaths cases under different lockdown types. Microsc. Res. Tech. 2021, 84, 1462–1474.
Wadhwa, P.; Tripathi, A.; Singh, P.; Diwakar, M.; Kumar, N. Predicting the time period of extension of lockdown due to increase in rate of COVID-19 cases in India using machine learning. Mater. Today Proc. 2021, 37, 2617–2622.
Rodríguez-Rodríguez, I.; Rodríguez, J.V.; Pardo-Quiles, D.J.; Heras-González, P.; Chatzigiannakis, I. Modeling and Forecasting Gender-Based Violence through Machine Learning Techniques. Appl. Sci. 2020, 10, 8244.
Zhou, C.; Su, F.; Pei, T.; Zhang, A.; Du, Y.; Luo, B.; Xiao, H. COVID-19: Challenges to GIS with big data. Geogr. Sustain. 2020, 1, 77–87.
Jung, Y.; Agulto, R. A Public Platform for Virtual IoT-Based Monitoring and Tracking of COVID-19. Electronics 2021, 10, 12.
Rodríguez-Rodríguez, I.; Rodríguez, J.V.; Molina-García-Pardo, J.M.; Zamora- Izquierdo, M.Á.; Martínez-Inglés, M.T.M.I.I. A Comparison of Different Models of Glycemia Dynamics for Improved Type 1 Diabetes Mellitus Management with Advanced Intelligent Analysis in an Internet of Things Context. Appl. Sci. 2020, 10, 4381.
Lee, I.K.; Wang, C.C.; Lin, M.C.; Kung, C.T.; Lan, K.C.; Lee, C.T. Effective strategies to prevent coronavirus disease-2019 (COVID-19) outbreak in hospital. J. Hosp. Infect. 2020, 105, 102.
Albahli, S.; Algsham, A.; Aeraj, S.; Alsaeed, M.; Alrashed, M.; Rauf, H.T.; Mohammed, M.A. COVID-19 Public Sentiment Insights: A Text Mining Approach to the Gulf Countries. Comput. Mater. Contin. 2021, 67, 014265.
Choi, H.K.; Lee, S.H. Trends and Effectiveness of ICT Interventions for the Elderly to Reduce Loneliness: A Systematic Review. Healthcare 2021, 9, 293.
Koh, J.X.; Liew, T.M. How loneliness is talked about in social media during COVID- 19 pandemic: Text mining of 4,492 Twitter feeds. J. Psychiatr. Res. 2020, in press.
Ćosić, K.; Popović, S.; Šarlija, M.; Kesedžić, I.; Jovanovic, T. Artificial intelligence in prediction of mental health disorders induced by the covid-19 pandemic among health care workers. Croat. Med. J. 2020, 61, 279.
WHO. Infodemic Management Infodemiology. 2020. Available online: www.who.int/teams/riskcommunication/infodemic-management (accessed on: 24 June 2021).
Paka, W.S.; Bansal, R.; Kaushik, A.; Sengupta, S.; Chakraborty, T. Cross-SEAN: A cross-stitch semi-supervised neural attention model for COVID-19 fake news detection. Appl. Soft Comput. 2021, 107, 107393.
Bullock, J.; Luccioni, A.; Pham, K.H.; Lam, C.S.N.; Luengo-Oroz, M. Mapping the landscape of artificial intelligence applications against COVID-19. J. Artif. Intell. Res. 2020, 69, 807–845.
Wang, C.S.; Lin, P.J.; Cheng, C.L.; Tai, S.H.; Yang, Y.H.K.; Chiang, J.H. Detecting potential adverse drug reactions using a deep neural network model. J. Med. Internet Res. 2019, 21, e11016.
Ho, D. Addressing COVID‐19 drug development with artificial intelligence. Adv. Intell. Syst. 2020, 2, 2000070.
Ke, Y.Y.; Peng, T.T.; Yeh, T.K.; Huang, W.Z.; Chang, S.E.; Wu, S.H.; Chen, C.T. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed. J. 2020, 43, 355–362.
Funk, B.; Sadeh-Sharvit, S.; Fitzsimmons-Craft, E.E.; Trockel, M.T.; Monterubio, G.E.; Goel, N.J.; Taylor, C.B. A framework for applying natural language processing in digital health interventions. J. Med. Internet Res. 2020, 22, e13855.
Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today 2018, 23, 1241–1250.
Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011, 162, 1239–1249.
Andoni, A. Artificial Intelligence Can’t Help with the COVID Pandemic. Or Can It? NODE Health 2020. Available online: https://nodehealth.org/2020/07/08/artificial- intelligence-cant-help-with-the-covid-pandemic-or-can-it/ (accessed on 20 June 2021)
Etzioni, O.; Decario, N. AI Can Help Scientists Find a Covid-19 Vaccine. 2020. Available online: www.wired. com/story/opinion-ai-can-help-find-scientists-find-a- covid-19-vaccine/ (accessed on 2 May 2020).
Rojas, A. Artificial Intelligence in the COVID-19 era. Artif. Intell. 2020, 27, 8.
Marian, A.J. Current state of vaccine development and targeted therapies for COVID-19: Impact of basic science discoveries. Cardiovasc. Pathol. 2020, 50, 107278.
Mahomed, N.; van Ginneken, B.; Philipsen, R.H.; Melendez, J.; Moore, D.P.; Moodley, H.; Madhi, S.A. Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children.
Pediatric Radiol. 2020, 50, 482–491.
Wang, L.; Lin, Z.Q.; Wong, A. Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Sci. Rep. 2020, 10, 1–12.
Maghded, H.S.; Ghafoor, K.Z.; Sadiq, A.S.; Curran, K.; Rawat, D.B.; Rabie, K. A novel AI-enabled framework to diagnose coronavirus COVID-19 using smartphone embedded sensors: Design study. In Proceedings of the 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA, 11–13 August 2020; pp. 180–187.
Sun, L.; Song, F.; Shi, N.; Liu, F.; Li, S.; Li, P.; Shi, Y. Combination of four clinical indicators predicts the severe/critical symptom of patients infected COVID-19. J. Clin. Virol. 2020, 128, 104431.
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062.
Rahmatizadeh, S.; Valizadeh-Haghi, S.; Dabbagh, A. The role of artificial intelligence in management of critical COVID-19 patients. J. Cell. Mol. Anesth. 2020, 5, 16–22.
Shamout, F.E.; Shen, Y.; Wu, N.; Kaku, A.; Park, J.; Makino, T.; Geras, K.J. An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department. NPJ Digit. Med. 2021, 4, 1–11.
Ebrahimian, S.; Homayounieh, F.; Rockenbach, M.A.; Putha, P.; Raj, T.; Dayan, I.; Kalra, M.K. Artificial intelligence matches subjective severity assessment of pneumonia for prediction of patient outcome and need for mechanical ventilation: A cohort study. Sci. Rep. 2021, 11, 1–10.
Agbehadji, I.E.; Awuzie, B.O.; Ngowi, A.B.; Millham, R.C. Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection of COVID-19 pandemic cases and contact tracing. Int. J. Environ. Res. Public Health 2020, 17, 5330.
Khan, R.; Shrivastava, P.; Kapoor, A.; Tiwari, A.; Mittal, A. Social media analysis with AI: Sentiment analysis techniques for the analysis of twitter covid-19 data. J. Critical Rev. 2020, 7, 2761–2774.
Shenoy, V., Mahendra, S., & Vijay, N. (2020). COVID 19 lockdown technology adaption, teaching, learning, students engagement and faculty experience. Mukt Shabd Journal, 9(4), 698-702.
Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health 2020, 2, e667–e676.
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574.
Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Xia, L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020, 296, E32–E40.
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020, 71, 732–739.
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Wang, C. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578.
Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934.
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020, 583, 459–468.
Ziegler, C.G.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Zhang, K. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020, 181, 1016–1035.
Ferretti, L.; Wymant, C.; Kendall, M.; Zhao, L.; Nurtay, A.; Abeler-Dörner, L.; Fraser, C. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 2020, 368, eabb6936.
Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; van Smeden, M. Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. Br. Med. J. 2020, 369, m1328.
Liu, S.; Yang, L.; Zhang, C.; Xiang, Y.T.; Liu, Z.; Hu, S.; Zhang, B. Online mental health services in China during the COVID-19 outbreak. Lancet Psychiatry 2020, 7, e17–e18.
Ruano, F.J.; Álvarez, M.L.S.; Haroun-Díaz, E.; de la Torre, M.V.; González, P.L.; Prieto-Moreno, A.; Díez, G.C. Impact of the COVID-19 pandemic in children with allergic asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 3172–3174.
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506.
Harzing, A.W.K.; Van der Wal, R. Google Scholar as a new source for citation analysis. Ethics Sci. Environ. Politics 2008, 8, 61–73.
Apostolopoulos, I.D.; Mpesiana, T.A. Covid-19: Automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 2020, 43, 635–640.
Wang, S.; Kang, B.; Ma, J.; Zeng, X.; Xiao, M.; Guo, J.; Xu, B. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). Eur. Radiol. 2021, 31, 6096–6104.
Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Xia, J. Artificial intelligence distinguishes COVID-19 from
Publicado
Colección
Categorías
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.