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Este libro es una introducción a la Mecánica de Fluidos, principalmente enfo­
cada a los estudiantes de Ingeniería. El contenido está pensado para que sea 
cubierto durante dos cursos: uno más básico, donde se introducen los funda­
mentos y se estudian las principales aplicaciones ingenieriles de la Mecánica 
de Fluidos ( con la importante excepción de las Máquinas Hidráulicas, que no 
se consideran aquí porque suele constituir un curso aparte en algunas ramas 
de la Ingeniería, existiendo muy buenos textos en español), y otro más avan­
zado donde, el alumno interesado, puede atisbar otros aspectos interesantes 
de la Mecánica de Fluidos. La bibliografía utilizada se encuentra especificada 
al final de cada lección y, toda reunida, en la lista bibliográfica final. Aunque 
se han utilizado muchas referencias originales, sólo se citan recopilaciones y 
libros de texto donde el material es mucho más accesible a aquellos alumnos 
que quieran profundizar sobre los temas tratados. Además de estas referencias, 
para algunos temas se han tomado como base de partida los excelentes apun­
tes de Mecánica de Fluidos de A. Barrero (E. T. S.I. Industriales, Universidad 
de Sevilla, 1991) y, para algunos otros, los no menos excelentes de B.-T. Chu 
(Departamento de Ingeniería Mecánica, Universidad de Yale, 1986). A ambos 
les estoy profundamente agradecido por el conocimiento que me han transmi­
tido. Tambien quiero expresar mi gratitud y cariño a mi esposa, Aurora, que 
con paciencia y eficacia pasó al ordenador gran parte de la primera versión de 
estos apuntes, que vieron la luz en 1993. Mi agradecimiento también a todos 
los alumnos que desde entonces han pasado por mis clases, que no sólo han 
corregido muchas erratas, sino que con sus comentarios han contribuido a que 
el texto haya ido mejorando con los años. Por último, mi gratitud a Joaquín 
Ortega Casanova, que también me ha ayudado en la edición del libro. 

Málaga, 2001. 

En la presente reimpresión se han corregido algunas erratas y se han actuali­
zado unas pocas referencias. Mi agradecimiento a Carlos del Pino, Luis Parras 
y Patricio Bohórquez por haber contribuido a estas correcciones. 

Málaga, 2005. 
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Parte I 

INTRODUCCION 





Capítulo 1 

Algunas nociones 

matemáticas preliminares 

Esta primera lección está dedicada a resumir brevemente algunas herra­
mientas matemáticas generales que serán ampliamente usadas en lo que sigue 
( en especial, nociones básicas de cálculo vectorial y los teoremas integrales) . 
Otros conceptos matemáticos muy específicos de la Mecánica de Fluidos ( en 
general de la Física de los Medios Contínuos) serán introducidos a lo largo de 
la asignatura. 

1 . 1 .  Coordenadas curvilíneas ortogonales 
Sean a, /3 y ,  un conjunto de coordenadas curvilíneas ortogonales, y eo_, 43 

y e1 los vectores unitarios paralelos a las líneas coordenadas en las direcciones 
de incremento de a, /3 y , , respectivamente; es decir, 

- 8x/8a 
eQ 

= lox/oa l etc. ( 1 . 1 )  

donde x = x( a, /3 ,  , ) es el vector posición de un punto genérico con respecto 
al origen de coordenadas. Para que las coordenadas (a, /3, 1) sean ortogonales, 
la función x = x(a, /3, ,) debe verificar 

eQ = 43 A e'Y , etc. 

Se definen las funciones de escala 

( 1 .2) 

( 1 .3) 
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' ax ¡ ho: = oa 

de forma que 
l ax ¡ ' h/3 = 8/3 l ax ¡ ' h-y = 8, 

_ 1 ax e0 = 
ho: oa 

, etc. , 

y el elemento diferencial de longitud viene dado por 

dx = h0daeo: + hf3d/3e¡J + h-yd,e-y 

(dl)2 = dx • dx = h! (da)2 + h�(d/3)2 + h;(d,)2 

Si </> es un campo escalar, su gradiente se define 

( 1 .4) 

(1 .5 )  

( 1 .6) 
( 1 .7) 

( 1 .8) 
donde j = a, /3, ,,  y se ha utilizado la notación usual de indicar suma mediante 
la repetición de subíndices. Por otra parte, si v es un campo vectorial, v = 
v0e0 + Vf3€f3 + v-ye-y = Vje'j ,  su divergencia viene dada por 

mientras que el rotacional de v es 

( 1 . 10) 
El operador Laplaciano sobre un campo escalar </> se define como 

'72 </> = 6</> = '7 . '7 </> 

= 
1 [ f) 

(
h

13
h-y ª<I>

) + f) 
(

ho:h-y º<P
) + o 

(
ho:hf3 ª<t>) ]  · ( 1 . 1 1 )  

hoh
13

h-y oa h0 oa 8/3 h13 8/3 8, h-y 8, 

Otras dos operaciones frecuentemente usadas en la Mecánica de Fluidos 
son la Laplaciana de un vector, '72v, y la divergencia de un tensor, '7 • T, 
donde T = Tijeie'j,  i , j = a, /3, ,. Estas dos operaciones se realizan utilizando 
las definiciones anteriores, es decir , 
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V2v = \/ · \/(vj� )  

" T - l é) (T, - - ) v • = ej • 
hj 8j ikeiek ' 

teniendo en cuenta las relaciones 

i , j = a, /3, 'Y, 
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( 1 . 12) 

( 1 . 13) 

( 1 . 14) 

que resultan de la ortogonalidad de los vectores � ( en la última expresión 
los subíndices repetidos no están sumados) . Sin embargo, la operación 'v2v se 
realiza más fácilmente utilizando la igualdad '72 17 = 'v('v · v) - V /\  (V /\ 17) 
[ecuación ( 1 .43) de la sección siguiente] y haciendo uso de ( 1 .8)- ( 1 . 10) . Por 
último, otra operación frecuente en la Mecánica de Fluidos es (b · \J)a, donde 
a y b son dos campos vectoriales [en particular, aparecerá (v · 'v)v] . Al igual 
que 'v2v y '7 · T, esta operación, que es inmediata en coordenadas cartesianas 
( en ellas es simplemente el producto escalar del vector b y el tensor '7 a) , 
presenta ciertas dificultades en coordenadas curvilíneas debido a la variación 
de los vectores unitarios éi . Normalmente se realiza haciendo uso de la igualdad 
(b · V)a = (Va) · b - b /\ (V /\  a) [ecuación ( 1 .41)  de la sección siguiente] . La 
componente a es: 

_ 
( 

ao:ba 8ha + a13b13 8h13 + a"fb, 8h,
) 

h� ªª hah/3 ªª hah, ªª 
con expresiones similares para las componentes /3 y -y. 

1.1 .1 .  Coordenadas cilíndricas y esféricas 

( 1 . 15) 

El sistema coordenado ortogonal más simple es el cartesiano, en el que 
h0 = h13 = h, = l .  Los dos sistemas coordenados curvilíneos más comúnmente 
usados son el cilíndrico y el esférico. 

Las coordenadas cilíndricas (r, 0, z) están relacionadas con las cartesia­
nas (x, y, z) mediante las relaciones [ver figura l . l (a)] : 

x = r cos 0 y = r sin 0 , z = z 
con lo que hr = l ,  h0 = r, hz = l .  Por tanto se tiene: 

( 1 . 16) 
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z z 

(a) 

-': 
8 

z 

y 

8 
X 

Figura 1 . 1 :  (a) Coordenadas cilíndricas. (b) Coordenadas esféricas. 

n T _ [ 1 8 ( rr, ) 1 oTor oTzr Toe ] _ 
V ' - - - T.L , + --- + -- - - e r or rr r 80 oz r r 

[ 1 8 ( ) 1 oToe oTzo Ter ] _ + - - rTre + --- + -- + - ee r or r f)0 8z r 
[ 1 8 1 oTez oTzz ] _ + -:¡. or (rTrz ) + -:¡. 80 + 8z ez , 

(b- n) - _ (b 8ar bo 8ar b 8ar boae ) _ 
' V a - r - + -- + z - - - Cr 8r r 80 8z r 

(b 8ae bo 8ae b 8ao bear ) _ + 1
• 8r + r 80 + z 8z + r eo 

(b) 

y 

( 1 . 17) 
( 1 . 18) 

( 1 .20) 

(1 .22) 
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( 1.2 3) 

Las coordenadas esféricas ( r, 0, <p) satisfacen las siguientes relaciones [figura 1.1 (b)] : 
x = r sin 0 cos <p , y = r sin 0 sin <p , z = r cos 0 

hr = l , he = r , hcp = r sin 0 , 

'r1 A. 8</> _ l 8</> _ l 8</> _ 
V 'f' = �er + - !':10 e() + -.-0 -¡_:;-ecp vr r v r sm v<p 

'v · v =  _!_ �(r2v )  + _1_ 8(sin 0ve) + _l_ avcp r2 ar r r sin 0 80 r sin 0 a<p ' 

'v l\ v =  (-l_ a(sin 0vcp) _ _ l_ 8ve ) e  r sin 0 80 r sin 0 O<p 
r 

+ (-�- OVr - ! a(rvcp) ) ee r sm 0 a<p r ar 

(1.2 4) ( 1.2 5 ) 
( 1.2 6 )  
( 1 .27) 

+ (! a(rvo) _ ! OVr ) e ( 1.28) r ar r 80 "' ' 

'v2</> = _!_ � (r2 81 ) +  1 � (sin 081> ) +  1 82</> (1.29) r2 ar ar r2 sin 0 80 80 r2 sin2 0 a<p2 ' 

v2
;¡; = (v2vr - 2. ovo - 2vr - 2cot0ve - 2 OVcp ) €r r2 80 r2 r2 r2 sin 0 O<p 

(TT2 2 OVr V() 2 COS 0 OVcp ) _ + v vo + - - - --- - --- eo r2 80 r2 sin2 0 r2 sin2 0 a<p 
(TT2 2 OVr Vcp 2 cos 0 avo ) _ + V V + --- - ----'---="- + --- -- e "' r2 sin 0 a<p r2 sin2 0 r2 sin2 0 O<p 

"' ' ( 1.30) 
= [ 1 8 2 1 8 ( . 1 oT cpr Tee + T'P'P ] _ 'v · T = -2 -0 ( r Trr ) + -.-0 80 sm 0Ter ) + -.-0 � - --�� e,. r r r sm r sm v'{) r 
[_!_ � ( 2,.,, ) _l_ �

( 
,· 0T, ) _l_ 8T'P0 Tor - cot0T'P'P ] _ + 2 0 r J. ro + . 0 !':10 sm 00 + . 0 !'l + ee r r r sm v r sm u<p r 

[ 1 8 ( 2 ) 1 8 ( . ) 1 8T'P'P T<pr + cot0T'Pe ] _ + 2 -
0 

r Tr<p + -.-0 !::)0 sm 0Te'P + -.-0 -0- + �---- e'P r r r sm v r sm <p r (1.3 1 )  
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1 .2 .  Operaciones con e l  operador v' 

(1.32) 

En coordenadas cartesianas es fácil realizar las operaciones que involucran 
al operador "v ( es decir, gradientes, divergencias, rotacionales) mediante el 
uso de subíndices. Cuando las coordenadas son curvilíneas, la técnica de usar 
subíndices es mucho más complicada. Por ello conviene, siempre que sea posi­
ble, realizar las operaciones con "v en notación vectorial compacta, ya que de 
esta forma el resultado será válido en cualquier sistema coordenado. A conti­
nuación se dan una serie de identidades que involucran al operador "v. Para 
su obtención se hace uso de la regla de derivación de un producto [téngase 
en cuenta que, cuando los factores son vectores, el orden es importante; así, 
("vcf>)v -1- (v"v)c/>, ("va) . b -1- b. "va, etc.]. También se utilizan las identidades 

"v /\ "ve/> = o , "v . (v' /\ 17) = o , (1.33) 

válidas para todo campo escalar e/> y todo campo vectorial v, y las relaciones 
vectoriales 

a /\ (b /\ é) = (a - é)b - (a - b)c= (c/\ b) /\ a 

a . ( '6 /\ é) = ( a /\ b) . e = '6 . (e/\ a) 

(1.34) 

(1.35 ) 

En algunas de las siguientes expresiones se incluyen pa.c;os intermedios para 
facilitar su seguimiento. Un punto encima de una letra indica el factor sobre 
el cual actúa el operador "v en los casos en que haya alguna ambigüedad. 

'v(<P'IÍJ) = cp"v'lj) + '1/J'vc/> 

"v ( cpv) = e/> "v v + ("ve/> )iJ , 

"v • (<i>iJ) = q>'v · ·u + iJ. "ve/> , 

"v /\ (cf>v) = q;"v /\ v + "vq; /\ iJ = q;"v /\ 17 - v /\ 'vq; 

(1.36) 

(1.37) 

(1.38) 

(1.39) 
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v1 . (a /\  b) = v1 . (ii /\ b) + v1 . (a /\ b) = (v' /\ a) . b - a . ('v /\ b) , (1.40) 

a /\  ('v /\ b) = ('vb) . a - (a. 'v)b , (1.41) 

v /\ ('v /\ 17) = v' lv2 - ( v • 'v)v , (1. 42) 

v1 A (v' A v) = v'(v' . v) - v12v , (1.43) 

v1 A(a/\b) = v1 A (iiAb) -v' A(b/\a) = (b·'v)a- ('v·a)b- (a·'v)b+a('v·b) , (1. 44) 

'v(a-b) = ('va) ·b+ ('vb) -a = a/\ ('v Ab) + b/\ (v' /\a) +  (a-'v)b+ (b- 'v)a (1.45 )  

Otras identidades que involucran al vector posición x son: 

'vx = 1 

'v · x= 3  , 

'v /\ x= O  , 

'vr = x/r , 

'v(x/r) = (1 - xx)/r , 

(1.46) 

(1.47 ) 

(1.48)  

(1.49) 

(1.5 0) 

donde 1 es el tensor unidad y r = lxl es la distancia al origen de coordenadas. 
Por último,�e incluyen algunas operaciones que involucran a un tensor de 

segundo orden T. Ya definimos anteriormente [ecuación (1.13)] el vector v' • T. 
De forma análoga se puede definir el tensor de segundo orden 

r7 =T - 1 f) (T - - ) v /\ = e · /\ - - ·ke ·ek 
- i h, JJi J J (1. 5 1 )  

y el tensor de tercer orden 

(1.52) 

donde entre paréntesis se ha incluido la correspondiente expresión en coorde­
nadas cartesianas , siendo Eijk el tensor de Levi-Civita ( Eijk = O si alguno de 
los tres subíndices se repite, Eijk = +1 si la permutación ijk es par en relación 
a 123 y Eijk = -1  si es impar). Operaciones en donde interviene el producto 
escalar de un vector y un tensor son, por ejemplo, 

- - =T 
v'. (v · T) = 'vv : T + ('v . T ) . V (1.53) 

(1.5 4) 
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- - -T 'v ( v • T) = 'v v • T + 'vT • v , ( 1 . 55) 

donde los dos R_Untos denotan el doble producto escalar de dos tensores (A 
B = Aij Bij ), AÍ\B significa que el primer componente de ambos tensores se 
multiplica escalarmente y el segundo vectorialmente ( en coordenadas carte­
sianas, el componente i de este vector sería EijkA1jB1k ), y el superíndice T 
significa tensor transpuesto. 

1 .3. Teoremas integrales 

Sea S una superficie cerrada que contiene un volumen V y v un campo 
vectorial definido en él. El Teorema de Gauss (o de la divergencia) nos dice 
que 

( 1 .56) 

donde ds = dsñ, siendo ñ el vector unitario normal a la superficie (hacia fuera) 
y ds es el elemento diferencial de superficie. Este teorema nos proporciona una 
segunda definición de la divergencia de un vector: 

't'7 - l' l 
J d- -v • V = Im - S • V , 

V-+O V S(V) 
( 1 .57) 

donde el volumen V está definido en el entorno del punto en que se calcula 'v ·v. 
Esta definición será muy útil cuando interpretemos físicamente la divergencia 
de ciertos campos vectoriales. 

Del teorema de Gauss se pueden deducir las siguientes relaciones: 

Is ds(j) = ¡ dV'v</J , 

Is dsv = ¡ dV'vfj , 

f dsT = f dV'vT , 
ls lv 

Is ds I\ 17 = ¡ dV'v I\ v 
etc. En general , estas expresiones se pueden resumir en: 

( 1 .58) 

( 1 . 59) 

( 1 .60) 

( 1 .61 )  

( 1 .62) 



CAPÍTULO l .  ALGUNAS NOCIONES MATEMÁTICAS PRELIMINARES 27 
Un caso particular bastante importante es el denominado (primer) Teorema 
de Green: 

r - r [ a1 a'ljJ] = 1s ds • ['1/Jv'</> - </>v''I/J] = 1s ds 'ljJ 8n - </> 8n 
donde 8 / 8n es la derivada en la dirección normal a la superficie. 

(1. 6 3 ) 

Un segundo grupo de teoremas integrales de uso común en la Mecánica 
de Fluidos está encabezado por el Teorema de Stokes, que nos dice que la 
circulación de un vector v a lo largo de una línea cerrada r es igual a la 
integral del rotacional de v sobre una superficie S que se apoya en I': 

(1. 64) 

donde dl es el diferencial de longitud siguiendo la dirección de la curva. Con­
secuencia de este teorema son: 

etc. En general , 

Ir dl<p = Is ds /\ v' </> 
fr dfv = fs ds A v'v 
Ir dl T = Is ds /\ v'T 

f dl /\ v = Í ( ds /\ v') A v 
lr ls 

Í dl. . .  = { (ds /\ v') . . . . 
lr ls 

(1.65) 

(1.66) 

(1.67) 

(1.68) 

(1.69) 

Observese que ds· v' /\ v = (ds /\ v') • v, por lo que el teorema original de Stokes 
(1.64) se puede escribir también en la notación general (1.69) .  

Por último, un tercer grupo de teoremas integrales, los Teoremas de Trans­
porte de Reynolds , que constituyen una generalización al espacio tridimensio­
nal de la fórmula de Leibnitz 

d ¡x=b(t) ¡b 8f db da - f(x, t)dx = -8 dx + -d f(x = b, t) - -d J(x = a, t) dt x=a(t) a t t t ( l .  70) 



28 MECÁNICA DE FLUIDOS 
será considerado con más detalles en el capítulo 5. 
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1 Ver Bibliografía al final. 



Capítulo 2 

El fluido como medio contínuo 

2 . 1 .  Sólidos, líquidos, gases 
La propiedad mecánica que distingue a los fluidos (gases y líquidos) de 

los sólidos es la facilidad que tienen para deformarse. Un sólido mantiene una 
forma determinada mientras no se le aplique una fuerza externa. Un fluido no 
tiene una forma determinada, sino que adopta aquella del recipiente que lo 
contiene. Cuando se le aplica una pequeña fuerza a un trozo de sólido elástico, 
éste se deforma proporcionalmente a la fuerza aplicada. Por el contrario, si a 
un fluido se le aplica una fuerza, por pequeña que ésta sea, se deforma indefi­
nidamente. En otras palabras, un sólido presenta resistencia a la deformación, 
existiendo, si el sólido es elástico, una relación lineal entre fuerza y deformación 
(Ley de Hooke) , cuando ésta última es pequeña. Un líquido o un gas presentan 
resistencia a la velocidad de deformación. Se verá más adelante que la mayoría 
de los fluidos, entre los que se encuentran los más comunes, como son el aire 
y el agua, en las condiciones que normalmente se presentan en la práctica, 
obedecen a una ley lineal entre el esfuerzo cortante (o tangencial) aplicado y 
la velocidad de deformación ( estos conceptos se precisarán en lecciones poste­
riores) .  Los fluidos que obedecen a este tipo de ley lineal se denominan fluidos 
Newtonianos, en honor a Isaac Newton quien fue el primero en formular una 
ley de este tipo en el Libro I I  de sus Principia para un movimiento simple 
de un líquido, aunque la formulación precisa de esta ley no fue hecha hasta 
mucho más tarde (ver capítulo 7 ). 

La frontera entre fluidos y sólidos no está tan definida como se podría 
pensar en un principio. Existen sustancias, como algunas pinturas, que se 
comportan como sólidos elásticos si permanecen en reposo durante un cierto 
tiempo, pero que vuelven a comportarse como líquidos si se las agita fuer-
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temente. Otras sustancias , como la brea, se comportan normalmente como 
sólidos , pero si se les aplica una fuerza durante un periodo de tiempo suficien­
temente largo , la deformación crece indefinidamente como si fuese un líquido. 
Afortunadamente , la mayoría de los fluidos , en las condiciones que normal­
mente se encuentran en la práctica , se comportan como Newtonianos y, por 
ello , el presente curso introductorio a la Mecánica de Fluidos se dedicará ex­
clusivamente al estudio de fluidos Newtonianos , estando fuera del programa 
del presente curso los fluidos no-Newtonianos. 1 

Desde un punto de vista mecánico , la distinción entre líquidos y gases no 
es tan fundamental corno entre éstos (los fluidos) y los sólidos . En líneas ge­
nerales , la propiedad más importante que distingue a los líquidos de los gases 
es la compresibilidad : los líquidos son practicamente incompresibles , por lo 
que su densidad permanece casi constante aunque sobre ellos actúen presiones 
muy distintas. Esta propiedad , en el límite ideal de suponer la densidad de un 
líquido constante a una temperatura dada , hará que el estudio mecánico de los 
líquidos sea mucho más simple que el de los gases. Por el contrario , los gases 
son mucho más compresibles y cualquier movimiento que introduzca variacio­
nes apreciables en la presión producirá también variaciones apreciables en la 
densidad del gas. Sin embargo , algunos movimientos de los que estudiaremos 
no irán acompañados de variaciones importantes de la presión, por lo que , a 
efectos mecánicos, los gases se comportan en esas situaciones como si fuesen 
líquidos. 

Para comprender mejor la distinción entre gases , líquidos y sólidos es inte­
resante hacer unas breves consideraciones sobre la naturaleza y la intensidad 
de las fuerzas intermoleculares en función de la distancia intermolecular. Dos 
moléculas neutras que no reaccionan químicamente interaccionan , en el su­
puesto de que estén aisladas del resto , de acuerdo con el llamado potencial 
de Lennard-Jones: cuando la distancia entre ellas es menor que una cierta 
distancia d0 (d0 � 3 x 10-10m) existe una fuerte repulsión entre las molécu­
las debida a la repulsión electrostática entre las nubes electrónicas , que varía 
con la distancia d entre las moléculas elevada a la potencia -11 ( ~ d- 1 1  ) ; 
para distancias mayores que d0 , las moléculas se atraen débilmente debido a 
la formación de dipolos eléctricos , variando la fuerza de atracción, a grandes 
distancias , como d-5. Es decir , la fuerza viene dada por: 

(2.1) 

1 El alumno interesado en esta rama de la Mecánica de Fluidos ( que normalmente se 
incluye en la ciencia llamada Reología ) puede consultar, por ejemplo, la monografía de G. 
Bohme, Non-Newtonian Fluid Mechanics (North-Holland, Amsterdam, 1987) . 



CAPÍTULO 2. EL FLUIDO COMO MEDIO CONTÍNUO 31 

F 

d 

Figura 2 . 1 :  Fuerza intermolecular de Lennard-Jones entre dos moléculas neutras en función de la distancia intermolecular. 

donde F0 es una constante ( F0 y d0 dependen de las características de las 
moléculas) y se ha tomado positiva la fuerza de atracción. Si las moléculas 
reaccionasen químicamente, a distancias muy cortas aparecería, una vez ven­
cida cierta repulsión electrostática, una fuerza atractiva mucho más intensa 
( de origen cuántico ) que tendería a enlazar químicamente las moléculas, y 
que, por supuesto, no está contenida en la descripción anterior. 

La distancia típica entre dos moléculas de una sustancia se puede estimar 
del conocimiento de su masa molecular y de su densidad. Así, por ejemplo, un 
gas típico (oxígeno) en condiciones normales (20ºC, 1 atm) tiene una densi­
dad de 1 ,33kg/m3 . Como la masa molecular del oxígeno es 32kg/kmol , en un 
metro cúbico de este gas hay 0,0416kmoles ; teniendo en cuenta el número de 
Avogadro (NA = 6,022 x 1026 moléculas/kmol) , hay n = 2,5 x 1025 moléculas 
de 02 por metro cúbico. La distancia media entre moléculas de 02 es, pues, 
n- 113 '.::::'. 4,1  x 10-9 m, que es unas diez veces la distancia d0 . Es decir, las 
moléculas de un gas típico están lo suficientemente separadas como para que 
se puedan juntar más por acción de fuerzas externas, sin llegar a la barre­ra que supone la repulsión electrostática cuando la distancia intermolecular 
es menor que d0 . En los líquidos, la distancia intermolecular típica es mucho 
menor, del orden de d0 ( en el caso del agua a temperatura ambiente, la den-
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sidad es l03kg/m3 y como su masa molecular es 18, la distancia media es de 
n- 1/3 :::::: 3 ,1  x 10-10 m),  con lo que habría que someter al líquido a presiones 
gigantescas para vencer la repulsión electrostática ( ¡que varía como d- 1 1 ! )  y 
así comprimirlo; de aquí la aparente incompresibilidad de los líquidos. Cuan­
do un líquido se enfría por debajo de su punto de fusión solidificándose, la 
densidad generalmente varía muy poco (por lo general la densidad aumenta 
ligeramente, salvo casos excepcionales como el agua) ; es, pues, sorprendente 
que un ligero cambio en la densidad cambie tan dra.fficamente las propiedades 
mecánicas de la sustancia. Básicamente, las moléculas en un líquido y en un 
sólido están aproximadamente a la misma distancia ( alrededor de d0) ,  estri­
bando la diferencia en que las moléculas de un sólido están ancladas en torno 
a unas posiciones de equilibrio en una cierta estructura ( cristalina o no) ,  per­
diendo la movilidad que disfrutaban en el estado líquido. En ambos casos las 
moléculas están tan cerca unas de otras que solo la acción de fuerzas de com­
presibilidad extremadamente grandes pueden variar la densidad; sin embargo, 
la movilidad de las moléculas en el líquido hace que la aplicación de esfuerzos 
tangenciales provoque una deformación contínua, que no se produce en el sóli­
do. Al calentar un líquido por encima de su punto de ebullición, las moléculas 
se separan unas de otras ( adquiriendo una energía cinética que como veremos 
es proporcional a la temperatura) de forma que en el nuevo estado (gas) la 
sustancia es fácilmente compresible, así como deformable. 

2.2. La hipótesis de medio continuo 
Desde un punto de vista molecular, el estudio de los fluidos es extrema­

damente complejo debido al gigantesco número de moléculas: en lmm3 de un 
gas en condiciones normales existen alrededor de 1016 moléculas, mientras que 
en el mismo volúmen de un líquido típico hay del orden de 1020 . El estudiar 
las interacciones de cada una de las moléculas con el resto no sólo sería un 
esfuerzo practicamente imposible, sino también valdío, ya que sería muy difícil 
extraer información macroscópica útil a partir de la información molecular. 
Por ello, en la Mecánica de Fluidos se utiliza la hipótesis de medio continuo, 
de forma similar a la Teoría de la Elasticidad en la mecánica de sólidos. Bajo 
esta hipótesis, el fluido se considera como un campo continuo en el que cada 
punto representa un volumen 8V de fluido (llamado punto material o partícula 
fluida) lo suficientemente pequeño como para que pueda ser tratado como un 
diferencial matemático, y lo suficientemente grande como para que contenga 
un gran número de moléculas y el caracter discreto (molecular) de la materia 
no se manifieste en él. Así, por ejemplo, el volumen 8V deberá ser lo suficien-
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Escala �ular Partlcula ffulda Tamaño DU1Croscoplco 

n -t/3 
( o  V ) ll.l L In d 

Figura 2.2: Variación de una propiedad típica (masa de moleculas por unidad de volumen o 
densidad) en función de la distancia sobre la cual se promedia. 

temente grande como para que la masa de las moléculas contenidas en él, óM, 
no fluctúe de una manera caótica debido al caracter molecular del fluido, y lo 
suficientemente pequeño como para que esta masa óM no varíe sensiblemente 
al pasar de un punto óV(i) a otro vecino óV(i+ ói). Obviamente, la hipótesis 
de medio continuo limita el rango de validez de la Mecánica de Fluidos a sis­
temas fluidos cuyas condiciones sean tales que exista ese intervalo intermedio 
de tamaños óV, grande para que contenga un gran número de moléculas y 
se pueda hablar de valores medios, y pequeño para que (óV) 113 sea pequeño 
comparado con la longitud característica L de variación de esos valores medios 
y se puedan considerar como variables continuas; es decir, n-1/3 « L, donde 
n es la densidad numérica o número de moléculas por unidad de volumen, de 
forma que exista un óV tal que n-1/3 « (óV)113 « L (ver figura 2.2). Afor­
tunadamente, la restricción n-1/3 « L se cumplen practicamente en todos los 
fluidos en las condiciones que generalmente se dan en la naturaleza y en la 
industria (vimos antes que n-113 , es decir , la distancia media entre moléculas, 
era del orden de 4 x 10-6 mm para los gases típicos, y del orden de 3 x 10-7 
mm para los líquidos típicos, por lo que tendrían que existir condiciones muy 
extremas en las cuales las propiedades macroscópicas variasen en distancias 
extremadamente pequeñas para que la hipótesis de medio continuo no fuese 
válida). No obstante, existen situaciones , como por ejemplo el gas intereste­
lar, en que las moléculas están tan separadas unas de otras que la hipótesis 
de medio continuo falla y hay que estudiar el gas como si fuese un conjunto 
discreto de partículas ( que, por otra parte, rara vez interaccionan unas con 
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otras) . Veremos más adelante (lección 8) que la Mecánica de F luidos hace 
uso de otra hipótesis (la hipótesis de equilibrio termodinámico local) que es más restrictiva que la hipótesis de medio continuo, aunque también se suele 
satisfacer en la mayoría de las situaciones prácticas. 

En la mecánica de medios continuos, en vez de hablar de la posición Xi ( t) 
y de la velocidad vi (t) de cada molécula, se habla de magnitudes medias en 
cada punto x (partícula fluida de volumen 8V centrada en x) en cada instante t. Así, se define la densidad, .._.,óN 

( - t) - l '  L..i=l mi p x, - 1m 8V óV-+O (2.2) 

donde 8N(x, t) es el número de moléculas en el elemento de volumen 8V si­
tuado en el punto x en el instante t, mi es la masa de la molécula i y el límite 8V --+ O se toma en el sentido descrito anteriormente, es decir , (8V) 113 « L, 
pero (8V)113 » n-1/3 _ La velocidad media del fluido iJ en el punto x en el 
instante t se define como 

.._.,{JN -
_( _ ) _ 1, L..i=l miVi v x, t - 1m 8M óV-+O (2.3) 

donde 8M = I:f�1 mi. Por último, la energía interna por unidad de masa, e, 
se define 2 .._.,óN 2/2 v l ' L..i=l mivi e +  - = 1m 

2 óV-+O 8M (2.4) 

donde v = j iJJ siendo v2 /2 la energía cinética macroscópica por unidad de 
masa. Observese que no toda la energía cinética de las moléculas se traduce 
en una energía cinética media o macroscópica del fluido, sino que parte de ella 
queda oculta en forma de energía interna ( ver lección 9). Si las moléculas del 
fluido tuviesen grados de libertad internos, la energía asociada a ellos debería 
añadirse en el segundo miembro de (2.4), contribuyendo así a la energía interna 
macroscópica. 

Con el uso de magnitudes medias que varían con la posición y el tiempo 
(campos) ,  las ecuaciones que gobiernan el movimiento y el estado de un fluido 
no serán, como veremos, ecuaciones diferenciales ordinarias como ocurre en la 
mecánica de partículas, sino ecuaciones en derivadas parciales similares a las 
que se encuentran en otras teorías de campo como, por ejemplo, las ecuaciones 
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de Maxwell en Electromagnetismo, o las ecuaciones de la Elasticidad. 
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Parte 11 

CINEMATICA 





Capítulo 3 

Descripción del campo fluido 

3 .1 .  Descripción Lagrangiana y Euleriana 

Esta lección y la siguiente están dedicadas a definir una serie de conceptos 
y enunciar algunos teoremas necesarios para la descripción del movimiento, o 
cinemática, de los fluidos. 

Hay dos formas de describir el movimiento de un fluido. La primera, llama­
da descripción Lagrangiana ( o de Lagrange) ,  se basa en seguir la evolución 
de cada partícula fluida individual a lo largo del tiempo . Así, dada una partícu­
la fluida que en un cierto instante to ( = O) estaba en un punto xo , se define 
la trayectoria como la posición de esa partícula fluida en instantes posteriores 
t > to : 

x = x(xo , t) (3. 1 )  

La velocidad y aceleración de esa partícula fluida en cualquier instante t se 
definen mediante 

_
(
_ 

) 
ax 

V Xo, t = 8t _ _ a21 a(xo, t) = at2 (3.2) 

El movimiento del fluido queda especificado si se conocen todas las trayec­
torias, es decir, x(xo , t) para todo xo. Como se ve, la descripción Lagrangiana 
utiliza conceptos propios de la mecánica de partículas para describrir un medio 
continuo, por lo que no es aconsejable en la mayoría de las situaciones debido 
a la complejidad de las ecuaciones a que da lugar. 

La otra descripción, más acorde con una teoría de medios continuos, es 
decir, una teoría de campos, es la descripción Euleriana (o de Euler) ,  en 
la cual la magnitud fundamental es el campo vectorial de la velocidad local 
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del fluido v(x, t ) .  Esta descripción de Euler es la que normalmente se utiliza 
en la Mecánica de Fluidos y es la que se utilizará a lo largo del curso. A 
partir del campo de velocidades definiremos a continuación algunos conceptos 
cinemáticos como aceleración, trayectorias, etc. 

3.2. Trayectorias 
Una trayectoria es la línea descrita por una partícula fluida en su mo­

vimiento. Matemáticamente, en función del campo de velocidades v(x, t) ,  se 
define 

dx _
(
_

) dt = V x,  t 
que proporciona la trayectoria 

x(to) = :fo 

- -( - ) X =  X t; Xo, to 

(3.3) 

(3.4) 

Eliminando el tiempo t en la expresión anterior, se obtiene una curva fija en el 
espacio que se suele denominar senda de la partícula fluida que inicialmente 
( t = to) estaba en xo ( normalmente se toma to = O ya que no añade nada a la 
definición anterior). 

Las partículas fluidas que inicialmente estaban en una cierta línea :fo(,�), 
donde >. es un parámetro, seguirán formando una línea en un instante cualquie­
ra t [si el campo v(x, t) es continuo] que se denomina línea fluida. De forma 
análoga, las partículas que inicialmente estaban en una superficie x( a, /3), for­
marán una superficie fluida. Para obtener matematicamente la ecuación de 
esta superficie en el tiempo no hay más que eliminar los parámetros a y /3 
en la ecuación x = x[t ; x0 (a, /3)]. Si la superficie inicial es cerrada, la super­
ficie fluida permanecerá cerrada, y el volumen contenido en ella se denomina 
volumen fluido. 

3.3. Líneas de corriente 
La línea de corriente que pasa por un determinado punto x0 en un instante t se define como la línea que en ese instante es paralela a v(:c, t) en todos sus 

puntos. Es decir, 

dx _
( 

_ 
) 

d>. 
= V x, t x(>. = O) = :io (3.5) 
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El  parámetro A en x = x(A;  x0 , t)  define la línea de corriente deseada. Ob­
viamente, si el movimiento es estacionario, 17 = if(x) , la línea de corriente que 
pasa por un punto io coincide con la senda de todas las partículas fluidas que 
pasan por ese punto. Si el movimiento es no estacionario, diferentes partículas 
fluidas que en tiempos distintos pasan por :fo describen distintas trayectorias; 
como iJ varia, en general, en todos los puntos con el tiempo, ninguna de las 
sendas tiene por qué coincidir con la línea de corriente que pasa por ese punto 
(que por supuesto, también depende del tiempo) . 

Otra forma de describir matematicamente las líneas de corriente es [en 
coordenadas cartesianas ( x1 , x2 , X3) ] :  

(3.6) 

en la cual no aparece el parámetro A . Estas dos ecuaciones diferenciales pro­
porcionan dos superficies cuya intersección es la línea de corriente. 

Una superficie de corriente es aquella formada por las líneas de corriente 
que se apoyan en una cierta curva xo (,) . Si la curva xo (,) es cerrada, tenemos 
lo que se llama un tubo de corriente, el cual no puede ser atravesado por el 
fluido (ya que ello implicaría que un mismo punto tiene al menos dos veloci­
dades distintas) .  Las líneas de corriente no pueden intersectar unas con otras, 
salvo en los puntos donde la velocidad es nula. Por ello la localización de los 
puntos de velocidad cero, llamados puntos de remanso, es tan importante 
para describrir el movimiento de un fluido. 

3.4. Traza 

Es la línea formada por todas las partícula..<; fluida..<; que en un instante 
cualquiera pasaron por un punto xo . Matemáticamente: 

dx _
(
_ 

) 
dt = V x, t (3.7) 

eliminando T en x = x(T; xo , t )  se obtiene la traza que pasa por x0 , que, ob­
viamente, depende del tiempo. Si el movimiento es estacionario, senda, línea 
de corriente y traza por un punto dado coinciden. Físicamente la traza por 
un cierto punto se puede visualizar inyectando tinta u otro colorante en dicho 
punto: las distintas partículas fluidas que van pasando por ese punto se im­
pregnan de tinta y van describiendo una línea ( que en general dependerá del 
tiempo) que es la traza. 
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3.5. Derivada sustancial. Aceleración 

Una magnitud fluida en un punto x fijo en el espacio (en un sistema de 
referencia dado) varía con el tiempo no sólo porque el movimiento del flui­
do sea no estacionario, v = v(x, t), sino también porque distintas partículas 
fluidas pasan por el punto x en diferentes tiempos. Por ello, cuando se desea 
calcular la variación con respecto al tiempo de una magnitud fluida ( escrita 
según la descripción Euleriana) en un punto x y en un instante t, pero para 
un observador que se mueve con el fluido (observador Lagrangiano}, lo que 
obtenemos no es simplemente 8/at, sino algo más complejo que se denomina 
derivada sustancial. Este es el precio que hay que pagar por utilizar la descrip­
ción Euleriana y hacer uso de ecuaciones de conservación ( de masa, cantidad 
de movimiento y energía; ver lecciones 6-8) que, como veremos, se cumplen 
siguiendo las partículas fluidas. 

Sea </J(x, t) una magnitud fluida cualquiera (por ejemplo, la densidad, la 
temperatura, etc.). La variación de </J para un observador que se mueve con 
una partícula fluida es 

8</J = <t>(x + 8x, t + M) - <t>(x, t) = 8x . "v</J + �! 8t + O( l8xl2 , 8t2 ) (3.8)  

Cuando ót  -+ O, se  tiene 

(3.9) 

Así, pues, la derivada sustancial, también llamada material, de </>, se define: 

(3.10) 

El primer término representa la derivada local y tiene en cuenta la no esta­
cionariedad del campo fluido; el segundo término es la derivada convectiva y 
representa la variación de </> debido al movimiento del fluido en el entorno del 
punto considerado. 

Una derivada convectiva que se utilizará muy a menudo es la de la veloci­
dad, la cual representa la aceleración siguiendo la partícula fluida ( es decir la 
aceleración en la descripción Euleriana pero para un observador Lagrangiano) :  

.... Dv av ( - 't"'7
) -a = - = - + V · v V Dt at (3. 1 1 )  

El primer término es la aceleración local y el segundo la aceleración convectiva, 
que también se puede escribir como (v·"v)v = "v(v2 /2) -v/\ ("v /\v) [ver ecuación 
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(1.42)] . Obervese que, en general, (iJ • 'v)iJ =/ iJ • ('viJ) [ver ecuación (1.15)] ; en 
coordenadas cartesianas esos dos vectores sí son iguales. 

3.6. Circulación. Vorticidad. Flujos irrotacionales y 
solenoidales 

La circulación a lo largo de una línea L se define 

(3.12) 

Si la curva L es cerrada, el teorema de Stokes nos dice que la circulación es 
igual al flujo de 'v /\ iJ sobre cualquier superficie S que se apoye en L: 

(3.13) 

El vector 

(3.14) 

se denomina vorticidad. Como se verá en la próxima lección, w es una medida 
de la rotación local del flujo. Un flujo se denomina irrotacional ( más estric­
tamente, un campo de velocidad iJ es irrotacional) si w es cero. Claramente, 
si un flujo deriva de un potencial , es decir, si existe una función escalar </> tal 
que 

(3.15) 

el flujo es irrotacional ya que 'v /\ 'v </> = O para cualquier función escalar </>. 

La función </> en (3.15)  se suele denominar potencial de velocidades, y un 
flujo definido de acuerdo con esa ecuación se denomina potencial. El inverso 
también es cierto: si un flujo es irrotacional, es también potencial. Esto sigue 
directamente del teorema de Stokes: si 'v /\ iJ = O en todo el campo fluido, 

{ v ·  dl= o (3. 16) 

para cualquier curva cerrada L; esto implica que la integral de iJ entre dos 
puntos cualesquiera del espacio no depende del camino que elijamos para llegar 
de un punto a otro, por lo que podemos definir la función 

fp -
<f>(x) = lo iJ • dl (3.17) 
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donde P es un punto genérico de vector posición x, siendo la integral indepen­
diente del camino elegido para llegar desde el origen de coordenadas al punto 
P. Por otra parte, 

lA - lA -
¡

A 
rp(x1 ) - rp(x2) = V ·  dl - V ·  dl = V ·  dl 

O O P2 

En particular, si elegimos un elemento diferencial a lo largo del eje x, 

(3. 18) 

1x+dx 
rp(x + dx, y, z) - rp(x, y, z)  = 

x 
vx (�, y, z)d� = dx vx (x + 0dx, y, z) , (3. 19) 

siendo O :s; 0 :s; l. En el límite dx --. O, 

8rp 
ax 

= Vx (X, y, z) (3.20) 

Análogamente se demostraría para los componentes y, z.  Observese que el 
potencial rp queda fijado salvo una constante aditiva, que es irrelevante para 
el campo de velocidad. 

En definitiva tenemos que un flujo irrotacional se puede caracterizar por 
cualquiera de las tres propiedades equivalentes siguientes: (a) v' /\ v = O; 
(b) fL v · dl = O para cualquier curva cerrada L, y (e) v = v'rp. Téngase 
en cuenta que la equivalencia entre (a) y (b) está sujeta a las premisas del 
teorema de Stokes. Así, en el supuesto de que el campo v sea continuo y con 
derivadas continu�, (b) siempre implica (a) , pero para que (a) implique (b) la 
curva cerrada L tiene que ser simplemente conexa. Más adelante veremos un 
importante teorema relacionado con los movimientos irrotacionales (Teorema 
de la Circulación de Kelvin, lección 20) que dice, a grosso modo, que si un 
flujo ideal ( no viscoso) es inicialmente irrotacional, permanece indefinidamente 
irrotacional. 

Otro tipo de flujos son los llamados solenoidales ( estrictamente, campo 
de velocidad v solenoidal) ,  que verifican: 

v' · v = O  (3.21) 

Si v se puede escribir como 

(3.22) 

donde ;¡; es un campo vectorial ( que se suele denominar potencial vector) ,  
está claro que v es solenoidal, de acuerdo con la identidad v' · ( v'  /\ if) = 
O. Análogamente a los flujos irrotacionales, el inverso también es cierto: si 
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v1 • iJ = O, existe un vector ;f tal que iJ = v1 /\ ;f, cumpliéndose, además, que 
;f es también solenoidal , v1 • ;f = O (la demostración no se dará aquí para 
no desviar más la atención sobre aspectos puramente matemáticos; el alumno 
interesado puede consultar, por ejemplo, Aris , 1989, sección 3.43). 

Por el Teorema de Gauss, un movimiento solenoidal también verifica que 
el flujo a través de cualquier superficie cerrada es nulo, 

is iJ • ds = fv v1 • iJdV = O (3.23) 

Así, tenemos las tres siguientes propiedades para caracterizar un campo de 
velocidades solenoidal: (a) 'v - iJ  = O; (b) iJ = v1 /\;f, 'v - ;f  = O, y (c) fs iJ- ds = O, 
para cualquier superficie cerrada S. 

El potencial vector ( en contraste con el potencial de velocidades) no se 
suele emplear en la Mecánica de Fluidos, y ello a pesar de que los líquidos ( en 
el supuesto ideal de que se considere su densidad constante) verifican v1 • iJ = O 
(ver lecciónes 6 y 10) . Sólo en los flujos solenoidales bidimensionales se utiliza el 
potencial vector, que en ese caso toma la forma ;f = 'lf;ñ, donde ñ es el vector 
unitario normal a la superficie del movimiento y 'ljJ es la llamada función de corriente (lección 6). Si ocurre, además, que el flujo bidimensional del 
líquido es ideal, se tiene un flujo solenoidal e irrotacional, y la descripción del 
movimiento toma una forma muy simple en términos del denominado potencial 
complejo,  definido como f = 'ljJ + ú/>, donde 'ljJ es la función de corriente y <P el 
potencial de velocidades ( capítulo 21) . 

Para terminar esta sección conviene recordar que todo campo vectorial iJ 
se puede descomponer en la forma (representación de Helmholtz): 

(3.24) 
es decir, una parte irrotacional y otra solenoidal (para su demostración ver, 
por ejemplo, Sommerfeld, 1950, sección 20) . Sin embargo, esta representación, 
tan usada en Electromagnetismo, es poco común en la Mecánica de Fluidos. 
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Capítulo 4 

Análisis del movimiento en el 

entorno de un punto 
, 

4. 1 .  Significado del tensor gradiente de velocidades 
Vv 

Se apuntó en el capítulo 2 que los fluidos no presentan resistencia a la 
deformación ( como ocurre en los sólidos elásticos), sino a la velocidad de de­
formación. Es por ello esencial describir con precisión la velocidad de un punto 
en relación con la velocidad de un punto cercano. En esta descripción juega un 
papel primordial el tensor gradiente de velocidad , 'vv, que pasamos a analizar. 

Sea v y v + ó'Ü las velocidades en dos puntos cercanos uno de otro, P y Q, 
con vectores de posición x y x + ox. La diferencia de velocidades entre los dos 
puntos es: 

(4.1) 
donde 'v17 está evaluado en el punto P(x). Si óx = óle¡, donde e1 es el vector 
unitario en la dirección PQ , en el límite ól - O se tiene 

av _ '7 -

m = e¡ ·  v v  (4.2) 

de donde el cambio de v por unidad de longitud en P en la dirección de PQ es 
la proyección del tensor 'v v en la dirección PQ. En particular, av /ax, aiJ /ay , 
av / az son los cambios de v por unidad de longitud en el punto x en las di­
recciones coordenadas (cartesianas) ex , ey , y éz , respectivamente. Como, en 
coordenadas cartesianas, 'vil = avj/fJxi€i€} , conocido el gradiente de veloci­
dades en tres direcciones mutuamente perpendiculares, es decir , conocido el 
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X 

Figura 4. 1 :  Movimiento en el entorno de un punto. 

tensor '\lv, la variación de la velocidad por unidad de longitud en cualquier 
dirección e¡ viene dada por la proyección de '\Jfj en esa dirección. 

4.2. Movimiento relativo de un elemento de volu­
men de forma arbitraria 

Sea P un punto (partícula fluida) con vector posición x en el interior de un 
cierto volumen óV pequeño y Q un punto cercano, también dentro de óV, de 
coordenadas x + óx; por simplicidad escribiremos r = óx, siendo lr1 pequeño. 
Si la velocidad de P en el instante t es v, la del punto Q será v + óv, donde 

(4.3) 

es la velocidad relativa de Q respecto a P en el instante t .  Por consiguiente, 
si óV es pequeño, es suficiente con evaluar '\lv para conocer, con errores del 
orden de ( óV)213 ( es decir, del orden de r2 ) ,  la velocidad relativa de cualquier 
punto del volumen óV en relación a la velocidad de P. La expresión anterior 
se suele escribir en la forma 

, - - e - = uv = r · .,,  + r • 1 ( 4.4) 
donde 

(4.5) 
son las partes antisimétricas y simétricas del tensor '\lv, respectivamente [(Vvf 
denota el tensor transpuesto de '111] .  De hecho la descomposición anterior es 
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8S  

p 

X 

Figura 4.2: Cambio unitario de volumen. 

equivalente a la representación de Helmholtz de iJ [ecuación (3.24)]: 

(4.6) 

siendo el primer término un tensor antisimétrico ( de traza nula, 'v · 'v /\ ;¡; = O) 
y el segundo un tensor simétrico. Sin embargo, el usar </> y ;¡; en vez de v no 
introduce ninguna ventaja. 

El tensor antisimétric� � tiene, por supuesto, traza nula (fo = O) y verifica 
Eií = -Eíi · El término r · � se puede escribir como 

donde w es la vorticidad. Por tanto, r • � representa una rotación de PQ 
alrededor de P con velocidad angular w/2 = ('v /\ v)/2. Como el punto Q se ha 
elegido arbitrariamente en 6V, el primer término de (4. 4) ,  f - �, representa una 
rotación como sólido rígido del volumen 6V alrededor de P con velocidad 
angular w /2. 

Examinemos ahora el significado del segundo término de (4.4), f • 'iy. En 
primer lugar vamos a demos�·ar que la traza de 'vv, que coincide con la traza 
de "iy al ser nula la traza de � [traza('viJ) = traza ('iy) = 'v · v] ,  representa un 
cambio unitario de volumen. En efecto, el cambio unitario de 6V debido al 
momento del fluido se puede escribir como 

___!:_ d6V 
= 

___!:_ 
lím 

6V' - 6V 
6V dt 6V 8t->O 6t 

(4.8) 
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donde 8V' es el volumen en que se transforma 8V después de un tiempo ót. 
Ahora bien, 

8V' - 8V = f ds • ( v + 8v)8t 
lós 

(4.9) 

donde v+8v es la velocidad de los puntos (partículas fluidas) que se encuentran 
en la superficie 8S que engloba a 8V. Como v es la velocidad del punto P(x) ,  
constante pues sobre 8S, el primer término de la integral es cero al ser 8S 
una superficie cerrada. Por otra parte, sustituyendo 8v = r • 'vv, donde 'vv 
está evaluado en i (y por tanto constante en la integral) , y aplicando el teorema 
de Gauss, se tiene 

8V' - 8V = f dV(f;'vr · [r · 'vv(i)]8t 
lóv 

(4. 10) 

donde la primera divergencia es con respecto a la variable f, cuyo origen es 
el punto P, est'.:ndo extendida la integ_!al a todos los puntos f' de 8V. Como 
'v r • [f' • 'vvj = 7 : 'vv = 'v • v, donde 7 es el tensor unidad, y como 'v • v es 
constante en 8V, se llega a 

de donde 

8V' - 8V = 8V8t'v · v 

1 d8V _ " _ 
8V dt -

v · V 

(4. 1 1 )  

(4 .12) 

Así, pues, la traza de � (y por tanto de 'vv, o lo que es lo mismo, la divergencia 
del vector velocidad) representa la velocidad de cambio de volumen por 
unidad de volumen en el entorno del punto i cuya velocidad es v en un 
instante dado. Por esta razón se suele descomponer el tensor � en dos, uno 
con traza nula y otro diagonal: 

= =f =11 � 1 
( 

-
)

=
] 

1 
( -)

= 
, = , + ,  = o - - 'v - v l + - 'v · v l 

3 3 (4. 13) 

La componente de 8v proveniente de 1', es decir, r· 1' = ('v · v)r/3, representa 
un alargamiento (o contracción) del segmento r=  PQ a un ritmo ('v · v)/3 por 
unidad de longitud, que se traduce en una velocidad de dilatación volumétrica 
unitaria 'v · v, como acabamos de ver. Por último, el significado de la parte sin 
traza y simétrica del tensor de velocidades, 1, es más fácil visualizarlo en un 
sistema de coordenadas en el que este tensor tenga la forma 
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( 4 . 1 4 )  

donde a,  b y e son constantes. Observese que el hecho de que ,' no tenga traza no significa que los elementos de su diagonal sean nulos, sino que la suma es cero ( recuérdese que la traza de un tensor permanece invariable al cambiar de sistema de coordenadas) .  Por otra parte, siempre existe un sistema coordenado en el que -=;;;' tiene la forma ( 4.1 4 ). (Para demostrarlo basta tomar los ejes principales de 3/ y comprobar que en estos ejes la ecuación f. 3/ · f = O proporciona un cono sobre el que es posible construir tres vectores ortogonales al ser la traza de 3/ nula.) Si tomamos un cubo unitario en este nuevo sistema coordenado con uno de sus vértices en el origen, es decir, un cubo definido por lo tres vectores coordenados (é1 , é2 , é:3) ,  al cabo de un diferencial de tiempo 8t este cubo se transforma, por acción del movimiento del fluido asociado a 3/, en un paralelepípedo definido por (é1 • 3/ 8t, é2 • 3/ 8t, éa • 3/ 8t) , que tiene el mismo volumen inicial al ser la traza de 3/ nula. Así, r · ,' produce una distorsión de 8V sin cambiar su volumen. Por ello, 3/ se denomina tensor de velocidades 
de deformación. Resumiendo, el movimiento de un volumen fluido (de forma arbitraria) que contiene una partícula fluida P se puede considerar como la superposición de un movimiento de traslación con P ( a velocidad v) , una rotación como sólido rígido alrededor de P con una velocidad angular igual a la mitad de la vortici­dad w evaluada en P, una expansión uniforme en todas las direcciones a partir de P con una velocidad media igual a (v' · v)/3 (evaluada en P) , y una distor­sión que se puede describir como un movimiento puramente de cortadura en tres direcciones mutuamente perpendiculares. Expresado en forma matemáti­ca, los puntos x + f del volumen 8V tienen las siguientes cuatro velocidades superpuestas: 

- - n - - l (n -) - l (n -) - [ l (n - n -T) l n -=¡] - ( 4 1 5 ) v +r · v v = v + 2 v /\V /\ r +
3 

v · V r + 
2 

v v + v v  - 3
v - V · r  , 

donde v está evaluado en el punto x. 
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4.3. Ejemplo: Deformación de una superficie esféri­
ca 

Para ilustrar lo anterior consideramos el caso en que 8V es el volumen 
contenido en una pequeña esfera de radio € centrada en x. Inicialmente los 
puntos de la superficie esféricas están definidos, en relación a su centro, por 
r = ái, donde ñ es la normal a la esfera. Después de un tiempo 8t la esfera se 
transforma en una superficie que viene dada, en relación al punto x + iJ8t ( es 
decir , no tenemos en cuenta el movimiento puramente translacional) por: 

r = €ñ + €ñ . 'vil ot = €ñ + €ñ . "fy ot (4.16) 

donde, obviamente, el movimiento rotacional dado por el tensor � no contri­
buye. Con errores del orden 8t2 , la expresión anterior se puede escribir como 

(4.17) 

multiplicando escalarmente por f', 

(4.18) 

es decir, 

(4.19) 

Luego, si 8t es pequeño, la superficie esférica se transforma en un elipsoide 
cuyos ejes son, como veremos a continuación, los autovectores o direcciones 
principales del tensor "fy. En efecto, en coordenadas cartesianas, el elipsoide 
tiene por ecuación 

(4.20) 

donde Aij = Aji = Óij - 2,ijót, siendo Óij la delta de Kronecker. Los ejes del 
elipsoide se pueden obtener imponiendo que el vector normal en un punto de 
la superficie, es decir, 

a -
8 

Aijxixj = AijXjÓik + AijXiÓjk = 2AkjXj Xk 
sea paralelo al vector posición de ese punto: 

(4.21) 



CAPÍTULO 4. ANÁLISIS DEL MOVIMIENTO EN EL ENTORNO DE UN PUNTO 53 

( 4.22) 

que es la ecuación de los autovectores de 1· Para hallar el volumen del elipsoide 
tomamos los ejes principales, €1 , €2, e3, dados por la solución unitaria de (4.22). 
En estos ejes 1 es diagonal con elementos k1 , k2, k3 , que son los autovalores 
de 1, los cuales son reales al ser 1 simétrico. Los tres ejes del elipsoide, ai , 
i = 1, 2, 3, vienen dados por 

Por tanto, el volumen del elipsoide es: 

V' = 11ra1a2a3 = 1m:3 ( 1 + k1 8t) ( l + k2ót)(l  + k3ót) 4 4 
= 3m:3 + 31ri(k1 + k2 + k3)ót + O(M2 ) . 

(4.23) 

(4.24) 

Como la traza de un tensor no varia al cambiar de coordenadas, k1 + k2 + k3 = 
v' • v; llamando V =  41rt3 /3 al volumen de la esfera inicial, se tiene 

� V' - V
= v' 

- v 
V M 

como ya demostramos de forma general. 

Referencias. 

■ G.K. BATCHELOR, 1967. Capítulo 2. 

■ S .M. RICHARD SON, 1989. Capítulo 2. 
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Capítulo 5 

Transporte convectivo 

5. 1 .  Flujo convectivo a través de una superficie 

Sea S una superficie y </) una magnitud fluida por unidad de volumen ( es 
decir, una densidad, tal como la densidad másica, p, la densidad de cantidad de 
movimiento piJ, etc . ) .  Para evaluar la cantidad de la magnitud </) que atraviesa 
S debido al movimiento del fluido, sabemos que en un tiempo 8t alcanzan el 
elemento de superficie 8sñ de S todas las partículas fluidas contenidas en el 
volumen iJ- ñ8t 8s (ver figura 5 . 1 ) ,  estando la velocidad del fluido iJ evaluada en 8s (primera aproximación cuando 8t - O) .  Por tanto, por unidad de tiempo, la 
cantidad de la magnitud </) que atraviesa la superficie 8s debido a la velocidad 
del fluido (flujo convectivo) es cpiJ- ñ 8s. A través de toda la superficie S el flujo 
convectivo total de </) es: 

f </)iJ . ñds = f <j>iJ . ds . 
ÍB 1s 

(5 . 1 )  

Si  </> es un escalar (por ejemplo, la densidad másica p), la  densidad </)iJ se suele 
denominar vector de flujo de </> (piJ sería el flujo másico) .  Si </) es un vector 
(por ejemplo, la densidad de cantidad de movimiento piJ) , <f>v es un tensor de 
flujo (piJiJ es el tensor flujo de cantidad de movimiento) . 

Cuando la superficie S es cerrada y </)iJ es continua, podemos aplicar el 
teorema de Gauss y obtener 

f <f>v • ds = f V ·  (</>iJ)dV 
.Is lv 

(5.2) 

Así, V • ( <f>v) representa el flujo convectivo de la cantidad </) por unidad de 
volumen. En particular, ya vimos que V • iJ es la velocidad de dilatación cúbi­
ca unitaria, es decir, el flujo convectivo de volumen por unidad de volumen. 
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o t 

Figura 5. 1 :  Flujo convectivo a través de una superficie. 

Analogamente, v' • pv sería el flujo convectivo de masa por unidad de volumen, 
v' • pvv el flujo convectivo de cantidad de movimiento por unidad de volumen, 
etc. 

5.2.  Teorema de Transporte de Reynolds 

Veremos en las lecciones siguientes (lecciones 6-8) que las ecuaciones de 
la Mecánica de Fluidos provienen de aplicar los principios de conservación de 
la masa, cantidad de movimiento y energía a volúmenes fluidos. Como estos 
volúmenes se mueven con el fluido, es conveniente expresar de forma adecuada 
la variación de las magnitudes fluidas en el interior de un volumen fluido a 
lo largo de su movimiento. Esto es lo que nos proporciona el Teorema de 
Transporte de Reynolds, que se puede considerar como una extensión a tres 
dimensiones de la fórmula de Leibnitz ( 1 .70) .  

Sea V¡ (t) un volumen fluido, y <jJ una magnitud por unidad de volumen 
como las consideradas en la sección anterior. La cantidad total de <jJ en V¡ varía 
en el tiempo por dm, razones: porque varía <jJ dentro de V¡ si el movimiento 
no es estacionario, y porque puede haber flujo convectivo de <P a través de la 
superficie fluida S¡ (t) que encierra al volumen fluido. Matemáticamente, se 
tiene: 
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V ( t )  f 

I 11 III 

V ( t + 6 t )  f 

Figura 5 .2: Teorema de Transporte de Reynolds . 

.!!:._ { <jJdV = lím (<P11 + <P111)t+ot - (<P1 + <P11)t 
dt Ív¡ (t) ot-o 8t 

l , (<P1 + <P11)t+ot - (<P1 + <P11)t + l' (<P111)t+8t - (<P1)t+ot = 1m ----------- 1m --------
ot--+O ót ot--+O ót 
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, (5.3) 

donde <P representa la cantidad total de </J ( <P = J <jJdV) en alguno de los 
volúmenes I, I I ó I I I (ver figura 5.2). El primer término de la última expresión 
es la variación de </J en V¡ suponiendo que V¡ está anclado en el tiempo t ,  
mientras que el segundo término se puede expresar como el flujo de </J a través 
de 8 ¡ en el instante t; es decir, 

d
d f <jJdV = { �<P dV + lím ; [ { </Jv. ñdsót + { <jJv • ñds8t] t Ív1 (t) Ív1 ut 8t--+O ut 1s1 1s2 

(5.4) 

donde 81 + 82 = 8 ¡ .  Este es el Teorema de Transporte de Reynolds aplicado a 
un volumen fluido, y nos dice que la velocidad de variación de </J en un volumen 
fluido V¡(t) es igual a la velocidad de variación de </J dentro de V¡ evaluado en 
el instante t ,  más el flujo convectivo de </J a través de la superficie S ¡ ,  evaluado 
también en el tiempo t .  
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Este teorema es también muy útil cuando se aplica a volúmenes que no son volúmenes fluidos. Si ½(t) es un volumen de control arbitrario cuya super­ficie Se (t) se mueve con una velocidad ve(x, t) ,  que no tiene por qué coincidir con la del fluido (muchas veces nos interesa que Ve sea nula, es decir, utilizar un volumen de control fijo en el espacio), aplicando el teorema anterior tenemos: 

: f <jJdV = f !<P dV + f </Jve • ñds , 
t lvc(t) lve t J Se (5.5) 

ya que en la deducción anterior lo que cuenta es la velocidad de la superficie, coincida o no con la del fluido. Si en el instante t el volumen de control coincide con un cierto volumen fluido, ½(t) = V¡ (t) [por supuesto, Ve(t  + ót) no tiene por qué coincidir con V¡ (t + M)], se tiene: 
: f </)dV = f !<P dV + f </Jv . ñds = : f </)dV + f </J( v - ve) • ñds . t lv¡ (t) lve t J Se t lvc (t) J Se 

(5.6) Esta última forma del teorema nos permitirá aplicar las leyes de conservación [tomando </J igual a p, pv o p(e + v2 /2)] a volúmenes de control arbitrarios, ya que expresa las variaciones de </J en volúmenes fluidos que en cada instan­te coincide con el volumen de control elegido. Así, podremos utilizar formas integrales de las ecuaciones de conservación aplicadas a volúmenes arbi­trarios. Si Ve = v, se recupera, por supuesto, la ecuación ( 5.4). Por otra parte, si el volumen de control es fijo, Ve = O, se tiene 
dd f <j)dV = dd f </)dV + f </)v · ñds t lv1 (t) t lve lsc (5 .7) 
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Capítulo 6 

Ecuación de continuidad 

En esta lección y en las dos siguientes se aplicarán los principios genera­
les de conservación de masa, cantidad de movimiento y energía a un volumen 
fluido para obtener las ecuaciones que gobiernan el movimiento de los flui­
dos. La aplicación del Teorema de Transporte de Reynolds nos permitirá, por 
una parte, obtener ecuaciones en forma integral válidas en cualquier volumen 
de control, las cuales serán muy útiles cuando se desee información global de 
un determinado proceso; por otra parte, dicho teorema junto con el Teorema 
de Gauss nos proporcionará formas diferenciales de las ecuaciones, que son 
necesarias para el conocimiento detallado de los campos de densidades, veloci­
dades, temperaturas, etc. del fluido. Para que estas ecuaciones constituyan un 
problema cerrado, habrá que hacer uso de algunos conocimientos cinemáticos 
considerados en las lecciones anteriores, de ecuaciones constitutivas, es de­
cir, leyes de transporte molecular, y de ecuaciones de estado del fluido. Estas 
últimas ecuaciones se irán introduciendo a lo largo de estas tres lecciones. 

6 .1 .  Principio de conservación de la masa 
La masa total contenida en un volumen fluido cualquiera, V¡ (t), se conser-va: 

.!!:__ f pdV = O , dt lv1 (t) 

donde p(x, t) es la densidad del fluido. 

(6. 1 )  
Esta ecuación puede ser referida a cualquier volumen de control Vc (t) me­

diante la aplicación del Teorema de Transporte de Reynolds [haciendo <p = p 
en (5 .6) ] :  
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dd f pdV + [ p( v - ve) · ñds = O t }Vc(t) j Sc(t) 

(6.2) 

Físicamente esta ecuación expresa que la variación total de la masa contenida 
en Vc(t), más el flujo convectivo neto de masa a través de la superficie Sc (t) es 
igual a cero. Por otra parte, aplicando dicho teorema al volumen fluido V¡ (t) 
y haciendo uso del Teorema de Gauss se tiene 

[ 8: dV + [ v' · (pv)dV = O . lv1 ut lv1 
(6.3) 

Como V¡ es un volumen arbitrario, el integrando tiene que ser nulo, propor­
cionando la ecuación diferencial 

( 6.4) 

que se suele denominar ecuación de continuidad o ecuación ( diferencial) de 
conservación de la masa. El primer término representa la variación temporal de 
la masa por unidad de volumen, mientras que el segundo es el flujo convectivo 
de masa por unidad de volumen. 

Los líquidos son, como ya sabemos, practicamente incompresibles, es de­
cir, su densidad es, a efectos prácticos, constante. Por tanto, la ecuación de 
continuidad de un líquido toma la forma simple 

v' · v = O , ( 6.5) 

o, en forma integral , 

(6.6) 

es decir, el flujo neto de masa a través de cualquier superficie cerrada es nulo. 
La ecuación (6.5) también nos dice que el campo de velocidades de un líquido 
es solenoidal, existiendo una función ;¡; tal que 

( 6.7)  

Sin embargo, usar la función ;¡; en lugar del campo de velocidades v no tiene 
ninguna ventaja, salvo que ;¡; tenga una sola componente (movimientos bidi­
mensionales; ver sección siguiente). Una particularidad importante de los flujos 
solenoidales es que dado un tubo de corriente, el caudal que circula por su in­
terior es el mismo en todas las secciones transversales; es decir, Q = fsT v• ñds, 
donde Sr es cualquier sección transversal del tubo de corriente, es invariante 
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a lo largo del mismo. Esto es consecuencia de (6. 6) y de que el fluido no puede 
atravesar la superficie lateral del tubo de corriente. 

La ecuación de continuidad también se simplifica para los gases (p -/­
constante) cuando el movimiento es estacionario: 

En forma integral, 

'v - pv= O .  

{ p(v - ve) · ñds = O ,  lsc 

( 6 .8) 

(6.9) 

también expresa que el flujo neto de masa a través de cualquier superficie 
cerrada es cero . En el flujo estacionario de un gas, la densidad de cantidad de 
movimiento, pv, es solenoidal: 

(6.10) 

Consecuencia de ( 6 .9) es que el gasto que circula por el interior de un tubo 
de corriente, G = fsT pv · ñds, permanece constante a lo largo de él. 

6.2 .  Función de corriente 

Cuando el flujo de un fluido incompresible [ecuación (6.5)] o el flujo es­
tacionario de un gas [ecuación (6.8)] es bidimensional (plano, con simetría 
axial, etc.) ,  el potencial vector ,iJ; tiene una sola componente. En estos casos 
la especificación del flujo se simplifica enormemente puesto que el campo de 
velocidades queda completamente determinado con sólo una función escalar 
'1/J, que por razones que ahora veremos se denomina función de corriente. 

Consideremos, por ejemplo, el flujo bidimensional plano de un líquido cuyo 
campo de velocidades es perpendicular al eje z. En coordenadas cartesianas 
tendríamos: 

(6.11) 

es decir, a'I/J 
Vx = ay 

a'lj) 
Vy = - ax 

(6.12) 

que cumple identicamente la ecuación de continuidad 

(6. 13) 
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Figura 6 .1 :  Caudal entre dos líneas de corriente. 

en virtud de la igualdad de las derivadas cruzadas. En este caso, las curvas 
1/J = constante representan líneas de corriente: 

d'I/J = O dx 

Vx 

dy 

Vy 
(6.14) 

de aquí su nombre. Otra propiedad interesante de la función 1/J es que el caudal 
(bidimensional) entre dos líneas de corriente viene dado por la diferencia entre 
los valores de 1/J en esas líneas de corriente. En efecto, si dos líneas de corriente 
A y B vienen dadas por 1/J = 1/JA y 1/J = 1/Js, el caudal entre ellas es (ver figura 
6.1): 

(6.15) 

En el caso de un flujo bidimensional (plano) y estacionario de un gas, todo 
lo anterior es también válido sin más que sustituir v por pv. 

Otros flujos incompresibles y bidimensionales no planos también admiten 
función de corriente , ya que lo único que se necesita es que el potencial vector 
tenga una sola componente en algún sistema ortogonal de coordenadas. Sin 
embargo, lo más conveniente para hallar la función de corriente es escribir 
la ecuación de continuidad v7 · v = O en las coordenadas correspondientes 
y construir la función de corriente que satisfaga idénticamente esa ecuación 
teniendo en cuenta la igualdad de las derivadas cruzadas. Por ejemplo, el flujo 
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incompresible y axilsimétrico con sólo dos componentes de la velocidad, Vr y vo , tiene por ecuación de continuidad en coordenadas cilíndricas (r, 0, z) 
1 orvr l ovo - -- + - - = O .  r or r 80 

Claramente, si definimos 'lj; mediante 

f)'lj; vo = - or , 

(6.16) 

(6.17) 

la ecuación (6.16) se satisface idénticamente. La elección de la función de 
corriente en este caso no es única. Otros ejemplos en coordenadas cilíndricas 
y esféricas se verán en los capítulos 17 y 21. 

6.3. Conservación de las especies químicas 
Un fluido, por lo general, no está constituido por una sola especie quími­

ca. Así, por ejemplo, el aire contiene mayoritariamente nitrógeno y oxígeno, 
además de otras muchas especies químicas en concentraciones pequeñas. Sin 
embargo, en muchas situaciones, como ocurre en el aire en las condiciones ha­
bituales, los procesos de reacción química y de difusión entre las especies no 
existen o son poco importantes, por lo que no es necesario considerar la ecua­
ción de conservación de cada especie química por separado, siendo suficiente la 
ecuación de conservación de la masa total considerada anteriormente. Existen 
otros procesos fluidos (en particular, la mayoría de los que ocurren en la in­
dustria química) en los que las concentraciones de las distintas especies varían 
temporal y espacialmente debido a las reacciones químicas de unas especies 
con otras y debido a la difusión molecular de unas especies en el seno de otras. 
Para estudiar estos procesos no basta tener en cuenta la conservación de la 
masa total, sino que es necesario considerar por separado la conservación de 
la masa de cada especie química presente en el fluido. 

Consideremos un fluido constituido por N especies químicas distintas. La 
ecuación de conservación de la masa de una especie i genérica aplicada a un 
volumen fluido V¡ (t) sería: 

!!:_ r PidV = r WidV · dt lv1 (t) lv1 (t) ' (6.18) 

es decir, la velocidad de variación (aumento) de la masa de la especie i conte­
nida en V¡ (Pi es la densidad volumétrica de la especie i) es igual a la velocidad 
de producción de la especie i por reacciones químicas entre las distintas espe­
cies presentes en el fluido (wi es la velocidad de producción de la especie i por 



66 MECÁNICA DE FLUIDOS 
unidad de volumen). En lugar de la densidad de la especie i se suele utilizar 
su fracción másica o su fracción molar. Es tradición en la Mecánica de Fluidos 
utilizar la fracción másica Y; ,  definida como la masa de la especie i dividida 
por la masa total: 

(6. 19) 

Claramente se verifica 

(6.20) 

Utilizando Y; en vez de Pi en (6.18) y aplicando el Teorema de Transporte de 
Reynolds, se tiene: 

f a�Y; dV + f pY;vi · ñds = { widV . 
Ív1 ut 1s1 Ív1 

(6.21) 

En la expresión anterior, Vi es la velocidad de la especie i (por supuesto ma­
croscópica, en el sentido dado en la sección 2.2), que no coincide, en general, 
con la velocidad media del fluido v. La diferencia entre estas dos velocidades 
se suele denominar velocidad de difusión de la especie i: 

(6.22) 

Así, el movimiento de una determinada especie i en el seno de una mezcla se 
puede descomponer en dos partes: un movimiento medio común a todas las 
especies con velocidad v, y un movimiento de difusión de la especie i en el 
seno de las demás especies con velocidad 'Vdi. En otras palabras, la especie i 
no sólo es arrastrada por el movimiento medio del fluido, sino que, además, se 
difunde debido, principalmente, a las diferencias de concentración de la especie 
i existente en el medio. El proceso de difusión es de origen molecular, a diferen­
cia del movimiento de arrastre o convectivo debido al movimiento global del 
fluido. Este proceso molecular, junto con otros procesos difusivos moleculares 
de transporte de cantidad de movimiento y de energía serán considerados 
globalmente en la lección 9. De momento enunciaremos, en esta lección y en 
las dos siguientes, las leyes fenomenológicas que los describe. 

Introduciendo (6.22) en (6.21) y aplicando el Teorema de Gauss se tiene: 
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o, puesto que V¡ es arbitrario, 

(6.24) 

Por definición, 

N 
V = L �Vi (6.25) 

i=l 

de forma que, evidentemente, la suma ponderada con las fracciones másicas 
de todas las velocidades de difusión es nula: 

(6.26) 

Como, por otra parte, la conservación total de la masa exige 

(6 .27) 

la suma extendida a todas las especies i de las ecuaciones (6.24) proporciona, 
como era de esperar, la ecuación de continuidad (6.4). Por lo general, dado un 
fluido con N especies químicas, se suele utilizar la ecuación de continuidad y N - l ecuaciones para N - l de las especies, constituyendo así un conjunto de N ecuaciones para la densidad global p y N - l fracciones másicas � [la N­
ésima fracción másica se obtendría de (6.20) ] .  Sin embargo, en estas ecuaciones 
tampoco conocemos la velocidad media del fluido v, las N velocidades de 
difusión 'Vdi y las velocidades de reacción química Wi . De la velocidad media v 
no nos preocupamos por ahora ya que en la lección siguiente escribiremos una 
ecuación adicional para ella. De las velocidades de reacción química Wi no nos 
ocupamos en esta asignatura: la Cinética Química proporciona expresiones de 
Wi en función de las concentraciones fi y de la temperatura, que tomaremos 
como datos. Observese que Wi es la velocidad de producción de la especie i (por 
unidad de volumen) , por lo que tendrá en cuenta todas las reacciones químicas 
en que participe la especie i. Por último, de las velocidades de difusión nos 
ocupamos a continuación. 

6.4. Ley de Fick 

Desde un punto de vista experimental ( o fenomenológico) ,  Fick estable­
ció en 1855 que la difusión másica de una especie i en el seno de un fluido 
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isotermo es proporcional al gradiente de concentración de la especie i, siendo 
el sentido el de las concentraciones decrecientes: 

(6.28) 

Di es el llamado coeficiente de difusión (o difusividad másica) de la especie 
i en la mezcla, que, en general, es una función de las concentraciones � y de la 
temperatura, teniendo unidades de longitud al cuadrado dividido por tiempo. 

Estrictamente, la ley de Fick tal y como está expresada en (6.28) es sólo 
válida para mezclas binarias y cuando no hay gradientes de temperatura en el 
medio. Los gradientes de temperatura producen una difusión másica adicional 
denominada difusión térmica ( o efecto Soret, quien descubrió este fenómeno) 
proporcional al gradiente de temperatura. Sin embargo, esta difusión térmica 
es poco importante salvo en condiciones muy especiales tales como gradientes 
térmicos muy acusados en combinación con disparidad en los pesos moleculares 
de las especies químicas, por lo que no será considerada aquí. Por otra parte, 
la existencia de más de dos especies químicas en la mezcla fluida introduce 
difusiones adicionales de la especie i proporcionales a los gradientes de las 
concentraciones de las otras especies. En una mezcla binaria ( especies A y B) 
se tiene exactamente ( en ausencia de difusión térmica): 

(6.29) 

donde se ha hecho uso de YA + Ya = l en la última igualdad [téngase en 
cuenta que la relación ( 6 .26) exige DAa = DaA]. Si la mezcla no es binaria, 
la relación (6.28) es aproximadamente válida si la especie i constituye una 
traza en la mezcla, o si son dos los componentes mayoritarios de la misma y 
el componente i es uno de ellos, siendo en ambos casos Di un coeficiente de 
difusión efectivo de la especie i en el seno de los restantes constituyentes de 
la mezcla. Si esto no es así, la expresión para la velocidad de difusión de la 
especie i se complica enormemente al entrar en consideración los gradientes 
de concentración de otras especies.1 En lo que sigue, supondremos que la 
expresión (6.28) es válida. 

Sustituyendo la ley de Fick (6.28) en la ecuación (6.24) se obtiene: 

(6.30) 

1 Ver, por ejemplo, Bird et al . ,  1960, donde también se tiene en cuenta la difusión térmica. 
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El significado físico de los distintos términos de esta ecuación es, de izquierda 
a derecha: variación local de la masa de la especie i por unidad de volumen; 
flujo másico convectivo de la especie i por unidad de volumen; flujo másico 
difusivo ( o molecular) de la especie i por unidad de volumen, y velocidad 
de producción de la especie i por reacción química por unidad de volumen. 
Esta ecuación se puede escribir de forma más compacta teniendo en cuenta la 
ecuación de continuidad (6.4) y usando el operador derivada sustancial (sección 
3.3) : 

D½ P_i = w· + \7 · (pD ·\7½ ) . Dt i i i (6.31 )  

En algunas situaciones de interés práctico ocurre que la  velocidad media del 
fluido v es nula, que no hay reacción química y que el producto pDi es apro­
ximadamente constante, con lo que el proceso ( que es puramente difusivo) 
está gobernado por la ecuación clásica de la difusión: 

(6 .32) 

también llamada ecuación del calor, ya que se obtiene una ecuación similar pa­
ra la evolución de la temperatura bajo ciertas condiciones (ver sección 10. 1 . 1 ) .  

Para calcular el coeficiente de difusión Di hay que hacer uso, en gases, de la 
Teoría Cinética y de las propiedades moleculares de la sustancia ya que, como 
dijimos, la difusión es un proceso de índole molecular. En la lección 9 daremos 
algunas nociones de Teoría Cinética y de corno se obtiene Di y otros coeficien­
tes asociados al transporte difusivo (molecular) de cantidad de movimiento y 
energía. Sin embargo, una teoría cinética rigurosa sólo existe para los gases 
monoatómicos y, con cierta aproximación, para los gases no rnonoatómicos, 
por lo que la mayoría de las veces se utilizan expresiones semiempíricas para Di y otros coeficientes de transporte. En la lección 9 veremos también que la 
ley de Fick y otras leyes lineales que asocian flujos difusivos con gradientes de 
ciertas magnitudes fluidas son válidas si se cumple la hipótesis de equilibrio 
termodinámico local, hipótesis que se formulará en la lección 8. 
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Capítulo 7 

Ecuación de cantidad de 
movimiento 

El principio de conservación de cantidad de movimiento ( o Segunda Ley 
de Newton) aplicada a un volumen fluido V¡ (t) nos dice que la variación de la 
cantidad de movimiento total contenida en el volumen fluido es igual a la suma 
de todas las fuerzas que actúan sobre él. Antes de expresar matemáticamente 
este principio es conveniente describir los tipos de fuerzas que actúan sobre un 
fluido. 

7. 1 .  Fuerzas de volumen y fuerzas de superficie 

Las fuerzas que actúan sobre un cierto volumen de fluido se clasifican en 
dos tipos: fuerzas de volumen y fuerzas de superficie. Las fuerzas de volumen 
son aquellas de largo alcance que actúan sobre cada elemento de volumen del 
fluido. Por ejemplo, las asociadas a campos de fuerza externos al fluido como 
el campo gravitatorio terrestre. Si designamos por J: la fuerza por unidad de 
volumen, la correspondiente al campo gravitatorio sería: 

(7 . 1 )  

donde p es la  densidad del fluido y § es la  aceleración de la  gravedad, que se 
suele suponer constante para todas las partículas fluidas si las dimensiones de 
la masa fluida en cuestión es muy pequeña comparada con el tamaño de la 
tierra. Así, la fuerza gravitatoria total sobre un cierto volumen V de fluido 
sería: 
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Fv = fv p§dV � § fv pdV (7.2) 

La fuerza gravitatoria es en realidad una fuerza másica, siendo § la corres­
pondiente fuerza por unidad de masa, que en general designaremos por fm- El 
producto de f: por la densidad del fluido proporciona la fuerza por unidad de 
volumen correspondiente. Otra fuerza másica que aparecerá en muchos pro­
blemas prácticos es la asociada al sistema de referencia, si éste no es inercial : 

- drl - - -
f m = -áº - dt /\ i - n /\ (n /\ i) - 2n /\ iJ ,  (7.3) 

donde á0 y ñ son la aceleración y la velocidad angular del sistema de coor­
denadas, respectivamente, en relación a algún sistema de referencia inercial. 
Por último, otras fuerzas volumétricas son las electromagnéticas que aparecen 
cuando el fluido está cargado eléctricamente o por él circula alguna corriente 
eléctrica ; la correspondiente fuerza por unidad de volumen es: 

(7.4) 

donde Pe es la densidad de carga, E es el campo eléctrico, J la densidad de 
corriente y B el campo magnético. Esta fuerza ( denominada de Lorentz) no se 
considerará en este curso ya que el estudio de la dinámica de los fluidos donde 
esta fuerza es importante corresponde a ramas especializadas de la F ísica de los 
Fluidos como la F ísica de Plasmas (gases ionizados) ,  la Electrohidrodinámica, 
etc., que no se estudiarán aquí. 1 

Las fuerzas de volumen (másicas y electromagnéticas) son el tipo habitual 
de fuerzas puntuales que aparecen en la dinámica clásica de partículas, pero 
promediadas sobre un gran número de moléculas de acuerdo con la hipótesis 
de medio continuo. En la Mecánica de Fluidos (y en general en la Mecánica 
de Medios Contínuo::;) aparecen otro tipo adicional de fuerzas asociadas a la 
interacción de unas moléculas con otras. Estas fuerzas son de origen molecular 
y se deben al intercambio de cantidad de movimiento por colisiones de las 
moléculas de una partícula fluida con las moléculas de las partículas fluidas 
vecinas. Son, por tanto, fuerzas de muy corto alcance, apreciables sólo en 
distancias del orden de la longitud media que recorre una molécula típica 

1 Además de la fuerza de Lorentz (7.4) , en medios dieléctricos no uniformes aparecen 
otras como la fuerza dieléctrica y la fuerza de electrostricción. El alumno interesado en los 
fenómenos electromagnéticos en la dinámica de los fluidos puede consultar, por ejemplo, el 
texto clásico de Landau y Lifshitz Electrodynamics o/ Continuous Media (Pergamon, Nueva 
York, 1984) , del que existe traducción castellana en la editorial Reverté. 
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entre colisiones ( camino libre medio), y por ello se denominan fuerzas de 
superficie. Así , dada una superficie S en el interior de un fluido, por acción de 
las colisiones moleculares el fluido circundante ejercerá una fuerza sobre cada 
punto de la superficie que, por unidad de superficie (esfuerzo), denotaremos 
por fn (x, t) ,  siendo esta fuerza función, además de la posición del punto y 
del tiempo , de la orientación ñ de la superficie en ese punto. Para describir 
por tanto el estado de fuerzas superficiales de un determinado fluido hay que 
especificar una doble infinitud de esfuerzos: para los infinitos puntos del fluido 
hay que dar el esfuerzo en las infinitas orientaciones de todas las superficies 
que pasan por ese punto. Sin embargo, veremos a continuación que, en virtud 
de los teoremas de conservación de la cantidad de movimiento y del momento 
cinético, en realidad sólo es necesario conocer seis cantidades escalares ( un 
tensor simétrico) por cada punto del fluido para especificar todas las fuerzas 
de superficie. 

7.2. Tensor de esfuerzos 

Sea fn (x, t)ds la fuerza ejercida en el instante t por acción de la interacción 
molecular sobre el elemento de superficie dsñ que pasa por el punto x; es 
decir, J: (x, t) es el esfuerzo (fuerza por unidad de superficie) ejercido sobre 
una superficie de orientación ñ, en x y t. Vamos a demostrar que el esfuerzo 
J:(x, t) está completamente determinado si se conocen en el punto x y en el 
instante t los esfuerzos en tres planos mutuamente perpendiculares. Para ello 
consideramos un elemento de volumen tetraédrico formado por los tres planos 
coordenados que pasan por x y un plano inclinado orientado según la normal 
hacia fuera ñ (ver figura 7.1). Si consideramos este elemento de volumen corno 
un volumen fluido y aplicamos la segunda ley de Newton, obtenemos: 

d(pv) ... ... ... ... ... 
�dV = fndA - fidA1 - hdA2 - !3dA3 + fvdV , (7.5) 

donde dV es el volumen del elemento; dA, dA1 , dA2 y dA3 son las areas de las 
caras del tetraedro, y fi. ,  ¡; y ¡; son los esfuerzos sobre e'1dA1 , e'2dA2 y e3dA3, 
respectivamente ( observese que ñ está dirigido hacia fuera del tetraedro, mien­
tras que e'1 , e'2 y ea apuntan hacia el interior en cada una de sus respectivas 
caras, por ello la diferencia de signos en los distintos términos de la expresión 
anterior). Si dividimos por dA y hacemos dA -+ O, los términos correspon­
dientes a las fuerzas volumétricas y a la aceleración desaparecen, puesto que 
dV / dA -+ O si dA -+ O. Teniendo en cuenta que 

dAi = dAñ · ei , i = l, 2, 3 , (7.6) 
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2 

Figura 7. 1 :  Fuerzas sobre un elemento de volumen. 

la expresión (7.5) queda 

(7.7) 
donde ni = ñ · e.¡ (i = 1, 2 ,  3) es la componente i de ñ en el sistema coor­
denado (e1 , é'2 , e3) .  Queda, pues, demostrado que f: (x, t) está determinado si 
f� (x, t) ,  ¡;(x, t) y ¡;(x, t) son conocidos. 

Para escribir la expresión anterior en notación tensorial se suele definir 

'r = ei f� + e2f; + e3f; 

de forma que la ecuación (7.7) queda 

(7.8) 

(7.9) 
El tensor "r(x, t) se denomina tensor de esfuerzos. Si los componentes de los 
vectores f� , ¡; y ¡; se designan por (Tu , T12 , T13) , (T21 , T22 , T23) y (T31 , T32 , T33 ) ,  
es decir, 

( Tu T12  713 

) T = Tijeié°j = 721 722 723 (7. 10) 
T31 732 T33 
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Tij representa la componente j del esfuerzo que actúa sobre la dirección coor­
denada e.¡ en el punto x en el instante t. Observese que el desarrollo anterior es 
válido para cualquier sistema coordenado ortogonal, no necesariamente carte­
siano. 

Resumiendo, para conocer el esfuerzo ejercido sobre una superficie de orien­
tación ñ cualquiera que pasa por un punto x, basta conocer el tensor de es­
fuerzos en ese punto. Son por tanto nueve el número de cantidades que se 
necesitan conocer por cada punto para definir su estado de esfuerzos ( ¡en vez 
de infinito!) .  Como demostraremos a continuación, esta cantidad se reduce a 
seis debido a que el tensor de esfuerzos T es simétrico. 

7.2. 1 .  Simetría del tensor de esfuerzos 

Considerese un elemento de volumen cualquiera óV en el entorno del punto 
x. En el límite óV -+ O, la conservación del momento cinético proporciona 
( teniendo en cuenta que óV / óS -+ O, siendo óS la superficie que engloba a 
óV):  

(7. 1 1 )  

donde fn es e l  esfuerzo ejercido sobre e l  punto x + r sobre la  superficie de 
orientación ñ, y se ha tomado x como origen de momentos (ver figura 7.2) . 
Sustituyendo fn = ñ · T, la ecuación anterior se puede escribir como 

f ds(ñ . 'if) /\ r = - f ds(ñf')A'if = O 
Íós Íós 

(7. 12) 

donde, salvo errores que tienden a cero cuando óV -+ O, se puede tomar el 
valor de T evaluado en x en vez de en x + r. La operación AAB de la segunda 
igualdad significa que el primer componente de ambos tensores se multiplican 
escalarmente mientras que el segundo se multiplica vectorialmente, siendo el 
resultado un vector; por ejemplo, en coordenadas cartesianas la componente i 
sería EijkAtj B1k .  Aplicando el Teorema de Gauss y teniendo en cuenta que óV 
es un volumen fluido cualquiera, se tiene: 

o IA'if = o (7. 13) 

donde Y es el tensor unidad. La última relación implica que el tensor T es 
simétrico, T = TT , como se puede comprobar fácilmente utilizando coordena­
das cartesianas: 

(7. 14) 
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r 

r n 

n 

X 

Figura 7.2: Conservación del momento cinético. 
particularizando para i = 1 ,  2, 3 se tienen las tres relaciones 

7.3. 

T23 - T32 = Ü , T31 - T13 = Ü , T12 - T21 = Ü 

Ecuación de cantidad de movimiento 

(7. 15) 

Ya podemos expresar de forma adecuada el principio de cantidad de mo­
vimiento aplicado a un volumen fluido V¡(t) enunciado al comienzo de esta 
lección: 

!!:_ r pvdV = r ñ . Tds + r PlmdV ' dt Ív¡ (t) Ís¡ (t) Ív¡ (t) 
(7 .16) 

donde /m son las fuerzas másicas por unidad de masa ( aceleración de la grave­
dad y aceleración del sistema de referencia; suponemos que no existen fuerzas 
electromagnéticas) . Aplicando el Teorema de Transporte de Reynolds, se tiene 

[ � (pv)dV + { pvv • ñds - { ñ · Tds = { pf.mdV , 
Ív¡ ut Ís¡ 1s1 Ív1 

(7. 17) 

que expresa que la variación de la cantidad de movimiento contenida en V¡ más 
el flujo convectivo a través de la superficie que lo engloba es igual a las fuerzas 
de superficie más las fuerzas másicas que actuan sobre el volumen fluido. 
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La ecuación anterior se ha escrito de forma que sea patente un segundo significado físico del tensor de esfuerzos. Por una parte, acabamos de ver que el tensor de esfuerzos representa la acción de las fuerzas de superficie por unidad de superficie. Pero, por otra, también se puede interpretar como el flujo molecular de cantidad de movimiento que, como sabemos, constituye el origen microscópico de las fuerzas de superficie. Así, el flujo de cantidad de movimiento a través de una supreficie S ¡ consta de dos términos, un flujo convectivo asociado a la velocidad media del fluido, y un flujo molecular debido al intercambio de cantidad de movimiento por colisiones de las moléculas a un lado y otro de S ¡. El flujo total de cantidad de movimiento por unidad de superficie es pues el tensor 

p11v - r (7.18) 
Por tanto, la ecuación (7.17) se puede interpretar de un modo más natural como: la variación de la cantidad de movimiento contenida en V¡ más el flujo total de cantidad de movimiento a trav és de la superficie que lo contiene es igual a la acción de las fuerzas másicas que actúan sobre él. Otra ecuación que, sobre todo, se usa en forma integral es la ecuación de conservación del momento cinético o momento de la cantidad de movi­miento: 

o 

d
d r pv /\ xdV = r ( ñ . r) /\ xds + r p l'm /\ xdV t Ív¡ (t) Ís¡ (t) Ív¡(t) (7.19) 

{ � (pv/\ x)dV + f p(v/\ x)v- ñds = f (ñ • r) /\ xds + f pf: /\ xdV Ív¡ ut Ís¡ Ís¡ (t) Ív¡(t) (7.20) Aplicadas a un volumen de control arbitrario Ve (t) cuya superficie se mueve a una velocidad Ve , las ecuaciones integrales de cantidad de movimiento y de momento cinético, (7.1 6 )  y (7.19) , se escriben: 
: f . pvdV + f pv(v - ve) ·  ñds = f ñ • rds + { pfmdV , (7.21 )  t lvc(t) J Se J Se lvc 
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La forma diferencial de la ecuación de cantidad de movimiento se 
obtiene, analogamente a como se hizo con la ecuación de continuidad, aplican­
do el Teorema de Gauss al segundo término de (7. 17) e igualando el integrando 
a cero, puesto que V¡ es arbitrario: 

8piJ -- - -
8t 

+ 'v • (pvv) = v' • 'f + PÍm • (7.23) 

El significado físico de los distintos términos es, respectivamente: variac1on 
local de cantidad de movimiento por unidad de volumen; flujo convectivo de 
cantidad de movimiento por unidad de volumen; fuerzas de superficie por uni­
dad de volumen o, cambiado de signo, flujo molecular ( o difusivo) de cantidad 
de movimiento por unidad de volumen, y fuerzas másicas por unidad de vo­
lumen. Esta ecuación fue originalmente derivada por Cauchy en 1822, usando 
ideas previas de Euler sobre la mecánica de los medios contínuos. Cauchy intro­
dujo el concepto de tensor de e::;fuerzos y demostró su simetría, llegando a una 
ecuación similar a (7.23 ) .  Así escrita, esta ecuación es general para cualquier 
medio contínuo. 

Para que la ecuación (7.23) pueda ser utilizada es necesario obtener algu­
na expresión del tensor de esfuerzos r en términos de magnitudes conocidas 
e incógnitas del problema (p, iJ, etc . ) ,  es decir, una relación constitutiva para 
r, análoga a la Ley de Fick para la velocidad de difusión másica. La rela­
ción constitutiva que damos a continuación caracteriza a los llamados fluidos 
Newtonianos, y fue formulada por Stokes a mediados del siglo pasado. 

7.4. Fluidos Newtonianos. Ley de Stokes 
Independientemente de la ley constitutiva para r, es conveniente primero 

separar la parte del tensor de esfuerzos correspondiente a un fluido en reposo de 
la parte dinámica del tensor. Si un fluido está en reposo, la fuerza de superficie 
en cualquier punto x y en cualquier superficie orientada según ñ, fn (x, t ) ,  tiene 
que ser normal a la superficie, puesto que en caso contrario la componente 
tangencial a la superficie de ln crearía un movimiento de cortadura. Es decir, 
en un fluido en reposo se tiene 

ln (X, t) = -p(x, t)ñ ' (7.24)  

donde p es la presión del fluido en el punto x en el instante t ,  o fuerza por 
unidad de superficie normal a la superficie y dirigida en sentido opuesto a ñ ( contra la superficie) .  Esta presión, llamada hidrostática, coincide con la 
presión definida en la Termodinámica si el fluido está en reposo (ver sección 
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y 

X 

Figura 7.3: Movimiento entre dos placas originado por un esfuerzo tangencial. 

9.2). Cuando el fluido está en movimiento ambas presiones coinciden si se 
cumple la hipótesis de equilibrio termodinámico local ( como se demostrará en 
la lección 9). Como la Mecánica de Fluidos hace uso de esta hipótesis (ver 
sección 8.1), a partir de ahora no se hará distinción entre ambas presiones, 
hidrostática y termodinámica, y se utilizará por tanto la misma presión en 
las ecuaciones de estado del fluido (termodinámica) y en las ecuaciones del 
movimiento. 

De acuerdo con (7.24) y (7.9) , en un fluido en reposo se tiene 

( 7.25)  

Para un fluido que no está en reposo se suele descomponer r en dos partes, 

= = =I T = -pl + T  ' (7.26) 

donde, por definición, r' es la desviación del tensor de esfuerzos con respecto 
a la presión, también llamado, por razones que ahora veremos, tensor de 
esfuerzos viscosos. 

Experimentalmente se ha observado que muchos fluidos obedecen a una 
ley lineal entre r' y el tensor de velocidades de deformación. Originalmente, 
Newton postuló que, para un determinado tipo ele flujo que él consideró , existe 
una ley lineal entre el esfuerzo tangencial aplicado a una superficie de un fluido 
y el gradiente de velocidades normal a la superficie. Por ejemplo, si sobre el 
fluido contenido entre dos placas planas paralelas se aplica un esfuerzo T(= T;y) 
a través de una de las placas· (ver figura 7.3), se produce un movimiento cuyo 
gradiente de velocidades normal a la placa viene dado por 

OVx T = µ-
é)y 

(7.27)  
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donde µ es una propiedad del fluido ( que depende principalmente de la tempe­
ratura) denominada viscosidad. Esta ley lineal entre esfuerzos y gradientes 
de velocidades se puede generalizar desde un punto de vista fenomenológico 
en la forma: 

(7.28) 

siendo A un tensor de cuarto orden que, en general, depende de la posición y 
el tiempo, pero no de la velocidad. La expresión anterior constituye la relación 
lineal más general entre los dos tensores de segundo orden r' y "vv. Esta 
relación debe ser una propiedad constitutiva del fluido y, por tanto, no debe 
depender del sistema _de coordenadas elegido. Como la parte antisimétrica de 
'117, es decir el tensor �' representa un giro como sólido rígido alrededor de cada 
punto con velocidad angular w /2, si se elige un sistema coordenado que en cada 
punto gire con esa velocidad, � es nulo, por lo que r' no puede depender de él 
[si no hay movimiento, el único esfuerzo que puede haber es el asociado a la 
presión, ecuación ( 7.25)]. Por tanto, r' depende sólo del tensor de velocidades 
de deformación 3y, siendo la relación lineal más general 

o, en coordenadas cartesianas, 

1 l ( ªVk 8v¡ ) rij = Aijkl"Ykl = Aijki -2 -8 + -8 X¡ Xk 

(7.29) 

(7.30) 

Otra forma de llegar a (7.29) de ( 7.28) es simplemente apelando a la simetría 
de r': como r' es un tensor simétrico, sólo puede depender linealmente de la 
parte simétrica de "vv, es decir , de 3y. 

La ley anterior fue deducida ( aunque en una forma más simplificada que 
veremos más adelante) por Stokes en 1845, generalizando la idea que New­
ton formuló 15 0 años antes. Los fluidos que satisfacen esa ley constitutiva se 
denominan Newtonianos. Experimentalmente se encuentra que una gran ma­
yoría de los fluidos, tanto líquidos como gases, en casi todas las condiciones de 
interés, obedecen una ley de ese tipo, aunque sólo sea aproximadamente. Teóri­
camente se demuestra (a través de la Teoría Cinética de Gases, ver lección 9) 
que bajo la hipótesis de equilibrio termodinámico local (ver lección siguiente) 
los gases satisfacen la Ley de Stokes. Existen, sin embargo, fluidos, especial­
mente líquidos constituidos por grandes moléculas, en los que r' no depende 
linealmente de 3y, o depende además de otras magnitudes fluidas. Estos fluidos 
no -Newtonianos tiene bastante interés en algunas aplicaciones, sobre todo en 
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la  industria química (plásticos , pinturas, etc.) ,  pero no serán considerados en 
este curso introductorio a la Mecánica de Fluidos. 

La ley de Stokes ( 7.29) se puede simplificar considerablemente si el fluido 
es isotrópico , como ocurre en la mayoría de las situaciones de interés. De 
hecho , en su derivación original, Stokes hizo tres hipótesis, dos de las cuales 
ya han sido utilizadas en la derivación de (7.29): relación lineal entre r1 y 
�' e hipótesis de que si no hay movimiento r1 es nulo (es decir , si no hay 
movimiento T = -pI) . La tercera hipótesis de Stokes fue que la relación entre 
r1 y � es isotrópica en cualquier sistema coordenado. Esta condición , junto con 
las anteriores , simplifica enormemente la relación (7.29). Para empezar , como 
(7.29) es lineal , los tensores r1 y �  pueden ser diagonalizados simultaneamente 
con la misma transformación. Esto hace que esa relación se pueda escribir como 
::!I B - d d ::!I - ( ' ' ' ) - - ( ) • d ' • 1 2 3 T = • 1 , on e T = r1 ,r2 ,r3 y 1 = 11 ,12, 13 , sien o Ti y ii , i = , ' _.:  
los autovalores de r1 y �' respectivamente. Es decir , las 8 1  constantes de A 
se han reducido a las nueve de B. Por otro lado , si el sistema es isotrópico , 
un giro de coordenadas no debe cambiar la relación entre f' y 1, Como un 
giro permite permutar los autovalores de ambos tensores , cada autovalor r} 
sólo puede depender del correspondiente ii y de la traza 11 + 12 + 13 , que es 
invariante frente a las rotaciones: 

T: = 2µ1i + A(,1 + 12 + 13) ,  i = 1, 2, 3 ,  
donde µ y A son constantes. En forma tensorial , se tiene 

=1 - -= T = 2µ-y + Av' • vl . 

( 7.31) 

( 7 .32) 

Así, las 81  constantes del tensor original Aijkl se han reducido a sólo dos. 
Esta relación se suele escribir utilizando la descomposición del tensor � dada 
en la sección 4.2 ,  � = r + r', siendo r la parte sin traza y r' diagonal , de 
forma que r' contiene todo el movimiento asociado al cambio de volumen y r está asociado a la deformación pura, sin cambio de volumen: 

=1 =1 n -=
¡ [ l (º - n -T) l n -=¡] n -=

¡ T = 2µ1 + µV V • V = 2µ 2 V V + V V - J V ' V + µV V ' V , 

donde , por comparación con (7.32) , 

(7.33) 

(7.34) 

El coeficiente µ se suele denominar coeficiente de viscosidad o sim­
plemente viscosidad, y está asociado a la capacidad de deformación pura del 
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fluido bajo la acción de un esfuerzo cortante. El coeficiente µv , denominado 
coeficiente volumétrico de viscosidad, está asociado a la deformación vo­
lumétrica provocada por esfuerzos normales. Así, el esfuerzo normal medio de 
un fluido Newtoniano es 

1 (-) 1 ( = =') _ 
3traza T = 3traza -pl + T = -p + µv v' · v ;  ( 7 .35) 

es decir, no todo el esfuerzo normal está asociado con la presión, sino que parte 
de él está asociado al movimient9 del fluido tendente a cambiar su volumen. 
La Teoría Cinética de Gases demuestra que para gases monoatómicos, es decir, 
gases cuyas moléculas no tienen estructura interna, µv es identicamente nulo, 
siendo distinto de cero para gases cuyas moléculas pueden almacenar algún 
tipo de energía distinta de la cinética o translacional. En otras palabras, µv 

está relacionado con la capacidad de almacenar energía no cinética por las 
moléculas de un fluido bajo la acción de esfuerzos normales, mientras que la 
presión está relacionada con la energía cinética de las moléculas (ver lección 9) . 
En los líquidos el coeficiente µv es irrelevante, puesto que al ser incompresibles 
v' · v = O. Es decir, para los líquidos se tiene 

(7.36) 

que es la relación originariamente debida a Stokes. 
Los coeficientes Jt y µv dependen del estado termodinámico del fluido, muy 

especialmente de la temperatura (para los gases se demuestra a partir de la 
Teoría Cinética que son independientes de la presión). En general, la viscosidad 

de los líquidos disminuye al aumentar la temperatura, ocurriendo lo contrario 
para los gases. 

7.5. Ecuación de Navier-Stokes 

La ecuación resultante de introducir la ley de Stokes en la ecuación de 
conservación de la cantidad de movimiento (7.23) se suele denominar ecuación 
de Navier -Stokes:2 

2Navier obtuvo la misma ecuación por un procedimiento distinto algo antes que Stokes, 
pero haciendo algunas hipótesis sobre las bases moleculares de los efectos viscosos que no 
son del todo correctas. 
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Utilizando la ecuación de continuidad (6.4) , esta ecuación se puede escribir 
como 

(7.38) 

El término de fuerzas de superficie 'v · r de la ecuación (7.23) ahora se ha 
desglosado en tres: uno que representa las fuerzas de presión por unidad de 
volumen, y otros dos que representan las fuerzas de viscosidad (relacionadas 
con µ y µv ) por unidad de volumen. En el caso de los líquidos esta ecuación 
se reduce considerablemente debido a que al ser p = constante, 'v · v = O. Si, 
además, las variaciones de temperatura no son muy importantes y se puede 
suponer que el coeficiente de viscosidad es constante, la ecuación queda: 

Dv 2 _ -
P Dt 

= -'v P + µ 'v V + P f m (7.39) 

donde se ha hecho uso de 'v · ('vvf = 'v('v · ·iJ) = O. En el caso en que las 
fuerzas másicas deriven de un potencial U, ¡:.,,_ = - 'v U, la ecuación anterior 
se puede escribir en la forma simple 

donde 

- = - 'y  - + U + 1/'v V 
Dv 

(P ) 2 -
Dt p 

V =  µ/p 

(7.40) 

(7.41 ) 

es el coeficiente de viscosidad cinemática. Una particularidad importante 
de esta ecuación es que forma, junto con la ecuación de continuidad 'v · v = O, 
un sistema cerrado para las variables v y p. En el caso de los gases, aparte de 
que µ y µv puedan depender de la temperatura, la densidad p no es constante, 
con lo que hay que completar el sistema de ecuaciones anterior [continuidad 
(6.4) y cantidad de movimiento (7.38)] con la ecuación de conservación de 
la energía y las ecuaciones de estado, que se verán en la próxima lección 
(aparte de las ecuaciones constitutivas para µ, µv , etc . ) .  Así, para un líquido 
con viscosidad constante el problema mecánico está desacoplado del térmico 
( aunque para resolver el problema térmico veremos que es necesario haber 
resuelto previamente el problema mecánico) , mientras que para los gases los 
problemas mecánico y térmico están, en general , intimamente ligados. 
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7.6. Ecuación de la vorticidad. 
Condición de barotropía 

En muchas ocasiones, especialmente cuando se estudien los flujos ideales y 
la turbulencia, es conveniente utilizar el vector vorticidad w = 'v A v  en vez de, 
o junto con, el vector velocidad v para describir el movimiento de un fluido. 
También tiene ventajas el uso de la vorticidad en la simulación numérica de los 
flujos incompresibles, pues se evita el tener que poner condiciones de contorno 
en la presión. Por todo ello, se deriva a continuación una ecuación para la 
vorticidad, que en este curso se utilizará, principalmente, en la lección 20. 

Suponiendo que las fuerzas másicas derivan de un potencial U y haciendo 
uso de la relación vectorial ( 1 .42) ,  la ecuación de cantidad de movimiento 
(7.38) se puede escribir en la forma 

8v - - n l 2 l n ¡n2 - nn ;;'] {lv - 2µ/3 nn - "U - -vAw+ v -V = - - v p+v v v+ v v ·VJ + ---- v v ·V- v 
8t 2 p p 

, (7.42) 

donde se ha supuesto, por simplicidad, que los coeficientes de viscosidad son 
constantes (si esto no fuese así, todo lo que viene a continuación seguiría 
siendo válido, cambiando sólo el término viscoso, que sería algo más complejo) . 
Tomando el rotacional de esta ecuación y teniendo en cuenta que el rotacional 
de un gradiente es identicamente nulo y que 'v A 'v2ff = 'v2w en virtud de 
(1 .43) y 'v • w = 'v • ('v A 17) = O, se llega a: 

�� - 'v A (v A w) = -'v (t) A 'vp + v'v2w .  
Desarrollando el segundo término y sabiendo 'v · w = O, se obtiene 

Dw -n - - n - 1 n n n2 -D + w v  · V - W ·  v V = 2 v p A vp + v v w 
t p 

(7.43) 

(7.44) 

Por último, esta ecuación se puede escribir de una forma más compacta en 
términos de w/ p haciendo uso de la ecuación de continuidad (6.4) para rees­
cribir 'v • v: 

llegándose a 

D ( W ) W n - 1 n n 1/ n2 -- - = - · v v + - v p A vp + - v w .  Dt p p p3 p 

(7.45) 

(7.46) 
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El primer miembro de esta ecuación representa la variación de la vorticidad 

( extrictamente del vector w / p) para un observador que se mueve con el fluido, 
es decir, la variación local más la variación convectiva. Esta variación (genera­
ción o destrucción local de vorticidad) se debe a los tres factores que aparecen 
en el segundo miembro. El primer término representa la convección de la velo­
cidad del fluido debido a su vorticidad. Las importantes implicaciones físicas 
de este término las veremos más adelante (lección 20) cuando estudiemos los 
flujos ideales (v = O) que además son barótropos ('v p A 'vp = O, ver más 
abajo), en los que los términos segundo y tercero del segundo miembro de la 
ecuación (7.46) no aparecen, quedando simplemente D(w/ p)/ Dt = (w/ p) • 'vv, 
una ecuación muy importante para la comprensión de los flujos ideales y de los 
mecanismos generadores de la turbulencia. El tercer término representa la di­
fusión viscosa de la vorticidad, análoga a la difusión másica de Fick [comparen 
(7.46) con (6.31) ] . Por último, para descifrar el significado físico del segundo 
término ( denominado término de Bjerkness ) , consideremos una pequeña 
esfera fluida de radio E (--+ O) que se mueve con el fluido. La masa de la esfera 
es 

m =  j pdV , (7.47) 

estando la integral extendida a todo el volumen de la esfera. Teniendo en 
cuenta que p = p0 + r · v' p0 + O( t2 ) ,  donde el subíndice o significa que las 
cantidades correspondientes están evaluadas en el centro de la esfera y r es el 
vector posición con respecto al centro, y sabiendo que J rdV = O por ser una 
esfera, se tiene 

El centro de masa de la esfera es 

donde 

J = J rrdV = JI ) J = 1 J r2dV = 
1
: 7rE5 = tt2V 

Por tanto, 

(7.48) 

(7.50) 

(7.51) 
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que muestra que el centro de masa de una esfera se desplaza en la dirección 
del gradiente de densidad una cantidad dada por la ecuación anterior. 

Por otra parte, la resultante de las fuerzas de presión que actúan sobre la 
superficie de la esfera pasa necesariamente por el centro de la misma, debido 
a que la presión actúa radialmente. Esta fuerza está dada por 

Fp = -j prids = -j VpdV ( 7 .5 2) 

donde ñ es el vector unitario normal a la esfera dirigido hacia fuera, estando 
la primera integral extendida a toda la superficie de la esfera, y se ha aplicado 
el Teorema de Gauss. De nuevo, escribiendo Vp = Vp0 + r · VVp0 + 0(€2), se 
obtiene 

(7 . 53) 

El par (momento) ejercido por Fp en relación al centro de masa es, de acuerdo 
con los resultados anteriores y despreciando términos 0(€2), 

- _ - V Po 1 2 ( 
V p 

) Mcm = -rcm I\ Fp = J-- I\ Vp0 = -€ m -2 /\ Vp 
� 5 p o 

( 7 . 5 4) 

Así, aparte del factor €2m/5, el término de Bjerkness -\7(1/ p) I\ Vp es una 
medida del par neto ejercido por todas las fuerzas que actúan sobre la esfera 
en relación al centro de masa de la misma ( observese que las fuerzas másicas 
no proporcionan par alguno ya que actúan sobre el centro de masa). Este par, 
en ausencia de fuerzas viscosas, debe ser igual a la variación del momento 
cinético ( momento de la cantidad de movimiento) de la esfera con respecto al 
centro de masa. De hecho, si uno calcula el momento cinético de la esfera con 
respecto al centro de masa, e iguala su derivada sustancial a ( 7 . 5 4), obtiene la 
ecuación ( 7 .47) con todas las magnitudes evaluadas en el centro de la esfera 
y sin el término viscoso, que no se ha considerado ( esta demostración se deja 
como ejercicio para el alumno). 

El resultado anterior muestra claramente que cuando Vp no es paralelo a 
V p en un punto (Vp I\ V p =f. O), la resultante de las fuerzas de presión sobre 
la partícula fluida (considerada como esférica) centrada en ese punto no pasa 
por el centro de masa de la misma, produciendo un par que es responsable de 
la variación del momento angular y, por tanto, de la vorticidad, en el punto 
considerado. Un flujo de un fluido se denomina barótropo si la resultante de 
las fuerzas de presión en cada partícula fluida tiene la dirección del centro de 
masa de la partícula fluida, es decir, V p es paralelo a Vp en todos sus puntos, 
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cumpliendose que 'v p /\ 'vp = O. Los flujos de líquidos son siempre barótropos 
puesto que su densidad es uniforme, coincidiendo siempre el centro geométrico 
y el centro de masa en todas sus partículas fluidas; en otras palabras, al ser 
'v p = O, el término de Bjerkness es identicamente nulo al ser � = O. Los 
flujos de gases no son, en general, barótropos. Sin embargo, veremos más ade­
lante que casos muy relevantes como son los flujos isentrópicos de gases y los 
gases en reposo cumplen la condición de barotropía. 

En los movimientos barótropos es algunas veces conveniente utilizar la 
denominada función de barotropía en vez de la presión: 

(7.5 5 )  

que es posible definir debido a que en los flujos barótropos la densidad depende 
de la posición a través de la presión , p = p(p, t) , al ser paralelos los vectores 
'v p y 'vp. En otras palabras, 'vp/ p es, en los movimientos barótropos, una 
diferencial exacta, definiendose 'vw = 'vp/ p. 
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7.7. APÉNDICE A: Componentes del tensor de es­

fuerzos para fluidos newtonianos 

Coordenadas cartesianas ( x, y, z) :  

t t [ªVx OVy ] T:,;y = Ty:,; = µ 8y + ax 
, 1 [OVx OVz ] T,x;z = Tzx = µ 8z + fu 

Coordenadas cilíndricas (r, 0, z):  

t t [ 0 ( VO ) 1 OV,, ] Tro = Tor = µ T ar -;: + :;:- 80 

1 , [OV¡¡ OVz ] Tyz = Tz¡¡ = µ 8z + {)y 
r, _ OVx OVy OVz v · v = - + - + -ox ay az 

t 1 [ªVº l ovz ] Toz = Tzo = µ 8z + :;:- 80 
1 , [8v,. OVz ] Trz = Tzr = µ 8z + OT _ 1 {) 1 ovo av. "iJ • V = - - ( TVr) + - - + -r or r 80 oz 

Coordenadas esféricas ( r, 0, <p): 

1 ( l. av.., Vr vocot0 ) ( 2 ) _ 1 , [ a ( VO ) 1 OVr ] r..,.., = 2µ r sin 0 a<p 
+ -;: + -r- + µV - 3µ "il·v Tro = Tor :;= µ T ar -;: + :;:- 80  

, , [ sin 0 a ( v.., ) 1 avo ] To = T O = µ -- - -- + -- -.., .., r 80 sin 0 r sin 0 a<p 

_ 1 8 ( 2 ) 1 8 ( . ) 1 av.., 'v • v = 2 ,,  r v,. + -.-0 <>0 sm 0vo + -.-0 � r vr r sm v r s111 v<p 
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7.8. APÉNDICE B: Ecuación de cantidad de movi­
miento en diferentes coordenadas 

Coordenadas cartesianas ( x, y, z) :  

(
• OVz OVz Vo OVz OVz

) 
op 

[ 
1 8 , 

) 
l 8 , o , 

] f p 8t + vr -¡¡;: +
-:;: 80

+ vz 8z = - {}z
+ :;: 0r (rTrrz +

:;: 00
Toz +

{}z
Tzz + P mz 

Coordenadas esféricas ( r, 0, cp):  

( 
OVr OVr Vo OVr V'P 8vr vi + V�

) [ 
1 O ( 2 , ) l O ( , . 

0)] p ot + Vr Or + r 80 + T sin 0 ocp T = r2 ar 
T Trr + T sin 0 {}0 To,· Slil 

[ 1 0 1 T�o + T�'P 
] 

Op 
f + -.-0 -0 T<pr - - -0 + P mr r sm cp r r 

(
OVO OVO VO OVO V'P OVO VOVr vicot0

) [ 
1 O ( 3 t ) 1 O ( t • 0)] p - + Vr - + - - + -- - + -- - -- = -- r T,-o + -- - Too sm 

ot ar r 80 r sin 0 8cp r r r3 8r r sin 0 80 [ 1 O I T�'Pcot0
] 

1 Op 
f + -.-0 8-T<pO - - - 00 + p m8 rsm cp r r 

( 
ov"' 8v"' vo 8v"' v"' 8v"' V<pVr vov..,cot0

) P - + v - + - - + -- - + -- + -�-[)t r [)r r [)0 r sin 0 [)cp r r 

[ 1 {} 3 , l {} , . ] [ 1 {} , T�o cot.0
] 

1 [)p = 3 [) (r Tr<p ) + . 
0

"'
0

(To'P sm 0) + . 
0 [) T'P'P . 0 "' + pf.m<p r r r sm u r sm cp r r sm ucp 
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ECUACIONES PARA UN FLUJO INCOMPRESIBLE CON VISCOSIDAD 
CONSTANTE 
Coordenadas cartesianas (x, y, z): 

Coordenadas cilíndricas (r, 0, z ) :  
( 

OVr OVr VI} OVr V� OVr ) p 8t + V1-8r + -;: f}0  - -;: + V, 8z 

Coordenadas esféricas ( r, 0, cp) : 

P - + vr - + - - + -- -- - -- = - - + Pfmr ( 
8t1r 8vr vo 8vr v.,, 8vr V� + v; 

) 
8p 

8t c'Jr r 80 r sin O 8,p r Dr· 

+µ - - - (r v .) + -- - sin O - + --- -- - -- --- - -- -[ 
8 

( 
1 8 2 ) 1 8 

( 
8vr

) 
1 82 vr 2 8(vo sin O) 2 8v.,,

] 
8r r2 ar ' 

r2 sin 8 88 88 r2 sin2 8 8,¡,
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Capítulo 8 

Ecuación de la energía 

8. 1 .  Algunos conceptos termodinámicos previos 
8 .1 . 1 .  Hipótesis de equilibrio termodinámico local 

La Termodinámica Clásica es una ciencia que trata de los estados de equili­
brio de una sustancia, es decir, de estados en los que las magnitudes mecánicas 
y térmicas son independientes de la posición y del tiempo. Incluso cuando en 
Termodinámica Clásica se habla de la evolución de las magnitudes de una de­

terminada sustancia, como por ejemplo la primera ley de la termodinámica, 
que establece la equivalencia del trabajo mecánico y del calor y de sus transfor­
maciones mutuas, esta evolución es entre estados de equilibrio ( transformacio­
nes reversibles) y, por tanto, irreales por lo infinitamente lentas. Los resultados 
termodinámicos son pues globalmente aplicables únicamente a fluidos en re­
poso cuando sus propiedades son uniformes e independientes del tiempo. La 
pregunta que inmediatamente surge es si es posible aplicar los resultados de 
la Termodinámica Clásica a fluidos que no sólo no son uniformes, sino que se 
mueven, cambiando sus propiedades de punto a punto y en el tiempo, incluso 
drásticamente. Veremos a continuación que, aunque no se puedan aplicar, en 
general , los resultados termodinámicos clásicos globalmente a un determinado 
sistema fluido, si se pueden aplicar localmente, es decir, a cada partícula fluida 
individual, ya que éstas, en la mayoría de los fluidos y en las condiciones que 
usualmente se encuentran en la práctica, se hallan en equilibrio termodinámico 
local ( o puntual). 

Considérese el caso de un gas. Si en el gas existen inhomogeneidades, por 
ejemplo, si inicialmente hay un gradiente de temperatura o un gradiente de 
velocidad, y no existe ningún factor externo que los mantenga, al cabo de un 
cierto tiempo más o menos largo el gas se equilibra (se uniformiza su tempe -
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ratura y su velocidad) por colisiones moleculares que intercambian energía y 
cantidad de movimiento entre las moléculas, igualando las temperaturas y las 
velocidades entre la..5 distintas partículas fluidas. Es decir, las colisiones pro­
ducen unos flujos macroscópicos de calor (energía) y cantidad de movimiento 
que tienden a disipar los gradientes que los provocan. Estos procesos hacia 
un estado de equilibrio termodinámico global son esencialmente irreversibles, 
y leyes como el Primer Principio de la Termodinámica sólo nos relaciona en­
tre si los dos estados de equilibrio inicial y final, sin decir nada del proceso 
intermedio (sólo el Segundo Principio de la Termodinámica nos proporciona 
ciertas desigualdades que deben verificarse durante el proceso). Ahora bien, 
un sistema puede no estar en equilibrio termodinámico global (puede existir, 
por ejemplo, un gradiente térmico) , pero sí en equilibrio termodinámico local 
si las partículas fluidas que definen cada punto contienen un número suficiente 
de moléculas como para que las colisiones entre ellas las equilibren, dentro de 
cada partícula fluida, mucho más rápidamente que los cambios que se puedan 
producir en las magnitudes macroscópicas (por ejemplo, la temperatura) .  La 
condición para que esto ocurra es que la longitud característica de variación 
macroscópica (en nuestro ejemplo, la longitud típica en la cual la tempera­
tura cambie apreciablemente, es decir , L ~ I V ln Tl-1) sea mucho mayor que 
el camino libre medio entre colisiones, >. ,  para que de esta forma exista un 
tamaño intermedio, (8V) 113 , que permita definir la partícula fluida en equi­
librio termodinámico: >, « (8V)113 « L. En otras palabras, si >, « L, una 
molécula experimenta un gran número de colisiones con sus vecinas antes de 
alcanzar regiones donde las magnitudes macroscópicas ( temperatura en nues­
tro caso) cambien, de modo que gradualmente adapta su movimiento y energía 
al que existe localmente (se equilibra localmente) , perdiendo memoria en las 
sucesivas colisiones de su situación primitiva. 

En el caso de un gas, el orden de magnitud del camino libre medio >, se pue­
de estimar suponiendo que las moléculas son esferas rígidas de tamaño efectivo 
d0 (típicamente, d0 ~ 5 x 10-10m); si el número de moléculas por unidad de 
volumen es n (n ~ 2 x 1025m-3 en condiciones normales),  la distancia media 
que tiene que recorrer una molécula para chocar con otra es 

(8.1) 

La condición >, « L es pues más restrictiva que la correspondiente a la hipóte­
sis de medio contínuo, n-113 « L, dada en la sección 2.2 (n-1/3 ~ 4 x 10-9m 
en condiciones normales). Sin embargo, salvo en casos muy extremos en que 
los gradientes son muy acusados (la longitud característica L muy pequeña, 
como por ejemplo en el movimiento de cuerpos a velocidades gigantescamen-
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te altas), o en el caso de que el gas esté muy enrarecido ( n muy bajo, como 
por ejemplo en la parte alta de la atmósfera donde las moléculas están muy 
separadas unas de otras y las colisiones entre ellas son poco frecuentes) , la 
condición de equilibrio termodinámico local, ,\ « L, se suele cumplir en los 
gases. 

Se suele definir el llamado número de Knudsen, 

(8.2) 

como la relación entre el camino libre medio molecular y el tamaño macroscópi­
co característico. En términos de este número adimensional la condición de 
equilibrio termodinámico en gases se expresa K n « l. El argumento que 
acabamos de expresar utilizando longitudes características se puede también 
expresar en función de tiempos característicos: Si las magnitudes fluidas ma­
croscópicas (por ejemplo la temperatura) fluctúan en el tiempo con una fre­
cuencia característica cuyo orden de magnitud es w = t;; 1, donde te es un 
tiempo característico de variación macroscópica ( te = 18 ln T / 8t ¡ - 1), para que 
exista equilibrio termodinámico local la frecuencia entre colisiones molecula­
res, We = Te-1 , tiene que ser mucho mayor que w, para que así se den un gran 
número de colisiones antes de que las magnitudes macroscópicas cambien en el 
tiempo apreciablemente (en cada partícula fluida). Se tiene pues la condición 
adicional 

Te Te « te o K nt = - « 1 , (8.3) 
te 

que se debe verificar simultáneamente con (8 .2) para que exista equilibrio 
termodinámico local. Por supuesto, Te y ,\ están relacionados entre si a través 
de la velocidad media molecular, cr, que como se verá en la lección siguiente , 
es función de la temperatura: 

(8.4) 

donde k es la constante de Boltzmann y m la masa de la molécula (ver sección 
9.2). 

En los líquidos la interacción molecular es mucho más compleja que la 
simple colisión, por lo que la definición de camino libre medio o frecuencia de 
colisión no tiene mucho sentido. De todas formas, la hipótesis de equilibrio 
termodinámico local se suele verificar, siendo aún más escasas las situaciones 
en que no se cumple que en los gases. 

La hipótesis de equilibrio termodinámico local redefine , como acabamos de 
ver, el tamaño (8V) 113 de las partículas fluidas. Pero si existe ese tamaño, las 
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magnitudes fluidas, p(x, t ) ,  v(x, t ) ,  e (x, t ) ,  etc . ,  definidas en cada punto fluido 
satisfacen, localmente, las relaciones de la Termodinámica Clásica. En lo que 
sigue supondremos que existe equilibrio termodinámico local y utilizaremos 
los importantes resultados de la Termodinámica para escribir la ecuación de 
la energía y las ecuaciones de estado, siendo todas las relaciones locales ( o 
puntuales) .  La hipótesis de equilibrio termodinámico local se utilizará también 
en la lección siguiente para justificar, a partir de la Teoría Cinética de Gases, 
las leyes constitutivas ya enunciadas como la ley de Fick (sección 6.4) y la de 
Stokes (sección 7.3) ,  así como la ley de Fourier de transmisión de calor que 
veremos más adelante (sección 8.2 .2) .  

8. 1 .2 .  Variables termodinámicas 

La Termodinámica Clásica nos enseña que el estado de un fluido de compo­
sición homogenea en equilibrio termodinámico está definido si se conocen dos 
variables termodinámicas cualesquiera, por ejemplo, la presión y la densidad, 
(p, p) , de forma que cualquier otra magnitud termodinámica es función de esas 
dos variables: T = T(p, p) , e =  e (p, p) , etc. Estas relaciones, que son las ecua­
ciones de estado del fluido en cuestión, se cumplen localmente si se verifica la 
hipótesis de equilibrio termodinámico local. Si el fluido está constituido por N 
especies químicas distintas, el estado termodinámico se encuentra definido si se 
conocen, además, N - 1 fracciones másicas: T = T(p, p, Y1 , Y2 , . . .  , YN- 1 ) ,  e =  
e (p, p, Y1 , Y2 , . . .  , YN- 1 ) ,  etc . ,  siendo Et: 1 J"i = l .  

Se suelen distinguir dos tipos básicos de variables termodinámicas: las in­
tensivas y las extensivas. Las magnitudes extensivas se pueden definir en 
un volumen finito y, generalmente, se expresan en función de su densidad, 
es decir, en función de la correspondiente magnitud por unidad de volumen. 
Magnitudes extensivas son la energía, la masa, etc. Por ejemplo, la energía 
interna de un volumen V de fluido sería: 

E =  fv pedV (8.5) 

donde e es la energía interna por unidad de masa, siendo pe la energía interna 
por unidad de volumen. Las magnitudes intensivas no se pueden referir a 
un volumen finito, salvo que sea un fluido uniforme. Ejemplos son la tempe­
ratura, la presión, etc . ;  también, las magnitudes intensivas cuando se refieren 
a la unidad de volumen: p, pe , etc. Como las ecuaciones de estado se refieren 
siempre a magnitudes intensivas (son relaciones de equilibrio local) , no exis­
ten ecuaciones de estado para volúmenes finitos, salvo cuando las magnitudes 
fluidas sean uniformes en él. 
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Además de las variables termodinámicas que se han ido definiendo hasta 
ahora (p, p, T, e, if) , existen otras de interés que se utilizarán en lo que sigue. 
Entre ellas, las más importantes son la entropía , s, y la entalpía , h. La en­
tropía la podemos definir en forma diferencial a partir del primer principio 
de la termodinámica , 

Tds = de + pd( l/  p) , (8.6) 

donde s es la entropía por unidad de masa (todas las magnitudes energéticas 
que utilizaremos , e, s ,  h, etc., serán por unidad de masa o específicas). La 
ecuación anterior expresa que el calor por unidad de masa transferido a una 
partícula fluida, que en virtud del equilibrio termodinámico local es igual al 
producto de la temperatura por el incremento de entropía, dq = Tds (si no 
hubiera equilibrio, el segundo principio de la termodinámica nos dice que óq :'.S 
Tds, donde óq ya no es una diferencial exacta), se transforma en incrementar la 
energía interna por unidad de masa , de, y en producir un trabajo de expansión , 
pd(l/ p) (por unidad de masa). Si la composición del fluido no fuese homogenea , 
habría que añadir en el lado derecho de (8.6) términos correspondientes a los 
potenciales químicos de cada especie multiplicados por las variaciones de las 
respectivas fracciones másicas, que no consideraremos aquí (ver , por ejemplo , 
De Groot y Mazur , 1984 ,  capítulo I II). 

La entalpía se define como 

h = e + p/p , 

de forma que , utilizando (8.6) , se tiene 

1 dh = Tds + -dp . 
p 

(8.7) 

(8.8) 

Por último, otras dos magnitudes termodinámicas que utilizaremos a me­
nudo son los calores específicos a presión y volumen constantes , definidos, 
respectivamente, como 

Cp = T (;;)p = (:)p 1 

Cv = T ( 
8s ) = ( 8e ) 8T P 8T P 

El cociente entre ellos se suele designar por 1: 

(8 . 9) 

(8 . 10) 

(8 . 11) 



96 MECÁNICA DE FLUIDOS 
8.2 .  Ecuación de conservación de la energía 

El principio de conservación de la energía aplicado a un volumen fluido 
V¡ ( t) se puede enunciar de la siguiente forma: la velocidad de incremento de 
la energía total (cinética más interna) contenida en un volumen fluido es igual 
al trabajo por unidad de tiempo de las fuerzas (másicas y de superficie) que 
actúan sobre él, más el calor por unidad de tiempo transferidos a través de 
las paredes y el calor por unidad de tiempo generado (por reacción química, 
radiación, etc.) en el interior del volumen. Matemáticamente , 

d
d f p(e + �v2)dV = f 

8
° [p(e + -

2
1 

v2)]dV + f p(e + -
2
1 

v2)v • ñds 
t Ív1 (t) 2 Ív1 t Ís1 

= f pf:. vdV + f iJ - r · ñds + f qnds + f Q1.dV , 
� � � � 

(8.12) 

donde e y v2 /2 son las energías interna y cinética, respectivamente, por unidad 
de masa, Q,. es el calor aportado por unidad de tiempo y unidad de volumen 
al fluido (por radiación, reacción química, etc.), y Qn es el calor transferido al 
volumen fluido por unidad de tiempo y área a través del elemento de super­
ficie dsñ de orientación ñ. Por supuesto, todas las magnitudes en (8.12) son 
funciones de la posición x y del tiempo t, siendo Qn, además, función de la 
orientación del elemento dsñ en (x, t). En la expresión anterior se ha aplicado 
el Teorema de Transporte de Reynolds, desglosandose el primer miembro en 
dos: la velocidad de incremento de las energías interna y cinética en el volumen 
V¡ en el instante t y la velocidad a la que estas energías son transportadas 
fuera del volumen V¡ a través de la superficie S ¡ por el movimiento del fluido 
(convección de energía). El principio de conservación de la energía se puede 
aplicar a un volumen de control arbitrario Vc(t) sin más que sustituir el primer 
miembro de (8.12) por 

: f p(e + lv2)dV + f p(e + lv2)(iJ - V::) · ñds , t lvc (t) lsc 
(8.13) 

y cambiando V¡ y S ¡ por \!;; y Se, respectivamente, en los restantes términos. 

8.2 .1 .  Vector flujo de calor 

Análogamente al transporte de masa y de cantidad de movimiento (leccio­
nes 6 y 7), la energía (calor) puede ser transportada mediante dos mecanismos: 
convectivamente por el movimiento del fluido y difusivamente por transporte 
molecular. El transporte convectivo viene dado por el segundo término en la 
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Figura 8 .1 :  Vector flujo de calor. 
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ecuación (8.12), mientras que el molecular viene caracterizado en esa ecuación 
por qn, que de momento es desconocido, pero que sabemos depende, además 
de la posición y el tiempo, de la orientación de la superficie. Estamos, pues, 
ante una situación análoga a la de las fuerzas de superficie (sección 7.1.2), 
en la que para caracterizar estas fuerzas (asimilables a un flujo molecular de 
cantidad de movimiento) en cada instante era necesario definir una doble infi­
nitud de magnitudes vectoriales: para cada punto y para cada orientación de 
la superficie; la única diferencia es que ahora las magnitudes qn son escalares. 
Similarmente a la definición del tensor de esfuerzos T, veremos a continuación 

que el flujo de calor qn, para cada orientación del elemento de superficie dAñ en 
(x, t) , viene completamente especificado si se conoce un cierto vector if(x, t) , es 
decir, sólo tres cantidades escalares en cada punto. En efecto, sea un elemento 
de volumen tetraédrico que tiene como vértice el punto x y sus caras están 
formadas por tres planos ortogonales dirigidos según ( e1 , e2 , e3) , y el elemento 
de superficie dAñ (ver figura 8.1). Aplicando el principio de conservación de la 
energía en un sistema de referencia donde if es localmente cero y despreciando 
términos volumétricos de orden (dA)312 frente a dA, se tiene 

(8.14) 

donde qn , q1 , q2 y q3 son los valores medios del flujo de calor a través de las 
cuatro caras del tetraedro que, salvo errores de orden mayor, se pueden apro­
ximar por los valores en el punto x. Usando dAi = dAñ · ei = dAni, í = 1, 2, 3, 
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dividiendo por dA y haciendo dA - O, se obtiene 

-qn = n1q1 + n2q2 + n3q3 • 
Definiendo el vector if(x, t ) ,  

MECÁNICA DE FLUIDOS 
(8. 15) 

(8. 16) 

llamado vector flujo de calor, la ecuación (8. 15) se escribe simplemente 

(8. 17) 

Los componentes q1 , q2 y q3 de ij son pues los flujos de calor en (x, t) a través 
de la unidad de superficie orientadas en las direcciones coordenadas €1 , e2 y 
e3 , respectivamente, y son tomados positivos cuando el flujo de calor tiene el 
sentido de esas direcciones. La ecuación (8 .17) muestra que el flujo de calor 
a través de la unidad de area orientada hacia cualquier dirección ñ queda 
completamente determinado cuando el vector flujo de calor ij se conoce en el 
punto considerado ( o, de forma alternativa, cuando se conoce a través de tres 
direcciones mutuamente perpendiculares que pasan por dicho punto) .  

8.2.2. Ley de Fourier 

Fenomenológicamente se encuentra que en un fluido de composición homo­
genea existe una relación lineal entre el vector flujo de calor y el gradiente de 
temperatura: 

if = K · 'vT , (8. 18) 

siendo K el tensor de conductividad térmica. Para un medio isotrópico el 
tensor K se reduce a una sola constante, K = -KI, 

if =  -K'vT , (8. 19) 

donde K es la conductividad térmica que es una propiedad termodinámica 
(constitutiva) del fluido, función de la temperatura, y en menor grado de la 
presión. El signo menos se ha introducido para que K sea positivo, ya que el 
calor fluye hacia las temperaturas decrecientes. La relación anterior se llama 
Ley de Fourier, quien la formuló hacia 1822 en su famoso tratado Théorie 
analytique de la chaleur ( en el cual también introdujo las famosas series tri­
gonométricas que llevan su nombre, y que fueron el gérmen de la teoría de 
funciones ortogonales y su aplicación a la resolución de problemas de con­
torno) .  Esta ley se puede form1,lar de una forma teórica rigurosa para los 
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gases a través de la Teoría Cinética (ver lección siguiente) si se cumple, co­
mo estamos suponiendo, la hipótesis de equilibrio termodinámico local. Para 
los líquidos se justifica experimentalmente para la gran mayoría de ellos y en 
practicamente todas las condiciones. Cuando el fluido no tiene composición 
homogénea, además del flujo de calor asociado al gradiente de temperatura 
(es decir, además del efecto Fourier), existe un flujo de calor asociado a los 
gradientes de concentraciones ( denominado efecto Dufour, análogo al efecto 

Soret o difusividad térmica mencionado en la sección 6.4), que también se 
justifica teóricamente por la Teoría Cinética de Gases, pero que no considera­
remos aquí; es decir, supondremos que la composición es homogenea o, si no 
lo es, que el efecto Dufour es mucho menos importante que el efecto Fourier 
(el alumno interesado en el efecto Dufour puede consultar, por ejemplo, Bírd 
et al. 1960, capítulo 18 , o de Groot y Mazur, 1984, capítulo XI) . 
8.3. Ecuación diferencial de las energías interna y 

mecánica 

Aplicando el Teorema de Gauss a las integrales de superficie de la ecua­
ción (8.12), e igualando el integrando a cero se obtiene la siguiente ecuación 
diferencial para la energía total: 

[) l 1 D l , 
ot p(e + 2v2 ) + v' . [p(e + 2v2 )v] = p Dt (e +  2v2 ) 

= pf: • v + v' • (-pv) + v' • (-:;¡1 • v) - v' • ij + Qr , (8.20) 

donde se ha utilizado el vector flujo de calor if y se ha desglosado r = -pl + -:;¡1; 
if y -:;f vienen dados por las leyes de Fourier (8 .19) y Stokes ( 7 . 3 3 ) , respecti­
vamente. En la primera igualdad de la ecuación anterior se ha reescrito el 
primer miembro en forma compacta haciendo uso de la ecuación de continui­
dad (6.4). El significado físico de los distintos términos de esta ecuación son, 
respectivamente: variación local de la energía total por unidad de volumen; 
flujo convectivo de la energía total por unidad de volumen; trabajo de las 
fuerzas másicas por unidad de volumen y tiempo; trabajo de las fuerzas de 
presión por unidad de volumen y tiempo; trabajo de las fuerzas de viscosi­
dad por unidad de volumen y tiempo; flujo difusivo o molecular de calor por 
unidad de volumen, y generación de calor por unidad de volumen debido a la 
radiación y a las reacciones químicas. 

La ecuación anterior para la energía total se suele separar en dos partes, 
una para la evolución de la energía interna y otra para la energía mecánica. 
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La forma más directa de realizar este desglosamiento es obtener por separado 
la ecuación de la energía mecánica multiplicando la ecuación de cantidad de 
movimiento ( 7 .38) escalarmente por v: 

D ( v2 ) _ _ =1 _ -
p Dt 2 = -V · v'p + V · (v' • T )  + V · PÍm . (8 .21) 

El primer miembro de esta ecuación es la suma de la variación local y flujo 
convectivo de la energía mecánica ( o cinética) por unidad de volumen, mientras 
que el segundo representa el trabajo mecánico asociado a las fuerzas de presión, 
a las fuerzas viscosas y a las fuerzas másicas, respectivamente, por unidad 
de volumen y tiempo. Observese que todo el trabajo de las fuerzas másicas 
es mecánico, es decir, se transforma en energía mecánica, mientras que los 
trabajos de las fuerzas de presión y viscosidad sólo en parte se transforman en 
energía mecánica, contribuyendo el resto a la energía interna, como veremos 
a continuación. Por otra parte los términos asociados al flujo de calor y a la 
generación de calor en (8.20) no contribuyen, como era de esperar, a la energía 
mecánica. La ecuación de la energía interna se obtiene sin más que restar (8.21) 
de (8.20): 

De n - =I n - n - Q p Dt = -p v  · V +  T : v V - v • q + r , (8.22) 

donde se ha hecho uso de v' ·pv = pv' · v+v· v'p y v' ,C r' - v) = v· (v' •T°') +r' :  v'v. 
Los dos primeros términos del segundo miembro representan, respectivamente, 
el trabajo de compresión de las fuerzas de presión por unidad de volumen y 
tiempo (que es nulo para los líquidos ideales al ser éstos incompresibles), y el 
trabajo de disipación de las fuerzas viscosas, o simplemente disipación viscosa, 
por unidad de volumen y tiempo. Este último término se suele designar por 
<I> (función de disipación viscosa de Rayleigh) y es siempre igual o mayor que 
cero. Para un fluido Newtoniano se tiene: 

<I> = r' : v'v = [µ(v'v + v'ii'T) + (µv - �µ)v' . vl] : v'ii' 

= � [v'ii' + v'ii'T - �y' · vl] : [v'ii' + v'vT - �y' · vl] + µv (v' • v)2 2: O, (8 .23) 

debido a que µ > O y a que para cualquier tensor simétrico de segundo orden A verifica A : A =  AijAij 2: O [en (8.23) se ha hecho también uso de la simetría 
de r'] . La función <I> representa la velocidad a la cual se genera calor ( que se 
transforma en energía interna del fluido) debido a la disipación viscosa del 
flujo, por unidad de volumen. 
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8.4. Ecuaciones de la entalpía y de la entropía 

En muchas situaciones conviene hacer uso de una ecuación para la entalpía 
h, o bien una ecuación para la entropía s, en lugar de la ecuación (8.22) para 
la energía interna e .  

Sustituyendo (8. 7) en (8.20), se obtiene la siguiente ecuación para la en­
talpía total h + v2 /2 (también llamada entalpía de remanso, ver lección 19): 

D (h 1 2 ) f- - ap " (=' -) " - Q P Dt , + 2v = P m • v + at + v • T • v - v • q + r , 

o, si las fuerzas másicas derivan de un potencial, f,n = -"vU, 

D 1 2 {)U ap =' _ _ p- (h + -v + U) =  p- + - + "v • (T • v) - "v • q + Q Dt 2 at at r 

(8.24) 

(8.25 ) 

Esta ecuación nos proporciona una primera integral del movimiento en algu­
nos tipos de flujos bastante comunes: aquellos que son estacionarios, en los 
que no hay aporte alguno de calor y el trabajo de las fuerzas viscosas puede 
despreciarse. Si se cumplen estos requisitos ( además de que las fuerzas mási­
cas deriven de un potencial), la ecuación anterior nos dice que la derivada 
sustancial de 

(8.26) 

es nula, es decir, esa magnitud permanece constante a lo largo del movimiento. 
Esta particularidad del uso de la entalpía será ampliamente utilizada cuando 
estudiemos los flujos ideales estacionarios (lección 19 y siguientes, donde se 
cumplen los requisitos anteriores), y proviene del hecho de que la entalpía 
incorpora a la energía interna el trabajo de las fuerzas de presión en forma de 
un flujo convectivo, por lo que si los únicos trabajos son los asociados a las 
fuerzas de presión y a las másicas, y éstas son estacionarias, la cantidad (8.26) 
se conserva. 

Para obtener la ecuación que gobierna la evolución de la entropía en el 
movimiento de un fluido hacernos uso del primer principio de la termodinámica 
expresado en (8.6) y la ecuación de la energía interna (8.22), llegándose a: 

(8.27) 

Esta ecuación nos dice que la entropía varía, corno era de esperar, solamente 
por la acción de los efectos disipativos o moleculares, corno son la disipación 
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viscosa y los aportes de calor. Además, satisface el segundo principio de la 
termodinámica ya que, de acuerdo con (8.27) , el incremento de entropía a lo 
largo del movimiento es mayor o igual que cero (recuérdese que 4> � O) siempre 
que, por supuesto, aportemos calor al sistema: -\7 ·if = v7-(Kv7T) � O, y Qr sea 
positivo. De acuerdo con la ecuación anterior, la entropía es otra integral del 
movimiento para los flujos ideales (efectos viscosos despreciables) ,  adibáticos 
( if = O) y sin ningún otro aporte de calor. 

8.5 .  Ecuaciones de estado 

Para que el conjunto de ecuaciones de continuidad, cantidad de movimien­
to y energía [ecuaciones (6.4) , (7.38) y, por ejemplo, (8 .22)] sea un conjunto 
cerrado, es necesario hacer uso de ecuaciones de estado que nos relacione la 
temperatura con la presión y la densidad, T = T(p, p) , y la energía interna 
con, por ejemplo, la temperatura y la presión, e = e(T, p) (aparte están las 
ecuaciones constitutivas para r' y if que ya han sido definidas) .  De esta forma 
tendremos un conjunto cerrado de ecuaciones para p, v y p ( ó p, v y T) . 

Para un líquido perfecto, estas dos ecuaciones de estado son: 

p = constante , 

Cv = C-p = e = constante , 

(8.28) 

(8.29) 

es decir, la densidad y el calor específico son constantes (los calores específicos 
a presión y volumen constante son iguales al ser constante la densidad, 1 = 
ep/Cv = 1 ) .  La ecuación (8. 10) nos proporciona 

de = cdT e =  cT + e0 (8.30) 

siendo e0 la energía interna de referencia a T = O, que se suele tomar cero; de 
esta ecuación y de (8.6),  al ser constante la densidad, se tiene además 

Tds = cdT , s = c ln(T/T0) + s0 , 

donde s0 es la entropía a la temperatura de referencia T0 . 

(8 .31) 

Los gases perfectos se definen como aquellos que satisfacen la ecuación 
de gas ideal, 

(8.32) 

donde 
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(8.33) 

es la constante específica del gas en cuestión, cociente entre la constante uni­versal de los gases, R = 8,314] K- 1 moz-I y la masa molecular M del gas, y 
verifican además que los calores específicos son constantes: 

Cp = constante , Cv = constante . 
Estas relaciónes nos proporcionan 

e = evT + eo h = e + p/ p = evT + R9T + e0 = epT + eo ep - ev = R9 , 

(8.34) 

(8.35) 

(8.36) 

(8.37) 

siendo esta última expresión la llamada relación de Meyer. Veremos en la 
lección siguiente que la Teoría Cinética de Gases demuestra que 1 = ep/ Cv 

es igual a 5 /3 para los gases monoatómicos y 7 /5 para los gases biatómicos, 
lo cual coincide extraordinariamente bien con los resultados experimentales 
a temperaturas no muy altas. Finalmente, haciendo uso de (8.6) y (8.32), la 
entropía de un gas perfecto viene dada por 

( T /To ) ( P/Po ) S - So = Cv ln 
(p/ Po)'Y-1 = Cv ln 

(p/ Po)'Y 
Es decir, la relación isentrópica que satisfacen los gases perfectos es : 

p / p 'Y = constante . 
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Capítulo 9 

Fundamentos microscópicos 
de las ecuaciones de los 
fluidos : gas monoatómico 

Un conocimiento más profundo de la validez de las ecuaciones que gobier­
nan el movimiento de los fluidos, además del significado de algunas de las 
cantidades macroscópicas que entran en ellas y de las implicaciones de varias 
de las suposiciones hechas, se puede adquirir examinando el origen de estas 
ecuaciones desde un punto de vista microscópico en un caso especial: el flujo 
de un gas monoatómico con densidad no muy alta. 

9. 1 .  Función de distribución de un gas monoatómi­
co 

Las moléculas dentro del elemento de volumen d3 x (partícula fluida centra­
da en i) pueden clasificarse de acuerdo con su velocidad. Para ello definimos 
la función de distribución f, de forma que 

(9.1) 

es el número de moléculas en d3 x centrado en i y en el instante t que tienen 
una velocidad molecular entre e y e + de, es decir , velocidades dentro del 
pequeño volumen en el espacio de velocidades d3 e centrado en la velocidad c. 
Las propiedades de un gas monoatómico ( es decir, con moléculas sin grados 
de libertad internos) están completamente determinadas una vez que f(i, e, t) 
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es conocida. Por ejemplo, la densidad numérica n y la densidad másica p en x 
y en el instante t se definen: 

n(x, t) = f d3 c f(x, c, t) , 
p(x, t) = j d3cm f(x, c, t) 

(9.2) 

(9.3) 

donde m es la masa de la molécula (suponemos que todas las moléculas son 
idénticas) y la integración se efectúa en todo el campo de velocidades (J d3 e = 
Ji� dc1 Ji� dc2 Ji� dc3) .  De forma similar, la densidad de cantidad de 
movimiento en (x, t) es : 

p v = j d3cm cf(x, c, t) (9.4) 

Esta ecuación, junto con la anterior, definen la velocidad macroscópica del 
fluido v(x, t) en el punto x y en el instante t, o velocidad del centro de masa 
de las moléculas contenidas en el volumen d3 x en el instante t. La densidad 
de energía en (x, t) se puede expresar como: 

E(x, t) = J d3 c �m c2 f(x, c, t) 
S i  definimos la velocidad e-, como 

(9.5)  

(9.6) 

siendo v la velocidad media molecular definida en (9.4), e-, puede considerarse 
como la velocidad de fluctuación de la molécula en torno a la velocidad media 
o macroscópica. Esta velocidad de fluctuación tiene la propiedad evidente 

j d3 c m c'f(x, c, t) = O (9.7) 

Sustituyendo (9.6) en la ecuación (9.5), se obtiene 

(9 .8) 

donde el primer término es la densidad de energía cinética y e es la energía 
interna, 

(9.9) 
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Esta ecuación muestra que la energía interna de un gas monoatómico es una 
medida de la energía translacional de sus moléculas asociada a la velocidad 
de fluctuación. En contraste con la energía cinética visible, o macroscópica, 
asociada con el movimiento del fluido (½ p v2) , la energía interna es la energía 
cinética oculta asociada con el movimiento caótico molecular alrededor de su 
velocidad media o velocidad del centro de masas. 

El significado de la función de distribución molecular f(x, e, t) es claro a 
partir de su definición:  Es la densidad numérica de moléculas en el espacio 
de seis dimensiones posición-velocidad o espacio de las fases. Nos referiremos 
a este espacio como µ - espacio. Sin embargo, existe una interpretación es­tadística alternativa de f(x, e, t )  si se ignora la identidad de cada molécula y 
nos preguntamos por la fracción de moléculas que están en el volumen d3 x 
alrededor de x con velocidades en el rango d3 c alrededor de c. La respuesta 
claramente es: 

f(x, e, t)d3 x d3 e 1 
¡( - - )d3 

[J d3 e f (x, e, t)]d3 X 
= � x, e, t e 

Por tanto, f(x, e, t)d3 c/n se puede interpretar como la probabilidad de encon­
trar una molécula con velocidad en el rango d3 c alrededor de c. Con este punto 
de vista, f(x, e, t )/n es la densidad de probabilidad de encontrar en (x, t) una 
molécula con velocidad c. 

De lo anterior se puede observar que la descripción de un gas (monoatómico 
en este caso) a partir de la función de distribución f(x, e, t) es intermedia en­
tre la descripción macroscópica en términos de p(x, t) , v(x, t) , e (x, t), etc. que 
hemos visto hasta ahora , y la descripción puramente microscópica en función 
de la velocidad y posición de cada molécula individual. De hecho, la función de 
distribución se puede definir a partir de la descripción microscópica, es decir , 
si se conoce la posición y la velocidad de todas las moléculas del gas, sin más 
que obtener a partir de esta información el número de moléculas que en el 
instante t tienen velocidades comprendidas entre e y e+ de en el elemento de 
volumen d3x centrado en x. El uso de la función de distribución presupone la 
hipótesis de medio contínuo, ya que se promedia en elementos de volumen d3x, 
pero, a diferencia con la descripción macroscópica, se introduce un grado de 
libertad más que es el rango de velocidad molecular en el que se encuentran 
las moléculas promediadas. Las magnitudes macroscópicas se pueden definir a 
partir de la descripción microscópica, como se hizo en la sección 2.2, o a partir 
de f como se acaba de hacer. La ventaja de utilizar f frente a la descripción 
puramente microscópica es obvia, ya que esta última es en la práctica imposi­
ble de aplicar como se apuntó en 2.2. A pesar de que la función de distribución 
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parece que añade poco a la descripción macroscópica, veremos a continuación 
que una teoría basada en ella ( denominada Teoría Cinética de Gases ) no 
sólo proporciona de una forma inmediata las ecuaciones de conservación y de 
estado descritas en las lecciones anteriores, sino que además permite obtener 
rigurosamente las ecuaciones constitutivas ( que han sido introducidas ad hoc 
en las lecciones anteriores), así como calcular los coeficientes de transporte 
(D, µ, K) a partir de propiedades puramente moleculares. Como desventaja, 
sólo existe una teoría cinética para los gases y,  en particular, lo que vamos 
a ver a continuación es para gases monoatómicos; es decir , para gases cuyas 
moléculas sólo tienen tres grados de libertad translacionales asociados a las 
tres componentes del vector c. Si hubieran más grados de libertad molecu­
lar, como rotación, vibración , etc., que aparecen cuando las moléculas del gas 
no son monoatómicas, habría que añadir estos grados de libertad como argu­
mentos de la función ele distribución. Para los líquidos la Teoría Cinética es 
tan complicada que es preferible hacer uso de resultados experimentales para 
obtener las ecuaciones constitutivas y de estado y así cerrar las ecuaciones 
de conservación (para derivar las ecuaciones de conservación no es necesario 
utilizar argumentos microscópicos, sino que es suficiente apelar a los princi­
pios físicos de conservación de la masa, cantidad de movimiento y energía, 
como se ha hecho en lecciones precedentes; sin embargo, la derivación de es­
tas ecuaciones a partir de argumentos microscópicos es, como veremos más 
adelante, mucho más elegante). Por supuesto, no se pretende en esta lección 
ni tan siquiera dar un repaso a la Teoría Cinética de Gases (lo cual ocuparía 
un curso entero) , sino sólo obtener algunos resultados elementales y describir 
brevemente algunos conceptos que ayudarán a afianzar la comprensión de las 
ecuaciones de los fluidos dadas en lecciones anteriores. 

9.2. Ecuación de estado de un gas monoatómico 

Cuando un gru; está en equilibrio termodinámico, la densidad numérica 
n(x, t )  es independiente de x y t. Por tanto, f(x, e, t) debe ser también inde­
pendiente de x y t ,  y se puede escribir simplemente como J(c).  En ausencia 
de campos de fuerza, no hay direcciones privilegiadas para el movimiento de 
las moléculas y f ( e) depende de e sólo a través de su magnitud c. Esto es , en 
equilibrio, f(x, e, t) = f(c) = f(c) . 

Sea 6A( = ñ 6 A) un elemento de superficie centrado en el punto P en la 
pared de un recipiente que contiene un gas monoatómico en equilibrio termo­
dinámico, y sea ñ el vector unitario normal apuntando hacia el interior del gas 
(ver figura 9.1). Tomemos un sistema coordenado en el que el eje x apunta en 
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Figura 9 .1 :  Flujo molecular hacia una superficie. 

la dirección de -ñ(e1 = -ñ) . El número de moléculas con velocidad entre c y  
e+ de que inciden en el elemento de superficie 8 A en un intervalo de tiempo 
8t es 

Si suponemos que las colisiones de las moléculas con la pared son elásticas, 
cada molécula en el rango de velocidades considerado experimentará un cambio 
de cantidad de movimiento de magnitud 2m e •  e1 en la dirección de ñ. Por 
tanto, estas moléculas comunicarán a la superficie una fuerza igual a 

(9.10) 

en la dirección de -ñ. La fuerza total ejercida por todas las moléculas sobre 
8 A se obtiene integrando la expresión anterior sobre c1 > O y todos los valores 
de c2 y c3. Es decir, la presión p en el punto P de la superficie es 

p = 2m ¡00
d c1 1-: d c2 1-

: d c3 crf(é) = m 1-: d c1 1-: d c2 1-: d c3 crf(é) 

(9.11) 
debido a que f(é) = f( Je¡ + e� + e�) es una función par en e¡ . Por la misma 
razón, es también correcto decir que p viene dada por la expresión anterior 
reemplazando c1 por c2 o por c3, es decir, 
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(9.12) 

Haciendo uso de la ecuación (9.9) y teniendo en cuenta que en equilibrio ter­
modinámico iJ = O (es decir, e= e) ,  se tiene: 

(9.13) 

Esta es la ecuación de estado que satisface un gas monoatómico. Experi­
mentalmente se tiene que [ecuación (8.32)] 

(9.14) 

donde R9 es la constante del gas en cuestión, igual a una constante universal 
(la constante de Boltzmann k = 1,38 x 10-23 J/ K) dividida por la masa de la 
molécula : 

R9 = k/m (9.15) 

Comparando la ecuación de estado experimental (9.14) con la teórica (9.13), 
uno encuentra que son equivalentes si 

(9.16) 

de donde los calores específicos a volumen y a presión constantes definidos en 
(8.9) y (8.10) [Cv = (8 e/8 T)v y Cp = (8 h/8 T)p] y su relación ('y = ep/Cv) 
para un gas monoatómico son: 

(9.17) 

que concuerdan bastante bien con los resultados experimentales. 1 En términos 
de la constante de Boltzmann, tenemos 

p = n k T  (9.18) 

donde n = p/m. Por otra parte, la energía media por molécula, em = m e, es 

(9.19) 

1 Por ejemplo, para el Argon, m = 6,6 x 10-26kg, la expresión (9. 17b) da 
Cp = 527,7 Jkg- 1 K- 1 , mientras que a 250° K se encuentra experimentalmente c" = 
520,3 Jkg- 1 K- 1

. Por otra parte, el valor teórico 1 = 5/3 sólo difiere del experimental a 
partir de la quinta cifra decimal a esa temperatura. 
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Esta ecuación muestra que la temperatura macroscópica es una medida de la energía translacional media de una molécula. Obsérvese que las 
moléculas de un gas monoatómico tiene tres grados de libertad translacionales, 
con lo que, utilizando el principio de equipartición de la energía, la enegía por 
grado de libertad es ½ k T. Este resultado se puede extrapolar para obtener, 
aproximadamente, la energía interna de un gas cuyas moléculas tengan otros 
grados de libertad además de los translacionales. Así, una molécula diatómica 
tiene, además de los tres grados de libertad translacionales, uno vibracional 
( variación de la distancia que separa a los dos átomos de la molécula) ,  y dos 
más rotacionales ( correspondientes a los dos ángulos que hay que especificar 
para situar a la molécula con respecto a unos ejes que se muevan con el centro 
de masa de la molécula).  Sin embargo, el estado vibracional está normalmente 
congelado a temperaturas cercanas a la ambiente, 2 por lo que sólo 5 grados 
de libertad son efectivos a temperaturas normales. De esta forma, la energía 
interna de un gas diatómico es, a temperaturas no excesivamente altas, e = 
� R9T; es decir, Cv = �R9 , cp = � R9 y --y =  7 /5 , que concuerdan muy bien con 
los resultados experimentales. 3 

La expresión (9.16) también proporciona la velocidad media de fluc­tuación, CT, de un gas en función de la temperatura: 

1 e = -4 
2 

(9 .20) 

Esta expresión es válida independientemente de que el gas sea monoatómico o 
no, puesto que la ecuación (9.16) corresponde a la contribución de la energía 
translacional a la energía interna. Para 02 a 15 ºC se tiene cr :::::: 472m/ s. Esta 
velocidad está relacionada, como veremos en las lecciones 10 y 25 , a la veloci­
dad de propagación del sonido en el seno de un gas [cuyo valor en un gas ideal, 
es decir, que verifica (9. 14) ,  es a =  J--yR9T]. El valor relativamente alto de la 
velocidad de agitación molecular hace que, salvo cuando la velocidad media 
del gas se aproxima a la del sonido, el número de moléculas que atraviesan 
una superficie cualquiera en un sentido es aproximadamente el mismo de las 
que la atraviesan en sentido opuesto, siendo la diferencia una pequeña fracción 
que da cuenta del flujo medio o convectivo. 

Finalmente, aunque las relaciones anteriores están deducidas suponiendo 
que el gas está en equilibrio termodinámico, por supuesto son válidas localmen -

2Para el 02 , el primer estado vibracional tiene una energía equivalente a E/k = 2230° K, 
con lo que sólo a muy altas temperaturas empieza a activarse este estado. 

3 A temperaturas entre OºC y 200ºC, los valores experimentales medios de Cv y 'Y para el 
02 (m = 5 ,3523 x 10-26kg) son e,, = 648,5.Jkg- 1 K - 1 y 'Y = 1 ,4,  mientras que los valores 
teóricos, de acuerdo con las expresiones anteriores, son e,, = 644,6.Jkg- l  K- 1 y 'Y = 1 ,4.  
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te bajo la hipótesis de equilibrio termodinámico local ( sección 8.1.1) , hipótesis 
que se hace ahora aún más plausible teniendo en cuenta los valores tan altos 
de la velocidad de agitación molecular , que hace que las colisiones sean muy 
frecuentes en condiciones normales. 

9.3. Distribución de Maxwell 
Veamos a continuación como sería la función de distribución para un gas 

monoatómico en equilibrio termodinámico. Para ello consideremos las molécu­
las en el elemento de volumen d3x alrededor de x, y denotemos por F(c1)d c1 
la probabilidad de encontrar una molécula en ese volumen con la componen­
te de la velocidad en la dirección é1 con valores entre c1 y c1 + d c1. Debido 
a la isotropía de la distribución de velocidades en equilibrio termodinámi­
co , las probabilidades de encontrar una molécula con las componentes en las 
direcciones � y é:3 en los intervalos (c2 ,c2 + d c2) y (c3 ,c3 + d c3) son , respec­
tivamente , F(c2)d c2 y F(c3)d c3. Si estas probabilidades son estadísticamente 
independientes, es decir, si la probabilidad de encontrar una componente en 
un rango de velocidades dado no está afectada por la de otra componente , 
la probabilidad de encontrar una molécula cuyas componentes de la veloci­
dad están en los intervalos (e¡ , c1 + d c1 ) ,  ( c2 , c2 + d c2) y ( c3 , C3 + d c3) es 
F(c1) F(c2) F(c3)dc1 dc2 dc3. De acuerdo con lo visto anteriormente , esta can­
tidad debe ser igual a [f(c)/n]d3 e ,  es decir, 

(9.21) 

donde e = ✓ cr + e� + c5' para todo C¡ ' C2 y C3. Esto es sólo posible si f es de 
la forma 

J(c) = n A e-Bc2 
(9.22) 

y, por tanto , F(e¡ ) = A113 e-B e; , i = 1, 2 ,  3 ,  donde A y B son independientes 
de c. Para ver lo anterior , diferenciemos la ecuación ( 9. 21) respecto a c1 , 

f'(c) C¡ -- -
f(c) e 

F' ( C1) 
F(c1) 

o 1 J'(c) 
e J(c) 

1 F' (c1) - --
C1 F(c1) 

(9.2 3 ) 

Es decir , ¼ jf�5 no es función de c2 y c3. De forma similar, derivando respecto a 
c2 , se demuestra que no es una función de c3 y c1. Por tanto es una constante , 

1 J'(c) 
- -- = constante = -2B 
e J(c) 
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Integrando se obtiene (9.22). Para determinar las dos constantes A y B, ha­
cemos uso de las expresiones de n y p: n = J d3 e f (x, e, t), p = n k T = 
(m/3) J d3 c c2 f(x, e, t). Utilizando las relaciones 

se obtiene 

¡+oo d m - a x2 r (m + 1
) 

1 
X X e = -- (m+l)/2 

-oo 2 a 

r(m) = (m - 1)! , r (t) = � , 

(
B

)
3/2 m A =  -; y B =

2 k T ' 
de donde la distribución de equilibrio (distribución Maxwelliana) es 

( 
m 

)
3/2 m c2 

f = n 2 1r k T exp { - 2 k T }  • 

(9.24) 

(9.25)  

Esta expresión sigue siendo válida localmente ( en primera aproximación , ver 
sección 9.6) bajo la hipótesis de equilibrio termodinámico local , sin más que 
utilizar n(x, t) y T(x, t ) ,  y sustituir c2 por j c - ii'j2. 

9.4. Ecuación que gobierna la función de distribu­
ción molecular 

Considérese el espacio de seis dimensiones posición-velocidad, es decir, el 
espacio de las fases o µ - espacio. En cualquier tiempo t, cada molécula tiene 
una velocidad e y una posición x y, por tanto, está en algún punto del µ -
espacio. A medida que el tiempo avanza, la molécula cambiará su localización 
en el µ - espacio, describiendo una trayectoria en este espacio. El movimiento 
de la molécula está, por otra parte, descrito por las leyes de Newton, 

d x  ... - = e 
d t  

d e  ... 
d t  = fm (x, t) 

(9.26) 

(9.27) 

donde f ... m es la fuerza externa por unidad de masa que actúa sobre la molécula 
cuando se encuentra en x en el tiempo t. Si la posición y la velocidad iniciales de 
la molécula son conocidas, la ecuación anterior muestra que, en cada instante 
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t, se conoce la velocidad y la posición de la molécula en el µ - espacio. La 
trayectoria trazada por la molécula será generalmente suave (suponiendo que 
f:n_ (x, t) es una función contínua), hasta que choca con otra molécula, momento 
en el que la velocidad cambiará bruscamente (se está suponiendo que el alcance 
de las fuerzas intermoleculares es mucho menor que la separación media entre 
las moléculas, por lo que la interación se puede considerar como una colisión 
puntual, como si las moléculas fuesen bolas de billar ; más abajo se especifica 
más concretamente esta hipótesis). 

Consideremos un volumen V(t) en el espacio de las fases. En el instante t, 
el número total de moléculas dentro de este volumen es 

Si no hay colisiones , todas las moléculas en V(t) se moverán hacia un volumen 
vecino V ( t + ó t) en un intervalo de tiempo ó t y 

Sin embargo, debido a las colisiones, algunas de las moléculas que están fuera 
de V ( t) en el tiempo t pueden evolucionar hacia el volumen V ( t + ó t) en t + ó t 
y, de forma similar, algunas que en el instante t se encontraban en V ( t) pueden 
estar fuera de V ( t + ó t) en t + fJ t. Si denominamos ( %f) a la velocidad neta col 
de incremento de moléculas en el volumen elemental del µ - espacio d3 x d3 e, 
se tiene 

d
d f d3 c d3 x f(x, c, t) = f d3 x d3 c (�

f
) • t lv(t) lv(t) u t col 

Aplicando el Teorema del Transporte de Reynolds y el Teorema de Gauss en 
el µ - espacio, se obtiene 

(9.28) 

donde v7 e denota el gradiente en el espacio de velocidades c. Como x y e son 
variables independientes , siempre que f,,n no sea función de e se puede escribir 

8 f _ - (º f ) 8t + (e · V)f + Um • Vc)f = 6t col 
(9.29) 

Cuando ( ó f / 6 !)col es modelado con las hipótesis de que todas las coli­
siones son binarias y ocurren en espacios muy pequeños comparados con el 
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camino libre medio que recorren las moléculas entre colisiones y en intervalos de tiempo muy pequeños comparados con el tiempo medio entre colisiones ( en otras palabras, cuando el gas está a densidades relativamente bajas de forma que n d5 < < 1 ,  donde do es el rango de acción de las fuerzas intermoleculares o tamaño efectivo de la molécula) se obtiene un operador integral, cuadrático en f, llamado operador de Boltzmann. La ecuación que resulta de introducir esta expresión para (8 f /8 t)col en (9.28) o en (9.29) es la ecuación cinética 
de Boltzmann, cuya derivación cae fuera del alcance de esta pequeña in­troducción al fundamento microscópico de las ecuaciones de la Mecánica de Fluidos (véanse, por ejemplo, las referencias sobre Teoría Cinética citadas al final de esta lección). 
9.5 .  Ecuaciones de conservación 

U na colisión entre dos moléculas provoca, generalmente, un cambio drásti­co en las velocidades de las moléculas, pero produce un cambio muy pequeño en las posiciones de las moléculas durante el tiempo de colisión.  Por tanto, las colisiones entre moléculas en un pequeño volumen d3 x alrededor de x produce una redistribución de las moléculas en el espacio de velocidades, pero man­teniendo, aproximadamente, el número de moléculas en el volumen d3 x. Por otra parte, la masa total, la cantidad de movimiento y la energía se conservan en las colisiones entre moléculas, si estas colisiones son elásticas. De aquí se deduce que 

para cada x y t .  
/ 3 1 2 (8 f) d c 2 m c  y¡ col = 0 ,  

(9. 30) 
(9.31 )  
(9.32) 

Multipliquemos la ecuación (9.28) por m e  integremos sobre todo el espacio de velocidades. Utilizando (9.30) se tiene 

Ahora bien, 
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/ 

3 a ¡  a j 3 o p  d c mat = o t  d c m f  = o t  
, 

/ 
3 - 1 

2 -d c m v'c · U fm) =  d c m f  fm = O  
Sc-+oo 

donde se ha hecho uso de las definiciones (9.3) y (9.4) , y la última relación 
viene de aplicar el TeoFema de Gauss y de suponer que f va a cero cuando 
e - oo más rápido que cualquier potencia positiva de 1/c. Se concluye que 

!; + v . (p v) = o (9.33) 

que es la misma ecuación de continuidad ( 6 .4) derivada mediante considera­
ciones macroscópicas. 

De forma similar, si se multiplica la ecuación (9.28) por m e  y se integra 
sobre todo el campo de velocidades se obtiene 

º
;t

v 
+ v' · j d3 c m ccf(x, c, t) - p f: = O 

donde se ha hecho uso de 

(9.34) 

Teniendo en cuenta que e =  v + e', el segundo término de (9.34) se puede 
escribir como 

j d3 c m ccf = j d3 c m(v + c-') (v + c')f =  j d3 c m(vv + vc-' + c' v + c' c')f d3 c 

= p v v + o +  o+ , 

donde 

P=- j d3 e m e' e' f (9.35) 

es el llamado tensor de presiones. La ecuación (9.34) queda 



CAPÍTULO 9. FUNDAMENTOS MICROSCÓPICOS DE LAS ECUACIONES DE LOS 
FLUIDOS: GAS MONOATÓMICO 117 

(9.36) 

que es idéntica a la ecuación de cantidad de movimiento ( 7.23) derivada ma­
croscópicamente si se identifica el tensor de presiones cambiando de signo, 
- P, con el tensor de esfuerzos T. 

Finalmente, multiplicando la ecuación (9.28) por ½m c2 e integrando, 

:t 
[P (e + 1v2) ] + 'v • j d3 c1m c2 e f - p ¡: • v = O 

donde se ha hecho uso de las ecuaciones (9. 5 )  y (9.8 ) y de 

Teniendo en cuenta que 

donde 

j d3 c1m c2 cf = j d3 c m  (1v2 + v · e' + 1c'2) (v + c-')f = 

= � p v2 v + O + p e v + O + v· P +il 

se tiene 

(9.37 )  

(9.38) 

(9.39) 

Esta ecuación coincide con la ecuación de conservación de la energía total 
(8.20) derivada macroscópicamente si identificamos (9.38 ) con el flujo de calor 
y tenemos en cuenta que 

- = pr - = -v· P= ·V = - T ·V 
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Se concluye, pues, que las leyes de conservación macroscópicas es un reflejo 

de las leyes de conservación en la escala microscópica ; más concretamente, re­
sultado de la conservación de la masa, cantidad de movimiento y energía en las 
colisiones moleculares. Además, para un gas monoatómico, se ha establecido: 

Estas expresiones muestran que el tensor de esfuerzos macroscópico se puede 
atribuir al transporte invisible (en la escala macroscópica) de cantidad de mo­
vimiento debido al movimiento fluctuante de las moléculas, y que el flujo de 
calor macroscópico es un reflejo del transporte invisible de energía cinética por 
el movimiento aleatorio de las moléculas. Estas expresiones han sido derivadas 
con la suposición de que las moléculas son esferas elásticas que no interaccionan 
unas con otras al menos que colisionen. De forma más precisa, se ha supuesto 
que el rango de acción de las fuerzas intermoleculares es muy pequeño, mucho 
menor que el recorrido libre medio que las moléculas recorren entre colisiones. 
Si esto no fuese así, es decir , si las interacciones entre moléculas fueran de 

largo alcance, o si el gas fuera muy denso de forma que el recorrido libre 
medio entre colisiones fuese del mismo orden que el rango de acción de la 
interacción molecular, las expresiones anteriores no serían válidas. Por ello se 
especificó al comienzo de esta lección que la Teoría Cinética aquí esbozada 
es para un gas monoatómico cuando su densidad no es muy alta (y por ello 
tampoco vale para los líquidos). De todas formas, la condición nd5 « 1 no 
es muy restrictiva si se tiene en cuenta que do es, típicamente, del orden de 
5 x 10-10m. La condición n « d03 ~ 8 x 1027 m-3 equivaldría, por ejemplo para 
el Argon (m � 6,6 x 10-26kg), a p « 534kg/m3 , una densidad bastante alta 
(para conseguir esa densidad a presión atmosférica haría falta una temperatura 
por debajo de un grado Kelvin, con lo cual ya no sería un gas sino un líquido). 
Para los líquidos, la distancia intermolecular típica es del orden de do ( ver 
sección 2. 1) .  

9.6. Efecto de las colisiones sobre la distribución de 
velocidades 

Para determinar el efecto que sobre la función de distribución de velo­
cidades f tiene las colisiones moleculares, uno tendría que obtener la forma 
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exacta de (8 f /8 t)col y sustituirla en la ecuación (9.28). Pero esto nos llevaría 
demasiado lejos del asunto principal de esta lección que es el estudio de los 
fundamentos microscópicos de las ecuaciones de la Mecánica de Fluidos en 
un caso especial. Sin embargo, si el sistema fluido se puede considerar , en 
primera aproximación , en equilibrio termodinámico local , en cada punto x y 
en cada instante t f no debe ser muy diferente de la función de distribución 
Maxwelliana de equilibrio f0 [ecuación (9.25)]: 

... ... n(x, t) 
{ 

m(c- v) • (c - v)
} Ío(x, c, t) = 

[2 1r k T(x, t)/m]312 exp - 2 k T(x, t) 
(9.40) 

En equilibrio, las colisiones moleculares no alterarán la forma de la distribu­
ción: (8 f /8 t)col = O y f = f0 • Cerca del equilibrio , uno espera que (8 f /8 t)col 
sea proporcional a la diferencia entre la distribución Maxwelliana local f O y la 
función de distribución real f; es decir, 

(9.41) 

donde la constante de proporcionalidad 1/rc tiene las dimensiones de una fre­
cuencia. Por tanto, cerca del equilibrio, la ecuación (9.28) se puede aproximar 
por 

8 f  ... f - fo 
� + v7 · (f e) + Ve ·  (f Ím) = - --u t � 

(9.42) 

Para ver el significado de Te supongamos que perturbamos un medio sin 
fuerzas másicas inicialmente en reposo a temperatura T0 y densidad n0 uni­
formes. En este caso, antes de que se produzca la perturbación, 

Si la perturbación introducida en el medio es pequeña , f diferirá de f0 sólo 
ligeramente. Supongamos que , en t = O ,  f (x, é, O) = F0 (x, e), siendo F0 una 
función conocida de x y c. El comportamiento de f para t > O se puede 
determinar de la ecuación (9.42) ( con 1: = O) , sujeta a la anterior condición 
inicial. Es fácil ver que 

(9.43) 

Por tanto, f --+ f0 exponencialmente cuando t --+ oo a una velocidad 1/Tc · 
Es decir, f alcanza aproximadamente el 60 % de su valor asintótico f O en 
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un tiempo Te - Como la distribución de equilibrio se alcanza por medio de 
las colisiones, Tc-1 es del orden de la frecuencia de colisiones. Una estimación 
del orden de magnitud de Te en condiciones atmosféricas se puede obtener 
sustituyendo (9.20) y (8.1) en (8.4): 

Te ~ >../cr ~ [d5no J3kT0/mt 1 (9. 44) 

Para Argon en condiciones normales (T = 20ºC, n0 '.::::'. 2,5 x 1025m-3) se tiene 
Te ~ 3,73 x 10- 10s. De esta forma, al menos que estemos interesados en cambios 
macroscópicos muy rápidos, el alejamiento de las condiciones de equilibrio 
termodinámico local es muy pequeño. Esto es una justificación alternativa de 
la hipótesis de equilibrio termodinámico local que se suma a la realizada en la 
sección 8.1.1: para que la hipótesis sea válida, la frecuencia característica de 
variación de las magnitudes macroscópicas debe ser menor que la frecuencia 
de colisión Tc-l (~ 2, 7 x 109 s-1 en condiciones normales). 

9. 7. Ecuaciones constitutivas 

Veamos primero la ecuación constitutiva para el tensor de presiones p. 
Para ello es necesario derivar una ecuación para P, lo cual es más sencillo es­
cribiendo la ecuación cinética (9.42) en notación indicia! (subíndices repetidos 
están sumados), 

a j  8 8 
(

8 f
) 

f - fo -
f) t  

+ -
0 

(fck) + -
0 

(f Ímk) = Tt 
= - -- , 

Xk Ck u col Te 
(9.45) 

donde fo viene dada por (9.40) y Te es, en general, una función de x y t. Si 
multiplicamos esta ecuación por m � c1 e integramos sobre todo el espacio de 
velocidades, obtenemos 

donde 

o Pij 
J d3 

, , 
é) (f ) Pij - p 8ij -- + e m e - e - -- Ck = - �--- , 

é) t i J O Xk Te 
(9.46) 

es el componente ij del tensor de presiones P, y p es la presión termodinámica 
asociada con la distribución Maxwelliana, 

p = n k T  (9. 47) 
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S e  puede demostrar que 1 1 

p = 3Pii = 3 (Pu + P22 + P33) 

Para ello sabemos que, de las relaciones (9.30)-(9.32), 

por tanto, 

j d3 c m c� c� (�{t01 
= O ; 

J d3 1 1 ( f - Ío ) O c m ci ci - Tc(i, t) = ' 

(9.48) 

que es lo mismo que (9.48) si se tiene en cuenta (9.47). Por otra parte, el 
término que contiene las fuerzas másicas no aparece en (9.46) debido a que es 
nulo: 

= O - j d3c m(óik cj + e� Ójk)Í Ímk = O 

donde se ha hecho uso de (9.47) y de que en f -+ O cuando e -+ oo, para 
cualquier n. Se debe tener en cuenta que, aunque Ci es independiente de Xi y 
t, s = Ci - Vi depende, en general, de x y t a través de Vi - Por esta razón no 
se ha desarrollado el segundo término de (9.46). Este término puede escribirse 
como 

donde se ha definido 

(9.49) 
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Por tanto, la ecuación (9.46) para Pij queda 

o 

Esta ecuación también se puede escribir como 

[
{) pij {) pij {) Vk {) Vi {) Vj {) Qijk ] Pij = P Óij - Te -

{) 
+ Vk -

0 
+ �j -{) 

+ pik -
{) 

+ pki -
{) 

+ -
{)
--t Xk Xk Xk Xk Xk 

(9. 52) 
Si Te = O, se tiene Pij = p Óij, como ya sabíamos: cuando Te = O el equilibrio 

termodinámico local se establece instantáneamente y f = J0 . Normalmente, 
Te no es cero , pero es muy pequeño; por tanto, una aproximación razonable 
de la ecuación (9.5 2) ( con errores del orden de Tj) sería aquella obtenida 
sustituyendo los valores de Pij y Qijk que se obtendrían con la distribución 
Maxwelliana en todos los términos de la ecuación que estén multiplicados por 
el pequeño parámetro Te : Pij = p óij , [ver ecuación (9.47)] y Qijk = O (la 
función Maxwelliana es par en c y  Qijk es un tensor impar en é), de forma que 

Tomando la traza de esta ecuación , 

De acuerdo con (9.48) ,  p = ½�i, con lo que 

O p {)p 5 {) vk 
{) t + Vk 

{) xk 

+ 3P O Xk 

= O(Te) 

o en notación vectorial , 

1 D p 5 _ - - + -'v . V = O(r. ) 
p D t  3 e 

(9.5 4) 

(9.55)  
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Eliminando v' · v mediante la ecuación de continuidad (9.33), 

! D p _ � ! D p
= O(r ) p D t 3 p D t e ' 

o 

!t ln ( /:13 ) = O(Te) 

Cuando Te -+ O (equilibrio termodinámico instantáneo) ,  se tiene 

D s
= O 

D t ' 

(9.5 6) 

(9.5 7 )  

donde s es la entropía por unidad de masa de un gas monoatómico [comparar 
con la ecuación (8.38) haciendo 1 = 5 /3] : 

s - s0 = � R9 In (�) (; r
/3 

Por tanto, en un flujo isentrópico de un gas monoatómico se tiene 

]!__ = (.!!_) 
5/3 

Po Po 

(9.58) 

(9.5 9) 

Si Te es pequeño, pero diferente de cero, las ecuaciones (9.5 7 )  y (9.5 9) no 
son válidas. Sin embargo, si sustituimos (9.5 4) en (9.53), 

Es decir, 

(9.60) 

Esta expresión está de acuerdo con la ley de Stokes (sección 7.4) si tomamos 
el coeficiente de viscosidad 

µ = P Te , (9.61) 

y si hacemos igual a cero el coeficiente de viscosidad volumétrica µv. Por tanto, 
un gas monoatómico se comporta como un fluido Newtoniano con viscosidad 
volumétrica nula si la frecuencia de colisión molecular Te-l es grande compa­
rada con la frecuencia macroscópica característica del problema. La ecuación 
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(9.61) permite, además, hacer una estimación más precisa del valor de Te. 
Así , por ejemplo, el coeficiente de viscosidad µ para el Argon a 20ºC y 1 atm 
(1,013 x 105 Pa) es 2,217 x 10-5 kg/m s .  Por tanto, Te = µ/p = 2 18 x 10-10 s- 1 , 
que está en consonancia con la estimación más bien basta que se hizo en la 
sección anterior. 

Para ver si un gas monoatómico satisface la Ley de Fourier de conducción 
de calor, obtendremos una ecuación para el tensor de tercer orden Qijk en el 
límite de Te pequeño. Para ello , multipliquemos la ecuación (9.45 ) por m e� S dk 

e integremos sobre el espacio de velocidades. Teniendo en cuenta que e' = 
e - v(x, t ) ,  los diferentes términos de la ecuación serían: 

donde 

/ 
3 , , , fJ f fJ Qijk O Vi O 'Vj O Vk d c m  ci cj ck 8t  = -¡:¡¡- + o t  

Pjk + fJ t 
Pki + 8t pij 

J 3 ' ' ' º (f ) º [Q l º vi 
Q d e m ci cj ck -

f) 
C¡ = -

{) 
ijkV[ + R¡,jkl + -

{) jkl + 
X¡ X¡ X¡ 

O Vj O Vk [
º Vi O Vj O Vk 

] + -Qkil + --Qijl + V¡ -Pjk + -Pki + --Pij ; 
O X¡ O X¡ O X¡ O X¡ O X¡ 

Por tanto, la ecuación sería 

fJ Qijk [º V,¡ O 'Vi 
] [º Vj O 'Vj • 

] -¡:¡¡-
+ o t  

+ v¡
O X¡ 

- !mi Pjk + o t  + v¡
O X¡ 

- }mj pk•i + 

[
& vk & vk 

] 
& v.¡ O Vj + o t  + V¡ 

O X¡ - Ímk P¡j + O X¡ Qjkl + 
O X¡ Qkil + 

O Vk é) [ l Qijk + --Qijl + - Qijk 'Ul + ll¡_jkl = - -- , 
O X¡ O X¡ Te 

(9. 62) 

donde se ha hecho uso de J d3 c e� S dk fo = O. Utilizando la ecuación de con­
tinuidad (9.33), la ecuación de cantidad de movimiento (9.36) queda 

f) iJ  1 = -- + v - V v= - -V· P +f o t  p m ' (9.63) 
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de donde (9.62) se simplifica a la siguiente expresión: 

Cuando Te --+ O, Qijk = O(rc), Pij = p óij + O(rc) y, por tanto, 

donde 

R(o) j d3 , , , , ¡ ijkl = c m ci cj ck C¡ Jo 

(9.64) 

(9.65) 

(9.66) 

Como Rtki es un tensor totalmente simétrico con respecto a todos los subíndi­
ces, necesariamente 

donde 

1 
J 

n k2 T2 
A =  - d3 c m c4 J0 (c) = --- . 

15 m 
Ahora bien , p = n k T y p = m n, con lo que A =  p2/p y 

(o) p2 
Rijkl = - (óijÓk/ + ÓikÓje + Ói/Ójk) 

p 

(9.67) 

(9.68) 

Sustituyendo esta expresión en (9.65) y haciendo uso de la ecuación de estado 
p = R9 p T, se obtiene 

(9.69) 

El flujo de calor q está relacionado con el tensor Qijk mediante (véanse las 
ecuaciones (9.38) y (9.49)) 
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1 3 1 ,2 , 1 qk = d e 2

m e ck f = 2Qiik , (9. 70) 

que, utilizando la ecuación (9.69), queda 

Por tanto, 

if =  -K 'v T  
donde el coeficiente de conductividad térmica es 

(9.71) 

(9.72) 

5 
K = 2 R9 Tc P = µ ep , (9.73) 

y se ha hecho uso de las expresiones (9.61) y (9.17). Es decir, un gas mo­
noatómico satisface la Ley de Fourier de conducción de calor con conductivi­
dad térmica dada por la ecuación (9.73). 

El número de Prandtl se define como 

siendo 

Pr = µ ep = !: 
K a 

(9.7 4) 

(9.75)  

la  difusividad térmica. Por tanto, e l  número adimensional de Prandtl es 
una medida de la importancia relativa de la difusión por transporte molecular 
de cantidad de movimiento en relación a la difusión de energía o calor ( se 
volverá sobre este parámetro adimensional en la lección 1 1 ) .  Para los gases 
monoatómicos, de acuerdo con ( 9.61) y (9.73), se tiene Pr = l. La teoría 
exacta [es decir, si en vez de (8 J /8, t)col = (!0 - J)/Tc se hubiera utilizado la 
expresión exacta del operador de colisión] da un número de Prandtl para un 
gas monoatómico igual a 2/3, que concuerda bastante bien con los resultados 
experimentales. 

Resumiendo, un gas monoatómico satisface las dos relaciones constitutivas 
de Stokes y de Fourier que se postularon en las lecciones precedentes (se ha 
considerado una sola especie química, por lo que la ley de Fick, lógicamente, 
no aparece). De la discusión anterior , las ecuaciones fluidas macroscópicas son 
válidas si 

(a) la menor escala macroscópica de longitud es mucho mayor que la distan­
cia media sobre la cual las moléculas interaccionan, 



CAPÍTULO 9. FUNDAMENTOS MICROSCÓPICOS DE LAS ECUACIONES DE LOS 
FLUIDOS: GAS MONOATÓMICO 127 

(b) la menor escala macroscópica de tiempo es mucho mayor que el tiempo 
requerido para que la distribución de velocidades moleculares adquiera 
la forma de equilibrio termodinámico local f0 , es decir , mucho mayor 
que el tiempo medio entre colisiones. 

La primera condición es , básicamente, la hipótesis de medio contínuo (sec­
ción 2.2), y hace posible que se pueda hablar de magnitudes medias como 
n(x, t), v(x, t), etc. La segunda condición significa que el sistema se aleja muy 
poco del estado de equilibrio termodinámico local , lo cual hace posible que 
sean válidas las leyes constitutivas de Stokes y de Fourier , y que podamos 
utilizar las relaciones termodinámicas de equilibrio (ecuaciones de estado) en 
cada punto del sistema. 

El procedimiento anterior para obtener las relaciones constitutivas se pue­
de hacer de una forma más rigurosa utilizando la expresión exacta de Boltz­
mann para el operador de colisión ( 8 f / 8 t )col [en vez de la forma aproximada 
(!0 - !)/Te utilizada anteriormente] en el límite de Te muy pequeño (Kn « 1). 
Este procedimiento se denomina método de Chapman-Enskog de resolu­
ción de la ecuación cinética (véase , por ejemplo, Chapman y Cowling, 197 0). 
Los resultados obtenidos aquí mediante la aproximación de ( 8 f / 8 t)col son 
cualitativamente correctos, proporcionando las leyes constitutivas de Stokes 
y de Fourier ; pero los valores obtenidos para los coeficientes µ y K no son 
exactos ( en particular no es exacta la relación entre ellos, K = µ Cp), aunque 
se pueden aproximar bastante a los resultados experimentales mediante una 
elección apropiada de Te - En cambio , el método riguroso de Chapman-Enskog 
sí proporciona valores de µ y K que concuerdan asombrosamente bien con los 
resultados experimentales. 

Para finalizar, es conveniente indicar que la hipótesis de equilibrio termo­
dinámico local no es necesaria en la Teoría Cinética de Gases, sino que so­
lamente permite obtener ecuaciones constitutivas y de estado que cierran las 
ecuaciones de conservación. Cuando esta hipótesis no se satisface (gases muy 
enrarecidos o gradientes muy acusados de las magnitudes fluidas) , las ecuacio­
nes macroscópicas de conservación de cantidad de movimiento y energía en la 
forma presentada en las lecciones precedentes no son válidas [las ecuaciones 
de conservación dadas por las expresiones ( 9.36) y (9.39) sí que son válidas, 
pero no conocemos el tensor de presiones ni el vector flujo de calor , por lo 
que no sirven de mucho]. La ecuación cinética (o de Boltzmann) (9.28 )  sigue 
siendo válida aunque no se verifique la hipótesis de equilibrio termodinámico 
local , y permite obtener la función de distribución en estos casos extremos. 
Una vez hallada f(x, é, t) mediante la resolución de la ecuación cinética, se ob­
tier�en las variables macroscópicas (p, v, p, e, 'F, q) a partir de las definiciones 
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dadas en esta lección. El único problema es que la ecuación de Boltzmann es 
una ecuación integrodiferencial, no lineal, que sólo ha sido posible resolver en 
situaciones especialmente simples, o en límites muy particulares. U no de estos 
límites es el contemplado aquí , en el que se verifica la hipótesis de equilibrio 
termodinámico local (es decir, Kn « 1) ; el método de Chapman-Enskog, o la 
basta aproximación hecha en esta sección para un gas monoatómico, propor­
ciona las ecuaciones constitutivas que cierra el problema expresado en variables 
macroscópicas. 
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Capítulo 10 

Algunos comentarios 
generales sobre 
las ecuaciones fluidomecánicas 

10. 1 .  Resumen de las ecuaciones de Navier-Stokes 

Como se ha visto en las lecciones precedentes, las ecuaciones que gobiernan 
el movimiento de un fluido Newtoniano son: 

continuidad Dp tt -- + pv · V = O Dt 
cantidad de movimiento 

energía 

Dv = -p Dt = -v' p + v' • T + p f m , 

7r' = µ[v'v + v'vT] + (µv - }µ)v'. vl ' 

(10.1) 

(10.2) 

(10.3) 

(10.4) 

<I> = 7i' : v'v = � [v'v+ v'i77' - 1 v' ·vl] : [v'v+ v'vT - }v' ·vl] +µv (v' · 1J)2 . (10.5 )  

Este sistema de ecuaciones se suele denominar Ecuaciones de N avier-Stokes 
( tomando el nombre de la ecuación de cantidad de movimiento) y tiene por 
incógnitas la densidad p, las tres componentes de la velocidad v, la presión 
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p, la energía interna e y la temperatura T. Para completarlo se necesitan dos 
ecuaciones de estado; por ejemplo, 

p = p(p, T) e =  e (T, p) , (10.6) 

además de la especificación de los coeficientes de transporte, 

K = K(T, p) ,  (10.7) 

que normalmente sólo dependen de la temperatura. Si el fluido fuese de com­
posición no homogénea con N especies químicas presentes en él, habría que 
completar estas ecuaciones con N - l ecuaciones de conservación de la masa de 
cada especie química (sección 6.3), además de tener en cuenta la dependencia 
de las ecuaciones de estado y de las relaciones constitutivas con la composi­
ción, pero que no consideraremos aquí (véase, por ejemplo, Bird et al., 1960, 
capítulo 18, para un resumen de ellas). 

Como complemento, o algunos casos alternativa, a la ecuación de cantidad 
de movimiento a veces se usa la ecuación ( 7.46) para la vorticidad, mientras 
que la ecuación de la energía interna (10.4) puede ser sustituida por la ecua­
ción de la entropía (8.27), o por la ecuación de la entalpía (8.24), o cualquier 
combinación de ellas. 

10. 1 . 1 .  Fluidos incompresibles con propiedades constantes 

Las ecuaciones anteriores se simplifican notoriamente si el fluido es incom­
presible, como ocurre casi siempre con los líquidos, o en algunos flujos de gases 
a velocidades no demasiado altas y sometidos a variaciones de temperatura po­
co importantes (ver sección siguiente para una especificación más precisa). En 
particular, corno se apuntó en la sección 7.5, las ecuaciones de continuidad 
y cantidad de movimiento quedan desacopladas de la ecuación de la energía 
si el coeficiente de viscosidad se puede considerar constante ( variaciones de 
temperatura no muy importantes). Suponiendo que la conductividad térmica 
es también constante , las ecuaciones quedan: 

De 2 Q p-
D 

= <I> + K'v T + . ,. t 

(10.8) 

(10.9) 

( 10.10) 
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(10.11) 

que se completan con las ecuaciones de estado p = constante ( que es un dato 
del problema al igual que µ y K), y de = e(T)dT. Las dos primeras ecuaciones 
tienen.como únicas incógnitas p y v, siendo v solenoidal en virtud de la ecua­
ción de continuidad. La ecuación de la energía junto con la ecuación de estado 
para e permiten obtener la temperatura T una vez conocido v. Suponiendo 
que el calor específico e es constante, y que no existen aportes volumétricos de 
calor (Qr = O), la ecuación de la energía se puede escribir como 

DT <I> 2 - = - + a'v T Dt pe 
(10. 12) 

donde a = K / pe es la difusividad térmica, que tiene las mismas unidades que 
el coeficiente de difusión D y que la viscosidad cinemática v. De hecho, si la 
velocidad del fluido fuese nula, la ecuación anterior se escribiría 

8T 2 8t = a'v T , (10.13) 

que es idéntica a la ecuación (6.32) para la difusión másica en ausencia de 
reacción química ( que hace las veces de Qr ) y con v = O, sin más que sustituir T por la fracción másica Y y a por D. Incluso si v no fuese nula, las ecuaciones 
de difusión másica y energía serían aproximadamente iguales ( en ausencia de 
reacción química y aportes volumétricos de calor) debido a que el término de 
disipación viscosa ( <l>) es generalmente pequeño comparado con el término de 
conducción en (10.12) (ver lección siguiente). Esta es la base de importantes 
analogías entre el flujo másico y el flujo de calor en muchos flujos solenoidales, 
puesto que D y a suelen tener también valores parecidos. 

10.2. Condiciones para que el campo de velocidades 
sea aproximadamente solenoidal 

Cuando en el movimiento de un fluido la densidad permanece constante, la 
ecuación de conservación de la masa nos dice que el campo de velocidades es 
solenoidal, lo cual, como acabamos de ver, implica importantes simplificaciones 
en las ecuaciones. De aquí la relevancia de conocer con precisión las condiciones 
para que el campo de velocidades de un movimiento fluido pueda considerarse 
como solenoidal. 

Estas condiciones se obtienen comparando los términos ( D p / Dt) / p y 'v · v 
que aparecen en la ecuación de continuidad. Para ello suponemos que el orden 
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de magnitud de las variaciones de iJ, tanto espacial como temporalmente, es V, que puede ser una velocidad característica del problema en cuestión si , como ocurre normalmente, las variaciones en la velocidad son del orden de ella misma. Por otro lado, designamos por L la longitud característica en la cual varían las magnitudes fluidas, entre ellas la velocidad. Así, para que iJ sea aproximadamente solenoidal se debe verificar: 

l ! DP J « l'v · vl ~  v _ p Dt L ( 10. 14) 
Si tomamos la densidad p y la entropía s como las dos variables indepen­dientes que caracterizan el estado termodinámico de cada partícula fluida ( de composición homogenea) , se puede escribir 

Dp = a2 Dp (ªP) Ds Dt Dt + 8s 
P 

Dt ' 
donde la propiedad termodinámica a2 se define como 

ª
2 = (�:) s 

( 10. 15) 

( 10. 16) 
Se verá en la lección 25 que a es la velocidad del sonido, o velocidad de propagación de las pequeñas perturbaciones en un fluido. Para un gas ideal, de (8.39) resulta a = J'yplp = v,If;T. Sustituyendo (10 .15) en ( 10. 14) se tiene la condición de solenoidalidad 

1 1 Dp 1 ( 8p) Ds I V pa2 Dt - pa2 8s P Dt « L • (10. 17) 
Para que esta condición se satisfaga, ambos términos del lado izquierdo deben de ser mucho menores que V/ L, por lo que se considerarán por separado. Si la condición 

1 1 Dp l V pa2 Dt « L ( 10. 18) 
se satisface, tenemos que las variaciones en la densidad producidas por las variaciones de presión en el flujo son despreciables, lo cual es lo que normal­mente se entiende por un movimiento incompresible. Es decir, la condición de solenoidalidad es más general que la de incompresibilidad, aunque normal­mente se confunden por ser esta última, como veremos en lo que sigue, la más importante de las dos condiciones de solenoidalidad expresadas en la ecuación 
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(10.17).1 Para expresar (10.18) en una forma más conveniente, utilizamos la 
ecuación de cantidad de movimiento (10.2): 

1 Dp 1 ap v 
[ 

Dv 1 =' - ] pa2 Dt 
= pa2 at + a2 • - Dt + p 'v • T + f m (10.19) 

En primera aproximación se puede suponer, para la evaluación de la influen­
cia de las variaciones de presión, que el flujo es isentrópico, de forma que se 
puede despreciar término viscoso en (10.19), el cual afecta a la distribución de 
presiones más que a la magnitud de su variación (por otra parte, la influencia 
de las variaciones de entropía las consideraremos después). Así , la condición 
(10.18) se escribe: 

(10.20) 

El primer término tiene en cuenta la no estacionariedad del flujo. Supongamos 
que el flujo es oscilatorio, siendo w la frecuencia característica de las oscilacio­
nes. Si V es la velocidad típica del movimiento asociada a estas oscilaciones, 
las variaciones de la presión en distancias de orden L son del orden de las 
variaciones temporales de la cantidad de movimiento por unidad de volumen 
multiplicadas por L, pVwL. Así, la condición asociada a este primer término 
es pVw2L/pa2 « V/L, es decir, 

w2L2 

-2- « l .  a (10.21) 

En cuanto al segundo término de (10.20), el orden de magnitud de Dv2 / Dt 
puede venir dado por 8v2 / 8t o por v· 'v v2, dependiendo de cual sea mayor. En el 
primer caso tendríamos wLV / a2 « 1, mientras que en el segundo V2 / a2 « l. 
La primera de estas condiciones no es relevante como lo demuestra el siguiente 
razonamiento. Si el movimiento es no estacionario y w es la frecuencia carac­
terística, puede ocurrir que w sea mucho mayor, mucho menor, o del mismo 
orden que V/ L. Si w ~ V/ L tenemos la condición V2 /a2 « 1, que es la corres­
pondiente al término V ·  'vv2. Si w » V/L, la condición resultante es más débil 
que (10.21), mientras que si w « V/ L la condición V2 /a2 es más fuerte. Por 
tanto, la condición wLV/a2 « 1 es redundante si imponemos (10.21) junto 
con 

(10.22) 
1 Salvo en esta sección, siempre que se hable de incompresibilidad se hará en el sentido amplio de solenoidalidad, es decir, 'v · v = O. 



134 MECÁNICA DE FLUIDOS 

que, por otra parte, coincide con (10.21) si w ~ V/ L. Esta condición se suele 
expresar como 

M2 « 1 , (10.23) 

donde 

(10.24) 

es el número de Mach, que relaciona la velocidad del fluido con la del sonido. 
La condición V2 / a2 « 1 se podría haber obtenido de una forma más intuitiva 
si se tiene en cuenta que, para un movimiento isentrópico, las variaciones de 
densidad óp son, de acuerdo con la definición de a2, del orden de a26p. Por 
otra parte, en un movimiento isentrópico en el que las variaciones temporales 
no sean importantes, la ecuación de cantidad de movimiento nos dice que óp ~ 
p V2 , es decir , un cambio en la velocidad del fluido desde O hasta V requiere 
una variación de presión del orden de pV2 . La condición de incompresibilidad óp/ p « 1 daría pues V2 /a2 « l. 

El tercer término de (10.20), que representa las variaciones de presión 
producidas por las fuerzas másicas, suponiendo que éstas sean exclusivamente 
gravitatorias con aceleración g, proporciona la condición 

{ 10.25) 

En conclusión, para que el movimiento de un fluido se pueda considerar 
como incompresible se deben verificar las tres condiciones siguientes: 

w2L2 
--2- « 1 ,  a M2 « 1 y (10.26) 

La primera de ella nos dice, por ejemplo, que los efectos de compresibilidad 
no se pueden despreciar cuando se estudie el flujo originado por ondas so­
noras, ya que una onda sonora de frecuencia w tiene por longitud de onda L = a/w, por lo que w2L2/a2 = 1 (ver lección 25). La segunda condición, 
que es la más importante de las tres desde un punto de vista práctico, nos 
obliga a considerar los efectos de la compresibilidad sien:;ipre que la velocidad 
del fluido se aproxime a la del sonido. Para el aire a 15 ºC y latm se tiene 
que a =  340,6 m/s, mientras que para el agua a 15 °C, a =  1470 m/s, de mo­
do que los movimientos en el seno del aire (por ejemplo los originados por 
un cuerpo en movimiento) a menos de, pongamos, 400 km/h (M2 = 0,106), 
se pueden considerar como incompresibles ( con errores menores del 10 por 
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ciento), mientras que prácticamente todos los movimientos en agua, o cual­
quier otro líquido, se pueden considerar incompresibles. La tercera condición 
nos dice que sólo cuando el movimiento del fluido involucra longitudes carac­
terísticas gigantescamente grandes, del orden de a2 / g, los efectos gravitatorios 
en la compresibilidad son importantes. Tomando g = 9,8m/ s2 , para el aire 
tenemos a2 / g ~ 12km, y para el agua a2 / g ~ 220km, por lo que este efecto 
es importante en la meteorología o dinámica de la atmósfera, pero no en la 
dinámica de los océanos, ya que la profundidad del mar es, como mucho, del 
orden de la decena de kilómetros. Fuera de los problemas terrestres este efecto 
sería importante en el estudio de la dinámica del plasma estelar. 

Pasemos ahora a considerar el efecto de las variaciones de entropía en 
(10 . 17) .  El coeficiente que multiplica a Ds/Dt se puede escribir , teniendo en 
cuenta que la relación entre p, p y s es única , como 

1 (ªp) 1 (ªp) (ªp) 
pa2 8s P 

= - pa2 8p 8 8s P 

_! (8p/8T)p 

p (8s/8T)p 

donde se ha hecho uso de (8.9) y ( 10 . 16) , y se ha definido 

/3 = -! ( ªp ) 
p 8T p 

{3T (10.27) 

( 10.28) 

que es el coeficiente de expansión térmica del fluido (/3 = 1/T para 
los gases ideales, y es muy pequeño para los líquidos; para el agua a 15°C 
(3 = 1 ,5 x 10-4K- 1). Sustituyendo la ecuación (8.27) para Ds/Dt en ( 10. 1 7) ,  
se tiene la siguiente condición (suponiendo que no hay aportes volumétricos 
de calor): 

( 10.29) 

que expresa que las variaciones en la densidad debidas al calentamiento por 
disipación viscosa y a la conducción molecular de calor deben ser pequeñas [si 
el fluido fuese no homogéneo en composición, aparecería un término adicional 
asociado a la difusión másica que se obtendría sin más que . considerar la ecua­
ción (6.30) en vez de la (6.4) que estamos considerando] .  Teniendo en cuenta 
la definición ( 10.5) para <P, tenemos las siguientes dos condiciones: 

{3v V - - « 1 Cp L 
( 10.30) 
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donde o: y II son las difusividades térmicas y de cantidad de movimiento ( o 
viscosidad cinemática), y 0 es el orden de magnitud de las variaciones de 
temperatura (por ejemplo, en el caso de un fluido calentado por una pared 
a temperatura Tp, 0 = Tp - T0 , donde T0 es una temperatura característica 
del fluido lejos de la pared). Estas dos condiciones se satisfacen en la mayoría 
de las condiciones prácticas, dejando sólo de valer cuando la diferencia de 
temperatura o la velocidad son extremadamente altas, y ocurren en longitudes 
muy pequeñas. Por ejemplo, para el aire en condiciones normales (20ºC y 
latm) se tiene {311/cp � 3,8 x 10-1 1 s y {3a � 7 x 10-8m2/sK; para que la 
primera condición no se cumpla, V/ L tiene que ser del orden de 101 1  s, es 
decir , si L es del orden del centímetro, V tiene que ser del orden de 109m/s; 
en cuanto a la segunda condición, si suponemos un caso favorable en que 
V = O,lm/ s y L = 1cm,  para que no se cumpla la diferencia de temperatura 
tendría que ser del orden de 104K, siendo este número mayor cuanto mayor 
es V o L. Por otra parte , para el agua a 20ºC se tiene {311/ep � 3,6 x 10-1 4s y 
{3a � 2, 1 x 10-1 1m2 / sK, por lo que las condiciones para que no se verifiquen 
las desigualdades anteriores deben de ser aún más extremas. 

Se concluye, por tanto, que los efectos disipativos no producen, a efectos 
prácticos, variaciones en la densidad, por lo que la condición de incompresibi­
lidad ( es decir, la constancia de la densidad frente a variaciones en la presión) 
puede ser equiparada a la de solenoidalidad. De las tres condiciones de incom­
presibilidad (10.26), la segunda, M2 = V2 /a2 « 1, es la más importante en 
la práctica. 

Por último hay que decir que en los líquidos ( donde las condiciones ante­
riores se satisfacen practicamente siempre, al menos en flujos estacionarios) ,  
se debe tener en cuenta una circunstancia adicional que es la posibilidad de 
cavitación o formación de burbujas de vapor en el seno del líquido como 
consecuencia de que la presión baje por debajo de la presión de vapor, Pv (T) , 
en algún punto del flujo. Así, la condición de solenoidalidad en flujos estacio­
narios de líquidos es, simplemente, p > Pv en todos los puntos. Se suele definir 
un número de cavitación, 

e Po - Pv a = pV2/2 
( 10.31) 

donde p0 es una pres1on de referencia (generalmente, p0 » Pv, por lo que 
Ca � p0/ ½pV2 ). Este número adimensional es una medida de la posibilidad 
de que el flujo de un líquido cavite , puesto que si un flujo se acelera desde 
v = O hasta v = V, su presión disminuye una cantidad del orden de ½ p V2 

( cantidad que se suele denominar presión dinámica ) , siendo, por tanto, 
mayor la posibilidad de cavitación cuanto menor es Ca. En particular, si Ca 
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es menor que un cierto valor crítico Ca* , que depende del tipo de flujo y del 
líquido en cuestión, el flujo cavita en algún punto, dejando de ser solenoidal el 
campo de velocidades. 

10.3. Condiciones iniciales y de contorno 
Para resolver las ecuaciones (10 . 1 )- ( 10.7) en un problema concreto se ne­

cesitan condiciones iniciales y de contorno. Como condiciones iniciales hay 
que especificar tres magnitudes, por ejemplo, p, v y T, en el instante t = O,  
para todo el  campo fluido; es decir, 

p0 (x) = p(x, O) , v0 (x) = v(x, O) , T0 (x) = T(x, O) ( 10.32) 

En el caso de un fluido incompresible [ecuaciones ( 10.8)- (10. 1 1 )] ,  al ser p = 
constante, hay que especificar p0 (x) = p(x, O) en vez de p0 , y la condición 
inicial para v debe ser solenoidal, 'v · v0 = O. A veces se buscan soluciones 
periódicas de las ecuaciones (lo cual es sólo posible si las condiciones de con­
torno son también periódicas en el tiempo, o estacionarias) , en cuyo caso no 
se imponen condiciones iniciales, sino que se presupone una determinada de­
pendencia temporal (periódica) en la solución. Si lo que se busca es la solución 
estacionaria de las ecuaciones ( compatible sólo con condiciones de contorno 
estacionarias), los términos con derivadas temporales son identicamente nulos 
y sólo son necesarias condiciones de contorno. 

El tipo de condiciones de contorno depende del problema particular 
considerado. En términos generales, se necesitan dos condiciones de contorno 
para la velocidad ( debido a que el término 'v · °f contiene derivadas segundas 
de la velocidad) ,  dos condiciones de contorno para la temperatura [término 
de segundo orden 'v · ( K'vT)] , y una condición de contorno más que puede 
especificarse en términos de la presión o de la densidad ( evidentemente, en 
flujos incompresibles la condición de contorno no puede ser en terminas de 
la densidad) .  En el caso de que hubiera varias especies químicas habría que 
considerar, además, dos condiciones de contorno para las fracciones másicas de 
todas las especies presentes ( salvo una) ya que el término de difusión másica 
en (6.30) es de segundo orden en � (en lo que sigue supondremos que el fluido 
es de composición homogénea).  

Para concretar un poco más las condici(?nes de contorno se considerará un 
ejemplo típico: el flujo alrededor de un cuerpo sólido definido por la superficie 
S(x) = O, que suponemos fijo en el sistema de referencia considerado. Este 
problema quedará definido con las siguientes condiciones de contorno: 
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v= O en S(x) = O , (10.33) 

v = v= (x, t) en lxl - oo , (10.34) 

p = P= (x, t) en lxl - oo ,  (10.35) 

T = Tp(x, t) en S(x) = O , (10.36) 

T = Tr:,o(x, t) en JxJ - oo . (10.37) 

Es decir, sobre la superficie del cuerpo la velocidad y la temperatura del flui­
do son iguales a la velocidad y temperatura de la superficie sólida ( i1 = O 
y T = Tp, respectivamente; si la velocidad del cuerpo en relación a nuestro 
sistema de referencia fuese vp (x, t ) ,  la condición de contorno sería v = iíp (x, t) 
sobre S(x, t) = O, que incluye la posibilidad de que los distintos puntos de 
la superficie del cuerpo se muevan con velocidades diferentes y varíen con el 
tiempo). Esta igualdad se debe a que la hipótesis de equilibrio termodinámico 
local (Kn « 1) exige que las partículas fluidas en contacto con la superficie 
deben de estar en equilibrio termodinámico con ella. Si K n no fuese pequeño, 
podrían existir diferencias entre v y T en S ( x) = O y los correspondientes 
valores de la superficie sólida, pero que no consideraremos aquí. 2 Las otras 
dos condiciones de contorno son los valores de v, p y T lejos del cuerpo. Estas 
últimas condiciones pueden sustituirse por otras equivalentes como, por ejem­
plo, P= en vez de P=, o cualquier otra combinación entre P=, P= y T =, ya 
que dadas dos de ellas, la ecuación de estado nos proporciona la tercera. 

A veces, la condición de contorno (10.36) es sustituida por 

K'vT(x, t) • ñ = Qp (x, t) en S(x) = O , (10.38) 

donde ñ es el vector unitario normal a S, equivalente a especificar el flujo 
de calor a través de la superficie [una combinación entre (10.36) en parte de 
la superficie y (10.38) en el resto es también posible]. En el supuesto que la 

2La condición de contorno para la velocidad sobre una superficie sólida fue objeto de 
polémica durante gran parte del siglo XIX, después de que se establecieran las ecuaciones de 
Navier-Stokes y se empezaran a resolver problemas concretos, los cuales exigían una nueva 
condición de contorno en relación a las ecuaciones de Euler (lección 19) que fueron estable­
cidas mucho antes. Esta polémica se zanjó con la introducción por Stokes de la condición 
de contorno de adherencia a la superficie, v = Vp . En cuanto a las condiciones de contorno 
con deslizamiento o diferencia de velocidad (y temperatura) entre el fluido y la superficie, 
las cuales son necesarias cuando la hipótesis de equilibrio termodinámico local no se cum­
ple, ver, por ejemplo, T.I. Gornbosi, 1994, Gaskinetic theory (Cambridge University Press, 
Cambridge) , capítulo X. 
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condición de contorno sea de la forma (10.38) ,  el equilibrio termodinámico 
local implícito en (10.38) (ley de Fourier) y en las ecuaciones asegurarían que 
la temperatura del fluido sobre la superficie fuese igual a la temperatura del 
sólido, pero esta sería desconocida en principio.3 

Otras condiciones de contorno que aparecen en muchos problemas y que no 
están contempladas en el ejemplo anterior son las que aparecen cuando existe 
una superficie libre que separa dos fluidos inmiscibles , como por ejemplo un gas 
y un líquido. En estas situaciones hay que tener en cuenta la tensión superficial 
de la interfaz , que se considerará en la lección 13. Prescindiendo de ella por el 
momento ( es decir, suponiendo que la tensión superficial es despreciable) , las 
condiciones de contorno asociadas a la superficie libre son las siguientes. (a) En 
primer lugar , la interfaz es, en la mayoría de los problemas reales, desconocida 
a priori, por lo que las condiciones de contorno se especifican en una superficie 
S(x, t) = O desconocida, pero que debe verificar la ecuación 

DS(x, t) 
= 0 Dt (10.39) 

es decir, la interfaz es una superficie fluida. (b) Igualdad de las velocidades y 
de los esfuerzos normales y tangenciales a ambos lados de la interfaz , 

v1 = v2 , ñ-r1 ·ñ = ñ-r2 -ñ,  T1 •ñ- (ñ-r1 ·ñ)ñ = r2 ·n-(ñ-r2 -ñ)ñ en S(x, t) = O , 
(10.40) 

donde los subíndices 1 y 2 hacen referencia a los dos fluidos inmiscibles. ( c) 
Igualdad de las temperaturas y flujos de calor a ambos lados de la interfaz , 

(10.41) 

Si la tensión superficial no fuese nula , la única condición de contorno que cam­
biaría sería la igualdad de esfuerzos (normales y tangenciales) en la superficie , 
que debería tener en cuenta los esfuerzos adicionales asociados a la tensión 
superficial (ver lección 13). 

3De una forma más rigurosa, habría que resolver las ecuaciones del fluido y la ecuación 
térmica correspondiente al sólido conjuntamente, imponiendo las dos condiciones de contorno 
de igualdad de temperaturas e igualdad de flujos de calor en S. Las condiciones ( 10.36) o 
( 10.38) son simplificaciones que se hacen en muchos problemas debido a que, o bien la 
temperatura del sólido es conocida (impuesta externamente) ,  o bien se quiere imponer un 
cierto flujo de calor. Por otra parte, estas condiciones de contorno no tienen en cuenta el 
posible aporte (o eliminación) de calor debido a la radiación sobre (o emitida por) la interfaz 
fluido-sólido (véase, por ejemplo, Bird et al. ,  1960, capítulo 14) . 
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10.4. Existencia, unicidad y estabilidad de las solu-
c1ones 

El problema matemático de establecer la existencia y la unicidad del pro­
blema constituido por las ecuaciones (10.1 )-( 10. 7 )  y las correspondientes con­
diciones iniciales y de contorno es muy complejo debido, sobre todo, a la no 
linealidad de las ecuaciones ( términos convectivos de las ecuaciones). Pocos 
resultados generales han sido posible establecer en este sentido, casi todos 
ellos referidos a flujos incompresibles ( el alumno interesado en estos ternas 
matemáticos formales de las ecuaciones de Navier- Stokes puede consultar, por 
ejemplo, el libro de R. Térnan, Navier-Stokes Equations, Elsevier, Arnsterdam, 
1984). 

Prueba de la complejidad de las ecuaciones de Navier-Stokes es el escaso 
número de soluciones exactas que se conocen, que no llegan al centenar, casi 
todas ellas correspondientes a flujos incompresibles y a movimientos en los 
cuales los términos convectivos (no lineales) de las ecuaciones son identica­
mente nulos ( algunas de ellas se considerarán en las lecciones siguientes; un 
repertorio más amplio de estas soluciones exactas puede verse, por ejemplo, 
en Schlichting y Gersten, 2000, capítulo V, en Rosenhead, 1988, capítulo I I I, 
y en Landau y Lifshitz, 198 7, capítulo I I). 

Un problema que presentan las soluciones de las ecuaciones de Navier­
Stokes asociado a la no linealidad es el de la estabilidad. Dadas unas determi­

nadas condiciones de contorno estacionarias, cabría pensar que, independien­
temente de las condiciones iniciales, pasado un cierto tiempo se llegaría a un 
flujo estacionario correspondiente a la solución estacionaria de las ecuaciones 
y condiciones de contorno. Pero esto no siempre es así. En la practica se en­
cuentra que cuando los parámetros que gobiernan el problema están dentro de 
ciertos rangos, no se llega nunca a una solución estacionaria. Matemáticamen­
te lo que sucede es que la solución estacionaria en esos rangos paramétricos es 
inestable, es decir, cualquier perturbación de la solución, por pequeña que sea, 
crece indefinidamente en el tiempo. Corno en todo flujo real siempre existen 
pequeñas perturbaciones, aunque la solución estacionaria del problema existe 
y está bien definida, al ser inestable no se da en la práctica. En otras pala­
bras, para que una solución tenga significación real no basta que satisfaga las 
ecuaciones del movimiento y cumpla las condiciones iniciales y de contorno, es 
preciso, además, que dicha solución sea estable, para que las pequeñas pertur­
baciones que puedan producirse en las diversas magnitudes del movimiento, 
las cuales existen siempre en la realidad por multitud de causas, tiendan a 
amortiguarse al avanzar el tiempo. Las inestabilidades conducen casi siempre 
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a movimientos que se denominan turbulentos , a los cuales está dedicada la 
última parte del curso. 

Algunos ejemplos de inestabilidades hidrodinámicas se verán en el capítulo 
30. A continuación se comentará muy brevemente un ejemplo significativo 
para fijar algunas ideas esenciales. El ejemplo consiste en el flujo de un fluido 
incompresible (por ejemplo agua) en un conducto de sección circular. Este 
problema fue considerado por Reynolds en 1883 en su trabajo pionero sobre la 
inestabilidad y la turbulencia ( el nombre de Reynolds aparecerá varias veces 
a lo largo de este curso ligado a un parámetro adimensional, cierto conjunto 
de ecuaciones y algunas analogías). Para un conducto infinito alineado según 
el eje x y de diámetro D, veremos en la lección 15 que el campo de velocidad, 
solución estacionaria de la ecuación de Navier -Stokes para este problema, se 
puede escribir como 

(10.42) 

donde r es la coordenada radial y V es la velocidad media (igual al caudal Q 
que circula por el conducto dividido por la sección, V =  4Q/1rD2). Es decir, el 
movimiento es unidireccional ( con sólo una componente del vector velocidad 
según el eje x) , siendo el perfil de la velocidad un paraboloide: la velocidad es 
máxima en el centro e igual a dos veces la velocidad media, y nula en la pared 
del conducto r = D /2. Reynolds observó experimentalmente que esta solución 
laminar se presenta en la práctica siempre que el parámetro adimensional 

Re = 
VpD

' µ 
(10.43) 

llamado número de Reynolds en su honor, es menor que un cierto va­
lor crítico (alrededor de 2300). Para valores mayores que el crítico, Reynolds 
observó (inyectando tinta en el flujo) que el movimiento dejaba de ser unidi­
reccional para volverse tridimensional y caótico (turbulento) ,  y ello a pesar 
de que la solución anterior es válida independientemente del valor del número 
de Reynolds. Esto se debe a que el flujo se hace inestable por encima de un 
valor crítico Re*, de manera que si Re > Re*, cualquier perturbación presente 
en el flujo se amplifica exponencialmente hasta invalidar la solución estacio­
naria (10.42). Esto no quiere decir necesariamente que para Re > Re* no 
se encuentren soluciones laminares en la práctica, pero son altamente impro­
bables, ya que siempre existen perturbaciones originadas, por ejemplo, en la 
entrada del conducto. Si uno es extremadamente cuidadoso en el diseño de la 
entrada del conducto, se puede retrasar la aparición del flujo turbulento, pero 
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la inestabilidad está presente por encima de Re* , y más tarde o más tempra­
no el flujo se hará turbulento si el conducto es suficientemente largo. Por el 
contrario, si Re < Re* , el flujo es siempre estable (laminar),  ya que todas las 
perturbaciones que se puedan producir son amortiguadas. 

Existen muchos tipos diferentes de inestabilidades hidrodinámicas, algunos 
de los más representativos serán discutidos en la lección 30. El ejemplo ante­
rior es un caso típico de inestabilidad relacionada con la viscosidad del fluido, 
cuya aparición está caracterizada por un número de Reynolds crítico. Otras 
inestabilidades están asociadas a fuerzas centrífugas, gravitatorias, magnéti­
cas, etc., y su aparición viene caracterizada por números adimensionales que 
cuantifican esas fuerzas. 

Como se apuntó anteriormente, la inestabilidad de las soluciones de las 
ecuaciones de Navier -Stokes y la consecuente formación de movimientos caóti­
cos e irregulares, en una palabra, turbulentos, es una consecuencia del carac­
ter no lineal de las ecuaciones, es decir, de los términos convectivos v · "vv 
y v · "vT. Las soluciones turbulentas que aparecen cuando dejan de ser esta­
bles las laminares son, por supuesto, también soluciones de las ecuaciones de 
Navier- Stokes, pero su carácter caótico e impredecible las hacen poco útiles en 
la prática. Por ello, cuando se estudian los flujos turbulentos desde un punto de 
vista ingenieril, se recurre a un tratamiento estadístico de las soluciones, que 
se complementa con informaciones empíricas (Parte IX). Podría pensarse que 
estas soluciones caóticas son el resultado de la complejidad del problema, es 
decir, del enorme número de grados de libertad presentes en un flujo real, que 
hace imposible obtener una información cuantitativa precisa del movimiento, 
recurriendose por ello al tratamiento estadístico. Esta era una creencia que 
se tenía hasta hace relativamente poco tiempo, basada en que casi todos los 
comportamientos caóticos aparecían en sistemas con muchos grados de liber­
tad ( un gas o un líquido está constituido por muchísimas moléculas y por ello 
se recurre a teorías que de una manera u otra introducen hipótesis estadísti­
cas, como la Teoría Cinética de Gases esbozada en la lección 9, o la Teoría de 
Medios Contínuos que estamos utilizando para describir a los fluidos). Pero se 
sabe que sistemas mecánicos simples, con la condición de que sean no lineales y 
tengan tres o más grados de libertad, pueden tener comportamientos caóticos e 
impredecibles en algunos rangos paramétricos. Un ejemplo típico es el péndulo 
esférico forzado que, con sólo tres grados de libertad, tiene soluciones caóticas 
para ciertos valores del parámetro forzador. En definitiva, sistemas no lineales 
simples no necesariamente poseen comportamientos dinámicos simples. 
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Ante la enorme complejidad de obtener soluciones exactas de las ecuaciones 
de Navier-Stokes, a la hora de obtener resultados prácticos se han seguido 
varias alternativas, que se resumen a continuación. 

10.5 . 1 .  Métodos experimentales 

Una de las técnicas más comunmente usadas para resolver problemas flui­
domecánicos ha sido, y sigue siendo, la experimentación guiada por el análisis 
dimensional y la semejanza física, que ha proporcionado resultados muy fructí­
feros. Ejemplo pionero en este campo fue el experimento de Reynolds descrito 
anteriormente: Reynolds obtuvo el parámetro adimensional ( 10.43) ,  que carac­
teriza la transición de flujo laminar a turbulento en un conducto, mediante un 
análisis puramente dimensional del problema. La lección siguiente se dedica a 
este tema tan importante del análisis dimensional y la semejanza física, que 
no es exclusivo, ni mucho menos, de la Mecánica de Fluidos. 

Las técnicas experimentales en la Mecánica de Fluidos han experimentado 
una extraordinaria expansión en los últimos aüos. Por ejemplo, a los métodos 
clásicos de medición de la velocidad mediante medidas de la presión (tubos de 
Pitot y similares) y por anemometría de hilo caliente, se han sumado métodos 
ópticos, no intrusivos, como la anemometría Láser-Doppler, o la anemometría 
Fase-Doppler que, aparte de no interferir en el flujo, permite obtener mucha 
más información sobre el campo de velocidades y otras magnitudes fluidas. 
También se han introducido nuevas técnicas de visualización de flujos, muy 
útiles para obtener una información cualitativa del movimiento, y que en mu­
chos casos es imprescindible previamente a la experimentación cuantitativa, 
o a la búsqueda de soluciones matemáticas del problema. Con la llegada de 
ordenadores potentes, han sido posible técnicas de visualización cuantitativas 
de flujos mediante el seguimiento con una cámara de partículas dispersas en 
el fluido y el tratamiento digital de las imágenes sucesivas (técnica llamada 
PIV, del inglés Particle Image Velocimetry) . Esta técnica permite tener ins­
tantáneamente el campo de velocidad de un flujo. Con el uso del ordenador 
también es posible aprovechar ahora datos que hubieran sido inservibles hace 
algunos aüos, y realizar tratamientos estadísticos que no eran posible hace 
poco tiempo. Además, se pueden formar bancos de datos de resultados expe­
rimentales y, por tanto, su utilización sin la necesidad de realizar uno mismo 
los experimentos. 

A pesar de la importancia que los métodos experimentales han tenido y 



144 MECÁNICA DE FLUIDOS 
siguen teniendo en la Mecánica de Fluidos, por razones de tiempo es difícil 
incluirlos en un curso introductorio a esta ciencia sin menoscabo de temas 
más básicos y fundamentales. Por ésta y otras razones, no se tratarán los 
métodos experimentales en este curso. El alumno interesado puede consultar, 
por ejemplo, los siguientes textos básicos: R.J. Goldstein (editor), Fluid Me­chanics Measurements, Hemisphere, 1983; Y. Nakayama (editor), Visualized Flows, Pergamon, 1988 ; L. Rosenhead (editor), citado en la lección 8 ,  capítulo 
X; F. Durst y otros, Principie and Practice of Laser-Doppler Anemometry, 
Academic, 1981; W. Merzkirch, Flow visualization, Academic, 198 7 ;  F.T.M. 
Nieuwstadt (ed.), Flow visualization and image analysis, Kluwer, 1993. 

10.5 .2 .  Modelos simplificados 

Otro de los métodos más empleados en la resolución de problemas fluido­
mecánicos ha sido la utilización de modelos simplificados, tanto de las pro­
piedades del fluido como del tipo de movimiento. Son pocos los campos de la 
física en donde el empleo de modelos simplificados ha sido tan fecundo como 
en la Mecánica de Fluidos. Uno de los modelos más espectaculares ha sido el de 
suponer el campo de velocidades solenoidal (o fluido incompresible) , 
considerado en detalle en la sección 10.2. Como se recordará, esta aproxima­
ción se cumple practicamente siempre en los flujos de líquidos, y en bastantes 
flujos de gases caracterizados por la pequeñez de ciertos parámetros adimen­
sionales, entre los cuales el más importante es el número de Mach. Esta es una 
constante de los modelos simplificados: su validez está caracterizada porque 
ciertos parámetros adimensionales que gobiernan el problema son muy gran­
des, o muy pequeños, por lo que se pueden despreciar ciertos términos de las 
ecuaciones, simplificándolas. De aquí la importancia de analizar dimensional­
mente las ecuaciones previamente a la resolución de cualquier problema ( ver 
lección siguiente). 

Otro modelo simplificado muy importante en la Mecánica de Fluidos es el 
modelo de fluido ideal, consistente en suponer nulos los efectos disipativos 
(básicamente, suponer que la viscosidad y la conductividad térmica son nu­
las) en las ecuaciones del movimiento. A este modelo se dedica la parte VI de 
la asignatura. La relevancia histórica de esta hipótesis queda patente no sólo 
en el hecho de que las ecuaciones del movimiento para el fluido ideal fueran 
establecidas por Euler casi un siglo antes de la formulación de las ecuaciones 
de Navier -Stokes, sino, también, en la gran fecundidad de ideas que ha origi­
nado, especialmente con la Teoría de Capa Límite a principios de este siglo . 
La hipótesis de fluido ideal se aplica en muchos problemas debido a que una 
fracción importante de los fluidos que se presentan en la naturaleza, así co-
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mo muchos de interés tecnológico, entre los que se incluyen el aire y el agua, 
tienen viscosidades y conductividades térmicas muy pequeñas, con lo que los 
efectos disipativos son despreciables, salvo en problemas muy especiales o en 
regiones muy limitadas del flujo (ondas de choque, capas límites, estelas, etc.); 
lo cual no quiere decir que estas regiones donde los efectos disipativos son im­
portantes sean irrelevantes, ya que muchas veces condicionan la totalidad del 
movimiento. El empleo del modelo de fluido ideal introduce una simplificación 
fundamental en las ecuaciones de Navier-Stokes: desaparecen los términos que 
contienen las derivadas de mayor orden (''v · '3F y v7 • q'J. Por tanto, no se puede 
imponer, entre otras, la condición física esencial del fluido viscoso de no desliza­
miento en una superficie sólida. Esto hace que la solución de un problema con 
el modelo ideal sea esencialmente distinta que la solución del mismo problema 
con fluido viscoso, al menos en la inmediata proximidad del contorno, incluso 
cuando se hace tender a cero el coeficiente de viscosidad en la solución visco­sa, cuyo límite cabría esperar que proporcionase la solución correspondiente 
al fluido ideal. Esta dificultad, que produjo una gran controversia y algunas 
paradojas a finales del siglo X IX y principios del XX, la solventó Prandtl con 
la introdución del concepto de capa límite en 1904. Matemáticamente, esta 
solución corresponde a lo que más tarde se ha denominado un problema de 
perturbaciones singulares, consistente en acoplar dos soluciones asintóticas, 
una correspondiente al fluido ideal exterior lejos de la superficie sólida, y otra 
al fluido viscoso confinado en una capa delgada alrededor de la superficie sólida 
( en donde se simplifican las ecuaciones debido a la delgadez ) . De esta forma, 
un problema que originalmente era muy complicado de resolver, se reduce a la 
resolución de dos problemas simplificados y acoplar las soluciones ( un ejemplo 
concreto de la utilización de esta técnica se considerarán en la lección 14). Este 
concepto de capa límite viscosa fue extendido subsiguientemente a los análogos 
de capa límite térmica y capa límite de difusión másica, constituyendo una de 
las ramas más importantes de la Mecánica de Fluidos, la Teoría de Capa 
Límite, a la cual se dedica la parte V I I I  de estos apuntes. 

Estrictamente, la hipótesis de fluido ideal está caracterizada, como vere­
mos en la lección siguiente, por el límite en el cual el número de Reynolds 
[ecuación (10.43)] y el producto del número de Reynolds por el número de 
Prandtl [ecuación (9.74)] son ambos muy grandes (en el caso de que existan 
varias especies químicas, tiene que ser también grande el producto del núme­
ro de Reynolds por los correspondientes números de Schmidt, este último se 
definirá en la lección siguiente) .  Como en muchos fluidos de interés el número 
de Prandtl (y el de Schmidt) son de orden unidad (ver lección siguiente), es 
practica habitual identificar el modelo de fluido ideal con la hipótesis de núme-
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ro de Reynolds muy grande. El límite opuesto, consistente en suponer que el 
número de Reynolds es muy pequeño, caracteriza a los flujos en los que los 
efectos disipativos son dominantes en las ecuaciones. Estos flujos constituyen 
también un capítulo importante de la Mecánica de F luidos, siendo algunas de 
las aplicaciones más relevantes la lubricación fluidomecánica , ciertos flujos en 
conductos y la sedimentación de partículas sólidas pequeñas. Estos flujos en 
los que los efectos disipativos son dominantes (número de Reynolds pequeño) 
se estudiarán en la parte IV. La razón de considerar los flujos con viscosidad 
dominante previamente a los flujos ideales, contrariamente a como histórica­
mente han sido introducidos, se debe, principalmente, a que en el límite de 
viscosidad dominante las ecuaciones son lineales al desaparecer los términos 
convectivos, con lo que su resolución es mucho más simple. 

10.5.3.  Métodos numéricos 

Por último, otro de los métodos de ataque ele las ecuaciones de Navier­
Stokes es la integración numérica directa, que en la actualidad está en plena ex­

pansión debido al desarrollo espectacular de las calculadoras electrónicas. Para 
la resolución de las ecuaciones de Navier-Stokes se utilizan métodos numéricos 
muy diversos, algunos de ellos desarrollados específicamente para resolver pro­
blemas fluidomecánicos. Entre ellos están los métodos de diferencias finitas, de 
elementos finitos, de elementos de contorno, el método de las características, 
los métodos espectrales, etc. La mayor dificultad con los métodos puramente 
numéricos es el de la estabilidad dinámica de las ecuaciones, que da lugar a 
fenómenos de turbulencia , la cual viene a sumarse a la dificultad intrínseca de 
las ecuaciones. A pesar de ello, la capacidad y rapidez de los ordenadores ha 
crecido tanto en los últimos tiempos que ya es posible resolver numéricamente 
las ecuaciones de Navier-Stokes en situaciones no triviales. En particular, es 
ya posible resolver sin dificultad cualquier problema fluido bidimensional no 
estacionario y muchos problemas tridimensionales, salvo problemas que invo­
lucran escalas muy pequeñas como la de la turbulencia, o problemas con zonas 
muy delgadas a altos números de Reynolds. De todas formas, se están reali­
zando avances muy importantes en estas áreas en los últimos tiempos, tanto 
en técnicas computacionales como en capacidad de los ordenadores, y no es 
improbable que muchos de los problemas que actualmente son inaccesibles 
puedan ser resueltos en un futuro inmediato. 

Uno de los aspectos más importantes de la introducción del ordenador en 
la resolución de problemas fluidomecánicos (como ocurre también en otras ra­
mas de la física) ha sido la aparición de la experimentación numérica, con 
dos consecuencias muy importantes. En primer lugar, una vez que se consi-
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gue simular un flujo, es posible medir todo sobre él, incluyendo magnitudes 
básicas, como la vorticidad, muy difíciles de medir por experimentación física. 
Estas magnitudes forman parte intrínseca de la simulación numérica y están 
disponibles sin esfuerzo adicional a la vez que otras magnitudes de las que sí 
se podría obtener información experimental. Por otra parte, es posible reali­
zar experimentos numéricos en situaciones esencialmente imposibles para los 
experimentos físicos. Por supuesto, hay muchos flujos cuya complicación ex­
cede todavía la capacidad de los ordenadores más potentes, y en algunos de 
ellos el experimento físico sigue siendo aun imprescindible para esclarecer el 
problema. 

Como ocurría con los métodos experimentales, a pesar de que los métodos 
numéricos constituyen cada vez más una de las herramientas más útiles para 
resolver problemas fluidomecánicos, es difícil incluirlos en un apretado progra­
ma de un curso introductorio a la Mecánica de Fluidos, en el que debe tener 
cabida aspectos más básicos de esta ciencia . Por ello estos métodos se suelen 
dejar para un curso más avanzado de Mecánica de Fluidos Computacional. 
De todas formas, unos pocos aspectos numéricos básicos serán introducidos 
en algunas de las lecciones que siguen. Información básica y avanzada pue­
de obtenerse, por ejemplo, en los siguientes textos: R. Peyret y T.D. Taylor, Computational Methods for Fluid Flow, Springer , 1983; C. Canuto, Spectral Methods in Fluid Dynamics, Springer , 1988 ; M.B. Abbot y D. Basco, Com­putational Fluid Mechanics, Wiley, 1989; J.F. Wendt (ed.) , Computational Fluid Dynamics, Springer, 1992; P.J. Roache, Computational Fluid Dynamics, 
Hermosa, 1998 ;  J.D. Anderson, Computational Fluid Dynamics, McGraw-Hill, 
1995 ; R. Peyret (ed.), Handbook of Computational Fluid Dynamics, Academic, 
1999. También, en los apuntes de la asignatura Mecánica de Fluidos Compu­tacional, de la E. T. S. I . Industriales de Málaga, por J. Ortega Casanova y R. 
Fernández Feria, 2000. 
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Capítulo 1 1  

Análisis dimensional y 

semejanza física 

11 . 1 .  Introducción 
El análisis dimensional es importante por dos motivos principales. Por un 

lado permite conocer el mínimo número de variables que gobierna un determi­
nado problema, reduciendo las variables físicas originales a un conjunto menor 
de parámetros adimensionales. De esta forma racionaliza la experimentación, 
ya que establece cuáles son los parámetros realmente relevantes en un determi­
nado proceso. Por ejemplo, en el experimento de Reynolds que se describió en 
la sección 10.4, aunque la transición de flujo laminar a turbulento viene en 
principio gobernada por las propiedades del líquido, p y µ, por el diámetro del 
conducto, D, y por el caudal ( o velocidad media U),  el análisis dimensional 
nos dice que el proceso no está gobernado por cada una de estas variables por 
separado, sino por una combinación adimensional de ellas, pDU / µ ( el número 
de Reynolds), y que es, por tanto, el parámertro que debemos controlar expe­
rimentalmente. Esta minimización de las variables también permite establecer 
de una forma precisa cuáles son las condiciones que se deben cumplir para que 
exista semejanza física entre dos problemas: no hay más que exigir que las va­
riables adimensionales sean iguales. En el ejemplo anterior, para que dos flujos 
sean físicamente semejantes no hace falta que sean iguales todos los paráme­
tros físicos, p, µ, D y U (lo cual exigiría que los flujos fuesen idénticos), sino 
que es suficiente con que el número de Reynolds sea el mismo. El otro motivo 
por el cual el análisis dimensional es importante es que permite conocer con 
precisión cuando una determinada variable es relevante o no en un problema, 
ya que las nuevas variables son puros números adimensionales; basta averiguar 
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si alguno de esos números es siempre muy pequeño, o muy grande, o aproxi­
madamente constante, para que esa variable no influya, prácticamente, en el 
proceso. 

El análisis dimensional está basado simplemente en que las leyes físicas, 
que relacionan magnitudes cuyos valores dependen del sistema de unidades 
utilizado, son independientes de las dimensiones usadas. Si estas leyes son co­
nocidas explícitamente, como ocurre con las ecuaciones de N avier- Stokes en 
la Mecánica de Fluidos, una forma de aplicar el análisis dimensional consis­
te en adimensionalizar las ecuaciones, es decir, en escribirlas en términos de 
variables sin dimensiones, lo cual proporciona el conjunto de parámetros adi­
mensionales que gobierna el proceso, cuyo número es siempre menor que el de 
los parámetros dimensionales originales. Pero el análisis dimensional se puede 
aplicar incluso si no se conocen las leyes explícitamente (por ejemplo, cuando 
lo que queremos es, precisamente, hallar esas leyes experimentalmente), si se 
conocen las magnitudes físicas que pueden influir en el proceso considerado. 
Antes de pasar a formular la teoría general del análisis dimensional basada 
en el Teorema II de Buckingham (sección 11.4) ,  vamos a adimensionalizar las 
ecuaciones de Navier- Stokes para conocer cuáles son los parámetros adimen­
sionales más importantes que aparecen en la Mecánica de Fluidos, algunos de 
los cuales ya han sido introducidos en las lecciones anteriores. 

1 1 .2 .  Parámetros adimensionales de la Mecánica de 
Fluidos 

Para adimensionalizar las ecuaciones de Navier-Stokes (10.1)-(10.5) defini­
mos las siguientes variables: 

t* = t/to, x* = x/ Lo , ir = v/Vo , p* = P/Po, p* = p/ Po, µ* = µ/µo , 

µ� = µv/µo, f:n = f'm/9o , T* = T/To, K* = K/Ko , C� = Cv/Cvo • 
(11.1) 

Las variables con asterisco son adimensionales y las magnitudes con subíndi­
ce cero son valores característicos, o típicos, de las respectivas magnitudes en 
el problema que estemos considerando, de forma que las variables adimen­
sionales son de orden unidad (para las fuerzas másicas suponemos que éstas 
son sólo gravitatorias, y 90 es la aceleración de la gravedad a nivel del mar). 
Introduciendo estas nuevas variables en las ecuaciones (10.1)-( 10.5) ,  se obtiene 

Po 8p* + PoVº
v'* . ( *ir) = O t0 8t* L0 

p (11.2) 
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, (11.3) 

PoCvoTo * 8e* Po VoCvoTo *-. n* * ---p - + ----p V • V e 
t0 fJt* L0 

= _p0V0p*'v* .  ,¡r + µ0V0
2 

<I>* + K0T0 'v* .  (K*'v*T*) 
Lo L� L� 

(ll.4) 

donde 'v* es el operador nabla en la variable x* y se ha supuesto, por simplici­
dad, que no hay aportes volumétricos de calor. Para que todos los términos que 
aparecen en las ecuaciones sean adimensionales, hay que dividirlas por algu­
no de los factores dimensionales que multiplican a las variables con asterisco. 
Para que aparezcan los parámetros adimensionales que normalmente se utili­
zan, dividimos por los factores que multiplican al segundo término (término 
convectivo) de cada una de las ecuaciones, resultando: 

(11.5 ) 

Lo . 8v* 
+ .-. . n•-. - - �n* * + µº n* _ =1* + 

Lo9o *f* (11.6) V, t p !lt* p V V V - v2 V p V, L V T v2 p m ' o o U Po O Po o o 0 

= Po p*'v* · v* + µºVº <I>* + 
Ka 'v* · (K*'v*T*) .  (11.7 )  

PoCvoTo PoCvoToLo PoCvo VaLo 
Los parámetros adimensionales que aparecen en cada término da una idea de 
la importancia de ese término en relación a los términos convectivos, que están 
multiplicados por la unidad. A continuación se enumeran dichos parámetros 
adimensionales y se comenta su significado físico. 

Número de Strouhal, 

(11.8)  

que aparece multiplicando a los términos que en cada ecuación representa las 
variaciones temporales. Este número es el cociente entre el tiempo de residen­
cia, L0/V0 , y el tiempo característico t0 , siendo una medida de la importancia 
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de la variación local frente a la variación por el movimiento del fluido. Si St « 1, los términos de variación local son despreciables frente a los términos 
convectivos, y el movimiento se denomina casi estacionario. Físicamente, si St « 1, el fluido recorre, con velocidad característica V0 , la longitud carac­
terística del problema L0 en un tiempo (L0/V0) mucho menor que el tiempo 
característico t0 de variación de las magnitudes fluidas con el tiempo, por lo 
que el fluido no se entera de la variación temporal y el flujo se puede conside­
rar estacionario .  Por el contrario, si St » 1, la variación temporal es mucho más importante (más rápida) que la asociada al movimiento del fluido, y se 
pueden despreciar los términos convectivos de las ecuaciones. Número de Euler, 

Po Eu = --2 PoVo 
( 11 . 9) 

que representa la importancia relativa de las fuerzas de presión frente a la con­
vección de cantidad de movimiento o fuerzas de inercia. Este número está re­
lacionado con dos que ya hemos definido con anterioridad, dependiendo que 
el fluido sea un gas (ideal) o un líquido (incompresible). En el caso en que el 
fluido sea un gas ideal, se tiene 

Eu = � = .!_ ª� = -1
- (11.10) 

p0V} , V} ,M2 

donde a0 es la velocidad del sonido del gas, , es la relación de calores específicos 
y M es el número de Mach o cociente entre la velocidad del gas y la velocidad 
del sonido (ver sección 10.2), todo ello en las condiciones Po , p0 . Así, para un 
gas ideal, el número de Euler está relacionado con el inverso del cuadrado 
del número de Mach y, por tanto, nos da una idea de la compresibilidad del 
gas en el flujo considerado. Si Eu » 1, al ser I siempre de orden unidad, 
M2 « 1 y, como se discutió en la sección 10.2, el flujo se puede considerar 
como incompresible o solenoidal. 

Para un líquido ideal (p = constante) ,  el número de Euler está relacionado 
con el número de cavitación Ca, definido también en la sección 10.2, pue:,to 
que si p0 » Pv , Eu '.:::'. Ca/2. Por tanto, está relacionado con la posibilidad de 
cavitación del líquido: cuanto más pequeño sea Eu, mayor es la posibilidad 
de cavitación, ya que la depresión dinámica originada por el movimiento, del 
orden de p0 V0

2 , es mayor para una p0 dada. Así, pues, el número de Euler 
está relacionado, tanto para gases como para líquidos, con la compresibilidad 
del fluido (recuerdese que, en la mayoría de las situaciones, la única posibilidad 
para que un líquido pueda ser compresible es que cavite ; véase sección 10.2). Número de Reynolds, 
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Re = PoVoLo = VoLo . ( l l . l l ) µo 1/o 
Es una medida de la importancia relativa de las fuerzas de inercia frente a 
las fuerzas viscosas. Si Re « l, el término convectivo puede despreciarse 
frente al viscoso en la ecuación de cantidad de movimiento, y al contrario, 
si Re » l, el término viscoso es despreciable frente al de inercia , teniéndose 
lo que se denomina un flujo ideal ( en el límite formal Re --+ oo). El número 
de Reynolds es el parámetro adimensional más importante de la Mecánica de 
Fluidos por dos razones fundamentales: porque la división de los movimientos 
fluidos en flujos a altos y bajos números de Reynolds, es decir , movimientos 
ideales y movimientos con viscosidad dominante, ha sido históricamente la 
división fundamental de la Mecánica de Fluidos, y es la que utilizaremos en lo 
que sigue (véase sección 10.5 .2) ; por otra parte, en ausencia de otras fuerzas 
que no sean las de viscosidad, el número de Reynolds es el parámetro que 
caracteriza la formación de inestabilidades y la transición a la turbulencia , 
cuando su valor es mayor que un cierto valor crítico que depende del tipo de 
flujo. 

Número de Froude, 

v2 Fr = -º- , (11.12) 
9oLo 

que mide la importancia relativa de las fuerzas de inercia frente a las gravitato­
rias. Si Fr » l, las fuerzas gravitatorias pueden despreciarse en el movimiento 
del fluido y, por el contrario, si Fr « l, son dominantes frente a la convección 
de cantidad de movimiento. 

El parámetro Poi p0ev0T0 representa la relación entre el trabajo de compre­
sión y la convección de energía interna teniendo sentido, por tanto, únicamente 
en fluidos compresibles. Para un gas ideal se puede escribir : 

Po = 
Rg = ,  - l (11.13) 

PoCvoTo Cvo 
por lo que es una propiedad del gas y no del tipo de movimiento. 

El parámetro µ0 V0I p0ev0T0L0 es una medida de la importancia de la energía 
disipada por viscosidad frente a la convección de energía interna. Para los 
líquidos este parámetro suele ser muy pequeño, por lo que la disipación vis­
cosa es generalmente despreciable. Por ejemplo, para el agua a T0 = 20°C 
(v0 '.:::'. 10-6m2 Is, Cvo '.:::'. 4,18 X 103 J lkgK) se tiene µº Vol PoC,10ToLo '.::::'. 8 X 
10-13s-1 x V0I L0 , por lo que sólo cuando las velocidades son extremadamente 
altas o cuando las magnitudes fluidas varían en longitudes pequeñísimas, la 
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disipación viscosa cuenta en los movimientos de agua. Para ciertos líquidos 
como los aceites o la glicerina, que tienen una viscosidad mucho mayor que 
la del agua ( el aceite de oliva tiene una viscosidad del orden de 100 veces la 
del agua, mientras que la viscosidad de la glicerina a temperatura ambiente 
es unas 2000 veces mayor que la del agua), las condiciones para que la disipa­
ción viscosa cuente no son tan extremas. Para los gases ideales, el parámetro 
µ0 V0/ p0ev0T0L0 es idéntico al parámetro (10.30a) si uno cambia Cv por Cp y 
está, por tanto, también relacionado con la influencia de la disipación viscosa 
en la compresibilidad del fluido. Haciendo uso de la ecuación de estado del gas 
ideal y de las definiciones anteriores se puede escribir 

¡1,ºVº _ 
( l)

M2 

--- - "( "( - -
PoCvoToLo Re 

que suele ser muy pequeño ( ver más adelante). 
El número de Peclet, 

(11.14) 

(11.15) 

representa la relación entre la convección de energía interna y el calor transpor­
tado por conducción. En la práctica se suele sustituir Cv por Cp en la definición 
del número de Peclet, teniendose 

(11.16) 

donde 

(11.17) 

es el número de Prandtl, ya introducido anteriormente (sección 9.7) .  El 
número de Prandtl es una propiedad del fluido que representa la importancia 
relativa que en ese fluido tienen dos fenómenos de transporte molecular : la 
difusión viscosa o de cantidad de movimiento y la difusión de calor o energía. 
Para los gases ya vimos en la sección 9. 7 que el número de Prandtl es de orden 
unidad (en particular , vale exactamente 2/3 para los gases monoatómicos), lo 
cual es debido a que en los gases ambos transportes se realizan por colisiones 
moleculares, que son practicamente igual de efectivas para intercambiar can­
tidad de movimiento y energía entre las moléculas. Por tanto, el número de 
Peclet para los gases es del mismo orden que el número de Reynolds, y si las 
fuerzas viscosas son despreciables en la ecuación de cantidad de movimiento 
(Re » 1) , también lo es la conducción de calor en la ecuación de la energía (y 
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viceversa, si las fuerzas viscosas son dominantes, también lo es la conducción de calor). Así, la condición Re » 1 implica viscosidad y conducción de calor despreciables en el movimiento, lo que normalmente se entiende por un fluido ideal. En los líquidos el número de Prandtl tiene un rango de variación muy am­plio. Líquidos comunes como el agua, el alcohol etílico, etc., tienen un número de Prandtl de orden unidad, 1 por lo que se puede aplicar lo dicho anteriormen­te para los gases. Líquidos como los aceites son más efectivos transportando cantidad de movimiento que calor, es decir, tienen un número de Prandtl al­to (Pr '.:::'. 1 17 para el aceite de oliva a 1 5ºC), de forma que si el número de Reynolds es alto, el número de Peclet lo es mucho más, y la condición Re » 1 sigue caracterizando a los flujos ideales. Por el contrario, si Re « 1, pero no excesivamente pequeño, puede ocurrir que las fuerzas viscosas sean dominan­tes en la ecuación de cantidad de movimiento sin que lo sea la conducción de calor en la ecuación de la energía. Lo opuesto a esta situación ocurre en los metales líquidos, caracterizados por un número de Prandtl muy pequeño al ser mucho más efectiva la conducción de calor que el transporte molecular de cantidad de movimiento. En estos líquidos, la condición Re » 1 generalmente no implica que la conducción de calor sea despreciable. Si el fluido no tiene composición homogenea, además de las ecuaciones ( 1 1.5 )-( 1 1.7) hay que tener en cuenta las ecuaciones de conservación de la masa para las distintas especies. Adimensionalizando la ecuación ( 6.3 1 )  de forma análoga a como se ha hecho anteriormente, se llega a ( téngase en cuenta que la fracción másica es ya adimensional) :  

L0 * 8"Y¡ + *,..... . 'v*½ = Dio 'v *  . ( * D*'v*½) Voto p ot* p V t V0L0 
p t t ( 1 1 . 18) 

donde Dio es una difusividad másica característica de la especie i, y no se ha tenido en cuenta, por simplicidad, el término de reacción química.2 El único parámetro adimensional nuevo es Di0/V0L0 , que representa la relación entre la difusión molecular de masa de la especie i y la convección de masa de la especie i. El inverso de este número es el equivalente al número de Peclet para el transporte de masa: 
1 En realidad son más bien del orden de la decena; así, a 20°C, Pr '.:::'. 7 para el agua y 

Pr '.:::'. 15 para el etanol. 
2Las reacciones químicas introduce tiempos característicos de reacción que enriquece mu­

cho el problema en cuanto a parámetros adimensionales nuevos, pero que no se tratarán aquí. 
El alumno interesado puede consultar, por ejemplo, R. Aris, 1975, The Mathematical Theory o/ Diffusion and Reaction in Permeable Catalysts (Clarendon Press, Oxford) .  Volumen I, 
capítulo 2. 



156 

VoLo = ReS c.¡ 
Dio 

MECÁNICA DE FLUIDOS 
( 1 1 . 19) 

donde Se.¡ es el número de Schmidt para la especie i ,  

llo Se.¡ = - ( 1 1 .20) 
Dio 

que es el análogo al número de Prandtl en el transporte de masa, representando 
la importancia relativa del transporte molecular de cantidad de movimiento 
frente al transporte molecular de masa de la especie i. Lo dicho anteriormente 
para el número de Prandtl se aplica, en gran medida, al número de Schmidt . 
Así, para los gases, Se = 0(1 ) ,  por las mismas razones que Pr = 0(1 ) ,  
con lo que Re » l implica también que la  difusión másica es despreciable 
frente a la convectiva ( otro fenómeno disipativo más cuya ausencia caracteriza 
al fluido ideal) , y al contrario, Re « 1 implica que la difusión másica es 
dominante frente al transporte convectivo de masa. Para los líquidos el número 
de Schmidt es siempre mucho mayor que la unidad, es decir, en los líquidos 
la difusión másica es siempre mucho más lenta que la difusión de cantidad de 
movimiento, por lo que la difusión másica puede ser despreciable incluso en 
situaciones en que Re « l . 

En relación a los fenómenos de transporte, a veces también se utiliza el 
denominado número de Lewis, que relaciona la difusión másica y la difusión 
de calor, 

( 1 1 .21)  

Este número es de orden unidad para los gases y mucho menor que la unidad 
para los líquidos. 

Además de los números adimensionales definidos hasta ahora, que son los 
más comunes, en algunos problemas aparecen otros asociados a fenómenos 
físicos que no se han incluido en la descripción anterior como, por ejemplo, la 
tensión superficial, fuerzas originadas por un sistema de referencia no inercial, 
fuerzas másicas aparte de las gravitatorias, fuerzas de flotabilidad asociada a 
diferencias de temperaturas, etc. Algunos de estos nuevos parámetros adimen­
sionales se introducirán en lecciones posteriores. 

Para finalizar esta sección sobre los parámetros adimensionales más comu­
nes, vamos a escribir una importante relación, debida a von Kármán, entre 
el número de Knudsen, que como se recordará (sección 8 . 1 )  relaciona el 
camino libre medio ,X con la longitud característica L0 , siendo una medida de 
la aproximación al equilibrio termodinámico local, y el número de Reynolds y 
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el número de Mach. De las ecuaciones (8.2) ,  (8.4) , (9.20) , (9.61 )  y ( 1 1 . 1 1 )  se 
tiene 

_ >. CTTc ¡;;-;;-;;:;- µo fii"::. M 
Kn = - ~ -- ~ y 3R

9
T0 -- = v 3'Y-Lo Lo p0L0 Re ( 1 1 .22) 

Esta relación, que estrictamente es válida para un gas inonoatómico, pero que 
en orden de magnitud es válida para todo gas ideal, nos dice que la aproxi­
mación de equilibrio termodinámico local para el flujo de un gas se verifica 
si 

M Re « l .  ( 1 1 .23) 

Si el flujo es no estacionario se debe verificar, además, que Knt = Te/to « 1 ,  
lo cual implica StM2 / Re « 1 .  Como en los movimientos más comunes de 
gases un aumento del número de Mach (e.g. , de la velocidad del gas para una 
temperatura dada) va normalmente acompañado de un aumento aún mayor 
del número de Reynolds, las relaciones anteriores se suelen verificar para la 
mayoría de los movimientos de gases. 3 Esta es la razón por la cual se co­
mentó anteriormente que el parámetro ( 1 1 . 14) ,  que mide la realación entre la 
energía disipada por viscosidad y la convección de energía interna en los flujos 
de gases ideales, suele ser muy pequeño (si no lo fuese estaría en juego algo 
más que el simple hecho de que la disipación viscosa cuente, ya que la hipótesis 
de equilibrio termodinámico local se vendría abajo, y con ella la validez de las 
ecuaciones que estamos considerando) .  Sólo en movimientos en condiciones 
muy extremas, como, por ejemplo, en el interior de las ondas de choque de 
intensidad fuerte (ver lección 22), M/ Re no es pequeño (por supuesto, dentro 
de las ondas de choque la disipación viscosa es importante) .  

1 1 .3.  Semejanza física 

Para que dos problemas fluidomecánicos sean físicamente semejantes no es 
necesario que sean idénticos, sino que es suficiente con que todos los paráme­
tros adimensionales que aparecen en las ecuaciones de N avier-Stokes que los 
gobiernan, así como los que aparecen en las condiciones de contorno, sean igua­
les. Esto es debido a que, si se cumple esa igualdad, la solución adimensional 
del problema es la misma en ambos. La solución física para cada problema se 

3Por ejemplo, en un flujo de aire a 15°0 (v0 = 1 ,45 x 10-5m2 
/ s, ªº = 340,6m/ s) con 

L0 = 1cm y Vo = lOm/ s, se tiene M � 0,03, Re � 6900, M / Re � 4,4 x 10-6 ; y con 
Vo = lOOOm/s, M � 2,93, Re � 6,9 x 106 , M/Re � 4,2 x 10-1

. 
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obtiene sin más que deshacer los cambios de variables utilizando las magnitu­
des características de cada problema. 

Una de las consecuencias prácticas más importantes de la semejanza física 
es que permite hacer experimentación con modelos de una forma rigurosa, ex­
trapolándose sin ambigüedad los resultados al problema real. Así, por ejemplo, 
para estudiar las corrientes que crearían una nueva instalación portuaria, no 
haría falta hacer la instalación real y comprobar después, sino que se puede 
hacer un modelo a escala (la igualdad de las condiciones de contorno adimen­
sionales exige la semejanza geométrica entre el modelo y el problema real) 
y experimentar sobre él teniendo en cuenta que los parámetros adimensionales 
sean los mismos (no haría falta utilizar el mismo fluido, agua salada, sino so­
lamente exigir que los números de Re, Fr, etc., fuesen los mismos; es más, la 
igualdad de estos números exige casi siempre que el fluido en el modelo tenga 
propiedades físicas distintas que en la realidad). 

Uno de los problemas que se suele encontrar al aplicar la semejanza física 
a la experimentación con modelos es que, en la mayoría de los casos, no es 
posible exigir que todos los parámetros adimensionales sean iguales. Pero el 
análisis dimensional también nos da información sobre qué parámetros adi­
mensionales son los más relevantes en el problema considerado, por los que 
podemos descartar algunos de ellos y hacer una semejanza física parcial, 
es decir, exigir que sólo algunos parámetros adimensionales (los más relevan­
tes en el problema dado) sean iguales en el modelo y en el problema real. El 
análisis dimensional también nos da información sobre el orden de magnitud 
de los errores cometidos con esta aproximación, puesto que sabemos los va­
lores típicos de los parámetros adimensionales descartados ( estos parámetros 
pueden no tenerse en cuenta porque, o bien son muy pequeños, con lo que el 
error cometido sería del orden de ellos mismos; o bien son muy grandes, siendo 
el error del orden del inverso de su valor, o, finalmente, son aproximadamente 
constantes, con lo que el error es del orden de las fluctuaciones alrededor de 
esas constantes). 

1 1 .4. Teorema l1 de Buckingham 
La reducción de las variables físicas de las cuales depende un determinado 

proceso físico mediante el uso de variables adimensionales se puede demostrar 
de una forma general, independientemente de las relaciones o leyes que gobier­
nan el proceso, basandose en la homogeneidad o invariancia de dichas leyes en 
relación al sistema dimensional de unidades utilizado. En otras palabras, to­
dos los términos de una determinada ley física deben de ser dimensionalmente 
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homogeneos, hecho que se ha utilizado para adimensionalizar las ecuaciones de Navier-Stokes en la sección 1 1 .2 .  El siguiente teorema, tradicionalmente denominado Teorema II, se debe a Buckingham ( 1914) . Considérese un problema físico gobernado por n + 1 variables físicas, a0 , a1 , . . .  , an , y que satisfacen una cierta relación: 

( 1 1 .24) 
la cual puede ser conocida teóricamente, o desconocida en principio, pero que se quiere determinar mediante una serie de experimentos. El valor numéri­co de cada cantidad física (dimensional) ai depende del sistema de unidades de medida que se utilice. Supongamos que existen k :S n + 1 dimensiones independientes, es decir, de las n + l variables ai hay k que son dimensional­
mente independientes. Por ejemplo, en un problema puramente mecánico hay tres dimensiones independientes, que pueden ser una masa, una longitud y un tiempo, o cualquier combinación entre ellas; si el problema es termodinámico, hay que añadir una más, por ejemplo una temperatura, etc. El Teorema II establece que el número de variables de que depende el problema puede re­ducirse a n + 1 - k si se utilizan variables adimensionales convenientemente elegidas. En efecto. Supongamos que las variables dimensionalmente independientes son a1 , a2 , . . .  , ªk· Esto quiere decir que las dimensiones de las restantes variables se pueden expresar como producto de las dimensiones de a1 , a2 , . . .  , ak (las cuales se designan por [a1 ] ,  [a2J ,  . . .  , [ak] )  elevadas a ciertas potencias: 

[ao] = [ai ]bo, 1 [a2]bo,2 . . .  [ak] bo,k 

[ak+1 l  = [a1 ]bk+1 , 1 [a2]bk+1 ,2 • . .  [aktk+1 ,k 

donde los bi,j son números racionales. Si definimos las variables adimensionales 
,,,. = a /(abo,1 bo,2 . . .  abo ,k ) " º  - o 1 ª2 k , 

= / (ab", 1 b.,, ,2 . . .  abn,k ) 1f n - an 1 ª2 k ' la relación física ( 11 .24) puede escribirse como 
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1ro = 
bo bo b a , 1 a ,2 . . .  a o,k 

es decir, 

1 2 k 

MECÁNICA DE FLUIDOS 

( 1 1 .25) 
(11.26) 

Como la ecuación tiene que ser dimensionalmente homogenea, no puede de­
pender de a1, a2, ... , ak , 

(11.27) 

con lo que queda demostrado el teorema. 
Si la relación ( 11.24) se quiere obtener experimentalmente, está claro que 

la minimización del número de variables es esencial, pues reduce considera­
blemente el número de experimentos a realizar. En el caso muy particular en 
que n = k, sólo queda un parámetro adimensional, por ejemplo 1r0 , que se 
determina ¡con un único experimento! Por otra parte, como se comentó en la 
sección anterior, el uso de parámetros adimensionales permite establecer de 
una forma rigurosa las condiciones mínimas que se deben verificar para que 
exista semejanza física, total o parcial, entre dos problemas físicos y, así, el 
uso experimental de modelos. 

1 1 .5 .  Ejemplos 

11 .5 .1 .  Alcance de un proyectil puntual 

Supongamos que queremos averiguar experimentalmente cual es el alcance 
X de un proyectil de masa m, supuesto puntual (es decir, despreciarnos la 
resistencia del aire, que se considera en el ejemplo siguiente). El proyectil es 
lanzado con una velocidad V y un ángulo de inclinación a. Está claro que X 
es una función de a, V, m y la aceleración de la gravedad g: 

X =  X (a, m, V, g) ( 1 1 .28) 
Como es un problema mecánico, el número de variables se puede reducir a 
5 - 3 = 2. Para ello tomamos como variables dimensionalmente independientes 
m, V y g, cuyas dimensiones son: 

[m] = [M] [V] = [Ll [tJ - 1 [g] = [Ll [tJ -2 (11.29) 
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donde [M], [L] y [t] representan las dimensiones de masa, longitud y tiempo, 
respectivamente. Al ser el ángulo a adimensional, la única variable que debe­
mos adimensionalizar es X. Para ello buscamos una combinación apropiada 
de m, V y g: 

[X] = [L] = [m].B [Vp [g]º (11.30) 

Claramente, (3 = O, 1 = 2 y 8 = -1, por lo que el parámetro adimensional 
asociado a X es: 

Xg 
'TC'x = v2 

(11.31) 

El teorema II nos dice que 

'TC'x = f(a) , (11.32) 

es decir, 

v2 X =  -f(a) 
g 

(11.33) 

donde f es una función ( desconocida a priori) de a. Así, el problema se re­
duce a hacer una sola serie de experimentos variando únicamente a, sin tener 
siquiera que variar V, m, ni, por supuesto g, ya que la dependencia con estas 
variables es conocida ( en particular, X no depende de la masa). 

Por supuesto, la función f(a) en este problema tan sencillo se puede co­
nocer sin hacer ningún experimento, puesto que las ecuaciones que describen 
el fenómeno son muy sencillas: 

t = O x = z = O 

d2z 
m d 2 = -mg 

t 
(11.34) 

dx/dt = V cos o: dz/dt = V sin o: , (11.35)  

cuya solución es x = V cos at, z = -gt2 /2 + V sin at; es decir, el proyectil 
describe la parábola z = x[tan o: - 2gx / (V2 cos2 a)], que proporciona 

v2 X =  - sin 2o: 
g 

(11.36) 

o f (a) = sin 2a. Pero si no conociésemos este resultado, el análisis dimensional 
nos ha proporcionado la variable, en este caso única , sobre la que tenemos que 
dirigir nuestros esfuerzos experimentales. 
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1 1 .5.2.  Alcance de un proyectil teniendo en cuenta la resisten­

cia aerodinámica 

S i quisiéramos obtener el alcance X teóricamente, habría que resolver las 
ecuaciones siguientes: 

t = 0 icm = 0 , dxcm/dt = (V cos a, 0, V sin a) , 

( 1 1 .3 7) 

( 1 1 . 3 8) 

( 1 1. 3 9) 

donde Xcm es la posición del centro de masa del proyectil y Fr es la fuerza 
de resistencia que ejerce el aire sobre el proyectil . Para hallar esta fuerza hay 
que resolver las ecuaciones de Navier-Stokes que describen el movimiento del 
aire alrededor del proyectil. Suponiendo que el flujo del aire es practicamente 
incompresible (M2 « 1 y T ::::::  constante) , se tiene 

v = O sobre 

v' · v = 0  

av _ .,- ., .,2 - _ 
p Ot 

+ pV • V V = - V p + µ V V + pg 

S(x) = O , p - Pa y v = -dxcm/dt para 

( 1 1 .40) 

( 1 1.41 )  

lxl - oo , 
( 1 1 .42) 

donde S(x) = O es el contorno del proyectil, situado en el origen de coordenadas 
y caracterizado, por ejemplo, por dos parámetros, longitud L y grosor c. Lejos 
del proyectil ( lxl - oo) ,  la velocidad del aire es, respecto a unos ejes que 
se mueven con el centro de masa del proyectil, -dxcm/ dt, y la presión es la 
atmosférica, Pa · Una vez que se han obtenido v(x, t) y p(x, t) alrededor del 
proyectil , la fuerza de resistencia se calcula mediante 

Fr = r (pñ - � . ñ)ds = r [ (p - Pa )ñ - � . ñ]ds 
Ís(x)=O Ís(x)=o 

( 1 1 .4 3 ) 

Evidentemente, este problema es muy complejo, al menos así planteado de 
forma general. El análisis dimensional nos permite obtener el número mínimo 
de parámetros adimensionales que lo gobierna, simplificando la experimen­
tación. Por otra parte, este análisis nos permitirá establecer con precisión 
qué condiciones se deben verificar para que los resultados del ejemplo anterior 
sean aproximadamente válidos , es decir, para que la resistencia del aire no 
cuente. 
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Para proceder de una forma más pedagógica ( aunque no más simple), vamos 
a suponer primero que estuviésemos interesados solamente en calcular la fuerza 
de resistencia Fr . De las ecuaciones (11.40)-(11.43), esta fuerza depende de las 
siguientes magnitudes: 

Fr = Fr (P, µ, g, L, U, t, e, (3) , (11.44) 

donde el valor de dxcm/ dt se ha sustituido por dos parámetros, su módulo U 
y el ángulo {3 que forma con el eje del proyectil . La dependencia de la fuerza 
de resistencia con el tiempo proviene de que tanto U como {3 dependen del 
tiempo ( con condiciones iniciales U ( t = O) = -V y {3 ( t = O) = a). La presión 
atmosférica Pa no aparece puesto que es una presión uniforme que lógicamente 
no afecta a Fr [si uno hace el cambio p' = p - pª en (11.40)-(11.43), desaparece 
el parámetro Pa del problema]. 

Si aplicamos el Teorema Il a la expresión anterior, los parámetros adi­
mensionales que aparecen ( aparte de los que provienen de las condiciones de 
contorno) deben de estar relacionados con algunos de los definidos en la sección 
11.2, ya que éstos provenían de adimensionalizar las ecuaciones del movimien­
to. En particular, si elegimos p, U y L como magnitudes dimensionalmente 
independientes, se tiene 

es decir, 

-
2 2 -Fr = pU L f(Re, Fr, St, e/ L, (3) 

(11.45) 

(11. 46) 

Esta dependencia se puede simplificar bastante más en la mayoría de las si­
tuaciones. Para empezar, el número de Strouhal suele ser muy pequeño , ya 
que el tiempo que tarda el aire en pasar por el proyectil, U/ L, suele ser mucho 
menor que el tiempo característico de variación de las condiciones de contorno 
[U(t) y {J(t)], que es del orden del tiempo de vuelo del proyectil, tF ; es decir St = (L/U)/tF « l. Por ejemplo, supongamos que la velocidad típica del 
proyectil es lOOm/ s y su longitud 10cm; el tiempo de residencia sería del or­
den de 10-3s, que, evidentemente es mucho menor que el tiempo de vuelo del 
proyectil, y el problema se puede considerar casi estacionario. Por otro lado, 
el número de Froude, Fr = U2 / gL, suele ser muy grande: con los valores an­
teriores para U y L resulta Fr = 104. Esto quiere decir que la gravedad tiene 
muy poca influencia en el movimiento del aire alrededor del proyectil, lo cual 
es lógico debido a su pequeño tamaño [por supuesto, la gravedad si influye en 
el movimiento del proyectil, pero no a través de Fr, sino actuando sobre la 
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masa del proyectil según la ecuación (11.37)] ; para que las fuerzas gravitato­
rias fuesen importantes en el movimiento del aire alrededor del proyectil, el 
tamaño de éste debería ser del orden de L ~ U2 / g ( ~ 1000m si U = lO0m/ s) . 
Por último, en cuanto al número de Reynolds, su valor suele ser muy alto: 
tomando 11 '.::: 10-5 ( aire a temperatura ambiente), Re = U L / 11 '.::: 106 . Por 
tanto, en este problema, 

(11.47) 

puesto que al ser St, Fr y Re o bien muy grandes, o bien muy pequeños, su 
influencia en el problema es despreciable [en otras palabras, desarrollamos la 
función f en potencias de Re- 1 « 1, Fr-1 « 1 y St « 1, y nos quedamos con 
el orden más bajo]. La fuerza de resistencia es pues, en estas condiciones, cua­
drática con la velocidad, siendo la constante de proporcionalidad pL2 multipli­
cado por una cierta función que sólo depende de las características geométricas 
del problema, que se puede determinar experimentalmente. Obsérvese que la 
dependencia temporal ha desaparecido de forma explicita, aunque aparece a 
través de U(t) y /3(t) (por ello se denomina casi estacionario; en las ecua­
ciones desaparece el término av / at, pero el tiempo sigue apareciendo en las 
condiciones de contorno). 

Abordemos ahora el problema del alcance del proyectil X. Una vez simpli­
ficada la expresión para F'r , este problema se puede resolver analíticamente sin 
más que sustituir la expresión (11.47) (determinando previamente la función 
f para una forma de proyectil dada mediante una serie de experimentos) en 
(11.37)-(11.39). Sin embargo, continuando con nuestro análisis dimensional , X depende de las siguientes magnitudes físicas: 

X =  X(m, V, g, a, p, µ, L, c) (11.48) 

El tiempo no aparece explicitamente porque, aunque F'r dependa del tiem­
po, X es una longitud que proviene de la integración de ( 11.37) imponiendo la 
condición z = O, la cual se verifica en un tiempo tF que depende de las mismas 
variables que X.  Por la misma razón no aparecen U(t) ni {3(t) [-U(O) = V 
y /3(0) = a sí que influyen en X]. Al aplicar el Teorema II a (11. 48), en 
buena lógica deberían aparecer los parámetros que teníamos en el ejemplo an­
terior más los que aparecieron al adimensionalizar la fuerza de resistencia. Sin 
embargo, la elección de p, U y L como variables dimensionalmente indepen­
dientes, aunque es apropiada para adimensionalizar Fr , ya que éstas son las 
magnitudes que caracterizan el movimiento del aire alrededor del proyectil , no 
es muy afortunada para adimensionalizar (11.48) puesto que los parámetros 
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adimensionales resultantes serían o muy pequeños o muy grandes (por ejem­
plo, X/ L es muy grande), y no serían relevantes en el movimiento global del 
proyectil. Por ello utilizamos m, g y V como magnitudes dimensionalmente in­
dependientes, como se hizo en el ejemplo anterior, elección que nos permitirá, 
además, averiguar más fácilmente las condiciones para que la aproximación de 
resistencia nula hecha en el ejemplo anterior sea válida. Aplicando el Teorema 
II se tiene: 

Xg 
( 

pV6 µV3 Lg cg
) y2 = f o:' mg3 ' mg2 ' v2 ' v2 ( 1 1 .49) 

Claramente, Lg /V2 y cg /V2 son siempre muy pequeños, puesto que X ~ V2 / g 
y X » L, X » c. Por otro lado, pV6 /mg3 , cuyo inverso nos da una idea de 
la influencia de la gravedad en la fuerza de resistencia, es siempre muy grande 
(por las razones que se discutieron anteriormente): si el proyectil pesa lkg y 
se mueve en aire con V = lO0m/ s, pV6 /mg3 = 109, que es gigantescamente 
grande. Por tanto, la expersión anterior queda 

X '.::::'.  -f o:, --
v2 

( 
µV3

) 
9 mg2 (11.50) 

donde sólo aparece un parámetro adicional en relación a (11.33), µV3 /mg3 , 
que mide la influencia de la viscosidad en la resistencia del aire sobre el pro­
yectil. Por tanto, para que la resistencia aerodinámica sea despreciable y el 
resultado del ejemplo anterior sea (aproximadamente) válido se debe cumplir 
que µV3 /mg2 « l .  Para los valores numéricos dados anteriormente (junto con 
µ '.::::'. 10-5kg/ms) ,  se tiene µV3 /mg2 '.::::'. 0,1, que no es excesivamente pequeño 
[con estos valores numéricos los errores de (11.33) son pues alrededor del diez 
por ciento; si hubiésemos tomado m = 0,1kg, los errores serían del cien por 
cien] . 

Resumiendo, de este par de ejemplos podemos sacar las conclusiones si­
guientes : (a) El análisis dimensional permite reducir de una manera eficiente 
el número de magnitudes físicas de las que depende un problema físico [com­
pare las ecuaciones (11.48) y (11.50), donde se ha reducido de 9 variables de 
las que dependía X a sólo dos de las que realmente depende Xg/V2] . Esta 
reducción es particularmente importante a la hora de realizar experimentos. 
(b) El análisis dimensional permite conocer con rigor cuándo una determina­
da magnitud física no tiene influencia apreciable en un problema, y estimar el 
orden de magnitud del error que se comete al despreciar la influencia de esa 
magnitud. (c) Aunque la aplicación del Teorema II, o la adimensionalización 
directa de las ecuaciones, sigue un procedimiento estándar, la buena elección 
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de las magnitudes con las cuales se adimensionaliza (magnitudes dimensio­nalmente independientes) es fundamental para obtener resultados óptimos, y aquí es importante algún conocimiento físico previo del problema por parte de quien lo resuelve. 
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Parte IV 

FLUIDOSTATICA 





Capítulo 12  

Fl uidostática 

12 .1 .  Ecuaciones generales 

Las soluciones más sencillas, en principio, de las ecuaciones de Navier­
Stokes (10. 1)- (10.7) son aquellas correspondientes a un fluido en reposo (iJ = 

O), o soluciones fluidostáticas. Si en algún sistema de referencia (inercial o no) 
iJ = O, esas ecuaciones se reducen a: 

{)p = o 
é)t 

-'\lp + PÍm = O, 

8e ( ) p ot = '\1 • K'\lT + Qr , 

e = e (T, p) , p = p(p, T) , K = K(T) . 

( 12 . 1 )  
( 12.2) 
( 12.3) 
( 12.4) 

La ecuación de continuidad nos dice que, si el fluido está en reposo, la densidad 
sólo puede ser función de la posición. La ecuación de cantidad de movimiento 
es un balance entre las fuerzas de presión y las fuerzas másicas. Estas últi­
mas son, en ausencia de campos eléctricos o magnéticos, suma de las fuerzas 
gravitatorias y de las fuerzas de inercia debidas al movimiento del sistema de 
referencia en el caso de que éste no sea inercial [ecuación ( 7 .3)] : 

f
- _ _ dfi _ ñ 

(
"' _

) = g - a  - - 1\ X - H I\  H Á X  m º dt , ( 12.5) 
donde las fuerzas de Coriolis no aparecen debido a que iJ = O. La ecuación 
de la energía es un balance entre la conducción de calor, la variación local 
de la energía interna y el calor por radiación, siendo similar a la ecuación de 
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la energía interna para un sólido. Si Cv y K fuesen constantes y Qr = O, esta ecuación sería la ecuación del calor ( 10.13). Por último las condiciones iniciales y de contorno deben ser compatibles con v = O. 
12.2 .  Condiciones de equilibrio 

La ecuación ( 12.2) establece que las fuerzas másicas por unidad de volu­men, pi:, derivan de un potencial, siendo éste igual a -p. Por tanto, no toda fuerza másica es compatible con un fluido en reposo. La condición que deben verificar estas fuerzas se obtienen sin más que tomar el rotacional de ( 12.2): 
( 12.6) 

Multiplicando escalarmente por 1:, se tiene la condición general para 1:: 
( 12.7) 

Una condición suficiente para que esta relación se satisfaga es que 1: derive de un potencial.1 Ciñéndonos a esta condición y a las fuerzas másicas (12.5) , se debe verificar que la velocidad angular del sistema de referencia sea inde­pendiente del tiempo, siendo el potencial de fuerzas másicas 
(12.8) 

Por supuesto, a0 y ñ son independientes de la posición y, aunque ñ no puede depender del tiempo para que 1: derive de un potencial, ya que el término díljdtl\x no se puede escribir como un gradiente, a0 es, en general, una función del tiempo. La comprobación del último término de U en la expresión anterior es inmediata si se hace uso de ( 1.42 ) .  La ecuación (12.7) es la condición general que deben verificar las fuerzas másicas para que pueda existir equilibrio mecánico ( v = O) en un flui­do. Sin embargo, un fluido puede estar en equilibrio mecánico sin que exista 
equilibrio térmico, siempre que la distribución de temperaturas satisfaga la ecuación (12.3) y la densidad no varíe con el tiempo. Pero esto no es suficiente, puesto que la solución de las ecuaciones ( 12.1)-( 12.4) puede ser inestable. Es decir, aunque las distribuciones de p, p y T satisfagan (12.1 )- ( 12. 4 )  junto con 

1 Un campo vectorial que verifique la condición (12 .7) se suele denominar complejo lamellar 
(ver, por ejemplo, R. Aris, 1989, capítulo 3) .  En dicha referencia se demuestra que si se cumple 
(12 .7) ,  existen dos campos escalares '{)1 y '{)2 tales que lm = '{)1 'íl,p2 . Por tanto, la condición 
que lm derive de un potencial es un caso particular correspondiente a '{)1 = constante. 
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condiciones de contorno e iniciales compatibles, es necesario que estas distri­buciones cumplan ciertos requisitos adicionales para que sean estables, ya que si el equilibrio fuese inestable aparecerían corrientes ( v =f. O) que tenderían a uniformizar la temperatura (a equilibrar térmicamente el fluido) .  Por tanto, el estudio de la estabilidad de las soluciones fluidostáticas es esencial cuando el equilibrio mecánico no esté emparejado con un equilibrio térmico. El problema de la estabilidad será abordado en el capítulo 30. Sustituyendo ( 12.8) en la ecuación de cantidad de movimiento ( 12.2) se tiene 

'vp + p'vU = O .  (12.9) 
Esta expresión establece que las superficies equipotenciales en un fluido en reposo son también superficies isobaras. Además, estas superficies son también de densidad constante, puesto que p = - (8p/8U)t .  Otra consecuencia es que 
un fluido en reposo es barótropo: de (12 .9) se tiene p = p(U, t ) ,  y de la relación anterior para la densidad, p = p(U, t) [pero la dependencia U(t) debe ser tal que p =f. p( t)] ; por tanto, p = p(p, t), es decir, 'v p y 'v p son paralelos y su producto vectorial es nulo. Físicamente, si el fluido no fuese barótropo, las fuerzas de presión producirían un par distinto de cero que originaría vorticidad en el fluido, dejando de estar en reposo [término de Bjerkness, ver sección 7. 6] . En términos de la función de barotropía (7.5 5 ) ,  la ecuación ( 12.9) se escribe: 

'v(w + U) = O ,  w + U =  C(t) , ( 12.10) 
donde C(t) es una constante de integración que en general depende del tiempo y que viene fijada por las condiciones de contorno. 
12.3.  Hidrostática 

En el caso de un líquido (p = constante; en general fluido incompresible) ,  la ecuación anterior queda 
p +  pU = C(t) . ( 12. 1 1 )  

S i  la única fuerza másica presente es la gravitatoria, § =  -gez , la  distribución de presiones hidrostática es: 
p + pgz = constante. ( 12. 12) 
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Figura 12. 1 :  Equilibrio mecánico de un líquido en un recipiente que gira. 

Así, por ejemplo, la presión en el interior de un depósito con una altura H 
de líquido y abierto a la atmósfera sería p = Pa + pg(H - z), donde Pa es la 
presión atmosférica y z se mide desde el fondo del depósito . 

Si el depósito fuese cilíndrico ( de radio R) y girase con velocidad angular 
constante n alrededor de su eje de simetría, transcurrido un tiempo suficien­
te para que el líquido adquiera un movimiento solidario con el recipiente, la 
distribución de presión de equilibrio en un sistema de referencia que se mueva 
con el recipiente sería, de acuerdo con (12.11) y (12.8): 

p + pgz - pD2r2 /2 = constante = Pa + pgz8 (r) - pD2r2 /2, (12.13) 

donde la constante se ha evaluado en la superficie libre del líquido Zs ( r) ( ver 
figura 12. 1). Es decir, 

P = Pa + pg[zs (r) - z] . (12. 14) 

Aplicando (12.13) al punto de la superficie libre en el eje (z = h0 , r = O), se 
tiene 

Pa + pgho = Pa + pgzs (r) - pD2r2 /2 , (12.15) 

que proporciona la ecuación de la superficie libre en función de h0 : 
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i n2 2 z8(r) = ho + 29r 

La constante h0 se obtiene a partir del volumen V del líquido: 
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(12.16) 

V 02R2 
ho = 

7í R2 - 4g 
(12.17 )  

12.4.  Fuerza sobre un cuerpo sumergido. Principio 
de Arquímedes 

Consideremos un cuerpo sólido de volumen V y superficie S sumergido en 
un fluido en equilibrio mecánico. La fuerza (de presión) que el líquido ejerce 
sobre la superficie del sólido es: 

F = - fs pñds = - fv 'vpdV = - fv PfmdV (12.18) 

donde se ha aplicado el Teorema de Gauss y se ha hecho uso de (12.2). La 
fuerza está dirigida en sentido opuesto a las fuerzas másicas. Suponiendo que 
las fuerzas másicas son exclusivamente gravitatorias, se tiene 

F = gez fv pdV = gMez ' M = fv pdV ; (12.19) 

es decir , un cuerpo sumergido en un fluido en reposo está sometido a una 
fuerza (empuje) que es igual al peso del fluido que desaloja el cuerpo, en 
sentido opuesto a la acción de la gravedad (Principio de Arquímedes ) . En 
el caso de un líquido, M = pV. Para que el cuerpo permanezca en reposo (y, 
por tanto, el fluido), esta fuerza debe estar equilibrada con el peso del mismo. 
Además, el momento de las fuerzas de presión que el fluido ejerce sobre el 
cuerpo debe estar también equilibrado. Este momento, en relación a un punto 
fijo x0 , vale 

M = - fs pñ /\ (x - xo )ds = - fv 'v /\ [p(x - x0) ]dV 

= - fv 'vp /\ (x - xo)dV = - fv pf'm /\ (x - x0)dV . 

Si lm = -gez , 

(12.20) 
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(12.21) 

donde Xcm es el centro de masa del cuerpo sumergido si su volumen lo ocupase 
el fluido que desaloja. Este momento debe estar equilibrado con el momento 
del peso del sólido ( que está aplicado en su centro de masa) con respecto a x0 
para que el cuerpo permanezca en reposo. 

12 .5 .  Equilibrio de gases. Atmósfera estándar 

En el caso de un gas ideal bajo la acción de la gravedad, la ecuación ( 12.10) 
se puede escribir: 

J
P dp 

J
P dp U +  w = gz + p = gz + Rg TP = constante. (12.22) 

Como p, p y T sólo dependen de z,  es más fácil utilizar la forma original de 
las ecuación de cantidad de movimiento (es decir, derivar con respecto a z la 
ecuación anterior): 

que integrada proporciona 

p [ g ¡z dz l 
p0 

= exp - R9 lo T(z) 

(12.23) 

(12.24) 

Luego para conocer la distribución de presión en equilibrio mecánico se debe 
conocer la distribución de temperatura, la cual debe satisfacer la ecuación 
(12.3) junto con condiciones de contorno apropiadas. 

Un ejemplo típico lo constituye el aire de la atmósfera supuesto en reposo. 
En sus capas más cercanas al suelo el aire se calienta, principalmente por con­
ducción de calor desde suelo y, en menor medida, por radiación solar directa, 
aunque esta última es más importante en las capas altas de la atmósfera. Para 
los cálculos fluidostáticos, sin embargo, no se suele resolver la ecuación (12.3) 
para la temperatura, sino que se supone una distribución T(z) obtenida expe­
rimentalmente, siendo la correspondiente a la denominada atmósfera estándar 
la representada en la figura 12.2. 

Desde un punto de vista práctico, la capa más importante es la troposfera 
o capa más cercana al suelo, donde se supone que, en primera aproximación, 
el perfil de temperatura es lineal : 
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Figura 12.2: Distribución de temperatura en la atmósfera estándar. 
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Figura 12.3: Distribución de presión (línea contínua) y densidad (línea discontínua) en la 
atmósfera estándar. 
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T = T0 - az (12.25) 

siendo T0 = 288K y a =  6,5K/km en la atmósfera estándar. Sustituyendo en (12 .24) ,  se tiene la distribución de presiones 

]!__ = 
(Tº - az

)
9/0tR9 

Po To 

y, de la ecuación de estado, 

!_ = (Tº - az
)

g/0tRg-l 
Po To 

(12 .26) 

(12 .27) 
siendo Po = latm, Po = p0/ R9T0 = l ,25kg/m3. De forma análoga se hallarían 
las distribuciones de presión y densidad en las restantes capas de la atmósfera 
estándar utilizando los perfiles de temperatura de la figura 12.2 (ver figura 12.3) . 

La expresión (12.27) proporciona un criterio estático de estabilidad de la 
atmósfera: para que sea estable, la densidad debe disminuir con la altura, pues 
en caso contrario las fuerzas de flotabilidad originarían un movimiento vertical; 
es decir, 

g 
- - 1 > 0  
aR9 

o a <  ; � 34,9K/km 
g 

(12 .28) 
Este criterio no es una condición suficiente para que la atmósfera sea estable, 
ya que si fuese así, la atmósfera estándar sería siempre estable, lo cual, evi­
dentemente, no es cierto. El estudio de la estabilidad de la atmósfera requiere 
considerar la estabilidad dinámica, o estabilidad frente a pequeñas perturba­
ciones de la distribución de equilibrio anterior (ver capítulo 30), perturbaciones 
que siempre están presentes en la atmósfera. De todas formas, el criterio an­
terior nos da una idea del grado de estabilidad de la atmósfera: cuanto más 
pequeña sea la constante a, más estable será. Por ejemplo, en condiciones 
de inversión térmica (a < O) , lo cual ocurre a veces en las proximidades del 
suelo en ciertos núcleos urbanos donde los niveles de contaminación son muy 
altos, la atmósfera se hace muy estable, con lo que los gases contaminantes 
permanecen anclados en la ciudad. Otro ejemplo significativo de estabilidad 
lo constituye la estratosfera, donde a es marcadamente negativo ( ver figura 12.2) , siendo, por tanto, extraordinariamente estable, y de ahí su nombre: el 
aire de la estratosfera está estratificado, sin apenas mezcla de unas capas con 
otras (ésta se produce casi exclusivamente por difusión, no por convección). 
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Por ello es tan peligroso que algunos agentes contaminantes lleguen a la estra­tosfera. 
Referencias. 

■ L.D. LANDAU y E.M. LIFSHITZ, 1987. Capítulo l. 
■ J.M.WALLACE y P.V. HOBBS, 1977. Capítulo l . 
■ F.M. WHITE, 1983. Capítulo 2. 





Capítulo 13 

Tensión superficial 

13. 1 .  Introducción 
En esta lección nos vamos a ocupar de la fluidostática de sistemas en los 

que existen superficies de separación entre fluidos inmiscibles. 
Realmente, entre dos fluidos inmiscibles, por ejemplo, entre un líquido y un 

gas, o entre dos líquidos inmiscibles, existe una capa de transición de espesor 
finito, pero suele ser tan delgada que se puede considerar como una superficie. 
El hecho experimental es que esta superficie de separación tiende a tomar una 
forma especial ; por ejemplo, un gas en el seno de un líquido tiende a formar, 
en equilibrio, burbujas esféricas; análogamente, un líquido en el seno de un 
gas tiende a formar gotas esféricas. Desde un punto de vista termodinámico 
se puede postular que existe una energía (libre) asociada a la superficie de 
separación de tal forma que hace falta realizar un trabajo para aumentar dicha 
superficie, puesto que, en equilibrio, la superficie de separación entre dos fluidos 
inmiscibles tiende a ser mínima. A esta energía libre, por unidad de área, la 
designamos por u, que es una función de estado del sistema. Así , la energía 
libre total de un sistema en equilibrio constituido por dos fluidos inmiscibles , 1 
y 2, sería P1 ½ !1 + P2 Vih + u A, donde las Íi son las energías libres por unidad 
de masa de cada uno de los fluidos con densidades Pi y volúmenes ½,  y A es la 
superficie de separación o interfaz. Por definición de energía libre, el trabajo 
isotermo y reversible necesario para incrementar el área de la interfaz en una 
cantidad 8A sería u8A (de igual modo, el trabajo necesario para aumentar el 
volumen del sistema en 8½ + 8Vi sería pif1 8½ + P2h8Vi). 

De una forma alternativa, la interfaz entre dos fluidos inmiscibles se com­
porta como si fuera una membrana en tensión ( tensión que sería uniforme en 
toda la superficie para un sistema en equilibrio), siendo esta tensión superficial 
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o- ( definida como una fuerza por unidad de longitud) una propiedad de los dos 
fluidos en contacto y de la temperatura. La equivalencia entre esta tensión 
superficial y la energía libre definida anteriormente es inmediata, puesto que 
para aumentar la interfaz en un área 8A = 8l¡8l2, donde l1 e l2 son longitudes 
curvilíneas definidas sobre la superficie, hay que aplicar una fuerza, por ejem­
plo en la dirección de l 1 , de valor o-8l2 , con lo que el trabajo necesario sería 
o-8l1 8l2 = o-8A, que es la energía libre asociada a ese aumento de área. 

La tensión superficial tiene su origen en las fuerzas de cohesión intermole­
culares. Una molécula en el interior de un fluido se ve afectada por las fuerzas 
de cohesión de las moléculas que se encuentran a su alrededor, siendo la energía 
libre asociada independiente de la posición (en equilibrio). Una molécula en 
las proximidades de la interfaz, a distancias menores que el rango de acción 
de las fuerzas de cohesión intermolecular, no tiene compensadas las fuerzas de 
cohesión a un lado y otro de la superficie ( decimos superficie porque el rango 
de las fuerzas de cohesión es muy pequeño, del orden de 10-9m), creándose un 
estado tensional que, idealmente, se asocia a la interfaz como si tuviese entidad 
física real.1 En equilibrio, esta tensión superficial es uniforme ya que en todos 
los elementos de la superficie el desfase en la cohesión molecular es el mismo. 
Si uno de los fluidos es un gas y el otro un líquido, las fuerzas de cohesión 

molecular por parte del gas son despreciables comparadas con las del líquido,  
por lo que las moléculas del líquido cercanas a la interfaz se ven fuertemente 
atraidas hacia el interior del líquido y la interfaz tiende a ser la menor posible 
( en equilibrio, gotas y burbujas esféricas). En estos casos la tensión superficial 
es positiva, ya que se necesita realizar un trabajo para aumentar el área de la 
interfaz. En el caso de dos líquidos, la tensión superficial puede ser positiva o 
negativa. Si es negativa, los líquidos son miscibles, ya que la interfaz aumenta 
espontáneamente. 

Como se dijo anteriormente, la tensión superficial depende de la naturaleza 
de los fluidos en contacto y del estado termodinámico de la interfaz, funda­
mentalmente de la temperatura, disminuyendo cuando ésta aumenta . También 
se ve afectada por los cambios de concentración, en el caso de soluciones, y 
por la presencia de campos electromagnéticos. Hay sustancias ( denominadas 
sustancias capilar o superficialmente activas) que añadidas en cantidades muy 
pequeñas, disminuyen notablemente la tensión superficial. Ejemplos son los 
alcoholes superiores y los jabones, que añadidos al agua en proporciones muy 
pequeñas disminuyen drásticamente su tensión superficial. Estas sustancias se 

1 Es como si existiese una membrana delgadísima en la interfaz de separación entre dos fluidos inmiscibles sometida a una tensión superficial a. De hecho, algunos insectos caminan sobre la superficie del agua. 
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distribuyen en el estrato superficial en concentración mayor que en el resto 
del líquido, y las disoluciones acuosas de estas sustancias forman fácilmente 
espuma (mayor superficie) y tienen un mayor poder mojante. 

La tensión superficial se determina mediante diversos procedimientos, sien­
do el más sencillo el que se basa en la elevación capilar , consistente en medir 
la fuerza necesaria para elevar una placa o un anillo metálico parcialmente 
sumergido, y relacionarla con el aumento de superficie producido. Algunos va­
lores de la tensión superficial de algunos líquidos en contacto con aire, a 20°C, 
son los siguientes (en dinas/cm) : agua, 72.7 5 ;  alcohol metílico, 22.61; alcohol 
etílico, 22.27 ; acetona, 23. 70; éter, 17.0; glicerina, 63. 4; mercurio, 466.0. A OºC 
la tensión superficial aire-agua es 75 . 7, mientras que a 40°C es 69. 6. 

13.2.  Equilibrio en la interfaz 

El equilibrio termodinámico de la interfaz de separación de dos fluidos 
inmiscibles requiere equilibrio térmico y mecánico. El equilibrio térmico exige 
que a ambos lados de la superficie las temperaturas y los flujos de calor sean 
iguales [véase ecuación (10. 41)]: 

(13.1) 

donde los subíndices 1 y 2 denotan los fluidos a uno y otro lado de la interfaz, 
y ii es la dirección normal a la misma. 

El equilibrio dinámico exige igualdad de las velocidades de los dos fluidos 
en la interfaz y, si no existiese tensión superficial, igualdad de esfuerzos [ecua­
ción (10.40)]. La existencia de tensión superficial produce un salto entre los 
esfuerzos a ambos lados de la superficie que equilibra la tensión superficial. Pa­
ra obtener esta relación entre esfuerzos y tensión superficial, consideremos un 
elemento de interfaz de area 6S que separa dos fluidos inmiscibles, 1 y 2, como 
se esquematiza en la figura 13. l. Si dl es el vector de longitud dl tangente al 
borde óL de 6S y ii es el vector unitario normal a la superficie dirigido desde el 
fluido 1 hacia el 2, la fuerza de tensión superficial en cada punto del borde óL 
tiene una dirección perpendicular tanto a dl como a ii, es decir, está orientada 
según la dirección dll\ ii. Por tanto, la fuerza de tensión superficial que actúa 
sobre el borde de 6S viene dada por 

1 dll\ ii<J" = f (ds A "v) A (ñ<J") = / ds(ñ A "v) A (ii<J") ,  
loL hs los 

(13.2) 
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Figura 13. 1 :  Equilibrio mecánico en la interfaz. 

donde la tensión superficial u no es constante, en general , y por ello se ha 
mantenido dentro de la integral, y se ha hecho uso del teorema de Stokes 
(1.69). Desarrollando el doble producto vectorial, (13.2) se escribe 

f ds[v'(ñu) · ñ - ñv' · (ñu)] = f ds [v'u - ññ - v'u] - f dsñu'v - ñ ,  (13 .3) 
hs hs hs 

donde se ha tenido en cuenta que ('vñ) • ñ = 'vn2 /2 y n2 = l. Esta fuerza 
tiene que ser igual a la diferencia de las fuerzas que cada fluido ejerce sobre la 
superficie: 

[ ds [r2 · ñ - r¡ · ñ] = [ ds'vsU - [ dsñu'v · ñ .  
lós lós hs 

(13.4) 

En esta expresión, v' 8U = 'v u - ññ · v' u es la proyección de v' u sobre la 
superficie, es decir, el gradiente bidimensional de u sobre la interfaz. Como 
esta ecuación se cumple para cualquier elemento de superficie 8S, la igualdad 
se verifica también en la forma diferencial de los integrandos. Proyectando en 
las direcciones normal y tangente a la superficie, se obtienen las dos ecuaciones 
diferenciales para el equilibrio de esfuerzos en la superficie de separación entre 
dos fluidos inmiscibles cuando se tiene en cuenta la tensión superficial, que 
sustituyen a las dos últimas ecuaciones escritas en (10.40) : 

(13.5) 

(13.6) 

Obsérvese que todas las cantidades anteriores son funciones de la posición 
sobre la interfaz y, en general , del tiempo. La magnitud -v' • ii es la cur­
vatura local de la superficie (ver sección siguiente). Por tanto, la ecuación 
(13.5) nos dice que si la interfaz no es plana, los esfuerzos normales a ambos 
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lados son distintos, siendo el coeficiente de proporcionalidad entre curvatura 
y diferencia de esfuerzos la tensión superficial. La ecuación {13.6) nos dice que 
si la tensión superficial varía de un punto a otro de la superficie (por ejemplo, 
si la temperatura no es uniforme, o existe un gradiente de concentración, o 
la superficie tiene carga eléctrica distribuida no uniformemente), se produce 
una diferencia entre los esfuerzos tangenciales a ambos lados de la superficie, 
por lo que la interfaz tenderá a moverse (no hay equilibrio mecánico). Este 
conjunto de ecuaciones, junto con VI = if2 y la condición que la interfaz es una 
superficie fluida [ecuación (10.39)] , constituyen las condiciones de contorno de 
las ecuaciones de ambos fluidos inmiscibles sobre la interfaz, cuya posición se 
obtiene de la resolución del problema. Sin embargo, en esta lección nos vamos 
a limitar a situaciones en las que ambos fluidos y, por tanto, la interfaz, están 
en reposo (fluidostática). 

13.3. Ecuación de Young-Laplace 
En el caso en que los fluidos a ambos lados <!_e la superficie estén en equili­

brio mecánico (vi = O, i = 1, 2), se tiene Ti = -pl, por lo que la ecuación (13.6) 
nos dice que la tensión superficial debe ser uniforme en toda la superficie, y la 
ecuación {13.5) se reduce a 

PI - P2 = -u'\! • ñ ,  (13.7) 

que es la llamada ecuación de Young-Laplace. Ésta es una ecuación diferencial 
que nos proporciona la forma de la interfaz, conocidas las presiones PI y P2 y 
la tensión superficial u. Por ejemplo, si la superficie S(x) = O viene dada, en 
coordenadas cartesianas, por z = z8 (x, y) [es decir, S(x, y, z) = z - z5 (x, y)] , 
el vector unitario ñ sería 

(13.8) 

y la curvatura 

(13.9) 
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R1 y R2 son los radios de curvatura en las direcciones x e y, respectivamente. 
De acuerdo con esto, es habitual escribir la ecuación de Young-Laplace (13.7) 
en la forma 

(13.10) 

donde R1 y R2 son los dos radios de curvatura locales de la interfaz en cualquier 
sistema ortogonal de coordenadas que se utilice para definir la superficie , no 
necesariamente cartesiano. Esta forma tiene la ventaja de que, en algunas 
situaciones en las que se tiene una idea previa de cómo son los radios de 
curvatura, es más directo obtener una solución aproximada de la ecuación de 
Young-Laplace (véase más adelante). 

Si uno de los radios de curvatura es infinito, por ejemplo, si la superficie 
es bidimensional y viene dada por z = Z8 (x), se tiene que 1/ R2 = O y 

z" s (13.11) 

donde las primas significan d/dx. La ecuación de Young-Laplace se convierte 
así en una ecuación diferencial ordinaria para z8 (x). Otro caso de interés es el 
de una interfaz axilsimétrica, que en coordenadas cilíndricas vendría dada por 
z = z8 (r) o S(r, 0, z) = z - z8 (r) = O. En este caso, el vector unitario ñ sería 

_ 'vS (-z� (r) , 0, 1) 
n = l'vSI = JI + z�2 (r) ' (13.12) 

y los dos radios de curvatura serían: 

z" z' 1 1 s + s = - + - (13.13) 
(1 + z�2)3/2 rJl + z�2 - R1 R2 • 

Como condiciones de contorno para resolver la ecuación de Young-Laplace, 
se suele imponer la condición de que los volúmenes de los fluidos son conocidos, 
condiciones de simetría y la imposición de ciertos ángulos que forma la interfaz 
en sus extremos, que suelen ser líneas a lo largo de las cuales tres fases están 
en contacto. Por ejemplo, una gota de líquido sobre una superficie sólida [ver 
figura 13.2(a)] forma un cierto ángulo de contacto entre la superficie del 
sólido y la interfaz líquido -aire. Este ángulo no puede ser cualquiera ya que el 
equilibrio en la linea de contacto proyectado sobre la superficie sólida exige 

0-12 = 0-31 + 0-23 cos 0 (13.14) 
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3 

Figura 13.2: (a) : Ángulo de contacto. (b) : Contacto entre tres fluidos inmiscibles. 
puesto que es una línea inmaterial (la componente normal a la superficie, 
0'23 sin 0, está equilibrada con la correspondiente reacción de la superficie sóli­
da). Como 0'31 y CT12 son difíciles de determinar, el ángulo de contacto se suele 
evaluar experimentalmente para cada terna líquido-gas-sólido. Si 0 < 1r /2, se 
dice que el líquido moja la superficie ( como ocurre para agua-aire y la mayoría 
de los sólidos, como vidrio, metales, etc.) ; mientras que si 0 > 1r /2, el líquido 
no moja ( como ocurre con el mercurio, cuyo ángulo de contacto es alrededor 
de 150° para muchos sólidos). 

En el caso de una línea de contacto entre tres fluidos (por ejemplo, dos 
líquidos inmiscibles y aire), el equilibrio viene definido por dos ángulos de 
contacto (figura 13.2(b)). Si la12 I > J CT23 J + ICT31 I, como por ejemplo ocurre 
con algunos aceites minerales en agua en contacto con aire, la condición de 
equilibrio en la línea de contacto no se puede satisfacer, siendo el sistema 
inestable. 

Cuando no existen campos de fuerzas externos, o el efecto de éstos es 
despreciable, las presiones fluidostáticas p¡ y p2 son constantes y la ecuación 
de Young-Laplace nos dice que la curvatura es constante: 

TT _ 1 1 
- v • n = Ri 

+ R2 
= constante. (13.15) 

Si, además, la superficie es libre ( en el sentido de que no está soportada a lo 
largo de ninguna curva de contacto con un sólido) ,  la ecuación anterior nos 
dice que la superficie es una esfera, como ocurre, por ejemplo, para burbujas o 
gotas pequeñas. En el caso más general en que los campos de fuerzas sean im­
portantes, la distribución de presión a cada lado de la superficie viene dada por 
la ecuación fluidostática (12.9). Por ejemplo, si como ocurre normalmente, las 
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únicas fuerzas másicas son las gravitatorias, y las densidades de ambos fluidos 
en contacto se pueden considerar constantes ( al menos en las proximidades de 
la interfaz), se tiene que Pi + Pi9Z = Poi, donde Poi, i = 1, 2 son constantes. 
Sustituyendo en la ecuación de Young-Laplace, se obtiene la siguiente ecuación 
diferencial que debe satisfacer la interfaz: 

a- (_.!:_ + _.!:_) + (PI - fJ2)gz = constante. 
RI R2 

{13.16) 

La importancia relativa de cada uno de los términos de esta ecuación viene 
dada por el parámetro adimensional 

B = 
IPI - P2 lgL2 

(J' 
(13.17) 

donde L es una longitud característica de la superficie, llamado número de 
Bond. Este número nos da una idea de la importancia relativa de las fuerzas 
gravitatorias frente a las fuerzas de tensión superficial o capilares. Si el número 
de Bond es muy pequeño, las fuerzas de tensión superficial son dominantes, 
y la ecuación (13.16) se reduce, en primera aproximación, a (13.15), siendo 
la interfaz aproximadamente esférica. Por el contrario, si el número de Bond 
es muy grande, las fuerzas gravitatorias son dominantes y la interfaz es apro­
ximadamente plana (z � constante). Que el número de Bond sea grande o 
pequeño viene condicionado, en gran medida, por las dimensiones del sistema 
(longitud característica L) .  Se denomina longitud capilar a la longitud en 
la cual las fuerzas de tensión superficial son importantes; es decir, la longitud 
para la que el número de Bond es de orden unidad: 

Le = ✓ ,PI � P2 lg 
(13.18) 

En el caso habitual en que uno de los fluidos (por ejemplo el 1) es aire y el 
otro es un líquido, se tiene que PI « P2, y la longitud capilar viene dada por 
Le � ..J<ilpg, donde p es la densidad del líquido. Para agua-aire a 20°C Le = 

0,272cm. En la sección siguiente consideraremos algunos ejemplos significativos 
con B « 1 y con B » l. 

13.4. Ejemplos 
13.4. 1 .  Tubo sumergido en un líquido 

Considérese un tubo sumergido en un líquido. Si el líquido moja la super­
ficie del conducto (0 < 'Tí /2), el líquido ascenderá por él debido a las fuerzas 
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Figura 13.3: Ascensión de un líquido por un tubo capilar. 
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originadas por la tensión superficial (ver figura 1 3 . 3 ) ,  mientras que si 0 > 1r/2, el líquido descenderá. Si el conducto tiene de radio interior a, la ecuación y condiciones de con­torno que gobiernan la forma de la superficie son [( 1 3.7) junto con ( 1 3 . 1 3) y las condiciones de contorno de la figura 1 3.3] : 
( ) , 

1 z' pgzs = e,- r J 
s 2 ' r 1 + z� 

z� (O) = O, z� (a) = cot0 , 
( 1 3.19) 
(1 3 .20) donde se ha supuesto despreciable la densidad del aire frente a la del líquido p, y se ha considerado que la presión en el aire es Pa · Esta ecuación, además de la forma de la superficie, proporciona la altura H a la que asciende el líquido por acción de la tensión superficial : 

H = Z8 (0) . Es conveniente definir las variables adimensionales r¡ y (, 
Zs = H + ar¡ , r = a( , de forma que ( 1 3 . 19)- ( 1 3.20) queda 

( 1 3.21 )  
( 1 3.22) 
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1 r¡' ( ) ' B( 17 + (3) = � { J1 + 77'2 

171 (0) = O, 77' ( 1 )  = cot0 , 

donde las primas ahora denotan diferenciación respecto a ( , 

_ pga2 _ ª2 
B - - - ­- a - Li 

es el número de Bond, y (3 = H / a. 

( 13.23) 

( 13.24) 

( 13.25) 

Este problema tiene solución analítica en términos de las funciones de 
Bessel. Sin embargo, es más interesante obtener soluciones más simples en los 
dos límites B « 1 y B » l . En el primer caso, en el que la tensión superficial 
es dominante, el término B17 se puede despreciar en primera aproximación 
en ( 13 .23) al ser 77 de orden unidad. Esto quiere decir que la curvatura es 
constante y, por tanto, la superficie es esférica. En efecto, sin el término B17, 
la ecuación ( 13 .23) se puede integrar una vez: 

{11' e ---=== - B (3-
J 1 + 77'2 - 2 ' ( 13.26) 

donde la constante de integración se ha hecho cero en virtud de la primera 
condición ( 13.24) . Esta expresión, junto con la segunda condición ( 13.24), 
proporciona (3 = 2 cos 0 /B. Es decir, la altura a la que asciende un líquido por 
acción de las fuerzas de tensión superficial en un tubo capilar ( entendiéndose 
por tubo capilar aquél que es tan delgado que su radio verifica a « Le ó B « 1 )  
es: 

H = 2a cos 0 . 
pga 

( 13 .27) 

Para obtener la forma de la superficie hay que integrar otra vez ( 13.26) , que 
se puede escribir como 

( cos 0 r¡' = ---;===;;;=====;;='7 Jl - (2 cos2 0 • 

Integrando esta ecuación y teniendo en cuenta que r¡(O) = (3, se tiene 

(3 
1 + ✓1 - e cos2 0 

,,, = + ------ . cos 0 

( 13.28) 

( 13.29) 
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Figura 13.4: Conducto con radio mucho mayor que la longitud capilar. 
Esta expresión corresponde a una superficie esférica, que en variables dimen­
sionales se puede escribir como 

donde 

[zs - (H + R)]2 + r2 = R2 , 

a R -= ­cos 0 

(13.30) 

(13.31) 

es el radio de la esfera. De hecho, la curvatura de la superficie es [sustituyendo 
(13.30) en ( 13.13)] : 

(13.32) 

Es decir, los dos radios de curvatura son constantes iguales a R. 
En el límite opuesto de tensión superficial despreciable (B » 1 ó a »  Le) ,  

la ecuación (13.23) proporciona, en primera aproximación, r¡ + /3 '.:::'. O. Es decir , 
la superficie es plana y de altura nula: 

Z8 = O ; H = Z8 (0) = O . (13.33) 

Esta solución es aproximadamente válida ( con errores del orden de L�/ a2 « 1) 
en todo el conducto, excepto muy cerca de la pared. Concretamente , en una capa límite de espesor del orden de la longitud capilar, el segundo miembro de 
(13.23) es del mismo orden que el primero, y (13.33) deja de ser válida. Esto 
sugiere expandir las coordenadas en las proximidades de la pared mediante 
(ver figura 13.4) 
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(13.34) 

donde las nuevas coordenadas adimensionales ( €, r¡) son de orden unidad en la 
capa límite de espesor Le. Sustituyendo en (13.19) se tiene 

r¡" 
(1 + r,'2)3/2 - r¡ = O ' (13.35) 

donde se ha despreciado el segundo sumando de la curvatura [ver (13.13)] por 
ser de orden Le/ a « 1 respecto al primero. Obsérvese que el problema tiene 
ahora geometría plana [la curvatura es la misma que en (13.11)], valiedo la 
ecuación tanto para la parte interior como exterior del conducto ( en general, 
para cualquier superficie sólida plana que se introduzca verticalmente en el 
líquido). Esta ecuación debe resolverse con las condiciones de contorno 

r¡' (O) = -cot0 , r¡(€ ---+ oo) ---+ O .  (13.36) 

La segunda condición proviene de la primera condición de contorno (13.20), 
con errores del orden de Le/ a « l. Este problema tiene solución analítica: 

€ = J2(1 + sin 0) - J4 - r¡2 + ln (
1 + Jl - r¡2/4)(1 - J(l + sin 0)/2) 

(1 - Jl - r,2/4 )(1 + J(l + sin 0)/2) 
(13.37) 

13.4.2. Gota que pende de un tubo 

Como último ejemplo, considérese el caso de una gota de un líquido que 
pende de un conducto vertical de radio interno a (figura 13.5 ). El problema 
es muy similar al anterior, pero, ahora, el ángulo 0 depende sobre todo del 
volumen de la gota y, por tanto, de la presión en el interior en el conducto, 
que es desconocida. Las ecuaciones y condiciones de contorno serían: 

( ) ' 1 z' <7- r s + pgz5 = constante , 
r Jl + z�2 

(13.38) 

(13.39) 

donde p es la densidad del líquido. 
El ángulo de contacto 0 debe ser tal que la fuerza de tensión superficial en 

la línea de contacto equilibre el peso de la gota (si el volumen de la gota es 
mayor que un valor crítico, la gota cae). Utilizando las variables adimensionales 
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Figura 13.5: Gota que pende de un tubo de sección circular. 
e - r 
� - - , a Zs r¡ = - ' a 

las expresiones (13.38)-(13.39) se escriben 

donde 

r¡'( l ) = -cot0 , r¡' (O) = O , r¡(l )  = O , 

pga2 B = ­a-
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(13. 40) 

(13.41) 

(13.42) 

(13.43) 

es el número de Bond y K es una constante arbitraria. Aquí se considerará sólo 
el límite B « l ( el límite B » 1 y, por supuesto, el caso general , tiene 
soluciones bastantes más complejas) . Como en el ejemplo anterior, en primera 
aproximación, con errores del orden de B, la ecuación (13.41) se puede integrar 
una vez, 
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�r¡' e --;:::== = K-
J1 + r,'2 2 ' 

MECÁNICA DE FLUIDOS 
(13. 44) 

donde la constante de integración se ha hecho cero utilizando la condición 
de contorno en � = O y, de la primera condición de contorno en (13.42), 
K = -2 cos 0. Esta ecuación se puede escribir como 

que integrada otra vez, y después de la aplicación de la condición de contorno 
restante, proporciona la solución: 

J1 - cos2 0€2 
r7 = ----- - tan 0. 

cos 0 
(13.45) 

Por supuesto, dado que el número de Bond es cero en primera aproximación , 
esta solución corresponde a una superficie esférica que se apoya en el tubo 
formando el ángulo 0 (el cual queda fijado por el peso de la gota). 
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Parte V 

FLUJOS VISCOSOS 





Capítulo 14 

Movimientos unidireccionales 

de líquidos 

La dificultad fundamental para resolver las ecuaciones de N avier-Stokes ( exacta o aproximadamente) reside en los términos no lineales que introdu­ce la convección. En esta lección consideraremos algunos flujos en los que el término convectivo de la ecuación de cantidad de movimiento es idénticamen­te nulo. Las soluciones de las ecuaciones lineales resultantes son, por tanto, las más simples posibles, aparte de la trivial v = O considerada en la lección 12. Los ejemplos que consideramos a continuación constituyen algunos de los relativamente pocos casos en los que existen soluciones exactas de las ecua­ciones de Navier-Stokes (un repertorio más amplio de soluciones exactas de las ecuaciones de N avier-Stokes puede consultarse en las referencias citadas al final de la lección). No se considerará la estabilidad de estos flujos. 
14. 1 .  Flujos con líneas de corriente rectas 
14. 1.1 .  Ecuaciones y condiciones iniciales y de contorno 

Con las ecuaciones escritas en coordenadas cartesianas, el término convec­tivo de la ecuación de cantidad de movimiento desaparece en los movimientos incompresibles si todas las componentes del vector velocidad, excepto una, son nulas ( movimientos unidireccionales) . Tomando v = uex , la ecuación de continuidad 'v · v = O proporciona 
ou = o ox ( 1 4 . 1 ) 
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con lo que u = u(y, z, t). Por lo tanto, la ecuación de cantidad de movimiento se simplifica a 
{)u {)p ( {Pu {)2u) P 8t = - {)x + PÍmx + µ {)y2 + {)z2 

{)p 
O = - {)y + P f my , 

{)p O = - {)z + PÍmz , 

( 1 4.2) 
( 1 4. 3 )  
( 1 4. 4) 

donde los términos convectivos son identicamente nulos debido a que u no depende de x y al ser nulas las componentes de la velocidad según y y z. Se ha supuesto que la viscosidad es constante para que así el problema mecánico esté desacoplado del térmico. Las proyecciones y y z de la ecuación de cantidad de movimiento esta­blecen, simplemente, que existe equilibrio hidrostático en las direcciones per­pendiculares al movimiento. Si las fuerzas másicas derivan de un potencial, 1: = -'1U, se tiene que p + pU (que se suele denominar presión reducida ) no depende de y y z :  
p + pU = f (X'  t) ( 1 4.5) 

Definiendo 
( 1 4. 6 ) 

la ecuación ( 1 4.2) queda: 
( 1 4.7) 

Como u no depende de x, tampoco p¡ , 
Pl = p¡ (t) ( 1 4.8) 

Suponiendo que la capacidad calorífica y la conductividad térmica son constantes, la correspondiente ecuación de la energía se escribe: 
( 1 4.9) 
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Obsérvese que aunque esta última ecuación no es lineal, al estar desacoplada 
de las ecuaciones de continuidad y cantidad de movimiento, la función u(y, z, t) 
es conocida previamente a su resolución, y a efectos prácticos el problema es 
también lineal para la temperatura. En los ejemplos que siguen sólo resol­
veremos el problema mecánico; se ha escrito la ecuación de la energía para 
completar el problema y para futura referencia. 

Como condiciones iniciales se deben imponer 

t = O  u =  u0 (y, z)  , T = T0 (x,  y, z) (14.10) 

Las condiciones de contorno para la velocidad u deben ser, por supuesto, com­
patibles con la unidireccionalidad del movimiento, pudiendo corresponder a 
tres tipos de problemas: (a) flujos en conductos de sección uniforme; (b) flujos 
generados por el movimiento de un contorno plano en la direción x, y (c) flujos 
confinados entre dos contornos paralelos e infinitos (por ejemplo dos placas) 
producidos por un gradiente de la presión (reducida) independiente de la po­
sición. [El tercer supuesto se puede tomar como un caso particular de (a).] A 
continuación vamos a considerar varios ejemplos ( estacionarios y no estacio­
narios) correspondientes a los casos (b) y (c). El caso (a) se estudiará, de una 
forma ligeramente más general, en la lección siguiente. Por ello no escribimos 
las condiciones de contorno en forma general, sino en cada caso particular. 
En cuanto a la temperatura, se debe especificar o bien su valor o bien el flujo 
de calor en los contornos sólidos (ver sección 10.3; no las especificamos aquí 
puesto que no vamos a resolver el problema térmico). 

Antes de pasar a ver los ejemplos concretos conviene señalar que la linea­
lidad del problema permite la superposición de distintas soluciones corres­
pondientes a distintas condiciones de contorno. Por otra parte, aunque pocos 
problemas reales son exactamente unidireccionales, las soluciones que veremos 
a continuación se pueden tomar como soluciones aproximadas de algunos pro­
blemas reales. Además, estas soluciones nos van a permitir introducir algunos 
conceptos físicos y matemáticos de mucha utilidad para resolver problemas 
reales más complejos. 

14.1.2.  Corriente de Couette 

El movimiento unidireccional más sencillo posible es el confinado entre dos 
placas paralelas e infinitas producido por el movimiento de una de ellas relativo 
a la otra. En este caso el movimiento es estacionario y sólo depende de una 
coordenada transversal (y) , siendo , además, p¡ = O. La ecuación (14.7) queda, 
simplemente, 
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V 

u(y) h 

y 

X Figura 14. 1 :  Corriente de Couette. 
d2u dy2 = O ( 14. 1 1) 

y las condiciones de contorno son (ver figura 14.1): 

u(y = O) =  O , u(y = h) = V , (1 4.12) 

donde se ha supuesto que la velocidad de la placa inferior es nula y la de la 
superior V. La solución es un perfil lineal de velocidad (corriente de Couette) : 

u =  Vy/h . (14.13) 

El esfuerzo viscoso, T;y = µ8u/8y, es constante en todo el flujo e igual a µV/h, 
siendo ésta, por tanto, la fuerza por unidad de superficie necesaria para mover 
la placa superior con velocidad V y la que es necesario hacer, pero en sentido 
contrario, para que la placa inferior no sea arrastrada por el movimiento del 
fluido. (La medición de esta fuerza constituye un procedimiento simple para 
determinar experimentalmente la viscosidad de un líquido.) El caudal que 
circula es, por unidad de longitud en la dirección z, 

J,h Vh º udy = 2 

14. 1 .3. Corriente de Poiseuille 

(1 4.14) 

Es el movimiento originado entre dos placas paralelas por un gradiente de 
presión (reducida) constante. La ecuación de cantidad de movimiento en la 
dirección x y las condiciones de contorno (ver figura 14.2) quedan 

82n 
O = Pl + µ {)y2 , p¡ = constante, ( 14.15) 
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h 

y 

X Figura 14.2: Corriente de Poiseuille bidimensional. 
u(y = O) =  (y = h) = O . (1 4.16) La solución es el perfil parbólico de velocidad 

(1 4 . 17) 
El esfuerzo viscoso es nulo en el centro (y = h/2) y máximo en las paredes: 

, au p¡ p¡h 
Txy = µ ay = 2 (h - 2y) , r;y (Y = 0) = 2 = -r;y (Y = h) 

El caudal por unidad de longitud es: 
¡h h3p¡ 

q =  udy = -- , 
o 12µ 

( 1 4 . 18) 

( 1 4.19) 
el cual se suele denominar de Poiseuille debido al flujo análogo en un conducto de sección circular ( ver lección siguiente) que fue estudiado experimentalmente por Poiseuille sobre 18 40. El perfil de velocidad correspondiente al movimiento originado por un gra­diente de presión constante y por el movimiento de una de las placas ( e.g. la superior) se obtiene sin más que sumar ( 1 4 . 1 3 )  y ( 1 4 . 17) en virtud de la linealidad del problema: 

Vy Pl U = h + 2µ
y(h - y) 

siendo el caudal por unidad de longitud 
q = Vh/2 + h3p¡/12µ . 

( 1 4.20) 
( 1 4.21 )  Este campo de velocidad (Couette + Poiseuille) es la base de la lubricación fluidomecánica que se considerará en la lección 16, donde se generaliza para 

h(x, t) y p¡ (t) , suponiendo que h varía muy lentamente con x, y que las fuerzas de viscosidad son dominantes. 
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14.1 .4. Problema de Rayleigh 

Como ejemplo de flujo unidireccional no estacionario, consideramos pri­
mero el movimiento originado en un líquido por una placa que en t = O pasa 
súbitamente de estar en reposo a moverse paralelamente a si misma con velo­
cidad V constante (Rayleigh, 1880) .  La ecuación y condiciones iniciales y de 
contorno que gobierna el campo de velocidades u(y, t) son: 

au 82u 
at = v ay2 Y 2: 0 ' 

u(0, t) = V , t > O , u(oo, t) = O ;  

t > 0  

u(y, O) = O .  

( 14.22) 

( 14.23) 

La ecuación anterior es la típica ecuación de difusión o ecuación del calor 
[ecuaciones (6.32) y ( 10 . 13)] , y la solución que veremos a continuación [en 
general, la solución con cualquier ley V =  V(t)] se obtiene por analogía con el 
problema de conducción de calor. 

Como el problema es lineal, la constante V se puede eliminar mediante el 
cambio de variable 

quedando 

v = u/V , 

av 82v - = 1/-
2 y 2: 0 , t > 0 ,  at ay 

v(0, t) = 1 ,  t > O ,  v(oo, t) = O ;  v(y, 0) = O .  

( 14.24) 

( 14.25) 

( 14 .26) 

El análisis dimensional permite reducir la ecuación anterior a una ecuación 
diferencial ordinaria. En efecto, de ( 14 .25)-( 14 .26), 

v = v(y, t , v) ( 14.27) 

donde v es ya adimensional. Tomando como magnitudes dimensionalmente 
independientes t y II se tiene: 1 

V =  f(y/M) . ( 14 .28) 

Así, v no depende de y y t por separado, sino de una combinación de esas dos 
variables dada por 

1 Obsérvese que, tal como está escrito, este problema es puramente cinemático, puesto que 
la masa ha desaparecido del problema al dividir la ecuación de cantidad de movimiento por 
la densidad ; por tanto, sólo hay dos dimensiones independientes, longitud y tiempo. 
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'T/ = Y/M (14.29) 

Básicamente, lo que ocurre es que al no tener el problema ninguna longitud 
característica para adimensionalizar la coordenada y ( el líquido ocupa el semi­
espacio O '.S y < oo), la adimensionalización se tiene que hacer necesariamente 
con la otra variable independiente ( t) , reduciendo así su número. La nue­
va variable independiente r¡ se denomina de semejanza, y la solución con ella 
obtenida se llama solución de semejanza, debido a que los perfiles de veloci­
dad v(y) son semejantes para los diferentes tiempos de acuerdo con la variable 
r¡. Esta variable convierte la ecuación en derivadas parciales (14.25) en una 
ecuación diferencial ordinaria , que se obtiene sin más que sustituir (14.28) en 
(14.25 ), teniendo en cuenta que 8v/8t = - (r¡/2t)f' y 82v/8y2 = f" /vt, donde 
las primas significan derivadas con respecto a r¡: 

1 J" + 2r¡J' = O , 

f(O) = 1 , f(oo) = O .  
(14.30) 

(14.31) 

Obsérvese que la condición inicial v(y, O) = O y la condición de contorno 
v(oo, t) = O dan lugar a la misma condición de contorno f(oo) = O (si no 
se redujese también el número de condiciones de contorno la solución no sería 
de semejanza) . 

Una primera integral de (14.30) es 

que integrada de nuevo da 

f = C2 + C1 1
r¡ 

e-E.2!4df,, 

sustituyendo las condiciones de contorno se obtiene 

v = � = erfc(r¡/2) = erfc(y/2M) ,  

donde 

2 rx 2 
erfc(x) = 1 - .¡ir Ía 

e-� df, 

(14.32) 

(14.33) 

(14.34) 

(14.35 ) 

es la función error complementaria. Esta solución nos dice que la capa de fluido 
próxima a la pared que se pone en movimiento tiene un espesor que crece con 
el tiempo proporcionalmente a y'vt. Para t -+ oo, ·u -+ V, es decir , todo el 
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fluido se mueve rígidamente con la placa. El esfuerzo de fricción que el líquido 
ejerce sobre la placa es: 

r¡ = µ (ºu) = -pV fv _  
{)y y=O V ;¡,  ( 14.36) 

El problema anterior se complica notoriamente si se incluye una placa fija 
paralela a la móvil a una cierta distancia h de ella, puesto que introduce 
una longitud característica ( h) que no permite la existencia de soluciones de 
semejanza. Definiendo las variables adimensionales 

u 
v = -

V 
t T = ­
to 

(14 .37) 

donde t0 es un tiempo característico que se eligirá convenientemente a conti­
nuación, el problema viene gobernado por 

8v vto 82v = 
OT h,2 8r¡2 

v(O, r) = l , r > O , v ( l , r) = O ; v(r¡, 0) = 0 . 

( 14.38) 

( 14.39) 

La ecuación se simplifica tomando t0 = h2 /v, que es el tiempo característico 
en el que el movimiento de la placa inferior se transmite a todo el fluido ( como 
se verá más claramente en lo que sigue) . 

Este problema no tiene una solución analítica tan simple como ( 14 .34,2 
pero sí es posible encontrar soluciones aproximadas sencillas para tiempos 
grandes y pequeños comparados con h2 /v, es decir, en los límites T » 1 y 
T « l .  

Para T » 1 ( t  » h2 /v) , el primer termino de ( 14.38) es despreciable con 
errores del orden de r-1 y el problema queda 

v(O, r) = 1 , v ( l , r) = O 

(Por supuesto, no se puede imponer condición inicial. )  La solución es: 

v = u/V = 1 - r¡ = 1 - y/h , 

( 14.40) 

( 14 .41) 

2Por separación de variables, utilizando series de Fourier, o mediante el método de la trans­
formada de Laplace, se encuentra que v(r¡, r) = 1 - r¡ - I::°= 1 (2/mr) exp(-n21r2r) sin(n1rTJ) 
(ver, por ejemplo, G.K. Batchelor, 1967; ver también sección 15.4 para una solución similar 
en coordenadas cilíndricas) .  
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que es un flujo de Couette. Es decir, cuando ha transcurrido un tiempo mucho 
mayor que h2 /v, todo el líquido entre las placas se ha puesto en movimiento, 
llegandose a un movimiento estacionario de Couette. 

Para r « 1 (t « h2 /v) ,  en primera aproximación se tiene 

(14.42) 

que proporciona v '.::= constante = O, para que satisfaga la condición de con­
torno en r¡ = 1. Evidentemente, esta solución no puede ser válida en todo el 
dominio fluido, puesto que cerca de la pared móvil el fluido tiene que moverse 
con ella. Matemáticamente, al despreciarse el término que contiene las deri­
vadas espaciales, no se pueden imponer todas las condiciones de contorno; en 
particular, la de la placa móvil , y la solución no puede ser válida cerca de ella. 
Por tanto, existe una capa delgada ( capa límite ) en las cercanías de la pared 
móvil (r¡ = O) donde la solución anterior no es válida. Para hallar el espesor y 
la solución aproximada dentro de esa capa delgada, reescalamos las variables 
de acuerdo con 

T = o:0 r¡ = 8{ (14.43) 

donde las nuevas variables 0 y ( son de orden unidad en el interior de la capa 
límite, por lo que o: «  l ;  8 nos da el orden de magnitud del espesor de la capa 
límite, que también debe ser muy pequeño como se determinará a continuación. 
Escribiendo la ecuación (14.38) en estas nuevas variables, se llega a 

8v o: 82v 
80 82 8(2 (14.44) 

por tanto, 8 debe ser del orden de fo « 1 para que el segundo término 
cuente en la capa límite. En otras palabras, para r «  1, el líquido permanece 
en reposo en todo el dominio fluido salvo en una capa delgada cerca de la pared 
móvil cuyo espesor es de orden y'r ( que crece, por tanto, con el tiempo). 

Para describir el movimiento en el interior de esta capa delgada, la placa 
superior es como si estuviese en el infinito, y tenemos, en primera aproximación 
(errores del orden de r) el problema anterior de Rayleigh:  tomando 8 = fo, 

8v 
80 

v (O, 0) = 1 , v(oo, 0) = O , v((, O) = O , 

(14.45) 

(14.46) 

que admite la variable de semejanza (/../0 = y/./vf,, y cuya solución es (14.34). 



204 MECÁNICA DE FLUIDOS 

0.1 0.2 o.3 o.4 o.s o.s 0.1 o.a o.s 
v-u/V 

Figura 14.3: Movimiento de un líquido entre dos placas, una en reposo y otra súbitamente puesta en movimiento en t = O con velocidad V, para distintos tiempos. 
Para tiempos intermedios, del 9rden de h2 /v [es decir , T = 0(1)] , las 

soluciones aproximadas anteriores no son válidas y no hay más remedio que 
resolver el problema (14.38)- (14.39) completo. En la figura 14.3 se representa 
la solución v = u/V para distintos tiempos, calculada tomando 5 0  términos 
de la serie de Fourier (ver nota de pie de página número 2). Para T « l la 
solución es la de Rayleigh (14.34) , mientras que para r ---t oo  se tiene el perfil 
de Couette (14.41) [en la figura se observa que el perfil lineal de Couette es, 
de hecho, aproximadamente válido incluso para T = 0(1)]. 

14. 1 .5 .  Corriente de Stokes 

Un problema similar al ele Rayleigh es el movimiento originado por una 
placa que oscila paralelamente a si misma con velocidad V(t) = U cos wt ( Sto­
kes, en 185 0, consideró el caso general en que V(t) es una función arbitraria 
del tiempo, obteniendo, en particular, una expresión general para la fuerza de 
fricción sobre la placa.) La ecuación y condiciones de contorno que gobiernan 
el problema son: 

O'U a2u 
é)t = V é)y2 Y 2 0 , 

u(0, t) = U cos wt , U(oo, t) = O. 

(14.47) 

(14. 48) 
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No imponemos condiciones iniciales puesto que buscamos soluciones periódicas 
en el tiempo. 

Es mucho más fácil resolver el problema equivalente 

• t u1 (0, t) = Ueiw , u1 (00, t) = 0 ;  

(14.49) 

(14.5 0) 

como la ecuación es lineal, la solución de ( 14.47)-(14.48) es la parte real de la 
solución de (14.49)-(14.5 0): 

u = Real [u1 ] . (14.5 1) 

La dependencia temporal de u 1 es de la forma eiwt, por lo que definimos 

u 1 = eiwtf(y). 

Sustituyendo en { 14.49)-(14.5 0) se tiene 

iwf = ll J" 
f(O) = U , f(oo) = O 

La solución de este problema es: 

con lo que la solución del problema de Stokes se escribe 

u =  Real [u1 ] = ue-..¡;;;¡;¡;,Y cos(wt - Jw/2v y). 

(14.52) 

(14.53) 

(14.54) 

(14.55 )  

(14.5 6) 

Este movimiento constituye una onda, amortiguada por la viscosidad, que 
transmite el movimiento de la placa al líquido. La distancia hasta la cual se 
deja sentir el movimiento de la placa es del orden de 

(14.5 7) 

que se denomina longitud de influencia o penetración viscosa. La velo­
cidad de fase de la onda ( es decir, la velocidad a la que se mueven los frentes 
de onda en la dirección y) ,  es w/� = .../'ivw. 

La resistencia viscosa que ejerce el líquido sobre la placa es, por unidad de 
área, 
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r¡ = µ (�

u
) = -py'vw U cos(wt + 1r /4) , 

uy y=O 
(14.58) 

que se opone al movimiento de la placa, pero con un desfase de 1r / 4 radianes 
en relación a su movimiento. 

Similarmente a como se hizo con el problema de Rayleigh, complicamos ligeramente el problema de Stokes considerando que el líquido no es ilimitado 
en la dirección y, sino que existe una placa fija a una distancia h de la móvil. 
El problema viene gobernado por: 

u(0, t) = U cos wt , u(h, t) = O. 

Este problema tiene solución analítica: 

u =  U cos wt exp[- � y] sin [Jw/2v (h - y)] / sin [� h] , 

(14.5 9) 

(14.60) 

(14.61) 

pero es más instructivo obtener soluciones analíticas simples en dos límites 
diferenciados de los parámetros del problema. Definiendo las variables adi­
mensionales 

u 
V = ij , T = tw 

la ecuación y condiciones de contorno (14.5 9)-(14.60) quedan 

donde 

v(0, r) = cos r , v ( l, r) = O , 

(14.62) 

(14.63) 

(14.64) 

(14.65) 

es una medida de la longitud de penetración viscosa en relación a la separación 
entre placas. 

En el límite /3 » l (óv » h), el primer miembro de (14.63) es despreciable, 
en primera aproximación, respecto al segundo y el problema es casi estaciona­
rio, obteniendose un flujo de Couette que varía con el tiempo a través de la 
condición de contorno: 
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[)2v 
0172 -:::::. 0 , v(O, r) = cos r , v (l , r) = O , ( 14.6 6 )  

V ':::::. ( 1  - 1J)  COS T .  ( 14. 67) Físicamente, cuando la longitud de influencia viscosa es mucho mayor que h, todo el fluido se pone en movimiento al unísono con la velocidad armonica de la palea inferior, variando la velocidad linealmente con y para satisfacer la condición de contorno en y = h. La solución anterior, que tiene errores del orden de (3-1 « 1, se puede hacer tan exacta como se quiera sin más que expandir v en potencias de (3-1 : 
(3-1 (3-2 v = Va + vi + v2 + . . . , ( 14. 68) donde Va , v1 , v2 , .. . son funciones de 1J y r, que se obtienen sustituyendo la ex­pansión anterior en ( 14.6 3 )-( 14.64) e igualando términos con potencias iguales de (3. En el orden más bajo se obtiene ( 14 . 6 6 ) ,  por lo que Va viene dado por el flujo de Couette ( 14.67). El término de orden (3-1 satisface 

v1 (0, r) = v1 ( l , r) = O ( 14 . 69) 
Sustituyendo Va = (l - 17) cos r, se obtiene 

v1 = [173 / 6  - r¡2 /2 + 17/ 3] sin T ( 14 .70) La solución v = Va + (3-1v1 tendría errores del orden de (3-2, y así sucesiva­mente. Este método de solución permite obtener una solución exacta como se quiera (siempre que (3-1 < 1) y se denomina método de perturbaciones regulares En el límite (3 « l (óv « h) ,  el primer término de ( 14.62) es el dominante, teniéndose, 
av ~ o  OT -la solución que satisface la condición de contorno en 1J = l es 
V ':::::.  0 

( 14.7 1) 
( 14 .72) Obviamente, esta solución no es uniformemente valida en todo el dominio fluido puesto que no satisface la condición de contorno en 1J = O. Físicamente, cuando la longitud de influencia viscosa es mucho menor que h, la mayor 
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parte del fluido no se entera de que la placa inferior se está moviendo y, en 
primera aproximación, se puede considerar que el fluido está en reposo. Pero 
existirá una capa delgada de fluido en las proximidades de la placa inferior 
( capa límite) en la cual la solución estacionaria exterior no es válida. El espesor 
de esta capa se determina exigiendo que los dos términos de la ecuación (14. 63) 
sean del mismo orden en ella. Definiendo 

r¡ = ó( (14. 73) 

donde la nueva variable ( se supone de orden unidad en la capa límite, y 
sustituyendo en (14. 63) se tiene 

(14.7 4) 

por lo que el espesor 8 es del orden de (3112 « 1. Haciendo 8 = (3112 y teniendo 
en cuenta que r¡ = 1 equivale a 

( = 1/8 - 00 , ó = (31 12 - o ' (14.7 5 )  

el problema dentro de la capa límite se reduce, en primera aproximación, al 
problema Stokes anterior: 

v(O, r) = cos r v(oo, r) = O  (14.7 6) 

cuya solución es (14.5 6), que escrita en las nuevas variables es 

(14.7 7 ) 

Esta solución tiene errores del orden de (3 « 1 . La obtención de soluciones 
de mayor orden ( errores de orden menor) es más complicada que en el caso 
anterior puesto que habría que obtener la solución exterior en las siguientes 
aproximaciones ( Ve = Veo + (31 12ve1 + . . .  , Veo = O) y acoplarlas con las sucesivas 
aproximaciones de la solución en la capa límite o solución interior [vi = Vio + 
(3112vi1 + . . .  , donde Vio es la solución de Stokes ( 14. 7 7 ) ] en el límite 17 - O 
para Ve y ( - oo para Vi .  Este esquema de solución se denomina método de perturbaciones singulares (o de los desarrollos asintóticos acoplados) 
y en general hay que utilizarlo cuando en la aproximación de orden menor 
desaparece el término que contiene las derivadas de mayor orden en la ecuación, 
con lo que no se pueden imponer la totalidad de las condiciones de contorno 
( el problema clásico de este tipo es la capa límite de Prandtl, correspondiente 
al límite Re - oo, que se considerará en la parte V I I I  de la asignatura). 



CAPÍTULO 14. MOVIMIENTOS UNIDIRECCIONALES DE LÍQUIDOS 209 

14.2.  Flujos con líneas de corriente circulares 
Otro tipo de movimiento fluido simple para el que existen algunas solucio­

nes exactas es aquel en el cual las líneas de corriente son círculos centrados en 
un eje de simetría común. En coordenadas cilíndricas (r, 0, z) ,  tomando el eje z como eje de simetría, estos movimientos vienen caracterizados por v = ueo , 
es decir, son unidireccionales en la dirección circunferencial eo. 

14.2.1 .  Ecuaciones y condiciones iniciales y de contorno 

Similarmente al caso cartesiano, la ecuación de continuidad 

(14. 78) 

nos dice que u no puede depender de 0. Las ecuaciones de cantidad de movi­
miento según las coordenadas r,  0 y z son: 

u2 8p 
-p- = - -

0 
+ PÍmr , r r 

O'U 1 8p [ 1  8 ( 8u ) 82u u l 
p- = - - - + µ - - r- + - - - + Pfmo , at r 80 r ar ar 8z2 r2 

ap O = - O
Z 

+ P f mz • 

(14 .79) 

(14.80) 

(14.81) 

En la dirección z hay balance hidrostático. En la dirección radial, las fuerzas 
másicas (asociadas, por ejemplo, a las fuerzas centrífugas de un sistema de 
referencia que gire), están equilibradas con las fuerzas de presión y las cen­
trífugas asociadas al movimiento del fluido. En la dirección 0 los términos 
convectivos son identicamente nulos. 

Para que el movimiento sea puramente circunferencial, las fuerzas másicas 
en las direcciones radial y azimutal sólo pueden ser las inerciales asociadas 
a un movimiento giratorio con simetría axial del sistema de referencia. Si la 
velocidad angular es ñ = n(t)ez , de acuerdo con ( 7.3) se tiene: 

fmo = -D'r , n' = dD/dt 
(14.82) 

(14.83) 
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Por otra parte, las fuerzas gravitatorias ( o las asociadas a la aceleración lineal 
del sistema de referencia) deben ser axiales: fmz = -g (donde g puede incluir 
una aceleración lineal a0) .  La ecuación (14.81) nos dice que la presión debe ser 
de la forma 

p = P(r, 0, t) - pgz ( 14.84) 

que sustituida en ( 14. 7 9) implica que u no puede depender de z y P no puede 
depender de 0: 

u = u(r, t) , 

P = P(r, t) 

(14.85) 

(14.86) 

Físicamente, una dependencia axial de u originaría, debido a las fuerzas cen­
trífugas y de Coriolis, una dependencia axial de P que produciría un movi­
miento axial, destruyendo el flujo puramente circunferencial. Por tanto, los 
movimientos puramente circunferenciales son también bidimensionales. 

Las ecuaciones (14.7 9)- (14.80) quedan pues 

u2 8P 
p- + p0.2r + 2p0.u = -8 , r r 

ou , (82u l ou u ) p- + pO. r = µ - + -- - -ot 8r2 r or r2 

(14.8 7) 

(14.88 ) 

que son dos ecuaciones diferenciales para u(r, t) y P(r, t) . Como condición 
inicial se debe especificar 

u(r, O) =  u0 (r) (14.89) 

las condiciones de contorno dependen de como se genere el movimiento y de 
la geometría del problema (se considerarán algunos ejemplos a continuación). 
En cuanto a la ecuación de la energía, que está desacoplada de (14.8 7)-(14.88), 
se escribe 

(14.90) 
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14.2.2. Movimiento entre dos cilindros que giran coaxialmente 
Considérese el movimiento de un líquido contenido entre dos cilindros coa­

xiales e infinitos, de radios R1 y R2 (R1 < R2), que giran alrededor de su eje 
con velocidades angulares f!i y 02 constantes. Para describrir el movimiento, 
que es estacionario, podemos tomar un sistema de referencia que gira con al­
guno de los cilindros, pero es quizá más fácil tomar uno fijo (por supuesto, el 
resultado sería el mismo). La ecuación (14.88) queda: 

0 = d2u + ! du _ � dr2 r dr r2 

siendo las condiciones de contorno 

u(r = R1 ) = 0 1 R1 , u(r = R2) = 02R2 . 

La solución general de (14.91) es 

y teniendo en cuenta (14.92) resulta 

u(r) = ( �� - 0
�2 ) ! + (º1:! -��) r 

R1 - R2 r I -

(14.91) 

(14.92) 

(14.93) 

(14.94) 

Una vez obtenida la distribución de velocidad, la presión (reducida) se puede 
obtener, salvo una constante arbitraria, mediante (14.8 7) :  

( Cf C}r2 

) P - Po = p - 2r2 + -2- + 2C1 C2 ln r 

donde las constantes C1 y C2 son las dadas en (14.92)-(14.93). 
El esfuerzo viscoso viene dado por 

(14.95 ) 

(14.96) 

(14.97 )  

El par por unidad de longitud axial que habría que hacer para mover, por 
ejemplo, el cilindro exterior de radio R2 sería: 
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(14.98) 

(Obsérvese que el par es independiente de r, por lo que sería el mismo, pero cambiado de signo, en r = R1 . )  La medida experimental de este par es un pro­cedimiento comunmente usado para determinar la viscosidad de los líquidos. Normalmente se mantiene fijo el cilindro exterior (02 = O) y se hace girar el interior con velocidad angular n, siendo el par necesario 41rµO/(R12 - R:¡2 ) . Casos particulares del movimiento anterior serían, por ejemplo, el generado en el interior de un único cilindro de radio R que gira con velocidad n. En este caso, la regularidad en el eje exige C1 = O en (14 .93) , y el líquido gira como un sólido rígido: 
U = f!r . (14.99) 

Si en el exterior de este único cilindro que gira existe una masa ilimitada de líquido, su distribución de velocidades viene dada por [C2 = O en (14 .93) para que u ---+  O cuando r ---+  oo] : 
( 14. 100) 

Este movimiento es irrotacional, siendo la circulación alrededor de cualquier curva cerrada que rodee al cilindro 21r R20. El par necesario para mover el cilindro (en el supuesto de que sólo hay fluido en el exterior) sería 41rµR20. La combinación de un movimiento giratorio dado por ( 14.99) para r � R y del torbellino potencial (14 .100) para r 2: R se suele denominar torbellino 
o vórtice de Rankine. 

14.2.3.  Difusión de un torbellino potencial 

Como ejemplo simple de un movimiento no estacionario, consideremos la disipación por viscosidad de un torbellino bidimensional cuyo campo de velo­cidad inicial es 
r 

u = - ,  21rr (14 .101)  
donde r = constante es la intensidad (circulación) del torbellino. Este campo de velocidades puede ser generado, por ejemplo, por un cilindro de radio R que gire en el seno del líquido con velocidad angular n [ecuación (14 .100)] en 
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el límite formal R - O, n - oo, de forma que R2n - constante = r /21r. En términos de la vorticidad, 

..... " ..... l o(ru) ..... _ ..... W = V /\ V = - -0-ez = W€z , r r 
( 1 4.102) 

w es cero en todo el campo fluido excepto en el eje, que es infinita, pero con circulación r constante alrededor de cualquier curva cerrada que rodee al eje. Es decir, la vorticidad está concentrada inicialmente en el eje de simetría y queremos averiguar cómo se difunde en el seno del fluido a lo largo del tiempo. El torbellino bidimensional ( 1 4 . 101) se suele denominar torbellino potencial, y está originado por una línea de vorticidad infinita situada en el eje de simetría. El problema viene gobernado por 
( 1 4 . 10 3) 

u(r, O) = r /21rr r > O  u(O, t) =/= oo t > O  u(oo, t) = O . ( 1 4.10 4) Este problema es más fácil de resolver utilizando la vorticidad ( 1 4.102) en lugar de la velocidad, siendo, además, más directa su interpretación física. Como v y w son perpendiculares y se trata del movimiento de un líquido, la ecuación de la vorticidad (7. 4 3 ) se reduce a una ecuación de difusión o conducción de calor con simetría cilíndrica: 
( 1 4.10 5) 

La razón por la cual la ecuación anterior para w es (ligeramente) más sim­ple que la ecuación (1 4.10 4) para u reside, simplemente, en que w = wez está dirigida según el eje cartesiano z, mientras que v = uee es a lo largo de circunferencias; así, mientras v'2w = (v'2w )ez , v'2v = (v'2 ·u - u/r2 )e0 ( ver sec­ción 1 . 1 ). La ecuación anterior hay que resolverla con las condiciones iniciales y de contorno 
w(r, 0) = 0  r > O  w(O, t) =/= oo  t > O  w(oo, t) = O  ( 1 4.10 6) Este problema es similar al de Rayleigh (sección 1 4 . 1 . 4), pero con simetría cilíndrica. Mediante análisis dimensional se demuestra que admite solución de 
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Figura 14.4: Difusión de un torbellino potencial: velocidad u dada por ( 14. 108) en función de r para distintos tiempos. Las unidades son tales que r /21r = 1 y v = l .  

semejanza, de forma que w vt /I' ( ó ur /I') es función sólo de la variable de semejanza r / v'vt,. La solución es: 
w(r, t) = -- exp - -r ( r2 ) 41rvt 4vt 

La velocidad viene dada por (véase figura 1 4 . 4 )  
u(r, t) = ! r wrdr = _!:._ [ 1  - exp (-_c_) ] r }0 21rr 4vt 

( 1 4.107) 

( 1 4.108) 
Para r pequeño ( r « J4°vt), el movimiento es un giro como sólido rígido con velocidad angular r /81rvt , 

rr u(r, t) � -8 - ; 
1rvt 

( 1 4 . 109) 
mientras que para distancias grandes del eje ( r » ✓,Ivt) el movimiento es irrotacional, tal y como era inicialmente, 

r u(r, t) � -21rr ( 1 4.1 10) 
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Es decir, el movimiento se a.semeja a un torbellino de Rankine, excepto para 
r = O( ./4vt).  Para t -t oo, todo el fluido se mueve como un sólido rígido de acuerdo con (14. 109) ,  pero con velocidad angular que tiende a cero. En cuanto a la vorticidad, ésta se difunde radialmente desde su valor infinito inicial en el eje. 3 A medida que transcurre el tiempo, la vorticidad va impregnando al fluido, y va transformando el movimiento irrotacional inicial (14 .101) en el movimiento rotacional (14. 109) (giro como sólido rígido; ver figura 14.4) . 
Referencias. 

■ G. K. BATCHELOR, 1967. Capítulo 4 . 
■ H. LAMB, 1975. Capítulo XI. 
■ L.D. LANDAU y E.M. LIFSHITZ, 1987. Capítulo 11. 
■ L. ROSENHEAD, 1988. Capítulo 111. 
■ H. SCHLICHTING y K. GERSTEN, 2000. Capítulo V. 

3El problema es similar al de conducción de calor en un sólido uniforme desde una fuente infinita de calor situada en r = O para t = O, ya que la ecuación y las condiciones de contorno de estos dos problemas son las mismas. 





Capítulo 15  

Movimiento laminar de 

líquidos en conductos 

15. 1 .  Corriente de Poiseuille en un conducto circu­
lar 

Considérese un conducto infinito de sección circular constante. El flujo 
unidireccional y estacionario originado por un gradiente de presión reducida 
p¡ = -a(p + pU) / ax constante, donde x es la coordenada axial a lo largo 
del conducto, viene gobernado por la ecuación (14.15), que en coordenadas 
cilíndricas (x, r, 0) se escribe 

µ a ( au) 
O = pz + - - r-

r ar ar 

siendo ü = uex. La solución general de esta ecuación es 

p¡r2 u = - - + C1 ln r + C2 4µ 

(15.1) 

(15 .2) 

Como la velocidad no puede ser singular en el eje, C1 = O; por otra parte, 
la velocidad debe ser nula en la pared del conducto, r = D /2, donde D es el 
diámetro del conducto, lo cual proporciona el perfil parabólico de velocidad 

U - -- 1 - -_ p¡D2 

[ 
(2r ) 2] 1 6µ D 

El esfuerzo de fricción en la pared es 

(15.3) 
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p¡D 

4 '  
mientras que el caudal que circula por el conducto es 

= ¡
21r 

¡
D/2 _ 1r D4 _ _ 1r D4 o(p + pU) 

Q - d0 dr ru 
- 28 p¡ 

- 28 0 
. 

o o 1 µ  l µ  x 

(15 .4) 

(15.5) 

Esta es la conocida ley de Hagen-Poiseuille, que estos autores obtuvieron 
experimentalmente (Hagen, 1839; Poiseuille, 1840) relacionando el caudal que 
circula por un conducto circular con la caida de presión entre sus extremos. 
En particular, si en dos secciones (1  y 2) de un conducto separadas por una 
longitud L (L » D) se conocen las presiones, Pi y P2 (en general la relación 
anterior es válida para la presión reducida P = p+pU, pero Hagen y Poiseuille 
consideraron tubos horizontales y sin fuerza másica alguna en la dirección del 
movimiento), como p¡ es constante, se tiene que p¡ = (Pi -P2) / L, y la ecuación 
anterior queda 

(15 .6) 

que es la expresión obtenida experimentalmente por Hagen y Poiseuille. i Este 
resultado confirmó experimentalmente la hipótesis de no deslizamiento del 
fluido en la pared hecha por Stokes (la cual se ha utilizado como condición de 
contorno en la pared), además de la ley de Stokes para fluidos Newtonianos. 
Por otra parte, la comparación de (15.6) con los resultados experimentales es 
un método directo muy simple para determinar la viscosidad de un fluido. 

La fuerza total que por fricción el fluido ejerce sobre la pared de un conduc­
to horizontal entre las secciones 1 y 2 se obtiene sustituyendo p¡ = (pi - P2)/ L 
en (15.4): 

(15 .7) 

1 El médico francés Poiseuille, que estudiaba la circulación de la sangre, expresó esta ley 
de la siguiente forma: el tiempo que tarda un determinado volumen de líquido en salir del 
conducto es, por unidad de volumen (es decir, Q- 1 

) ,  proporcional a la longitud del conducto, 
inversamente proporcional a la diferencia de presiones entre los extremos e inversamente 
proporcional a la cuarta potencia del diámetro. Por supuesto, ni Hagen ni Poiseuille se 
dieron cuenta que la constante de proporcionalidad está relacionada con la viscosidad del 
líquido, puesto que la primera deducción teórica del perfil de velocidades (15.3) no fue hecha 
hasta 1859 por Hagenbach y F. Neumann, que la obtuvieron independientemente. 
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expresión que se podría haber obtenido aplicando, simplemente, la ecuación 
de conservación de cantidad de movimiento en forma integral al volumen con­
tenido entre las dos secciones y la pared del conducto. 

El perfil de velocidad (15.3) se suele también expresar en términos de la 
velocidad media V, definida corno 

(15.8) 

teniéndose 

(15 .9) 

Es decir, la velocidad máxima ( en el eje) es dos veces la media. Por otra parte, 
la expresión de Hagen-Poiseuille ( 15.5) a veces se utiliza en función del número 
de Reynolds 

en la forma 

(p + pU) i  - (p + pU)2 
pV2/2 

Re = pVD 
µ 

= 

L 64 
D Re o 

(15 . 10) 

(15. 1 1 )  

Como se comentó en la sección 10.4 (ver lección 30 para más detalles), la 
solución anterior, aunque en teoría es válida para cualquier número de Rey­
nolds, se hace inestable para Re mayor que un cierto valor crítico Re* ( apro­
ximadamente igual a 2300 en las condiciones más desfavorables) , dejando de 
tener significado físico para Re > Re* . El flujo se hace entonces turbulento 
y será considerado en la última parte. Ya en 1839, casi 50 años antes que 
Reynolds hiciera sus famosos experimentos, Hagen indicó la existencia de dos 
regímenes diferenciados en el flujo de un líquido por un conducto. Hagen ob­
servó que la caída de presión, !::,,,p = PI - P2 , era lineal con la velocidad media 
cuando ésta era menor que un cierto valor [ley de Hagen - Poiseuille (15 .1 1) ] ,  
y que por encima de ese valor, pasada una cierta transición, !::,,,p era propor­
cional a la velocidad media al cuadrado, aproximadamente. Esta última ley es 
equivalente a decir que la expresión (15. 1 1 )  es independiente del número de 
Reynolds, lo cual veremos que ocurre en tubos rugosos para Re mayores que 
un cierto valor Rer , que depende de la rugosidad. Para números de Reynolds 
intermedios (Re* < Re <  Rer ) , la dependencia de !::,,,p con la velocidad media 
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sigue leyes intermedias entre la dependencia lineal y la cuadrática. En particu­
lar ,  para 2300 < Re < 104 , aproximadamente, se produce la transición entre 
los regímenes laminar y turbulento, e l:1p varía de manera fluctuante con V; 
para 104 < Re < Rer , l:1p tiene una dependencia logarítmica con Re (y por 
tanto con V) que se obtendrá en la lección 32. 

15.2 .  Flujo laminar en conductos de sección arbi­
traria lentamente variable 

La solución anterior, que es exacta para conductos infinitos de sección 
circular constante, es aproximadamente válida para conductos de sección len­tamente variable cuando el número de Reynolds es pequeño (fuerzas viscosas 
dominantes frente a las inerciales; ver más abajo para una especificación más 
precisa). 

En efecto. Considérese un conducto cuya sección ( que se supondrá de forma 
arbitraria) varía lentamente; es decir , si D es un diámetro característico y L la 
longitud del conducto, D / L « l. Por otra parte, el conducto no tiene que ser 
necesariamente rectilíneo, pero se supone que si es curvo, lo es suavemente; 
es decir, D / Re « 1, donde Re es cualquier radio de curvatura del conducto. 
En estas condiciones es lícito tomar, en primera aproximación y con errores 
del orden de D / Re « 1, ejes cartesianos, siendo el eje x la dirección axial a lo 
largo del conducto. La ecuación de continuidad para el movimiento del líquido, 

nos dice que 

V Vr - ~ -L D 

(15.12) 

(15.13) 

donde V es el orden de magnitud de la velocidad axial a lo largo del con­
ducto (vx) y VT es el orden de magnitud de las velocidades en las direcciones 
transversales y y z. Por tanto, 

D 
V-r ~ -V « V  L (15.14) 

y el movimiento se puede considerar casi unidireccional . Las ecuaciones de 
cantidad de movimiento en las direcciones x, y, z se escriben : 
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avx ( avx avx OVx ) _ _ a(p + pU) (ª2Vx 82vx 82vx ) p éJt +p Vx ax + vy ay + vz OZ - ax +µ ax2 + oy2 + az2 ' (15. 15) 
avy ( avy OVy avy ) - - 8(p + pU) ( EPvy EPvy 82vy ) p at +p Vx ax + Vy ay + Vz az - ay +µ OX2 + oy2 + oz2 ' (15. 1 6 )  
avz ( avz avz avz ) _ _ a(p + pU) (ª2vz a2vz 82vz ) p at +p Vx ax + Vy ay + Vz OZ - az +µ ax2 + oy2 + az2 • (15.17) En los términos correspondientes a las fuerzas viscosas, está claro que los su­mandos que involucran 82 / ax2 son despreciables frente a los otros con errores del orden de (D/L)2 « l. Se supondrá, en primer lugar, que los términos de fuerzas viscosas son dominantes frente a los convectivos. Teniendo en cuenta la ecuación (15.15) , esta condición implica 

V2 V P--¡; « µ D2 , 
y de las ecuaciónes (15.1 6 )-( 15.17) 

v; Vr PD « µ D2 ambas expresiones proporcionan la condición: 
D 

Re L « l ,  

( 15. 18) 

(15. 19) 

(15.20) 
donde Re = VD/v es el número de Reynolds basado en el diámetro. Obsérve­se que la condición de términos viscosos dominantes frente a los convectivos no necesariamente implica que Re « l ,  puesto que D / L « l ,  siendo una consecuencia, mayormente, de la casi unidireccionalidad del movimiento; por tanto, esta condición puede verificarse, incluso, para Re relativamente altos. Supondremos, además, que el movimiento es casi estacionario. Comparan­do los términos de aceleración local con los viscosos, esta hipótesis requiere que 
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D D2 -ReSt = - « 1 ( 1 5 .21) L vto 

donde t0 es un tiempo característico de variación de las magnitudes fluidas. 
Con estas hipótesis, las variaciones transversales de p + pU son despreciables 
frente a sus variaciones longitudinales: de ( 15 .15)  se tiene 

t:.L(P + pU) V L ~ µD2 ' 
{ 15 .22) 

donde t:.L denota variaciones longitudinales a lo largo del conducto, y de 
( 1 5 .1 6)- ( 15 .17) ,  

por lo que 

t:.r(P + pU) (D) 2 l ----- ~ - << t:.L(p + pU) L 

( 15 .23) 

{ 15 .24) 

Consecuentemente, las dos ecuaciones transversales pueden no tenerse en cuen­
ta en primera aproximación y suponer que 

p + pU � f(y, z) {15 .25) 

es decir , p + pU es constante en cada sección del conducto ( con errores del 
orden de D2 / L2 « 1).2 

Con todas estas aproximaciones, con errores del orden de ReD/L, (D/L)2 

y D2 /vt0 , las ecuaciones de cantidad de movimiento se reducen a 

0 = Pl + µ ( ::� + ::�) ( 1 5 .26) 

donde u = Vx y p¡ = -8(p + pU)/8x, que depende sólo de x y de t (a través de 
las condiciones de contorno, puesto que el movimiento es casi unidireccional 
y casi estacionario). Como condiciónes de contorno, u debe ser finita en el 
interior de la sección S(x; y, z) y u = O sobre el contorno c(x; y, z) = O. Por 
tanto, el fluido se comporta en cada sección del conducto como si éste tuviese 
longitud infinita y sección constante (la local); la coordenada x y el tiempo 
actúan como parámetros. Utilizando las variables adimensionales 

2Se puede comprobar que esta aproximación es independiente de la hipótesis ReD / L « 1 ,  
siendo una consecuencia de D / L « I exclusivamente. 



CAPÍTULO 15. MOVIMIENTO LAMINAR DE LÍQUIDOS EN CONDUCTOS 223 

µ v = p¡D2 u (15.27) 

donde D = D(x) y p¡ = pz (x, t) ,  la ecuación anterior y la condición de contorno 
en la pared se transforman en 

v = O en e( {, 77) = O . 

El caudal viene dado por 

donde 

J J pzD2 p¡D4 
Q = u dydz = --vD2�d17 = --r ,  

S(x;y,z) S({,17) µ µ 

r = Is v d{d17 

(15 .28) 

(15.29) 

(15 .30) 

(15.31) 

es un número que depende del tipo de sección ( obsérvese que en las ecuacio­
nes (15 .28)-(15 .29) no aparece ningun parámetro físico). La relación anterior 
es una generalización de la ley de Hagen-Poiseuille para secciones de forma 
arbitraria (lo cual está reflejado en r) y que pueden variar (lentamente) con x 
[contemplado en pz (x, t) y D(x) ;  téngase en cuenta que pz (x, t)D4 (x) no puede 
depender de x, puesto que Q es función, a lo sumo, de t] . 

Para una sección circular, la ecuación (15 .28) y las condiciones de contorno 
se escriben, en coordenadas cilíndricas con { = r / D, 

que proporciona 

y 

1 8 ( 8v ) 
� 8{ { 8{ = - l ,  

v({ = 1/2) = O , v({ = O) -:/- oo , 

r = d0 - - - e (� = - , ¡21r ¡l/2 1 ( 1 ) 7r 
o o 4 4 128 

(15.32) 

(15 .33) 

(15 .34) 

(15.35) 
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lo cual está de acuerdo con (15.3) y (15.5). Como otro ejemplo, en el caso de 
un flujo a través de una sección anular , R1 < r < R2 , la ecuación { 15 .32) 
sigue siendo válida, pero cambian las condiciones de contorno: 

v (( = a) =  v(( = 1) = O , (15.36) 

donde se ha tomado R2 para adimensionalizar r, ( = r/ R2, y a =  Ri / R2 < l .  
La solución es 

que proporciona 

v = - 1 - ( - -- ln ( 1 
¡ 2 1 _ a2 

l 4 ln a 

r - - 1 - a + ----
7r 

[ 4 ( l - a2)2

] 8 ln a 

(15.37 )  

( 15 .38) 

El perfil de velocidades anterior se asemeja a una parábola que recorre la 
región anular, cuyo máximo está en 

( 
1 2 

) 
1/2 

r - a  

R2 
= 

2 ln(l/a) 
{ 15.39) 

15.3 .  Tubos de longitud finita. Efecto de entrada 
La ley de Hagen-Poiseuille (15.5 ) [o ( 15.30)] es válida para tubos infinitos 

(si Re S: 2300 para conductos circulares), en los que el perfil de velocidades 
viene dado por ( 15.3). Obviamente, no existen conductos infinitos y en la 
región de entrada de los mismos el perfil de velocidades no es el parabólico 
(15 .3) . Justo en la sección de entrada la velocidad es practicamente uniforme 
e igual a Ue (ver figura 15.1). Ya dentro del conducto, el efecto de frenado por 
viscosidad del fluido en la pared va modificando el perfil de velocidad de forma 
que existe un núcleo central no viscoso de velocidad uniforme, en el cual el 
fluido se acelera al ser el caudal constante, y una capa límite cerca de la pared 
donde la viscosidad sí es importante, cuyo espesor va creciendo hasta que la 
viscosidad impregna todo el fluido y se llega al perfil de velocidad desarrollado 
de Poiseuille (donde la velocidad en el centro es 2ue ) - La longitud (de entrada) 
Le en la cual el fluido pasa de tener velocidad uniforme hasta llegar al perfil 
parabólico se puede estimar teniendo en cuenta que en esta región el término 
convectivo de la ecuación de cantidad de movimiento es tan importante como 
el viscoso: 
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de donde 

( 15.41) 

Experimentalmente se encuentra que Le/ D � 0,06Re; por tanto, la longitud 
de entrada máxima, para Re = Re* � 2300, es Le � 138D. La caída de presión 
en esta región de entrada es despreciable frente a la total en todo el conducto 
de longitud L si 

Le D 
- ~ Re- « 1 L L 

lle(P + pU) 
llL (P + pU) 

( 15 .42) 

lo cual coincide con la hipótesis de validez de la ley de Hagen-Poiseuille. 
En el caso en que Le sea del orden de L (tubos cortos), la caída de presión 

en la región de entrada es una fracción importante de la total, siendo necesario 
obtener el campo de velocidades y de presiones en dicha región. Para ello hay 
que resolver el problema reteniendo los términos convectivos y viscosos en la 
ecuación de cantidad de movimiento. En un conducto circular , si iJ = ue-; +ve-;. ,  
tomando las variables adimensionales 

2r r¡ = 
D 

, U = u/ Ue , V = V/ Ue , p = (p + pU)/ pu� 
( 15. 43) 

las ecuaciones de continuidad y cantidad de movimiento según el eje x en 
coordenadas cilíndricas se escriben 

� = O , U = 1 , V = O , p = Pe ; r¡ = 1 , U = V = O , 

( 15.44) 

( 15 .45) 

(15.46) 

donde se ha supuesto que el movimiento es estacionario y que D « L, lo cual 
hace innecesaria, en primera aproximación y con errores del orden D2 / L2 « 1, 
la ecuación de cantidad de movimiento según la dirección radial. La ecuación 
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X 

Figura 15. 1 :  Perfil de velocidad y caida de presión en la región de entrada (adaptada de White, 1983) . 

(15 . 45)  es parabólica, y el sistema de ecuaciones se resuelve numéricamente sin 
excesiva dificultad, proporcionando la caida de presión Pe - p({) . Sin embargo, 
muchas veces se utiliza una estimación de esta caida de presión obtenida me­
diante la aplicación de las ecuaciones de conservación de la masa y de cantidad 
de movimiento a un volumen de control constituido por la pared del conducto, 
la sección de entrada x = O donde u = Ue , y la sección de salida x = x, donde 
se supone que se ha alcanzado ya el perfil parabólico u = Vmax [1 - (2r / D)2] .  
La ecuación de conservación de la masa proporciona: 

-Ue7í �
2 

+ ¡
D/2 

Vmax [ 1 - ( �) 
2

] 21rrdr = O (15 . 47) 

es decir , Vmax = 2ue , como ya sabemos. La ecuación de cantidad de movi­
miento segun el eje x da (suponiendo que no hay fuerzas másicas, es decir , el 
conducto es horizontal): 
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de donde Pe - p( X) 2 8 ¡x 

212 = 3 - ---¡¡,¡ T¡(x, D /2)dx . pue P Ue o 
(15.49) 

Obviamente, T¡ = µ(au/ar)r=D/2 no se conoce puesto que para ello habría 
que resolver el problema (15.44)-(15.46). Pero, aproximadamente, podemos 
suponer que TJ viene dado por el perfil de velocidades parabólico, obteniéndose Pe - p(x) 2 64 X 

Re = 
pue D 

lpu2 = 3 + 
Re D ' 2 e µ (15.5 0) 

Se observa que el segundo sumando es el mismo que el proporcionado por la 
ley de Hagen-Poiseuille [ecuación (15 .11)], siendo dominante frente al primero 
(corrección debida al efecto de entrada) cuando ReD/x « 1, como ya sabemos. 
Si se resuelve numéricamente el problema (15 . 44)-(15.46) se encuentra que (Pe - p( x))  /½pu� se aproxima bastante rápidamente a k + 64x / ( ReD) cuando x crece, siendo prácticamente coincidente cuando 64x/(ReD) � 1, pero con k � 1,16 en vez de 2/3 (esta rápida aproximación es debida a que 64 » k) .  

15.4.  Flujo laminar no estacionario en un conducto 
circular 

Para terminar esta lección se considerará la corriente de Poiseuille no es­
tacionaria en un conducto de sección circular; en particular, consideraremos 
el transitorio desde el reposo hasta que se alcanza el perfil de velocidad de 
Poiseuille (15.3) cuando en un conducto de longitud L » D se aplica un gra­
diente de presión constante p¡ = -a(p + pU) / ax = [ (p + pU) 1 - (p + pU)2] / L.  
La ecuación de  cantidad de  movimiento axial y las condiciones iniciales y de 
contorno son: 

au 1 a ( au
) p- = p¡ + µ-- r-

at r ar ar 
(15.51) 

t = O , u =  O (O $. r $. D /2) ; r = D /2 , u =  O ;  r = O, u -=/  oo. 
(15.5 2) 

Esta ecuación se puede hacer homogenea ( eliminar la constante p¡) mediante 
el cambio de variable p1D2 

[ 
( 2r) 2] 

U = 16µ 
1 - D 

- u ,  (15.53) 
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donde el primer sumando del segundo miembro es el perfil de velocidades de 
Poiseuille ( 15.3) , o solución estacionaria a la que tiende u cuando t - oo 
[cuando el primer miembro de ( 15 .51)  se hace cero] . La ecuación queda: 

au = 
� �  (rºu) . 

8t r or ar (15.54) 

Aunque el tiempo que tarda en alcanzarse la solución estacionaria ( que en 
la nueva variable es U = O) es infinito, el orden de magnitud efectivo de 
este tiempo se obtiene por comparación de los dos términos de la ecuación 
anterior, resultando que este tiempo es del orden de t0 ~ D2 / 11. Esto nos 
sugiere introducir las variables adimensionales 

t t4v T = - = -
to D2 

que transforman (15 .54) y ( 15.52) en 

Ul6¡t 
, V =  p¡D2 , ( 15.55) 

( 15.56) 

T = 0 , v = l - e (O :s; ( :s; l) ; ( = 0 , v :¡f oo ; ( = 1 , v = 0 . 
(15.57) 

La solución general de la ecuación anterior se puede obtener por separación 
de variables: 

donde ..\ es una constante, en principio arbitraria. La solución es: 

( 15.58) 

( 15.59) 

(15.60) 

( 15.61) 

donde A, B y C son constantes arbitrarias y J0 e Y0 son funciones de Bessel de 
orden cero. Como Y0 es singular en el eje (( = O) ,  se tiene que B = O. Por otra 
parte, G(() tiene que anularse en � =  1 ,  por lo que la constante ..\ no puede ser 
cualquiera, sino un cero de J0 . Teniendo en cuenta que las funciones J0 (>.n() , 
donde los >-n son los ceros positivos de J0 , forman un conjunto completo de 
funciones (definidas en O ::; ( ::;  1 ) ,  la solución se puede escribir como: 
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o.e 

0.7 

0.2 

0.1 

� � � M M M V U U 

u/2V � 16 µ u /  p1 IY 

Figura 15.2: Puesta en marcha de un flujo laminar en un tubo circular: Perfiles de velocidad 
para distintos tiempos. 

v((, r) = L An Jo(>-n()e-A�r (15.62) 
n=l 

Las constantes An se obtienen mediante la condición inicial, que no se ha 
impuesto todavía: 

1 - e = L AnJo(>-n() · 
n=l 

Haciendo uso de la ortogonalidad de las funciones J0(>.n() ,  

11 
{ 

O si m #, n 
Jo(An()Jo(>-mf.)(d( = ! [J ( ' )] 2 · _ , 

o 2 1 "m SI m - n 

(15 . 63) 

(15.64) 

multiplicando (15 .63) por f,J0(>.m() e integrando entre ( = O y f. = 1, se 
obtiene 

(15 . 65 )  

donde también se ha hecho uso de 
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{ 15.6 6 )  

siendo J¡ la función de Bessel de orden uno. 3 Así, la solución se puede expresar en la forma 
V =  t, ,X�J�(.�n) J0

(-Xn�)e-A�r ( 15. 67) 
o, en variables dimensionales, 

La solución es suma de un término transitorio, expresado como una serie infini­ta, y la corriente estacionaria de Poiseuille ( 15.3) , a la cual tiende la solución cuando t - oo. Cuando t es mayor que aproximadamente t0 = D2 / 4v, el término exponencial se hace muy pequeño y la solución se puede aproximar por la corriente de Poiseuille, lo cual es otra forma de ver que t0 es el tiempo característico en el que la solución alcanza el estado estacionario [comparar con la condición ( 15.2 1) de validez de la solución de Poiseuille] . Algunos perfiles u/umax = u/2V = u 1 6µ/ D2p¡ se representan en la figura 15.2. Esta distribu­ción de velocidad fue calculada, originariamente, por Szymanski en 1932. En la figura se han tomado 5 términos de la serie ( 15.68), los cuales son suficientes para que la serie converja con errores menores del uno por ciento para tiempos pequeños y sea practicamente exacta para T = 0( 1). 
Referencias. 
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3Para las propiedades generales de las funciones de Bessel, así como su uso en desarrollos 
en serie, puede consultarse, por ejemplo, R.V. Churchill y J.M. Brown, 1987, Fourier Series and Boundary Value Problems, capítulo 8. 



Capítulo 16 

Lubricación fl uidomecánica 

16. 1 .  Introducción 

Sabido es que dos superficies sólidas en contacto pueden deslizar mucho 
más fácilmente una sobre otra si entre ellas existe una capa de fluido. Sin un 
lubricante, el rozamiento sería mucho mayor, originando el desgaste de las su­
perficies sólidas, e incluso su deformación debido al calentamiento por fricción. 
Bajo ciertas condiciones, en la capa de fluido se genera una sobrepresión que 
puede sustentar a uno de los sólidos en contacto, facilitando su deslizamiento. 
Por ejemplo, si dejamos caer una hoja de papel sobre un suelo liso, a veces 
ésta se desliza suavamente largo tiempo sobre el suelo debido a la sobrepresión 
creada en la capa de aire en movimiento entre la hoja y el suelo, que sustenta a 
la hoja de papel. Existen muchas situaciones de interés en la práctica ingenieril 
donde se hace uso de este fenómeno. Un ejemplo típico que consideraremos 
con algun detalle es el cojinete cilíndrico: un eje gira en el interior de una 
carcasa, ambos cilíndricos; para reducir la fricción y evitar el contacto entre 
las superficies sólidas se introduce un fluido entre ellas. Este fluido se elije de 
tal modo que, para la velocidad de giro dada, la sobrepresión originada en la 
capa fluida por el movimiento ( que puede llegar a ser muy importante) sea 
suficiente como para sustentar el peso del eje y todo lo gira con él, evitando 
así el contacto entre las superficies y, por tanto, el desgaste. Básicamente, este 
fenómeno se basa en que, al ser muy delgada la capa fluida, los esfuerzos de 
fricción originados por el movimiento son muy grandes, los cuales pueden dar 
lugar a gradientes de presión muy importantes si se elije apropiadamente la 
geometría de la capa fluida. Para ilustrar el fenómeno consideraremos primero 
el movimiento en el interior de una capa fluida delgada bidimensional entre 
dos superficies sólidas originado por un gradiente de presión (reducida) y por 
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Po �-X ---r--: h(x) -L ___ j 
V 

Figura 16. 1 :  Película líquida bidimensional. 

el movimiento de una de las superficies sólidas, lo cual es una generalización 
del flujo de Couette y de Poiseuille considerado en la sección 1 4. 1.3. Este 
problema se generalizará a capas delgadas tridimensionales, obteniéndose la 
denominada Ecuación de Reynolds de la lubricación fluidomecánica. Por últi­
mo se considerará el caso particular de los cojinetes cilíndricos, de gran interés 
práctico. 

16.2.  Movimiento en películas delgadas. Efecto cuña 
Considérese una película líquida 1 bidimensional, confinada por una super­

ficie plana y otra superficie no necesariamente plana, de forma que el espesor 
de la película es una función h(x) conocida (ver figura 16.1) . El líquido de esta 
película se mueve debido al movimiento de la superficie plana paralelamente 
a sí misma con velocidad V en relación a la otra superficie y debido a una 
diferencia de presión reducida, P0 - Pi = Po + pU0 - (P1 + pU1 ) ,  entre sus 
extremos, donde U es el potencial de fuerzas másicas. Supondremos que la 
capa líquida es muy delgada, es decir , 

h « L (16.1) 

para cualquier x. De la ecuación de continuidad, 

(1 6.2) 

donde v = ue,_-r; + vey , esta condición implica que el movimiento es casi unidi­
reccional : v ~ (h/ L)u « u ~ V. Las ecuaciones de cantidad de movimiento 
en las direcciones x e y se escriben 

1 En general, todo lo que se va a ver a continuación es válido si el flujo se puede considerar 
como incompresible, no necesariamente de un líquido 
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av av a(p + pU) a2v pu ax + pv ay = - ay + µ ay2 ' 
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(16.3) 

(16.4) 

donde se ha despreciado en los términos viscosos a2u/ ax2 y a2v / 8x2 frente a a2u/ ay2 y a2v / ay2 , respectivamente, con errores de orden de ( h/ L )2 . También 
se ha supuesto que el movimiento es casi estacionario, lo cual implica que, o 
bien V, P0 y P1 son independientes del tiempo ( en cuyo caso el movimiento 
sería estrictamente estacionario), o bien si varían con el tiempo lo hacen tan lentamente que el tiempo característico de variación, t0 , satisface 

(16.5) 

donde h0 es un valor característico de h(x) . Por último, supondremos que las 
f uerzas viscosas son dominantes frente a las inerciales, es decir , 

Vho ho ho - - = Re- « 1  v L L (16.6) 

condición que puede ser satisfecha incluso para Re moderadamente altos de­
bido a que h0/ L « l .  

Las variaciones de presión reducida en la dirección y son, debido a que h0 « L, mucho menores que las variaciones en la dirección principal del movimiento, x. Por este motivo, con errores del orden de (h0/ L)2 « 1, se puede suponer 
que p + pU es independiente de y, siendo, por tanto, innecesaria la ecuación 
(16.4) en el orden de aproximación más bajo. Las ecuaciones y condiciones de 
contorno que gobiernan el movimiento quedan 

au av - o ax + ay -

0 _ _ a(p + pU) a2u 
- ax + µ ay2 ' 

u(y = O) =  V ,  u(y = h) = O, v(y = O) =  O ;  

(p + pU)x=O = Po , (P + pU)x=L = Pi , 

(16. 7) 

(16.8) 

(16.9) 
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donde en vez de una condición de contorno para u según x se tiene una segunda 
condición de contorno para p + pU.2 El gradiente de presión reducida o(p + pU) p¡ = - ox (16.10) 

que es independiente de y en primera aproximación, es una función suave de x 
y de t , ya que esta dependencia es a través de las condiciones de contorno en 
donde aparecen las funciones h(x) ,  V(t) , P0(t) y Pi (t) [téngase en cuenta las 
condiciones (16.1) , (16.5 ) y (16.6) ; h también podría depender del tiempo en 
esta aproximación siempre que se cumpliera la condición (16.5 )]. La integración 
de (16.8) junto con las condiciones de contorno para u proporciona el perfil de 
velocidad ( Couette + Poiseuille) :  

(16.11) 

Sustituyendo en la ecuación de continuidad, integrando con respecto a y e 
imponiendo la condición de contorno v(y = O) = O, se obtiene 

(16.12) 

Como v = O también en y = h, esta expresión proporciona una ecuación 
diferencial para p¡ , que se puede escribir en la forma 

es decir, 

h3 Vh -p¡ + - = q  
12µ 2 

(16.13) 

(16.14) 

es independiente de x. Esta es otra forma de expresar la ecuación de continui­
dad :  el caudal por unidad de longitud, 

1h(x) h3 Vh q =  udy = -p¡ + -
0 12µ 2 

(16.15 ) 

2Las condiciones de contorno para la presión (reducida) son aproximadamente válidas, 
puesto que en las regiones de entrada y salida de la película líquida la condición ( 16 .1 )  no se 
satisface. Pero el error cometido es del orden de ho/ L « 1 ,  puesto que la caida de presión 
en estas regiones, de espesores .ó.x ~ h, es del orden .ó.P ~ µV/ho, mientras que la caida de 
presión en toda la película líquida es del orden de .ó.P ~ µV L/h� . Por supuesto, la solución 
que veremos a continuación no es válida en las proximidades de la entrada y de la salida, en 
regiones cuyas longitudes son del orden de h0 « L. 
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[comparese con la expresión (14.21)] es independiente de x (puede ser una 
función de t a través de las condiciones de contorno si éstas dependen del 
tiempo). Para obtener esta constante q y la distribución de presión reducida 
aplicamos las dos condiciones de contorno para la presión reducida: 

8(p + pU) 6µ V 12µq 
-p¡ = 8x = --,;:¡- - -¡;a ' 

1x dx 1x dx P + pU - Po = 6µV º h2 (x) - 12µq º h3(x) , 
q = [ 6µ V t t - Pi + Po] / [ 12µ t �:] 

(16.16) 

(16.17) 

(16.18) 

Conocida h (x) , (16.18) nos da el caudal por unidad de longitud que circula por 
la película líquida, q, que, sustituido en (16.17), proporciona la distribución 
de presión reducida p + pU. Una vez obtenido p + pU, la expresión (16.11) 
permite conocer la velocidad u. 3 

El fluido ejerce sobre las superficies una fuerza debida a la presión y a 
los esfuerzos viscosos. Sobre la superficie inferior, la fuerza de presión es en 
la dirección -ey, y está compensada con una reacción normal; la fuerza de 
fricción es en la dirección -éx, y es la que hay que vencer para mover la 
superficie con velocidad V, siendo por unidad de longitud, 

F¡(y = O) = 1L r¡ (y = O)dx = - 1L µ (��) y=O dx = 1L (µ; - p;h ) dx , 
(16.19) 

Sobre la superficie superior, las fuerzas de fricción y presión tienen compo­
nentes según los ejes x e y. Como dh/dx ~ h0/ L « 1, la componente x de 
la fuerza de presión y la componente y de la fuerza de fricción son muy pe­
queñas comparadas con las otras proyecciones. La componente x de la fuerza 
de fricción está compensada por una reacción en dirección opuesta, ya que la 
superficie superior es fija. Por último, la componente y de la fuerza de presión 
es, descontada la correspondiente a la presión atmosférica: 

(16.20) 

donde no se ha especificado y = h puesto que p no depende de y en primera 
aproximación, y donde tampoco se ha concretado que es la componente según 

3Esta solución fue obtenida por Reynolds en su artículo de 1886 sobre la teoría de la lubricación fluidomecánica. 
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el eje y puesto que la normal a la superficie es practicamente paralela al eje y 
al ser dh/dx « l. 

La fuerza ele presión (16.20) debe sustentar, en las aplicaciones prácticas 
de la lubricación fluidomecánica, al sólido superior (ver sección 16.3). Para ello 
es necesario que se produzca una importante sobrepresión en el interior de la 
película líquida, lo cual es posible si h decrece en la dirección del movimiento o,  
expresado más generalmente si  h(x = O) > h (x = L) .  De una forma intuitiva, 
la existencia de esta sobrepresión se deduce fácilmente de la ecuación (16.15) :  
como el caudal total q es constante, y el caudal de Couette Vh/2 es mayor 
en x = O que x = L, el caudal de Poiseuille h3p¡/12µ debe ser negativo en x = O y positivo en x = L, lo cual implica que la presión en el interior de 
la película líquida debe ser mayor que en los extremos. Este es el llamado efecto cuña que hace posible la lubricación fluidomecánica, estando asociado 
a una contracción de la película líquida en la dirección del movimiento. Para 
cuantificar este efecto, consideremos el caso sencillo en que h( x) es lineal : 

(16.21) 

Por simplicidad suponemos que P0 = Pi = Pa ( es decir , el movimiento del 
líquido está originado unicamente por el movimiento de la superficie inferior; 
lo cual no quiere decir que no se produzca un gradiente de presiones en el 
interior y, por tanto, una corriente tipo Poiseuille). De (16.18) y (16.17) se 
tiene 

donde 

q = V hoh i 
ho + h1 

_ (p - Pa)h� 1 - a s ( l  - s) </> =  6µVL = l + a [l + (a - l)s]2 ' 
(16.22) 

(16.23) 

h1 X a =  - , s = - (16.24) ho L 
La función </>(s) se representa en la figura 16.2 para distintos valores de a. Esta 
función presenta un extremo en s = (1 + a)-1 , que es un máximo si a < l. 
Es decir , se produce una sobrepresión en el interior de la película líquida si dh/dx = - h0 ( l  - a)/ L < O (a < 1). Este máximo de la presión vale, en forma 
adimensional, 

Pmax - Pa pV2/2 3¡1,L( l  - a) pVh� ( l  + a)a 1 L 3(1 - a) Re h0 (1 + a)a (16.25) 
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.... 

2 
-0.1 '-----'------'----'-----'---_._ _ _.__-'----"--------'-------' 

O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 • Figura 16.2: Función </J(s) [ecuación ( 16.23)] para diversos valores de a. 

que es un número muy grande (recuerdese que Reh0/L « l ) ,  salvo que o: �  1, es decir, salvo que las superficies sean prácticamente paralelas. De aquí la importancia del efecto cuña, que hace posible la lubricación fluidomecánica. La fuerza de presión ( 16.20) vale 
6µVL2 [ l + o:  ] Fp = h�( l  - o:2) o: - 1 ln o: - 2 ' 

mientras que la fuerza de fricción (16. 19) sobre la superficie inferior es 
F = 6µ V L [� o: + 1 ln o: - 1] f h0 ( 1 + o:) 3 o: - 1 

(16.26) 

(16.27) 
De (16.26) se encuentra que Fp es máxima para o: � 0, 4 56, resultando Fp � 
0,776µV L2 /h� y F¡ � 1 ,657µV L/h0 • Si 1 - o: = 0(1) ,  el cociente entre la fuerza de fricción y la de presión es una cantidad pequeña: 

( 16.28) 
lo cual es, como se apuntó en la introducción, la base de la lubricación fluido­mecánica. 
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16.3. Ecuación de Reynolds 

La solución anterior se generaliza fácilmente para una película líquida tri­dimensional. Supongamos que la película se extiende sobre una superficie en la que definimos unas coordenadas curvilíneas ortogonales (o:, /3) . Un punto de la película líquida viene definido por las coordenadas (a, /3, y) ,  siendo y la coordenada normal a la superficie. Si se verifican las hipótesis de la sección anterior, es decir, 
ho Vh0 h0 l h2 
-¡; « 1 , ---;;- T « , vt: « 1 , ( 16.29) 

donde h0 , L, V y t0 son, respectivamente, un espesor característico de la película líquida, una longitud característica, una velocidad característica y un tiempo característico, las componentes o: y /3 de la ecuación de cantidad de movimiento se escriben, en primera aproximación, 
Po: fPuo: 

O = ha: + µ 8y2 

P(3 82uf3 O = hf3 
+ µ 8y2 

donde v = Uo:eo: + Uf3e'f3 + vey , lv l « luo: I , lv l « luf3 1 , 
_ 8(p + pU) Po: = - 8a 

_ 8(p + pU) ' Pf3 = - 8{3 ' 

( 16.30) 
(16.31) 

( 16.32) 
y dl = h0dae-; + hf3d/3e¡3 es el elemento de longitud sobre la superficie. Al igual que antes, la componente y de la ecuación de cantidad de movimiento nos dice que, con errores del orden de (h/L)2 « 1 ,  p + pU no es función de 
y, siendo por tanto prácticamente constante transversalmente a la película líquida. Suponiendo que la superficie que se mueve es la inferior (y = O) , con velocid�d V = V0e-; + Vf3e/3 , las condiciones de contorno para (16.30)- (16.31) son: 

uo:(Y = o) = v°' , uf3(Y = o) = vf3 , uo: (Y = h) = uf3 (Y = h) = o , ( 16 .33) donde h = h(o:, /3; t )  es el espesor de la película líquida. La solución es, por tanto, 
(16.34) 
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(1 6.35)  

Los caudales en las direcciones o: y /3, por unidad de longitud en las respectivas 
direcciones transversales /3 y o:, son: 

1h 
h3 Po: Vo:h 

Qo: = 
0 

Uo:dy = 
12µ ho: 

+ -2- ' (1 6.36) 

(1 6.37) 

La ecuación que satisface la presión (reducida) se obtiene, al igual que antes , 
aplicando una ecuación de conservación de la masa a la solución anterior. Si 
el flujo es incompresible, la ecuación de continuidad se escribe 

Integrando entre y =  O e y =  h y teniendo en cuenta que v (y = h) � oh/&t, 
se llega a 

oh o o 
ho:h/3 ot + 00

(q0h13) + o/3 (q13h0 ) = O,  (1 6.38) 

que es la Ecuación de Reynolds. De acuerdo con ( 16.36)-(1 6.37) y ( 16.32), 
ésta es una ecuación en derivadas parciales, de segundo orden , para p + pU. 
Al ser elíptica, su resolución requiere que se conozca sobre todo el contorno 
C(o:, /3) = O de la película líquida la presión reducida , o bien su derivada 
normal [lo cual es equivalente, de acuerdo con ( 16.36)- (1 6.37) , a especificar q0 
y q13] . Es decir, sobre C(o:, /3) = O, 

(1 6.39) 

donde n0 y n13 son las componentes del vector unitario normal al contorno 
en las direcciones o: y /3. Cada una de estas condiciones de contorno puede 
también especificarse sobre una parte de la superficie. Por último, no son 
necesarias condiciones iniciales puesto que la derivada temporal no afecta a la 
presión ( el problema es casi estacionario, y las variaciones temporales vienen 
dadas a través de las condiciones de contorno, h(t) , V0 (t) , etc., debiéndose 
verificar h�/vt0 « 1). 
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Figura 16.3: Cojinete cilíndrico. 

16.4. Cojinetes cilíndricos 

Como aplicación práctica de la Ecuación de Reynolds (16.38) considerare­
mos el caso de un cojinete cilíndrico, esquematizado en la figura 16.3. Básica­
mente, un eje cilíndrico de radio R1 gira con velocidad angular w en el interior 
de una carcasa, también cilíndrica, de radio R, siendo R - Ri « R; en el 
espacio entre ellos existe un líquido (fluido incompresible , en general) de vis­
cosidad µ y de densidad p, que actúa como lubricante. Como consecuencia del 
giro se produce una escentricidad e entre los ejes 01 y O de los dos cilíndros, de 
forma que la recta 01 O forma un ángulo 7/J con la vertical. Esta escentricidad 
se traduce en un espesor variable de la película líquida que produce un efecto 
cuña, el cual debe ser suficiente para sustentar la carga que gira con cilíndro 
interior , de peso W. 

El problema que se va a resolver es el  siguiente: Dados R, R1, w y las 
propiedades del fluido, se calcularán las distribuciones de presión y velocidad 
en la película líquida. Con estos resultados se obtendrá, por una parte, la 
fuerza de fricción que el fluido ejerce sobre el eje, y, por tanto, el par necesario 
para hacerlo girar; por otra parte se calculará la fuerza de presión sobre el 
eje, la cual tiene que igualar el peso del cilíndro; este balance proporcionará el 
ángulo 7/J, y una relación entre la escentricidad e, el peso del eje W, y las 
propiedades del fluido, las cuales se elegirán a posteriori para que e < R - R1 , 
es decir, para que los cilíndros no se toquen (si las características del fluido son 
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fijas, habría que variar la velocidad de giro w o los radios R y R1 , pero esto no 
es lo habitual). En la elección del líquido también intervienen otros requisitos 
como la condición de que no cavite como consecuencia de las importantes 
depresiones que se producen en la película líquida (se considerará este efecto 
en la sección 16.4.4) , que sea estable frente a los incrementos de temperatura 
originados, etc. 

Para resolver este problema utilizamos coordenadas cilíndricas (z, 0) sobre 
la superficie del cilíndro interior ( el ángulo 0 se mide, por ejemplo, a partir de 
la recta 01 O), y la coordenada y perpendicular a esta superficie. El espesor 
h( 0) de la película líquida viene dado por la relación 

R¡ = [R - h(0)]2 + e2 - 2e [R - h(0)] cos(1r - 0) 

como 

R - R1 ~ e « R , h(0) « R , 

en primera aproximación se tiene 

h(0) = R - R1 + e cos 0 .  

( 16.40) 

( 16 .41) 

( 16.42) 
Teniendo en cuenta que hz = 1 y h0 = Ri , y que Vz = O, V0 = wR1 , los 

caudales por unidad de longitud qz y q0 son [ecuaciones ( 16.36)-(16.37)] : 
h3 h3 fJp 

qz = 12µ
Pz = - 12µ fJz 

h3 wR1 h h3 fJp wR1 h qo = 12µR1 
Po + -2- = - 12R1µ 80 + -2-

(16.43) 
(16.44) 

donde se ha supuesto que las fuerzas gravitatorias son poco importantes ( el 
cojinete es horizontal y su radio no es muy grande). Introduciendo estas ex­
presiones en la Ecuación de Reynolds ( 16.38) se tiene la siguiente ecuación 
diferencial para la presión: 

(16 .45) 
Como condiciones de contorno imponemos 

p(±L/2 , 0) = Pa , p(z, O) = Po
= p(z, 21r) , (16.46) 

donde Pa y p0 son presiones conocidas. Para escribir este problema en forma 
adimensional definimos 
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quedando 

h TJ = R - R1 = 1 + € COS O e 
"' _  (p - Pa) (R - R1 )2 'I' - 6µ,wRi ' 

( 1 6.47) 
(1 6.48) 

(1 6 .49) 
</>(±1/2, 0) = O ' </>((, O) = </>((, 271') = <Po = (Po - �t�¡ R1 )2 

( 1 6.50) donde 
(1 6.51 )  que junto con f. y <Po son los únicos parámetros que aparecen en el problema. Aunque este problema tiene solución analítica, es lo suficientemente complica­da como para que sea interesante obtener soluciones aproximadas para valores límites del único parámetro que no necesariamente es de orden unidad en el problema, {3 = Ri / L. 

16.4. 1 .  Cojinetes largos En primera aproximación se tiene 
(1 6 . 52) 

que integrada da 
( 1 6.53) 

donde la constante q no es otra que el caudal -qe adimensional [el problema se reduce, pues, al de una película líquida bidimensional como las consideradas en 1 6 . 1 ,  con el espesor h dado por ( 1 6.42) ] .  Integrando otra vez e imponiendo </>(0 = O) = </>0 , se tiene 
18 d0 1º d0 </>( 0) - <Po = ---- + q 3 · o ( 1  + f. cos 0)2 o ( 1  + f. cos 0) (1 6 . 54) 
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Figura 16.4: Distribución de presión en un cojinete cilíndrico largo para t: = 0,5. 

Teniendo en cuenta que </>(0 = 271') = <Po, se obtiene el caudal q: 

J,271' di} 
- o (l+E cos 8)2 

q = Í,21r d8 = 
o (l+E cos 8)3 

La distribución de presión queda 

1: sin 0(2 + t cos 0) 
(2 + 1:2)(1 + 1: cos 0) ' 

(16.55 )  

(16.5 6) 

que se representa en la figura 16.4 para una escentricidad 1: = 0,5 . Esta solución 
fue obtendia por Sommerfeld en 1904. 

La solución anterior no vale cerca de los extremos del cojinete, � = ± 1/2, 
ya que la presión no depende de z y no se pueden verificar las condiciones de 
contorno. En las proximidades de � =  ±1/2, sendas capas límites de· espesores 
de orden f3 « l, en las que todos los términos de (16.49) cuentan, se encargan 
de que se cumplan las condiciones de contorno </>(� = ±1/2) = O, pero que no 
consideraremos aquí puesto que su efecto es despreciable ( errores del orden 
/3) en las fuerzas de fricción y de presión que el fluido ejerce sobre el cojinete. 

La fuerza de fricción que el líquido ejerce sobre el eje es, por unidad de 
área: 
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(

8u0
) 

h 8p µwR1 71 = -µ 8y y=o = 2R1 80 + -h-

- µwR¡ 
[4 _ 3(1 - t2) 1 l 

- (R - R1) (1 + € COS O) 1 + t2/2 1 + € COS O ' 

donde se ha hecho uso de 

1 8p 
( y) u0 = -- -y(y - h) + wR1 1 - -2R1µ 8() h 

(16.5 7) 

(16.58) 

y de (16.42) y (16.5 6).  El par necesario para mover el eje es, por unidad de 
longitud, 

Par = /
21r 

T Rf d() = 41rµwRf 1 + 2t2 

L Ío f R - R1 �(2 + t2 ) 
(16. 5 9) 

Debido a que p(0) - p0 es una función impar de 0 [ecuación (16.5 6); ver 
figura 16.4], la fuerza de presión es perpendicular a la recta 010, y como ésta 
debe igualar al peso W del eje, el ángulo de 01 O con la vertical es '1/; = 7í /2. 
El balance entre W y la fuerza de presión da la siguiente relación entre W y 
los demás parámetros del problema: 

(16. 60) 

Dada una configuración geométrica (R y R1 ), una velocidad de giro (w) y 
un fluido (µ) , esta ecuación nos relaciona la carga del cojinete por unidad de 
longitud con la escentricidad. Para W = O, t = O (cilíndros concéntricos), 
mientras que para W - oo, t - 1 (los cilíndros se tocan en () = 1r) . La carga 
máxima no está, por tanto, condicionada por limitaciones de escentricidad, 
aunque para € ---t 1 el par necesario para hacer girar al eje tiende a infinito. 
Hay otros condicionantes que limitan la escentricidad máxima y, por tanto, 
la carga máxima. Quizá el más importante es la cavitación: De la expresión 
(16.5 6), se tiene que a medida que € aumenta la presión máxima aumenta, 
pero también disminuye la presión mínima al ser p( 0) - p0 una función impar 
de 0 (ver figura 16. 4) .  La presión mínima no debe ser inferior a la presión 
de vapor del líquido a la temperatura de trabajo para evitar que cavite. Este 
requerimiento impone una escentricidad € máxima y, por tanto, una carga 
máxima. A veces, por requerimientos físicos (por ejemplo, la carga, w y el 
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fluido son dados), se admite un movimiento con cavitación en alguna región 
de la película líquida. En esas condiciones la solución que acabamos de ver no 
es válida, y se considerará en la sección 16.4.4. 

Por último, es interesante señalar que, análogamente al caso de una película 
líquida bidimensional con h(x) lineal (ver final de la sección 16.1), la fuerza de 
viscosidad es despreciable frente a la fuerza de presión [siempre que E =  0(1)]: 

(16.61) 

16.4.2. Cojinetes cortos 

En este límite, la definición de q> dada en (16.48) no es apropiada puesto que 
la diferencia de presión característica no es 6µ,wRr / (R-R1 )2 , sino 6µwL2 / (R­
R1 ) 2 . En su lugar definimos, por tanto, 

q> = (p - Pa) (R - R1 )2 

6µwL2 

y la ecuación (16.45 ) queda 

8 
( 

_ 1 3 84> 
) 

8 
( 3 84>

) 
80 (3 r¡ 80 - r¡ + 

8� r¡ 8� 
= O 

En primera aproximación, con errores del orden de ¡3- 1 « 1, se tiene 

cuya solución es 

a 
( 3 84>

) 
ar¡ 

81;, r¡ 8� 
= 

80 = -E sm 0 , 

4>(� = ±1/2) = O 

q> _ _ E sin 0 1 (e _ ! ) 
- (1 + E cos 0)3 2 4 

(16.62) 

(16.63) 

(16.64) 

(16.65 ) 

(16.66) 

Por supuesto, esta solución no es válida en las proximidades de 0 = O, donde 
una capa límite de espesor (3- 1 se encarga de que se satisfaga la condición de 
contorno p( 0 = O) = p( 0 = 271") = Po ( sí sería válida en el caso particular en 
que Po = Pa) -

El esfuerzo de fricción en el eje es 

(16.67) 



246 MECÁNICA DE FLUIDOS 
donde la contribución del flujo de Poiseuille se ha despreciado con errores del 
orden de 13-2 « l. El par necesario es, por tanto, 

121r 
1

1/2 
2 

1rµwRf L 
Par = T¡R1 d0Ld� = -----=--� 

o - 1/2 2(R - R1 ) � 

La componente de la fuerza de presión perpendicular a 01 O es 

121r 
¡

1/2 . µwL3 R1 1r€ F.1 = (p - Pa) sm 0R1d0L� = (R R )2 ( 2 )3/2 , o -1/2 - 1 1 - € 

mientras que la componente según 01 O es 

¡
21r 

¡
1¡2 µwLª R1 4€2 

FIi = Jo _
112 

(p - Pa) COS 0R1 d0Ld� = - (R _ R1 )2 ( l  _ €2 )2 

(16.68) 

(16.69) 

(16. 70) 

Como la fuerza total de presión debe igualar al peso W, el ángulo '1/J que forma 
01 O con la vertical es 

'11 = arctan �� = arctan (- 7r�) (16.71) 

y la relación entre W y € queda 

(16. 72) 

16.4.3. Cojinetes cilíndricos finitos con escentricidad pequeña 
Cuando /3 = 0(1) , la ecuación (16.49) tiene una solución aproximada fácil 

de obtener en el límite en que la escentricidad es muy pequeña, 

€ = e/(R - R1 ) « 1 (16. 73) 

correspondiente a cargas W pequeñas. En primera aproximación se tiene 

r¡ '.:::'. 1 , 8r¡/d0 = -€ sin 0 « 1 , 

y la ecuación (16.49) queda 

(16.74) 

(16 . 7 5)  
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donde se ha redefinido <p como 
</J = (p - Pa ) (R - R1 )2 

( 16 .76) 6µ,wR¡E siendo ahora la diferencia de presión característica del orden de 6µwR¡Ej(R ­R1 ) 2 . Las condiciones de contorno son: 
</J({ = ±1/2) = O , </)(0 = O) = </)(0 = 21r) = </)0 = (p0-pa) (R-R1 )2 /(6µ,wR¡E) .  

( 16. 77) En el caso particular en que Po = Pa ( <l>o = O) , este problema admite soluciones en la forma 
donde G satisface 

es decir, 

<p = sin 0 G(() , 
G(� = ±1/2) = O 

G(() = 1 _ cosh((//3) cosh(l/2/3) La distribución de presión queda pues 
</J({, 0) = (p - Pa) (R - R1 )2 = sin 0 [l _ cosh(�/ /3) ] 6µ,wR¡E cosh(l/2/3) 

( 16. 78) 

(16 .  79) 

( 16.80) 

( 16.81) 

Análogamente al caso de cojinetes largos, al ser <p una función impar de 0,  'lj; = 1r /2, y el balance entre las fuerzas de presión y la carga proporciona 
W = j_1

:;
2
12

1r (p - Pa)R1 sin 0d0Ld� = ��E���� [ 1 - /3 tanh ( 2�) ]  
( 16.82) que es una relación lineal entre W y E ( válida para E « 1 ). El par necesario para hacer girar al eje es: 

Par = T¡R¡d0Ldf. == 1rµw 1 , 
11/2

1
21r 2 R3L 

-1/2 o R - R1 
( 16.83) 

donde se ha despreciado el término correspondiente al flujo de Poiseuille por ser del orden de E « 1 en relación al término de Couette. 
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16.4.4. Cavitación 

Si en algún punto de la película líquida la presión desciende por debajo de 
la presión de vapor del líquido a la temperatura de trabajo, Pv (T), se produce la 
cavitación del líquido, dejando de ser válidas las soluciones anteriores. Cuando 
hay cavitación , una solución aproximada , propuesta por Sommerfeld, consiste 
en suponer que la solución es la obtenida en las secciones anteriores para p > Pv 

y ,  en la región 01 < 0 < 02 donde p < Pv, sustituirla por p = Pv · Esta solución, 
que para cojinetes largos se suele denominar solución medio-Sommerfeld, para 
distinguirla de la solución de Sommerfeld completa (16.5 6),  es continua para 
</>, pero tiene derivadas 8</> / 80 discontínuas , lo cual da lugar a discontinuidades 
en el caudal, puesto que de (16.53) ,  

(16.84) 

Para paliar esta dificultad , Reynolds propuso (para el caso de cojinetes largos) 
una solución que no tiene discontinuidad en la derivada de </>. Antes de que se 
produzca la cavitación , la cual tiene lugar en un 0 = 01 desconocido a priori , 
se supone que la solución es (16.5 4): 

1° d0 1° d0 cp(0) - </>o = 2 + q  3 , 
o r¡ o r¡ 

(16.85) 

El valor de q se obtiene de (16.84) suponiendo que en 0 = 01 , 8</>/80 = O, para 
que no haya discontinuidad en 8</>/80 al pasar a la región de cavitación, donde 
</> = </>v = constante; es decir , 

q = -r¡(01) (16.86) 

Por otra parte , de (16.85) aplicada en 0 = 01 , como cp(01) = c/Jv , se tiene 

¡01 d0 ¡01 d0 
<l>v - <l>a = 

la r¡2 
- r¡(01) la rr 

, (16.8 7) 

lo cual es una relación que permite obtener 01 para una c/Jv dada. Para 01 < 
0 < 02 , donde 02 es de momento desconocido , cp = c/Jv = constante. En 0 = 02 

la cavitación cesa y se regenera la capa de líquido. Corno </>( 0 = 21r) = </>o , se 
tiene la siguiente relación para 02 : 

!o21r d0 1o21r d0 
<Po - <Pv = 2 - r¡( 01) 3 · 02 r¡ 02 r¡ 

Una vez calculado 02 , para 02 < 0 < 21r se tiene , 

(16.88) 
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( 1 6.89) 

Esta solución presenta, sin embargo, una discontinuidad en ocp/80 para 0 = 02 , pasando de valer cero a valer 
( 1 6.90) 

aunque q permanece constante. 
Referencias. 

■ D.J.  ACHESON, 1990. Capítulo 7. 
■ G. K. BATCHELOR, 19 67 . Capítulo 4. 
■ B.J. HAMROCK, 1994. 
■ H. LAMB, 197 5 .  Capítulo XI. 
■ S. M.  RICHARDSON, 1989. Capítulo 10. 
■ A. Z. SZERI, 1998. Capítulo 3. 





Capítulo 17  

Movimiento alrededor de 

cuerpos con número de 

Reynolds pequeño 

1 7. l .  Ecuaciones de Stokes 

En esta lección se considerará el flujo de un fluido incompresible [i.e., se 
verifican las condiciones ( 10 .26) y (10.30)] alrededor de cuerpos cuando las 
fuerzas de viscosidad son dominantes frente a las de inercia. 

En general, las ecuaciones de continuidad y cantidad de movimiento y las 
condiciones iniciales y de contorno que gobiernan el movimiento de un fluido 
incompresible alrededor de un cuerpo definido por la superficie S(x, t) = O, 
referidas a unos ejes que se mueven con él, son: 

'v - v = O , ( 1 7.1) 

av _ l""7 _ l"'7 l"'72 _ ( - - ) p at + pv • V V = - V p + µ V V + p g - ao (17.2) 

t = o ' V = Vo ; lxl � 00 '  V = Voo ' p = Poo,o - pgz ; ( 1 7.3) 

S(x, t) = O , (17.4) 
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donde se ha supuesto que la viscosidad permanece constante ( variaciones de 
temperatura poco importantes). Lejos del cuerpo, el fluido se mueve con velo­
cidad V00 en relación a los ejes ligados a él, siendo a0 = -dV00/dt la aceleración 
de este sistema de referencia con respecto a uno inercial en el que el fluido no perturbado por el cuerpo está en reposo o se mueve con velocidad uniforme; 
como consecuencia, la distribución de presión lejos del cuerpo es la hidrostáti­
ca, donde Poo ,o es una constante. Sobre la superficie, la velocidad es ñ /\ x, 
donde ñ(t) es la velocidad angular de giro del cuerpo (los ejes , aunque móviles 
con el cuerpo, se mueven paralelamente a sí mismos). 

Es conveniente descomponer la presión en dos sumandos, uno correspon­
diente a la presión hidrostática y el otro a las variaciones de presión generadas 
por el movimiento, lo cual se puede hacer debido a que la ecuación de cantidad 
de movimiento es lineal en relación a la presión. Es decir, definimos 

P = Ph + Pd 
donde 

y 

av _ \7 - \7 r12 - dVoo p at + pv • V = - Pd + µ V V + P-¡¡¡- ' 

cuya suma es (17.2). Consecuentemente, 

Ph = Poo,o - pgz , 

(17.5 )  

(17.6) 

(17. 7 )  

(17 .8) 

y la fuerza debida a la presión que el fluido ejerce sobre el cuerpo se descompone 
en la fuerza de flotabilidad de Arquímedes (sección 12.4) y la resistencia de 
presión (también llamada de forma) originada por el movimiento del fluido: 

(17.9) 

donde V es el volumen del cuerpo y ñ es la normal hacia fuera de S. La fuerza 
total que el fluido ejerce sobre el cuerpo es suma de (17.9) y la fuerza de 
fricción viscosa : 

(17.10) 

la fuerza puramente de resistencia, que se opone al movimiento del cuerpo, es: 
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Fr = f Y · ñds - f Pdñds 
1s 1s 

En el límite en que 

R pDVoo l e = --- « 
µ 

pDV00 D pD2 
ReSt = -- -- = - « 1 ,  

µ V00t0 µt0 

( 17.11) 

(17 .12) 

donde D es una longitud característica del cuerpo y t0 un tiempo característi­
co (de variación de V00 y O), los términos p8iJ/8t, piJ • 'viJ y pdV00/dt son 
despreciables frente al término viscoso µ 'v2iJ, y el problema viene gobernado, 
en primera aproximación, por: 

'v · v = O , 

!xi -->  00 ,  V =  Voo , Pd = Ü ,  

S(x, t) = O , v = n A x . 

(17.13) 

(17.14) 

(17.15)  

(17 . 16) 

Las ecuaciones (17 .13)-(17 . 14), que son el límite de las ecuaciones de Navier­
Stokes para movimientos lentos o reptantes, se suelen denominar ecuaciones 

de Stokes, quien resolvió este problema para el movimiento alrededor de una 
esfera que se mueve con velocidad constante V00 (sin giro) en 185 1  (ver sección 
siguiente). Obsérvese que aunque estas ecuaciones son análogas a las conside­
radas en las lecciones precedentes, allí los términos convectivos eran despre­
ciables debido, principalmente, a la casi unidireccionalidad del movimiento, 
mientras que aquí el movimiento es esencialmente tridimensional [compárese 
las condiciones (17 .12) con, por ejemplo, ( 15.20)-(15.21)]. 

Las ecuaciones de Stokes se suelen escribir separando Pd y v. Para ello se 
tiene en cuenta que [ecuación ( 1.43)] 

'v2iJ = 'v ('v . iJ) - 'v ¡\ ('v ¡\ iJ) = -'v ¡\ ('v ¡\ iJ) ' ( 17 . 17) 

donde se ha hecho uso de (17.13). Por tanto, (17 .14) se puede escribir 

(17.18) 

Tomando la divergencia de esta ecuación, 
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(17.19) 

mientras que tomando el rotacional 

v7 /\ v7 /\ v7 /\ v = O o (17.20) 

que son dos ecuaciones donde la presión y la velocidad ( o la vorticidad) entran 
por separado [en (17.20) se ha hecho uso de V · w = v7 · (V /\  v) = O] . Obsérvese 
que en ambos casos el problema se reduce a resolver una ecuación de Laplace. 
Normalmente se resuelve (17 .20) , puesto que las condiciones de contorno suelen 
venir expresadas en términos de la velocidad; una vez obtenida v, se sustituye 
en (17.14) y se obtiene la distribución de presión.  En algunos problemas, sin 
embargo, las condiciones de contorno se expresan más fácilmente en términos 
de la presión, por lo que se procede a la inversa: se resuelve (17.19) y se 
sustituye en (17.14) para obtener v. En cuanto a las condiciones de contorno, 
éstas se pueden tratar por separado basándose en la linealidad del problema, 
que admite superposición. Por ejemplo, el problema (17.13)-(17.16) se puede 
resolver definiendo v = v1 + v2 , donde v1 y v2 satisfacen las ecuaciones de 
Stokes (17.13)-(17 .14) ,  y las condiciones de contorno son 

(17.21) 

lxl - oo ,  S(x, t) = O , (17 .22) 

Esto permite obtener soluciones de movimientos complejos sin más que sumar 
soluciones de problemas más sencillos. 

17.2. Movimiento alrededor de una esfera. Ley de 
Stokes 

Consideremos el flujo con viscosidad dominante alrededor de una esfera 
de radio R que se mueve con velocidad constante V en la dirección -ex (o la 
esfera está fija y sobre ella pasa una corriente que en lx l  --t oo vale Vex ) - De 
acuerdo con lo visto anteriormente, el problema a resolver es: 

lxl --t 00 ,  V= Vex j lx l  = R, V= Ü . 

(17.23) 

(17.24) 
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y 

----- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -� 
X 

z Figura 17. 1 :  Coordenadas en el flujo alrededor de una esfera. 
Obviamente, este problema se resuelve más fácilmente en coordenadas esféricas ( r, 0, cp) ( ver figura 1 7 . 1 ) .  Como el movimiento tiene simetría con respecto al eje x (nada depende de la coordenada azimutal cp siendo, además, 

v'{) = O), es posible escribir iJ en t érminos de una función de corriente '1/; (ver sección 6 .2 ) :  

de donde 
1 8'1/) 

Vr = r2 sin 0 80 1 8'1/) ve = - -- - · r sin 0 ar de esta forma, la ecuación de continuidad, 
'\1 • if = 12 aª (r2vr) + -;-0 880 (sin 0ve) = o r r r sm 

(17.25) 

( 17.2 6 )  

(17.27) 
se satisface automáticamente. Obsérvese que la definición de la función de corriente no es única. La elección dada por ( 17.2 6  se suele denominar función de corriente de Stokes. En términos de 1/J, el vector vorticidad se escribe 

_ 0 _ (º _ ) 1 [ 1 82'1/) 1 8 ( 1 8'1/) ) ] -w = v /\ v = '\1 /\ v /\ '1/)e'{) = -;: sin 0 8r2 + r2 80 sin 0 80 e'{) ' ( 17.28) que sólo tiene componente según ecp. Consecuentemente, la ecuación de canti­dad de movimiento '\12w = O se convierte en la siguiente ecuación escalar para 1/J: 
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( 17.29) 

que es una ecuación en derivadas parciales de cuarto orden. En coordenadas esféricas, las condiciones de contorno ( 17.24) se escriben 
r = R , Vr = V(J = O , 

r -+ oo , Vr -+ V cos 0 , vo -+ -V sin 0 , 
que proporcionan las siguientes condiciones de contorno para 1/J:  

r = R ,  {)'ljJ {)'ljJ 
8r = ao

= O , 

V r -+ oo ,  1/J -+ 2r2 sm2 0 + constante . 

( 17.30) 
( 17.31) 

( 17.32) 
( 17.33) 

Tenemos, pues, tres condiciones de contorno, siendo la ecuación ( 17.29) de cuarto orden, lo cual es una consecuencia de que al utilizar la función de corriente se ha introducido una derivada más. Sin embargo, por la misma razón, para hallar v, cualquier constante aditiva de 1/J es irrelevante,  por lo que podemos hacer la constante que aparece en ( 17.33) igual a cero, y el problema ya tiene el número correcto de condiciones de contorno. Este problema admite separación de variables: Sugerido por (17.33) ,  donde aparece la única dependencia de las condiciones de contorno en 0, escribimos 
1/J(r, 0) = f(r) sin2 0 ,  ( 17.34) 

que sustituido en ( 17 .29) y ( 17.32)- ( 17.33) proporciona 
(17.35) 

r = R , df f = dr = O ; r -+ oo , (17.36) 
La ecuación del tipo denominado de Euler ( 17.35) admite soluciones potencia­les para r .  En efecto, ensayando la solución f ~ rn , se encuentra que admite los valores n = 2, - 1 ,  4 y l .  Así la solución general de ( 1 7. 35) es 

f = A1r2 + A2 + A3r4 + A4r r (17.37) 
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donde las Ai son constantes arbitrarias. Para que la dependencia de f(r) cuan­
do r -t oo sea de la forma f ~ r2 , A3 tiene que ser nula. Las otras tres 
constantes se calculan de las condiciones (17 .36) , obteniéndose 

(17.38) 

de donde 

v = 1 + - - - - - V cos 0 [ 
1 R3 3 R

l r 2 r3 2 r [ 
1 R3 3 R

l . ve = - 1 - 4 r3 - ;¡-;=- V sm 0 .  (17 .39) 

Por otra parte, sustituyendo en 

se llega a 

'v'pd = µ'v'2v ;  r -t oo , Pd -t Ü , 

3µVR cos 0 
Pd = - 2r2 

(17 .40) 

(17 .41) 

La fuerza de resistencia que el fluido ejerce sobre la esfera es en la dirección 
del movimiento y obviamente se opone a él, Fr = Frex , siendo 

Fr = 211" 1
1r 

[ ( -pd + r:r ) cos 0 - r:e sin 0]r=RR2 sin 0d0 . 

Sustituyendo 

( 1 ) _ [ i_ (vº ) ! Dvr ] _ _ 3µV sin 0 
Tre r=R - µ r !l + !le - R ' ur r r u r=R 

y (17.41) en (17 .42) se obtiene 

Fr = 61T'µV R ,  

(17 .42) 

(17 . 43) 

(17.44) 

(17 .45 ) 

que es conocida como la ley de Stokes para la fuerza de resistencia de una 
esfera a bajos números de Reynolds. Se observa que la fricción viscosa r:8 es 
responsable de 2/3 de la resistencia , mientras que las fuerzas de presión son 
responsables del tercio restante. Experimentalmente se encuentra que esta ley 
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es aproximadamente válida incluso hasta Re '.:::'. 1 (ver figura 1 7.2). Esta ley se 
suele escribir en forma adimensional en términos del coeficiente de resistencia, 

de forma que, 

donde 

24 
Cv = Re , 

Re = 
2RVp

. 
µ 

( 1 7.46) 

( 1 7 .4 7 )  

(1 7.48) 

A la fuerza anterior hay que añadir la fuerza de flotabilidad de Arquímedes, 
que actúa en dirección opuesta a la gravedad Fh = (pg41rR3 /3)ez. Un problema 
práctico de cierta relevancia es la sedimentación de partículas ( más o menos) 
esféricas. En este caso, a la fuerza de la gravedad que hace caer a la partícula, 
- (ppg41rR3 /3)ez , donde Pv es la densidad de la partícula, se le oponen la fuerza 
de Arquímedes y la fuerza de resistencia fluidomecánica, que viene dada por 
la ley de Stokes ( 1 7.45) si se verifican las condiciones ( 1 7  .12). La ecuación que 
gobierna la velocidad de sedimentación de la partícula, -Vez , es: 

( 1 7 .49) 

Obsérvese que aunque en este caso V =  V(t),  si se cumple que pR2 / µt0 « 1 ,  
donde t0 es un tiempo característico de variación de V,  la fuerza de resistencia 
dada por la ley de Stokes sigue siendo aproximadamente válida. Se llama ve­
locidad terminal a la velocidad constante que se alcanza cuando las fuerzas 
que ejerce el fluido sobre la partícula igualan al peso de la misma: 

½ = 2(Pv - p)R2g 
9µ 

Definiendo las variables adimensionales 

V t 
V = - T = -

Yt , to ' 
si la partícula parte del reposo, el problema queda 

2pvR2 dv 
-- - = 1 - v v(r = O) =  O. 
9µt0 dr 

( 1 7.50) 

(1 7.51 )  

( 1 7.52) 
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Definiendo 

2p R2 t - p 
o - 9µ  , (17.53) 

todos los términos son del orden unidad , por lo que t0 ~ ppR2 / µ. Esto nos 
dice que (17.49) [o (17.52)] es válida , de acuerdo con la condición t0 » pR2 / µ , 
si Pp » p. La solución es 

(17.5 4) 

de forma que cuando t = t0 = 2ppR2 /9µ (T = 1) , v ha alcanzado el sesenta 
por ciento de su valor final (v = 1 ,  V = ½) , aproximadamente. Si Pp ~ p , o 
Pp < O(p) ,  la solución anterior no es válida puesto que la ley de Stokes deja de 
ser válida. Para hallar la fuerza de resistencia habría que resolver la ecuación de 
cantidad de movimiento reteniendo la aceleración local , pav / at , y la fuerza de 
inercia asociada a la aceleración del sistema de referencia , -pdV / dt [ecuación 
( 1 7 .  7) ;  por supuesto , se supone que Re « 1 para que el término convectivo no 
cuente]. Como el problema es lineal , esto daría lugar a una fuerza de resistencia 
que constaría de tres términos: uno de ellos sería la ley de Stokes (17.45) ,  y los 
otros dos resultarían de los dos nuevos términos de la ecuación de cantidad de 
movimiento ( el alumno interesado puede consultar , por ejemplo , Richardson , 
1989). Por supuesto , la velocidad terminal seguiría siendo la misma , puesto 
que estos nuevos términos de la fuerza de resistencia son nulos cuando t - oo. 

Para terminar es conveniente señalar que la ley de Stokes (17 . 45)  se sue­
le usar , de forma aproximada, incluso cuando la partícula no es exactamente 
esférica , siempre que se cumplan las hipótesis (17.12) , sustituyendo R por un 
radio característico de la partícula. Debe observarse , además , que el análi­
sis dimensional del problema ( ver final de la sección siguiente) nos dice que Fr = constante x µ V R si se cumple ( 1 7 .12) , donde la constante depende de 
la geometría de la partícula (vale 61r para una esfera) , y R es un tamaño 
característico de la misma. 

17.3.  Aproximación de Oseen 

La solución anterior de Stokes tiene la dificultad de que no es válida lejos 
de la partícula: De (17 .39) se tiene que 

(17.55 )  
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' 

' 
10º ' ' 

S1okea 
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10-• 10-' 10º 101 10' 10• 

Re 

Figura 17.2: Coeficiente de resistencia Cv para una esfera. La curva contínua es una inter­polación de numerosos datos experimentales dada por Cv = 24/ Re + 6/(1  + ../Re) + 0,4 (White, 1991 ) ,  válida hasta Re ;:::: 2,5 x 105 (ver también figura 27. 10 más adelante) .  La curva a trazos es la ley de Stokes ( 17.47) y la curva de trazos y puntos es la ley de Oseen (17.62). 

- 2 2 ( 
3R R3 ) ( 3R 3 R3

) pv • Vvr = pV cos 0 1 - - + - - - --
2r 2r3 2r2 2 r4 

+ pV2 sin2 0 (l - 3R _ R3
) (l - 3R + R3

) r 4r 4r3 2r 2r3 ' (17 . 5 6) 

por lo que para r » R el término viscoso y el término convectivo son del 
mismo orden si r/R ~ Re-1 » 1: 

2 µV - y2 

µ'\7 Vr rv -2 rv pv • Vvr rv p- ,  r r (17 .5 7) 

En otras palabras, la condición Re « 1 permite no tener en cuenta el término 
convectivo en la ecuación de cantidad de movimiento en relación al término de 
fuerzas viscosas siempre que la longitud característica del campo de velocidad 
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sea el diámetro de la partícula, en la que está basado Re. Esto es rigurosa­
mente cierto cerca de la partícula. Pero a medida que nos alejamos de ella, 
la longitud característica se hace mayor puesto que el flujo se hace cada vez 
más uniforme; suficientemente lejos de la partícula [en particular, cuando se 
cumple ( 17.57)] , el término convectivo se hace del mismo orden que el viscoso, 
y no está justificado despreciar el primero respecto al segundo, a pesar de que 
Re basado en D es pequeño. Si Re -+ O, esta dificultad no sería tal puesto 
que la solución sería válida hasta r -+ oo. Para Re « 1 ,  pero finito, es nece­
sario corregir la solución de Stokes. Esto lo hizo Oseen ( 1910) linealizando el 
término convectivo para r -+ oo, con lo cual, obtuvo una corrección de la ley 
de Stokes que viene a ser el siguiente término en el desarrollo en potencias de 
Re « l .  

Básicamente, como e l  término convectivo empieza a contar en la  solución 
de Stokes cuando r / R ~ Re- 1 » 1 ,  se puede suponer que allí la velocidad del 
fluido es aproximadamente la de la corriente en el infinito, V ex. Es decir, 

- n - v - n - v
ªiJ 

pV • V V '.:::'. p ex • V V = p ax ( 17.58) 

De esta forma, la ecuación de cantidad de movimiento sigue siendo lineal: 

V
av n n2 -

p ax = - V Pd + µ V V • ( 17.59) 

Esta ecuación se suele denominar ecuación de Oseen. Análogamente a como 
se hizo en la sección 17 . 1 ,  sustituyendo "v2iJ = -"v l\w y tomando la divergencia 
y el rotacional de la ecuación anterior se llega a: 

( 17.60) 

( '\12 - 2k :x) w = 0 , (17 .61)  

donde para hallar ( 17.60) se ha hecho uso de la ecuación de continuidad, 
"v · v = O, y en ( 17.61) k = pV/2µ y se ha hecho uso de "v /\ 8v/ax = aw/ax. 
Para el flujo alrededor de una esfera, la ecuación ( 17.61) se debe resolver con 
las condiciones de contorno ( 17.30)- ( 17 .31) .  La solución de este problema se 
obtiene más fácilmente utilizando coordenadas cilíndricas con el eje x como 
eje axial, pudiéndose obtener, por separación de variables, una solución en 
términos de funciones de Bessel esféricas (ver, por ejemplo, Rosenhead, 1988) . 
Reteniendo los primeros términos de la expansión se llega a la siguiente ex­
presión para el coeficiente de resistencia: 
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24 

[ 
3 

] CD = 
Re 1 + 16

Re (1 7 .62) 

donde el término 3Re/16 es la correción de Oseen a la ley de Stokes (1 7.42) . En 
la figura 1 7.2 se representa las leyes de Stokes y de Oseen junto con resultados 
experimentales . 

La solución de Oseen fue perfeccionada por Proudman y Pearson en 195 7 ,  
y por otros investigadores posteriores (ver, por ejemplo,  Rosenhead, 1988), 
utilizando la técnica de los desarrollos asintóticos acoplados, de la cual un 
ejemplo sencillo fue considerado en la sección 14.1.5 (límite /3 « 1 ;  allí, la 
solución básica dejaba de valer cerca de la pared; aquí, la solución de Stokes 
deja de valer lejos de la esfera). Aunque no vamos a entrar en detalles, básica­
mente, la solución de Stokes corresponde al orden más bajo del desarrollo en 
potencias de Re de la solución cerca de la esfera, mientras que la solución de 
Oseen es el siguiente orden [O(Re)] de ese desarrollo cerca de la esfera. Proud­
man y Pearson calcularon el desarrollo en potencias de Re de la solución lejos 
de la esfera y la acoplaron con la solución cerca de la misma para distancias 
intermedias. De esta forma obtuvieron la corrección de Oseen de una forma 
más rigurosa, además de correcciones de mayor orden. Sin embargo, como se 
observa en la figura 1 7.2, la resistencia calculada con la aproximación de pri­
mer orden (Oseen) prácticamente coincide con los resultados experimentales 
hasta Re = 1 (para Re > 1 ,  el método de desarrollar la solución en potencias 
de Re obviamente no vale). Aunque para hallar la corrección de Oseen en el 
caso de una esfera no es necesario utilizar la técnica de los desarrollos asintóti­
cos acoplados (sí para su justificación matemática), en el caso de la corriente 
alrededor de un cilindro, que veremos a continuación, esta técnica es necesaria 
incluso para hallar la solución de orden menor . 

1 7 .4. Movimiento alrededor de un cilindro circular. 
Paradoja de Stokes 

Consideramos ahora, brevemente, el caso de un cilíndro de longitud infinita 
y radio R sobre el que incide, normalmente a su eje, una corriente de un fluido 
incompresible de viscosidad µ y densidad p, que lejos del cilindro tiene una 
velocidad Véx , Veremos que la solución de este problema es bastante diferente 
al problema de la esfera. 

Suponiendo que el eje del cilíndro está alineado según el eje ez , tomamos 
coordenadas cilíndricas (r, 0, z) de forma que la dirección de la corriente es 
x = r cos 0 (ver figura 1 7.3). El campo de velocidades es bidimensional, con 
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V 

z 

y 

- - - - - - - - - - - - -.,, 
r .. .. .. ..  ' ; 
, '\ : 

8 ', : 
' ' 

Figura 17.3: Geometría del flujo alrededor de un cilindro. 
X 

Vz = O, y ninguna magnitud fluida depende de z, por lo que es posible definir 
la función de corriente '1/; como 

1 8'1/; 
Vr = ;: 80 8'1/; 

V9 = - -
8r 

El vector vorticidad sólo tiene componente según z: 
y la ecuación (1 7 .23) queda 

Como condiciones de contorno se tiene 

( 1 7 .63) 

( 1 7 . 64) 

(1 7 .65) 

r = R ,  Vr = V(} =  O ;  r ---+ oo ,  Vr = V cos 0 ,  V(} =  -V sin O ;  (1 7.66) 

o, equivalentemente, 

r = R , r ---+ oo ,  'ljJ ---+ V r sin 0 . ( 1 7 .67) 

Análogamente al caso de la esfera, la condición de contorno en el infinito, la 
que contiene la única información sobre la variación de '1/; con 0, nos induce a 
suponer que 

'1/; ( r, 0) = J ( r) sin 0 

Sustituyendo en ( 1 7.65) y ( 1 7.67) se obtiene 

( 1 7.68) 
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(17.69) 

r = R , f = df / dr = O ; r - oo , f - V r , (17 . 70) 

que, efectivamente, sólo involucra a r. Ensayando soluciones tipo f ~ rn , 
se obtiene que n = - 1 ,  1 ó 3. La cuarta solución independiente es de tipo 
logarítmico. Probando f ~ rn ln r se obtiene que n = l. Luego la solución 
general es 

'ljJ = ( �
1 + C2r + C3r ln r + C4r3) sin 0 

La condición de contorno en el infinito exige que 

(17.71) 

(17.72) 

lo cual nos impide satisfacer las dos condiciones de contorno en la superficie 
del cilindro. Por otro lado, si imponemos las dos condiciones de contorno en r = R y elegimos la solución menos divergente cuando r - oo ( C4 = O pero C3 =/ O), se obtiene 

'ljJ = C3VR sin 0 - ln - - - + -[ r r r R ]  
R R 2R 2r ' (17.73) 

que proporciona un campo de velocidades que diverge logarítmicamente cuan­
do r - oo: 

v = C3V cos 0 ln  - - - + -[ 
r 1 R2 l 

r R 2 2r2 ' 
• [ 

r 1 R2 l ve = -C3 V sm 0 ln R + 2 - 2r2 
(17.7 4) 

Por tanto, no existe solución a este problema (flujo estacionario y lento al­
rededor de un cilíndro) tal y como la estamos buscando. Esta es la llamada 
paradoja de Stokes, que, por supuesto, no es una paradoja real , puesto 
que flujo alrededor de un cilíndro se puede dar a números de Reynolds tan 
pequeños como se quiera. Esta paradoja nos dice, simplemente, que alguno 
de los requisitos que hemos impuesto para obtener la solución anterior no se 
satisface. 

De hecho, la solución anterior adolece de la misma dificultad que la solución 
de Stokes para una esfera: lejos del cilíndro el término convectivo y el viscoso 
son del mismo orden: de ( 1 7 .  7 4), se tiene que 
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pv • v7 Vr 
rv R !:_ ln !:_ 

µv72vr 
e R R '  (17. 75)  

que se hace de orden unidad cuando f¿ ln f¿ ~ Re- 1 » l. Así, la  solución 
anterior es tan válida como la solución de Stokes para el flujo alrededor de una 
esfera ( es decir, ninguna de las dos son válidas lejos del origen), con la única 
diferencia que para el flujo alrededor de un cilíndro la ruptura de la solución 
lejos del origen se hace más dramática que en el caso de la esfera, al diverger 
el campo de velocidad [en el caso de la esfera la paradoja era más sutil puesto 
que, aunque la hipótesis de fuerzas viscosas dominantes no es válida lejos de 
la esfera, el campo de velocidad (17.39) obtenido con esta hipótesis no sólo 
no diverge cuando r ----, oo, sino que cumple las condiciones de contorno]. En 
definitiva, aunque Re « 1, lejos del cuerpo el término convectivo se hace tan 
importante como el de fuerzas viscosas en la ecuación de cantidad de movi­
miento, y aunque en el caso de una esfera esto afectaba poco al campo de 
velocidad, en el caso de un cilíndro no se puede obtener una solución unifor­
memente válida para ·ü sin retener el término convectivo. Por tanto, hay que 
utilizar la tecnica de los desarrollos asintóticos acoplados, reteniendo el termi­
no convectivo y utilizando la aproximación de Oseen, incluso para obtener el 
orden de aproximación más bajo. 

Utilizando la aproximación de Oseen, 

pv. vv � pVex • vv (1 7.7 6) 

la ecuación de cantidad de movimiento es { 17.61). Al igual que en el caso de 
la esfera, la solución cerca del cilindro se puede expresar en términos de una 
serie infinita de funciones de Bessel {ver, por ejemplo, Rosenhead, 1988);  los 
dos primeros términos del desarrollo en potencias de Re de la solución cerca 
del cilindro es ( ver referencia anterior): 

'1/
; � V R sin 0 [!:.- (2 ln !:_ _ 1) + 

R] 2C R R r 
V R sin 20 

[ 
1 r2 r 1 r2 1 1 

( 
1 1 

) 
R2 l 

+ Re 
2 8C R2 ln R - 8 R2 - 16C + 4 + 16C - 8 r2 

{17.7 7) 
el acoplamiento con la solución asintótica lejos del cilindro fija el valor de la 
constante C: 

1 8 C = - - ,..,, + ln -2 ' Re ' (17.78) 
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siendo , � 0,5772157 la constante de Euler. Esta solución proporciona el siguiente coeficiente de resistencia en función del número de Reynolds, Re = pV2R/µ: 

81r [ 1 ( 5 1 ) 2 2 2 ] Cv = ReC 1 - 32 16C - 2 + C Re + O( [Re ln Re] ) {17. 79) 
Este coeficiente de resistencia corresponde, por supuesto, a la fuerza de resis­tencia por unidad de longitud del cilíndro, puesto que éste es infinito: 

C - F: D - ½pV22R { 17.80) 
F: = 121r [(-Pd + r:r ) cos 0 - r:o sin 0]r=RRd0 {17.81)  

Si se hubiese utilizado la solución divergente { 17.74) , se hubiera obtenido 
Cv = 81rC3 Re {17.82) 

es decir, el primer término de {17. 79) ,  pero con la diferencia de que la constante C es conocida [depende de Re de acuerdo con { 17.78)] , mientras que C3 era desconocida [del acoplamiento con la solución lejos del cilindro se obtiene C3 = c- 1 ; compárese también {17 .77) con {17 .73)] . La diferencia tan notoria que acabamos de ver entre el flujo alrededor de una esfera y el flujo alrededor de un cilíndro infinito se podía haber previsto mediante un simple análisis dimensional: Para una esfera, la fuerza de resis­tencia Fr a bajos números de Reynolds debe ser función del radio R, de la velocidad V y de la viscosidad µ ( de la densidad p no, puesto que el término convectivo es despreciable en la ecuación de cantidad de movimiento) ;  con­secuentemente, el grupo adimensional Fr /µV R debe ser una constante y, de hecho, la ley de Stokes (17.45) nos dice que esta constante es 61r. Para un cilíndro infinito , la fuerza de resistencia por unidad de longitud F: debe ser función de las mismas magnitudes R, V y µ; pero, ahora, el análisis dimensio­nal nos dice que F: /µV es una constante, lo cual es imposible puesto que F: debe depender del radio del cilíndro. Así, la densidad p debe entrar en el pro­blema y, por tanto, la inercia debe contar en el flujo alrededor de un cilíndro, como acabamos de demostrar matemáticamente. De esta forma, F: /µV es una función del número de Reynolds pV2R/ µ. El argumento dimensional anterior sirve para hallar, mediante un solo ex­perimento , la fuerza de resistencia alrededor de un cuerpo de forma arbitraria 
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a bajos números de Reynolds, ya que Fr /µV R, donde ahora R es una longi­
tud característica para una serie de cuerpos geométricamente semejantes, debe 
ser una constante. Equivalentemente, Cv = K/ Re, donde la constante K se 
obtiene con un solo experimento para cuerpos geométricamente semejantes. 
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Capítulo 18 

Flujo en medios porosos 

18. 1 .  Introducción 

La denominación de medio poroso se aplica, de una forma simple y general, 
a un sólido con agujeros interconectados entre sí (los poros) a través de los 
cuales puede fluir un fluido. Normalmente, está constituido por partículas sóli­
das compactadas cuyos intersticios constituyen los poros. El tamaño y forma 
de los poros, que puede variar mucho de un medio poroso a otro, tienen, en 
general, una distribución más o menos aleatoria. Ejemplos prácticos de interés 
son el terreno de un acuífero o de un depósito petrolífero, el material poroso 
de un reactor catalítico o de un equipo de filtración, etc. El estudio del flujo a 
través de medios porosos tiene interés, por tanto, en la ingeniería hidráulica de 
suelos, en la minería del petroleo y del gas natural y en la ingeniería química, 
principalmente. 

En esta lección se va a presentar una breve introducción a la dinámica de 
fluidos en medios porosos considerándolos como un medio contínuo. Es decir, 
supondremos que el diámetro característico a de los poros es, independiente­
mente de su forma y distribución, mucho menor que la longitud característica 
L en la que las propiedades del flujo varían apreciablemente. Esta hipótesis 
permitirá hacer una descripción contínua del flujo, en la cual las magnitudes 
del flujo en cada punto son, en realidad, promedios de esas magnitudes en un 
volumen óV lo suficientemente grande para que contenga muchos poros, pero 
lo suficientemente pequeño para que se pueda considerar como un diferencial 
matemático en la escala de variación de las magnitudes promediadas: 

a «  (8V) 113 « L . ( 18 . 1 )  
Obviamente, esta restricción es  muchísimo más fuerte que la de medio contínuo 
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introducida en la sección 2.2, pues en el interior de cada poro se supone que 
el fluido ya se comporta como un medio contínuo. Afortunadamente, la gran 
mayoría de los flujos en medios porosos de interés práctico satisfacen más o 
menos holgadamente esa condición . Flujos que no satisfacen ( 18.1) son mucho 
más difíciles de analizar y no se considerarán aquí. Tampoco se tendrá en 
cuenta en esta lección introductoria al flujo en los medios porosos el efecto de 
la tensión superficial, entre otras razones porque se considerará únicamente el 
movimiento de una sola fase fluida, lo cual sí que constituye una limitación 
importante, pues se excluye así el estudio de algunos flujos de interés práctico. 
Para éstos y otros muchos aspectos fisicoquímicos de los medios porosos se 
remite al lector a las referencias citadas al final. 

En las secciones siguientes se derivarán las ecuaciones que gobiernan el 
flujo en medios porosos, promediando las ecuaciones fluidodinámicas en un 
volumen 8V, se introducirán las aproximaciones fenomenológicas o empíricas 
más usuales que cierran esas ecuaciones, se discutirán las condiciones de con­
torno y se verán algunos ejemplos significativos. El estudio de estos flujos se 
incluye en esta parte dedicada a los flujos viscosos debido a que, dentro de 
los poros, el movimiento suele tener un número de Reynolds, basado en el 
diámetro característico a, muy pequeño. De hecho, la ecuación de cantidad de 
movimiento que se utilizará tiene una forma muy similar a la ecuación que 
describe el movimiento en el interior de un conducto en el límite ReD / L « l. 

18.2.  Ecuaciones para un fluido homogéneo 
18.2 . 1 .  Magnitudes promediadas. Porosidad 

Considérese un volumen infinitesimal 8V ( en el sentido descrito anterior­
mente) del medio poroso. Una parte 8Vp de este volumen estará ocupada por 
los poros ( es decir, por el fluido), y el resto 8V - 8Vp por el material sólido ( im­
permeable). Una magnitud fundamental en un medio poroso es la porosidad 
Y, definida como la fracción volumétrica de poros: 

Y = 8Vp 
- 8V . (18.2) 

Esta magnitud es, en general, una función de la posición y del tiempo ( esta 
última dependencia puede estar originada por el propio movimiento del fluido). 
Sin embargo, por simplicidad se supondrá en lo que sigue que la porosidad es 

una propiedad del material que no se ve afectada por el movimiento del fluido. 
Es decir, se supondrá que el material poroso es lo suficientemente rígido como 
para que Y =  Y(x) .  Si el medio poroso es homogéneo, Y es una constante. 
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Las magnitudes fluidas en el medio poroso se suelen definir promediando 
sobre el volumen de poros. Así, si se designan con primas a las magnitudes 
fluidas en el interior de los poros, la densidad p, la presión p, la velocidad v y 
la temperatura T, promediadas en un punto x y en cada instante t, se definen: 

1 1 , p = oV. p dV ,  
p c Wp 

1 1 , p = .. V. p dV ,  
u p óV

p 

.. A - - l ,...., -d u pv · n =  p v · n s ,  
óAp 

T = -1- f T' dV . 
8Vp }óVp 

(18.3) 

(18.4) 

(18.5)  

(18.6) 

En (18.5), 8A es un elemento de área en x orientada según ñ y 8Ap es la parte 
de esa sección ocupada por los huecos de los poros. 

18.2.2.  Ecuación de conservación de la masa 

Dado un 8V en un punto x, si 8Ap es la parte de la superficie que encierra 
a 8V ocupada por los poros, la ecuación de conservación de la masa aplicada 
al volumen de poros 8Vp se escribe 

� f p' dVp + f p' v' . ñds = O . 
vt JóVp 

JóAp 

Aplicando las definiciones anteriores y el teorema de Gauss se llega a 

g
t 

(8Vpp) + 8V'v • (pv) = O . 

Finalmente, utilizando (18.2), se tiene 

g
t

(Yp) + 'v • (pv) = O, 

(18.7 ) 

(18.8) 

(18.9) 

que es la ecuación de continuidad para un fluido homogéneo en medio poroso 
de porosidad Y. 
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L D 

Figura 18 . 1 :  Esquema del experimento de Darcy. 

18.2.3.  Ley de Darcy 

La ecuación de cantidad de movimiento también se puede derivar teóri­
camente promediando la correspondiente ecuación en el interior de los poros. 
Sin embargo, dada la dificultad de modelar de forma precisa las fuerzas que 
el material sólido del medio poroso ejerce sobre el fluido, que inevitablemente 
requiere la utilización de modelos semiempíricos, es mucho más práctico re­
currir a leyes experimentales más o menos fundamentadas que proporcionan 
el campo de velocidad iJ directamente. 

De éstas, la más usada es la denominada ley de Da.rey. En 1856 Darcy 
publicó un trabajo sobre las fuentes de la ciudad francesa de Dijon, en el que 
presentaba sus investigaciones sobre el flujo de agua en columnas de arena que 
actuaban como filtros (ver figura 18. 1 ) .  Básicamente encontró que el caudal 
Q que circulaba por el filtro era proporcional a la sección multiplicada por la 
diferencia de presión reducida, e inversamente proporcional a la longitud del 
filtro: 
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1r D2 

(
Pl - P2 ) 

• 
Q = constante x -4- L + pg . 
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(18.10) 

La constante dependía del fluido (agua) y del material poroso. Esta ley se pue­
de justificar teóricamente si se sustituye el material poroso por un conjunto de N tubitos verticales de diámetro a. Suponiendo que las fuerzas de viscosidad 
dominan en el movimiento del líquido en cada tubo, es decir, Rea/ L « I , don­
de Re es un número de Reynolds basado en a y en una velocidad característica, 
el caudal Qi que circula por cada tubo obedece la ley de Hagen-Poiseuille. Su­
mando los caudales de los N tubos, se tiene 

1ra4 

(
Pl - P2 ) Q = NQi = N 

128µ L + pg (18.11) 

Teniendo en cuenta que la sección ocupada por los tubitos es una fracción k 
de la sección total, N a2 = kD2 , donde k depende de cómo de juntos estén 
los tubos, es decir, de las características del material poroso, la constante en 
( 18.10) vale, en este particular medio poroso, 

ka2 32µ (18.12) 

Es decir, es inversamente proporcional a la viscosidad del fluido y proporcional 
a una característica física del medio poroso que tiene que ver con la sección 
disponible para el paso del fluido. 

La ley (18.10) se puede escribir en forma general como una relación lineal 
entre v y v'p + pv'U: 

1 =  v = - -IT · (v'p + pv'U) , µ (18.1:3) 

donde I1 es el tensor de permeabilidad del medl_o poroso . Si éste es isotrópico, 
el tensor se reduce a una sola constante , II = ITJ, y la ley de Darcy se escribe 

(18.1 4) 

donde I1 es la permeabilidad, que es una propiedad física del medio poro­
so ( experimentalmente se determina, por ejemplo, midiendo el caudal en un 
dispositivo como el de la figura 18.1) Obsérvese que la permeabilidad tiene di­
mensiones de área y, de acuerdo con (18. 12) , es proporcional al tamaño medio 
del poro al cuadrado (a2). Si IT/ µ es constante, (18.14) implica que el campo 
de velocidad media en los poros v es potencial y, por tanto, el flujo medio 
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es irrotacional (a pesar de que, para que la ley de Darcy sea válida, las fuer­
zas viscosas deben ser dominantes en el flujo en el interior de los poros, con 
velocidad ir):  

iJ =  "v</> , 
II </> = - -(p + pU) ; µ 

Teniendo en cuenta que en un medio isotrópico el tamaño y la longitud de 
los poros son del mismo orden a, de acuerdo con las consideraciones anteriores, 
la ley de Darcy es válida siempre que el número de Reynolds, 

Re = paVc
' µ 

(18.15) 

donde Vc es una velocidad característica del fluido, es mucho menor que la 
unidad. Experimentalmente se corrobora que, efectivamente, la ley de Darcy 
se verifica cuando Re « 1, siendo ésta la situación más comun en la práctica 
debido a que el tamaño de los poros suele ser muy pequeño y las velocidades 
no suelen ser muy grandes. Se han propuesto leyes más generales, válidas para 
cualquier número de Reynolds, pero que no se verán aquí ( ver referencias 
citadas al final). Sólo indicar que, en el límite opuesto Re » 1, el gradiente de 
presión reducida es proporcional a la velocidad al cuadrado ( concretamente a 
pviJ) . 

18.2.4. Ecuación para la presión 

En el caso de un flujo incompresible, la ecuación de continuidad (18 .9) se 
reduce a "v ·v = O. Sustituyendo la ley de Darcy ( 18.14) y suponiendo que tanto 
la permeabilidad como la viscosidad son constantes, el problema se reduce a 
la resolución de una única ecuación para la presión reducida: 

(18.16) 

Se tiene, pues, que el problema viene gobernado por una ecuación de Laplace. 
Si el flujo es compresible ( un gas), para cerrar el problema hace falta una 

ecuación de la energía y las ecuaciones de estado. Si Re « 1, la ecuación de la 
energía se suele simplificar a T '.::'. constante = Ts , donde T8 es la temperatura 
del sólido. Esto está justificado teniendo en cuenta que si los poros son muy 
pequeños y la velocidad de paso es también muy pequeña, todo el fluido tiende 
a estar en equilibrio térmico con el material sólido. Sustituyendo la ecuación de 
estado p/ p = R9T '.::'. constante y la ley de Darcy en la ecuación de continuidad, 
se llega a la siguiente ecuación para la presión 
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Aire Aire en poros 

Agua E Superficie freatica 

B p=p 
Agua en poros a 

p+ pgz = Pa + pgHI 
z 

D 

Figura 18.2: Condiciones de contorno en el flujo a través de un dique. 

(18.17 ) 

donde se han despreciado las fuerzas másicas por tratarse de un gas y se ha 
supuesto que la porosidad no depende del tiempo y que II/ µ es constante. 

18.2.5.  Condiciones de contorno 

Para resolver (18.16) o (18.17)  hay que fijar condiciones de contorno para 
la presión [en el caso de (18.17 ), hace falta también imponer una condición 
inicial, que consistirá en el valor de la presión en t = O, p(x, O) = Po(x)]. 
Debido al operador laplaciano, se deben especificar condiciones de contorno 
en todo el contorno del flujo en el interior del medio poroso. Para fijar ideas, 
se considerará el ejemplo del flujo de agua a través de un dique de terreno 
poroso (figura 18.2). 

En las superficies de separación entre un fluido libre y el fluido en el interior 
del medio poroso (superficies A, B y C en la figura 18.2) normalmente se 
conoce la presión. En las superficies impermeables (D en la figura 18.2), se 
tiene que v- ñ = O que, utilizando la ley de Darcy, se convierte en una condición 
de tipo Neumann para la presión: op/on+poU /on = O en el caso de un líquido, 
o op/on = O para un gas. Por último, en las superficies libres de separación 
entre dos fluidos inmiscibles en el interior del medio poroso (superficie E en la 
figura 18.2) se tiene que la presión es la misma a ambos lados de la superficie 
( en el caso de la figura se puede suponer que la presión por el lado del aire es 
la atmosférica y, por tanto, conocida). La posición de la superficie libre no es 
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Pa 

H(t) 

Figura 18.3: 

conocida, por lo que hay que imponer la condición adicional de que la superficie 
S(x, t) = o es una superficie fluida: 8S/at + v· 'vS = o.Como ñ = 'vS/ l'vSI , la 
segunda condición de contorno queda v • ñ = - (8S/ot)/ l'vSI = - (II/ µ)o(p + 
pU)/8n, sobre S(x, t) = O. 

18.3. Ejemplos 

Si la geometría no es sencilla, normalmente hay que recurrir a la integración 
numérica de las ecuaciones (18.1 6) o ( 18.1 7 )  con sus respectivas condiciones de 
contorno. Aquí se van a considerar dos ejemplos con geometrías muy simples 
que tienen solución analítica. 

18.3.1 .  Avance de una superficie freática plana en un medio 
poroso infinito 

Considérese un líquido de viscosidad µ que reposa sobre un medio poroso 
semiinfinito, de permeabilidad II y porosidad T, inicialmente seco. Por acción 
de la gravedad, el líquido, que inicialmente tiene una altura H0 , avanza a 
través del medio poroso, de manera que el frente húmedo alcanza una posición z = -h en el instante t (ver figura 18.3).  La ecuación (18.1 6) en este caso se 
escribe 
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&2 (p + pgz) = O 
&z2 

que hay que resolver con las condiciones de contorno 

z = O ,  p = Pa + pgH(t) ; z = -h(t) , p = Po , 

donde Po es la presión de saturación del líquido. La solución es: 

[Pa - Po + pgH 
] p + pgz = 

h + pg z + Pa + pgH .  
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(18.18) 

(18.19) 

(18.20) 

De acuerdo con la ley de Darcy , la velocidad de avance del líquido es 

Vz = _ II &(p + pgz) = _ II [Pa - Po + pgH + pg] µ &z µ h 
(18.21) 

Como esta velocidad no depende de z, coincide con la velocidad de avance del 
frente húmedo, 

dh 
Vz = - dt • ( 18.22) 

Por otro lado, el nivel H(t) se puede relacionar con h(t) teniendo en cuenta 
que el caudal por unidad de superficie que entra en el medio poroso es igual 
al caudal que avanza por él : 

de donde 

dH 
dt 

dYh 
dt 

t = o , H = H0 , 

H(t)  = H0 - Yh(t) . 

h = 0 , (18.23) 

(18.24) 

Sustituyendo (18.21) y (18 .24) en (18 .22), y utilizando las variables adimen­
sionales 

se tiene la siguiente ecuación diferencial para r¡ ( r): 

dr¡ 1 - = - + a ;  r¡(O) = O, 
dr r¡ 

donde se ha definido el parámetro adimensional 

(18 .25) 

(18.26) 
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' y 

Figura 18.4: 
pg(l - T)Ho 

o: - ------- Pa - Po + pgHo • 

Por tanto, el frente de avance viene dado, en forma implícita, por 

1 
o:T = 'fJ - - In ( 1 + O:'f/) . 

o: 

(18.27) 

(18.28) 

Obsérvese que todo el líquido ha pasado al medio poroso (H = O) cuando 
'f} = l/T, lo cual ocurre cuando T = 1/(o:T) - [ln(l + o:/T)]/o:2. 

18.3.2. Flujo en un medio poroso con una cavidad esférica 

Considérese ahora el flujo a través de un medio poroso ilimitado en el que 
existe una cavidad esférica de radio R » a. Del infinito viene una corriente 
con velocidad v = V� (ver figura 18.4), y se quiere averiguar cómo afecta la 
cavidad al campo de velocidad uniforme en el medio poroso. 

Teniendo en cuenta que la presión reducida Pr = p + pU no depende de <P, 
la ecuación de Laplace (18.16) se escribe, en coordenadas esféricas, 

l 8
( 2 ªPr ) 1 ª

( · OPr ) r2 ar 
r ar + r2 sin 0 80 

sm 0 
80 = o ' 

que debe ser resuelta con las condiciones de contorno 

r = R , Pr = Po ; r - oo , v - V cos 0er - V sin 0eo , 

(18.29) 

(18.30) 

donde se ha supuesto que en la cavidad la presión reducida del líquido es 
uniforme y constante. Utilizando la ley de Darcy, la condición de contorno en 
el infinito para Pr se escribe 
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r ---+ oo ,  8pr µV 
- ---+  - - cos 0 or II ' 
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( 18. 3 1 )  

Teniendo en cuenta la  ecuación y las condiciones de contorno, se sospecha que Pr tiene la forma 
Pr (r, 0) = Po + f(r) cos 0 ,  ( 18.32) lo cual se corrobora sustituyendo en ( 18.29) y ( 18. 3 1 ), que proporciona la ecuación diferencial y condiciones de contorno para f ( r) siguientes: 
(� + �� - 2-) f = o '  dr2 r dr r2 

µV J(R) = O ;  r ---+  oo ,  f ---+ -IT . 

(18.3 3 )  
( 18.3 4 )  

La ecuación ( 18.3 3 )  es del tipo de Euler, teniendo por solución general 
C2 f = C1 r + 2 , r donde C1 y C2 son constantes de integración, que, de (18. 3 4 ) ,  valen 

µVR3 C1 = ----¡:¡-- , 
Finalmente, la solución queda 

µV ( R3 ) Pr = Po - IT 1 - ;a- r cos 0 . 
Aplicando la ley de Darcy, el campo de velocidad se escribe 

v = V cos 0 ( 1 + 2�3 ) er - V sin 0 (1 - :: ) ee .  
El caudal de líquido que atraviesa el agujero de radio R vale 

r12 Q = lo Y [v • er21rr sin 0rd0]r=R = 31r R2YV , 

(18.3 5 )  

( 18.3 6 )  

( 18. 37) 

(18.38) 

( 18. 39) 
lo cual implica que se triplica el caudal que pasaría por la misma sección del medio poroso en el caso de que no existiera la cavidad, Q = 1rR2YV. 
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Parte VI 

FLUJOS DE FLUIDOS NO 
VISCOSOS O IDEALES 





Capítulo 19 

Movimientos con número de 

Reynolds grande 

19. 1 .  Introducción 

Los efectos viscosos y de conducción de calor en el movimiento de un fluido (y también los efectos de difusión másica en el caso de que el fluido esté constituido por varias especies químicas) son poco importantes en muchos flujos reales, por lo que pueden ser despreciados en primera aproximación, al menos en ciertas regiones del flujo. Esto es consecuencia de que los fluidos 
más comunes tienen una viscosidad y una conductividad térmica relativamente pequeñas (para el agua a 20ºC, v ::::::  10-6m2 / s, a ::::::  1, 42 x 10-7 m2 / s, mientras que para el aire en condiciones normales, 20ºC y latm. ,  v ::::::  1 ,5 x 10-5m2 / s ,  a ::::::  2,08 x 10-5m2 / s ) ,  por lo  que en la mayoría de los flujos de interés su  efecto suele ser muy pequeño. Esta parte de la asignatura se dedica a estudiar este tipo de flujos donde, en primera aproximación y en casi todo el dominio fluido, se pueden despreciar los efectos disipativos de la viscosidad y la conductividad térmica (y la difusión másica si la hubiese), también llamados flujos de fluidos ideales. Ya se vió en la sección 1 1 .2 que la condición que debe verificarse para que las fuerzas viscosas sean despreciables frente a la convección de la cantidad de movimiento es 

VL Re = - » 1 , 
1/ 

( 19.1 )  
donde V y L son una velocidad y una longitud característica del flujo y v es la viscosidad cinemática. Por otro lado, la conducción de calor es despreciable 
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frente a la convección de energía interna en la ecuación de la energía si 

VL Pe = RePr = - » 1 a ( 19.2) 

siendo a la difusividad térmica. También se vió que para la gran mayoría de 
los fluidos esta segunda condición se verifica si la condición ( 19 .1) se satisfa­
ce, puesto que el número de Prandtl es de orden unidad o mayor para casi 
todos los fluidos (exceptuando los metales líquidos, para los que Pr « 1). 
Por todo ello, se concluía que los efectos disipativos son despreciables frente a 
los convectivos si se cumple que el número de Reynolds es muy grande. Esta 
condición también incluye a los flujos con varias especies químicas puesto que 
los efectos disipativos debidos a la difusión másica son despreciables frente a la 
convección de masa en la ecuación de conservación de la masa de cada especie 
í si 

VL ReSCi = Di 
» 1 (19.3) 

donde Di es el coeficiente de difusión de la especie í en el seno de la mezcla, 
y el número de Schmidt es siempre de orden unidad o mayor. Así, pues, la 
condición ( 19.1), número de Reynolds alto, caracteriza a los flujos de fluidos 
ideales. 

19.2 .  Ecuaciones de Euler 

Si (19.1) se satisface, las ecuaciones del movimiento ( 10.1 )-( 10. 7) en pri­
mera aproximación se escriben: 

e;.: + v . (pv) = o , 

Dv -
P Dt = -Vp + PÍm , 

p = p(p, T) , s = s(p, T) , 

(19.4) 

(19.5) 

(19.6) 

(19. 7) 

donde en lugar de la ecuación de la energía interna se ha utilizado la ecuación 
de la entropía (8.27) puesto que ésta se simplifica notoriamente al no haber 
fenómenos de transporte o disipativos. Si hubiese más de una especie química, 
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a la ecuación de continuidad habría que añadir la ecuación de conservación 
de cada especie química i (6.3 1), salvo una, que en primera aproximación se 
escribe: 

( 19.8) 

Este sistema de ecuaciones que describe el movimiento de un fluido ideal 
se denomina ecuaciones de Euler.1 A veces, en vez de la ecuación de la en­
tropía conviene usar otras formas de la ecuación de la energía, que se escriben 
aquí para futuras referencias: 

D(e + v2/2) 
_ t"'7 ( .... ) f .... .... Q P Dt - - v • pv + P m • V + r , 

De t"'7 .... Q P- = -pv · V + Dt r ,  

Dh Dp 
P Dt = Dt + Qr . 

( 19.9) 

(19. 10) 

( 19. 1 1 )  

(19 . 12)  

Una particularidad importante de las ecuaciones anteriores, desde un punto 
de vista matemático ( aunque como se verá tiene también importantes impli­
caciones físicas) , es que con los efectos disipativos han desaparecido también 
los términos que contenían las derivadas de orden mayor (segundo orden) pa­
ra la velocidad, la temperatura y las concentraciones en las ecuaciones ( en 
lo que sigue nos olvidaremos de las concentraciones suponiendo que el fluido 
está constituido por una única especie química o, si varias, están en equili­
brio). Ello implica que no se pueden imponer la totalidad de las condiciones 
de contorno para estas magnitudes. Por ejemplo, en el flujo alrededor de un 

1 Desde un punto de vista histórico, Euler dedujo las ecuaciones de continuidad y cantidad 
de movimiento ( 19.4)-(19.5) y para un fluido incompresible ['v · v = O en vez de ( 19.4)] , por 
lo que, estrictamente, sólo a este conjunto de dos ecuaciones se le debería dar el nombre de 
ecuaciones de Euler. Sin embargo, por extensión, se suele denominar ecuaciones de Euler al 
conjunto de todas las ecuaciones que describen el movimiento de un fluido ideal. Conviene 
resaltar también que Euler dedujo sus ecuaciones casi un siglo antes que se establecieran 
las ecuaciones de Navier-Stokes para un fluido viscoso, por lo que el estudio de los fluidos 
ideales (la hidrodinámica clásica) constituyó una ciencia independiente, incluso después de 
que se empezara a estudiar los movimientos viscosos, hasta el advenimiento de la teoría de 
la capa límite, creada por Prandtl en 1904, que unió formalmente estas dos hasta entonces 
inconexas ciencias. 
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obstáculo considerado en la sección 10.3, si se usa el sistema de ecuaciones an­
terior para describir el flujo, se pueden imponer todas las condiciones iniciales 
y de contorno, excepto las condiciones de contorno en la superficie del obstácu­
lo, ( 10 .33) y ( 10.36) . Ello implica que la solución no puede ser uniformemente 
válida en todo el dominio fluido puesto que sobre el obstáculo no se satisface 
(en general) que la velocidad y la temperatura del fluido sean iguales a las del 
sólido. Físicamente, lo que ocurre es que, aunque Re » 1 y la viscosidad y 
conductividad térmica no son importantes en el flujo, cerca de la superficie del 
cuerpo esto no es cierto, y existe una capa límite delgada en sus proximidades 
donde, a pesar de que Re » 1, los efectos viscosos y de conducción de calor son 
tan importantes como la convección, y ellos son los que se encaryan de hacer 
cumplir las condiciones de contorno. A pesar de su importancia, de momento 
nos olvidaremos de esta capa límite, la cual será tratada en la parte VIII, y 
nos limitaremos a obtener soluciones de las ecuaciones de Euler. 

Desde un punto de vista más general, al haber desaparecido las derivadas de 
mayor orden en las ecuaciones de Euler, éstas no representan uniformemente 
a las ecuaciones de Navier- Stokes, ni siquiera en el límite formal Re --t oo, 
y no existen, en general, soluciones continuas y /o con derivadas contínuas 
del problema constituido por las ecuaciones de Euler y las correspondientes 
condiciones iniciales y de contorno. Así, en las soluciones aparecen superficies 
de discontinuidad, en forma de ondas de choque, capas límites, etc. En realidad, 
estas discontinuidades no son tales, sino, como acabamos de decir, son capas 
muy delgadas en las que al ser los gradientes de velocidad y/ o temperatura muy 
elevados, los efectos disipativos son importantes, a pesar de que la viscosidad y 
conductividad térmica son relativamente pequeñas. De momento no tendremos 
en cuenta estas capas delgadas y admitiremos la existencia de discontinuidades 
en las soluciones de Euler. 

19.3.  Ecuación de Bernoulli 

La ecuación de cantidad de movimiento para un fluido ideal ( 19.5) puede, 
bajo ciertas condiciones, integrarse a lo largo de líneas de corriente. En efecto: 
si hacemos uso de la identidad vectorial (v • 'v)v = 'vv2 /2 - v /\ ('v /\ v), y 
multiplicamos la ecuación escalarmente por v, se tiene 

av2 /2 
- n 2/2 

v n - ¡- O -¡¡¡- + v ·  v v  +
P

· vp - v ·  m = (19.13) 

Ahora bien, v • 'v = va/ az, donde l es la coordenada a lo largo de las distintas 
líneas de corriente, por lo que dividiendo por v y suponiendo que las fuerzas 
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másicas derivan del potencial U ( al menos a lo largo de las líneas de corriente, 
es decir, iJ • f:n = -v8U/8l) ,  

(19.14) 

Si, además, el flujo es barótropo ( con función de barotropía w = fP dp / p ) y 
casi estacionario, finalmente se tiene, 

(19.15) 

que integrada proporciona, 

v2 

2 + w + U =  H(t) , (19.16) 

donde H es una constante para cada línea de corriente, y que puede depender 
del tiempo (suavemente) a través de las condiciones de contorno. Así, pués, 
el Teorema de Bernoulli nos dice que, si se verifican las condiciones: ( i) fluido 
ideal, (ii) componente de las fuerzas másicas sobre las líneas de corriente 
deriva de un potencial U, (iii) flujo barótropo y (iv) flujo casi estacionario (St = L/Vt0 « 1), la magnitud H = v2 /2 + w + U es constante a lo largo 
de cada línea de corriente. Esta magnitud H se suele denominar función de 
Bernoulli o, simplemente, el Bernoulli del flujo, y la ecuación ( 19.16) también 
se llama de Bernoulli. Para un líquido (w = p/ p) bajo la acción de la gravedad, 
(19.16) queda 

v2 p - + - + gz = H 2 p (19.17) 

En las ecuaciones anteriores H puede ser distinta en cada línea de corriente. 
Sin embargo, hay un caso particular importante en el cual H es la misma 
constante en todo el campo fluido: cuando el flujo es irrotacional. Si el flujo es 
irrotacional, v7 /\ iJ = O, y además se cumplen las otras condiciones del Teorema 
de Bernoulli (fluido ideal, flujo barótropo y casi estacionario,  fuerzas másicas 
derivan de un potencial), la ecuación de cantidad de movimiento se escribe 

(19.18) 

que integrada da 
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v

2 

2 + w + U = H(t) (19.19) 

Obsérvese que, cuando el flujo es irrotacional, v' H = O, mientras que si no 
es irrotacional, esta igualdad está restringida a lo largo de líneas de corriente: 
{)H / 8l = v • v' H = O. Sobre los flujos irrotacionales e ideales volveremos en 
la lección siguiente, donde veremos que la condición de irrotacionalidad y las 
condiciones bajo las cuales el teorema de Bernoulli es válido no son totalmente 
independientes. 

19.4. Flujos isentrópicos 

Si no hubiesen aportes volumétricos de calor (Qr = O), la ecuación de la 
entropía (19.6) nos dice que la entropía se conserva a lo largo del movimiento 

Ds = O Dt (19.20) 

Es decir, la entropía de las distintas partículas fluidas se conserva, lo cual es 
consecuencia de que se han despreciado todos los efectos disipativos. Estos 
flujos se denominan isentrópicos. Si todas las partículas fluidas tuviesen la 
misma entropía s0 en algún instante (por ejemplo, si todo el fluido tuviese ini­
cialmente la misma temperatura y presión), la entropía sería la misma en todo 
instante en la región ocupada por las mismas partículas fluidas. Estrictamente 
esto sería un movimiento isentrópico. 

Si el flujo es casi estacionario, la ecuación (19.6) implica que la entropía se 
conserva a lo largo de las líneas de corriente: V·  v's = O o 8s/8l = O; s = s0(t) , 
donde s0 es una constante para cada línea de corriente. Si s0 es la misma 
para todas las líneas de corriente, la entropía de todo el campo fluido es la 
misma en cada instante, pero puede variar de instante a instante a través de 
las condiciones de contorno; esto es lo que se denomina un flujo homentrópico, 
donde v' s = O, pero 8s / 8t puede ser distinto de cero, aunque la variación de 
s con el tiempo debe ser muy lenta para que el flujo se pueda considerar casi 
estacionario ( St « 1). 

Una particularidad de los flujos isentrópicos (y homentrópicos) es que son 
también barótropos: De (8.8) se tiene que dp dh = Tds + -

p 
(19.21) 

por lo que si ds = O ( en todo el campo fluido o a lo largo de las líneas de 
corriente), 
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dh = dp (19.22) 
p 

siendo , por tanto , la función de barotropía igual a la entalpía. Así, pues, las 
condiciones (i) y (iii) del teorema de Bernoulli (fluido ideal y barotropía a lo 
largo de las líneas de corriente) se cumplen para los flujos isentrópicos. Si, 
además , el flujo es casi estacionario, (iv) , y las fuerzas másicas sobre las líneas 
de corriente derivan de un potencial, (ii) , se verifica (19.16). 

19.5.  Conservación de las magnitudes de remanso 

Consideremos el flujo de un fluido ideal casi estacionario , en el que no hay 
aportes volumétricos de calor (Qr = O) y en el que las fuerzas másicas pueden 
despreciarse (como ocurre en la mayoría de los flujos de gases). En este caso , 
de las ecuaciones (19.6) y (19.10) se deduce que tanto la entropía como la 
entalpía total o de remanso, h + v2 /2, se conservan a lo largo de las líneas de 
corriente: 

S = So , (19.23) 

(19.24) 

De esta forma tenemos dos primeras integrales del movimiento que facilitan 
enormemente la resolución del problema. Obsérvese que la conservación de la 
entalpía de remanso es equivalente a la ecuación de Bernoulli , puesto que si el 
flujo es isentrópico la función de barotropía coincide con la entalpía y hemos 
despreciado las fuerzas másicas: H = v2 /2 + w = v2 /2 + h = h0 . Si , además , 
todas las líneas de corriente parten de alguna región donde las propiedades 
son uniformes, la entropía y la entalpía de remanso son constantes en todo el 
campo fluido . 

La conservación de la entalpía de remanso sugiere la introducción de otras 
magnitudes de remanso, como la presión , la temperatura y la densidad de 
remanso , asociadas todas a la entalpía de remañso. Así , para un gas ideal se 
tiene 

Po 
--;e¡ = constante , Po 

(19.25) 

donde la última relación proviene de la conservación de la entropía [ecuación 
(8.39)]. De estas expresiones se pueden obtener T, p y p en función de las 
magnitudes de remanso , T0 , p0 y p0 (las cuales se conservan a lo largo de las 
líneas de corriente) y del número de Mach , M = v/a = v/ J'"YR9T: 
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T. h h + v2 v2 "" - 1 � - � - 2 = 1 + -- = 1 + -' -M2 T h h 2epT 2 

� = (;) � = p;�o , 

Po ( 1' - 1 2) 1 /(1-1 ) - = 1 + --M p 2 
Po ( 1' - 1 2) �/(1- l) - = 1 + --M p 2 Para un líquido (p = constante) se tiene, simplemente, 

S = S0 

T = T0 , p + pv2 /2 = Po 

(19.2 6) 
( 19.27) 
(19.28) 
(19 .29) 

(19.30) ( 19 .3 1 ) Las magnitudes de remanso representan, físicamente, las magnitudes que se obtendrían al decelerar el fluido desde la velocidad v hasta la velocidad nula de forma isentrópica y estacionariamente, y en ausencia de fuerzas másicas. Las relaciones anteriores son muy útiles, puesto que permiten conocer todas las magnitudes fluidas si se conocen las magnitudes de remanso ( constantes a lo largo de las líneas de corriente, y en muchas situaciones en todo el campo fluido) y una sola magnitud más: el número de Mach en el caso de un gas, o la velocidad en el caso de un líquido. Pero para que éstas relaciones sean válidas, es decir, para que se conserven las magnitudes de remanso, se tienen que veri­ficar ciertas condiciones que resumimos de nuevo: (i) fluido ideal (viscosidad y conductividad térmica despreciables), (ii) fuerzas másicas despreciables, (iii) movimiento sin adición o eliminación de calor y ( iv) movimiento casi esta­cionario [los requisitos (i) y (iii) pueden resumirse en la condición de que el movimiento debe ser isentrópico]. 
Referencias. 

■ D.J. ACHESON, 1990. Capítulo l . 
■ G.K. BATCHELOR, 19 67. Capítulo 3. 
■ H.W. LIEPMANN y A. ROSHKO, 19 57. Capítulo 2. 



Capítulo 20 

Vorticidad 

20. 1 .  Ecuación de la vorticidad para fluidos ideales 

En este capítulo se verán algunos importantes resultados que conciernen a 
la evolución de la vorticidad en el flujo de un fluido ideal. 

Para un fluido ideal, la ecuación de la vorticidad (7.46) se escribe 

D (w) w _ 1 - - = - . v'v + - v'  p /\ v'p ' Dt p p p3 
(20.1) 

donde se ha eliminado el término viscoso vv'2w que, como se vió en la sección 
14.2.3, representa la difusión de la vorticidad debido al transporte molecular 
( ver sección 20.6 más adelante) , efecto despreciable en un fluido ideal. En la 
ecuación anterior tampoco aparecen las fuerzas másicas, lo cual es válido si 
éstas derivan de un potencial. El término de Bjerkness , v' pi\ v'p/ p2 , representa, 
según se vió en 7.6, el par ejercido por las fuerzas de presión sobre cada 
partícula fluida, que da lugar a una variación de la vorticidad de la partícula. 
Este término es nulo para flujos barótropos, como son los flujos con densidad 
constante o los flujos isentrópicos. Por tanto, este término también va a ser 
nulo para los movimientos que aquí estamos considerando si no hay aportes 
volumétricos de calor , puesto que entonces el flujo es isentrópico (sección 19.4). 
Así, la ecuación de la vorticidad para un flujo isentrópico con fuerzas másicas 
conservativas queda reducida a 

D (w ) Dt p 
= e .  v'v . 

p 
(20.2) 

Si el flujo es bidimensional, por ejemplo plano, v = (vx, vy, O) , donde Vx y 
vy dependen de x, y y t, la vorticidad sólo tiene componente según el eje z, w = 
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(O, O, w ) ,  y el segundo miembro de la ecuación anterior se anula idénticamente: 
(w • v')v = wov/oz = O. Por tanto, 

(20.3) 

es decir , w/ p se conserva a lo largo del movimiento para un flujo bidimen­
sional y barótropo de un fluido ideal cuando las fuerzas másicas derivan de 
un potencial. En particular, si el flujo es inicialmente irrotacional ,  permane­
cerá siempre irrotacional. En las secciones siguientes veremos que esta última 
afirmación también se cumple para los flujos tridimensionales, aunque en ellos 
( w · v')v no es nulo en general. Se verán, además, otras importantes conclusiones 
de la ecuación (20.2). Pero antes son pertinentes unas definiciones. 

20.2.  Líneas y tubos de vorticidad 

El campo de vorticidad de un flujo puede visualizarse en forma análoga a 
como se visualiza un campo de velocidades, o un campo magnético. Así, se 
define una línea de vorticidad como aquella curva que es tangente al vector 
vorticidad en todos sus puntos. Matemáticamente viene dada por di = kw, es 
decir dx es paralelo a w, siendo k una constante. En coordenadas cartesianas 
se tienen las dos ecuaciones diferenciales 

W¡ W2 W3 
(20.4) 

donde w1 , w2 y w3 son los tres componentes de w. Al igual que las líneas de 
corriente de un flujo proporcionan una visualización de las direcciones del flujo 
en cada instante, las líneas de vorticidad dan una visión de las direcciones de 
los vectores vorticidad en el campo fluido. En general la orientación de estas 
líneas cambian de un instante a otro, excepto en un flujo estacionario, en el 
cual permanecen fijas en el espacio. 

Un tubo de vorticidad está constituido por la familia de lineas de vorticidad 
que pasan por una curva cerrada dada. Debido a que el campo de vorticidad 
es siempre solenoidal, v' · w = v' · v' /\ v = O, el flujo de vorticidad permanece 
constante a lo largo de todas las secciones transversales de un tubo de corriente : 

is w • ds = i v' • wdV = o (20.5) 

y, como sobre la superficie lateral del tubo w es perpendicular a la normal , 

wi · ds1 = w2 · ds2 , (20.6) 
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n 

Figura 20. 1 :  Tubo de vorticidad. 

para un tubo de vorticidad de sección diferencial (figura 20.1). Es decir, la 
cantidad w • ds, que se denomina intensidad del tubo de vorticidad, es 
constante a lo largo del tubo. De aquí se pueden sacar varias consecuencias: 
(a) la vorticidad varía a lo largo del tubo inversamente a la sección transversal 
del mismo; (b) si w está limitado en todo el flujo (no es infinito en ningún 
punto) , ningún tubo de vorticidad puede terminar dentro del fluido, y ( c) un 
tubo de vorticidad debe terminar en los límites del campo fluido o formar 
un tubo cerrado. Estas propiedades de los tubos de vorticidad son también 
algunas de las consecuencias de los teoremas de la vorticidad de Helmholtz , 
que pasamos a ver ahora en forma general. 

20.3.  Teoremas de la vorticidad de Helmholtz 
Demostraremos a continuación que la ecuación (20.2) implica lo siguiente: 

(i) Las líneas de vorticidad son convectadas por el flujo . 

(ii) lw l/ p aumenta con el estiramiento de la línea de vorticidad. 

(iii) La intensidad de un tubo de vorticidad se mantiene constante en el 
movimiento del fluido. 
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6x 

Figura 20.2: Convección de una línea de vorticidad. 

(iv) La vorticidad en cualquier punto de un tubo de vorticidad se incrementa cuando la sección transversal del tubo se reduce en ese punto, y decrece cuando la sección transversal en ese punto crece. 
Éstos constituyen los denominados teoremas de la vorticidad de Helmholtz. También demostraremos que 

(v) si el vector posición x de todas las partículas fluidas en el instante t es conocido, es decir, si las trayectorias x = x(x"""'o, t) son conocidas, donde 
x"""'o es la posición en t = ·o, entonces la vorticidad en el instante t viene dada por 

(20. 7) 
donde v' 0 es el operador gradiente con respecto a la variable Lagrangiana 
x"""'o, y w"""'o es la vorticidad inicial. 

Para demostrar todas estas afirmaciones, consideremos una línea de vor­ticidad en un instante, que podemos considerar el inicial, t = O, y sean dos puntos P y Q infinitesimalmente próximos de esta línea de coordenadas x"""'o y 
x"""'o + óx"""'o, respectivamente (ver figura 20.2). Por ser una línea de vorticidad, se tiene que 
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(20.8)  

donde el subíndice o denota que las propiedades están evaluadas en el punto 
P. Después de un intervalo de tiempo 8t, la partícula P es convectada a P' y 
la Q a Q', de coordenadas 

Q' : X +  ÓX = Xa + ÓX0 + [va + ÓXo • 'v aVa] ót 

(20.9) 

(20. 10) 

respectivamente, donde v0 es la velocidad de la partícula P y 'v O es el gradiente 
respecto a la coordenada i0 . La variación del segmento PQ es, por tanto, 

ÓX - ÓX0 _ P'Q' - PQ _ QQ' - PP' _ Á - n _ _ W0 n _ ( ) ót = ót - ót - uXa • v 0V0 - E 
Po

· v 0V0 • 20.11 

Haciendo uso de (20.2), como 8t es infinitesimal, 

8i �/iº = ;t [; - �: ] (20.12) 

donde w y p son la vorticidad y densidad del punto P; es decir, 

Á .... w 
uX = t: - . 

p 
(20.13) 

Por tanto, una línea que inicialmente coincidía con una línea de vorticidad, 
permanece coincidiendo con la línea de vorticidad en el instante siguiente, lo 
cual prueba (i). 

Dividiendo (2Q.13) por (20.8), se tiene que 

lw l / P IP¼?'I l 8xl 
lwa l l  Po 

= IPQI - l8xa l ' (20.14) 

por lo que lw l / p incrementa en proporción al estiramiento de la línea de vor­
ticidad, lo que prueba (ii). 

Considérese un pequeño tubo de vorticidad que rodee a la línea de vortici­
dad que pasa por P en el instante inicial. En el instante 8t, este tubo ha sido 
convectado por el flujo y se transforma en un tubo de vorticidad que rodea al 
punto P'. Si las secciones transversales de los tubos de vorticidad en P y P' 
son 8A0 y 8A, respectivamente, por conservación de masa se tiene que 
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Sustituyendo en (20. 1 4), 

es decir ,  

o 

lw l lc5xlc5A 
lwo l  lc5xo lc5Aº 

D -- (w - 8A) = O Dt 

MECÁNICA DE FLUIDOS 
(20.15)  

(20.16) 

(20.1 7) 

(20.18) 

donde 8.A es cualquier elemento de área que contiene al punto P', cuya vorti­
cidad es w, y que es convectada con el flujo. De esta expresión siguen inme­
diatamente las afirmaciones (iii) y (iv). 

Finalmente, para probar ( v), lo cual equivale a integrar formalmente la 
ecuación de la vorticidad (20.2), consideremos que la trayectoria del punto 
P viene dada por x = x(x0 , t) ; la del punto Q vendría entonces dada por 
x + 8x = x(x0 + 8i0 , t) = x(i0 , t) + 8x0 • v7 0x(x0 , t) , donde v7 0 es el operador 
gradiente con respecto a la variable Lagrangiana x0 . Por tanto, el segmento 
P'Q' = 8:i = 8i0 • v7 0x(x0 , t ) = Ew/ p, donde se ha hecho uso de (20.13). Es 
decir, 

Sustituyendo (20.8), 

como se quería demostrar. 

- P ¡: - r, ... 
W = -uX0 • v oX . 

... p ... r, -w = -Wo .  V oX 
Po 

(20.19) 

(20.20) 

Una consecuencia importante de esta última expresión es que si w0 = O 
en todo el campo fluido, es decir, si la vorticidad en un instante es nula en 
todo el campo fluido (por ejemplo, si el fluido está inicialmente en reposo o en 
un estado de movimiento uniforme), entonces w = O para cualquier instante 
posterior. En otras palabras si un flujo es inicialmente irrotacional, bajo las 
hipótesis en que (20.2) es válida, permanecerá siempre irrotacional. Esta es, 
realmente, una de las formas de enunciar el teorema de la circulación de Kelvin, 
que demostraremos por un procedimiento alternativo en la sección siguiente. 
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Figura 20.3: Deformación de un tornado cuando las nubes se mueven por encima (adaptada de Acheson, 1990) . 

En realidad Helmholtz demostró, en 1858 ,  las afirmaciones (i)-(iv) y para un 
fluido incompresible (p = constante) , mientras que la demostración anterior 
está hecha con la condición de que el flujo sea barotrópo, lo cual incluye 
también , por ejemplo, los flujos isentrópicos de gases. El resultado (v), es decir , 
la integración formal de (20.2) en la forma (20.7), fue obtenida por Cauchy, y 
se suele denominar ecuación de Cauchy. 

Un ejemplo típico que ilustra muy bien los resultados anteriores es el flujo 
de aire en un tornado. La convección térmica del aire cerca del suelo hacia las 
nubes produce, por un mecanismo que no vamos a tratar aquí, un movimiento 
rotatorio muy intenso, concentrando la vorticidad en el centro del tornado. 
El centro del tornado se ve porque en la región de giro intenso la presión es 
muy baja y la humedad del aire se condensa, formando una nube en forma de 
chimenea, que es lo que normalmente se identifica con el tornado. Esta nube 
giratoria es una visualización de un tubo de vorticidad muy estrecho donde la 
vorticidad es muy intensa, que muere en las nubes de la tormenta (ver figura 
20.3). Cuando las nubes superiores se mueven, el tornado se dobla, es decir, 
el tubo de corriente es convectado por el flujo, (i), aumentando la vorticidad 
en gran parte del tornado al estrecharse la sección transversal del tubo de 
corriente , (ii)-(iv). 

20.4. Teorema de la circulación de Kelvin 

El teorema dice: Sea un flujo de un fluido no viscoso, barótropo en donde 
las fuerzas másicas derivan de un potencial U, y sea C(t) una curva cerrada 
que se mueve con el fluido. Entonces, la circulación 
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r = / v - df le(t) (20.21) 

alrededor de C(t) no depende del tiempo. Para demostrarlo, hallamos la deri­
vada sustancial de la circulación : 

Dr = !!_ r v • dl= ¡ Dv . df+ ¡ v · Ddf Dt Dt le(t) le Dt le Dt ' (20.22) 

El segundo término es idénticamente nulo puesto que Ddl/ Dt = dv ( ver figura 
20.4) y la integración es sobre una curva cerrada. Por otro lado, de la ecuación 
de cantidad de movimiento bajo las hipótesis del teorema se tiene que 

Dv - = -v'(w + U) Dt (20.2 3 ) 

donde v' w = v' p / p; es decir , la aceleración Dv / Dt deriva del potencial w + U. 
Como v'(w + U) ·  dl= [8(w + U)/8l]dl, 

Dr Dt = - [w + U]e = O 

al ser una curva cerrada, con lo que queda demostrado el teorema. 

(20.24) 

Como consecuencia del este teorema, si inicialmente la circulación a lo 
largo de cualquier curva cerrada del flujo es cero, ésta permanecerá siendo 
cero en todo instante posterior . Por el teorema de Stokes se tiene que 

r = / v .  df = f w . ds le 1s (20.25 ) 

donde S es una superficie que se apoya en C. Por tanto, como corolario del 
teorema de Kelvin, si el movimiento de un fluido ideal y barótropo en presen­
cia de fuerzas másicas que derivan de un potencial es inicialmente irrotacional 
(por ejemplo, si parte del reposo o de un movimiento uniforme), permane­
cerá siempre irrotacional.1 Esta afirmación coincide con la obtenida en la sec­
ción anterior a partir de la ecuación de la vorticidad. De hecho, el teorema de 
Kelvin se podría haber demostrado sin más que aplicar el teorema de Stokes 
a la variación de la circulación, 

Dr D r _ df D r _ _ Dt = Dt lc(t) v • = Dt 1s(t) w • ds ' (20.26) 

1 Ver sección 21.8 más adelante para una matización importante de este corolario. 
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C(I) 

( v+d v )  61 
di 

di  +d v 6 1 
V 61 

Figura 20.4: Teorema de Kelvin. 
y aplicar (20 .18). Y viceversa, los teoremas de Helmholtz [afirmaciones (i)-(iv) 
de la sección anterior] podrían haber sido demostrados utilizando el teorema de 
Kelvin, o invariancia en el tiempo de la circulación para un flujo barótropo de 
un fluido ideal en presencia de fuerzas másicas conservativas. Se debe observar , 
sin embargo, que el teorema de Kelvin es más general, puesto que aunque se 
ha hecho la hipótesis de un fluido ideal, esta hipótesis sólo afecta al fluido 
contenido en la curva C(t), por lo que si las fuerzas viscosas son importantes 
fuera de la curva C, no afectaría a la invariancia de la circulación alrededor de 
C. Por otra parte, al pasar de hablar de circulación a hacerlo de vorticidad, se 
hace uso del teorema de Stokes, y las conclusiones respecto a la invariancia de 
la irrotacionalidad son sólo válidas si la región fluida es simplemente conexa, 
es decir, si es posible construir una superficie S que se apoye en C y que 
esté completamente inmersa en el fluido. 

20.5 .  Ecuación de Bernoulli para flujos irrotaciona­
les. Función potencial 

La persistencia de los flujos irrotacionales que inicialmente lo son (si se 
verifican las condiciones de idealidad, barotropía y fuerzas másicas conserva­
tivas, y salvo que existan capas límites u otras fuentes de vorticidad) hace 
que el estudio de estos flujos sea bastante importante desde un punto de vista 
práctico. Además, el estudio de estos flujos es particularmente simple por el 
hecho de que se puede utilizar la función potencial de velocidad (sección 3 .6): 
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(20.27) 

La ecuación de cantidad de movimiento para estos flujos se escribe 

ir 
a: + 'y' v2 / 2 + y' w + 'y' u = o , 1 

'v'w = -'v'p 
p 

(20.28) 

(recuérdese que w = h para un flujo isentrópico). Sustituyendo (20.27) e inte­
grando se tiene la ecuación de Bernoulli para flujos irrotacionales: 

(20.29) 

donde H es una función arbitraria del tiempo que viene fijada por las condi­
ciones de contorno. A esta ecuación hay que unir la ecuación de continuidad, 
que en el caso general de un gas sería: 

op 
r7 - o - +  V • pV = 

8t 
(20.30) 

la ecuación de la energía (19. 6) proporciona la relación p = p(p) (recuérdese 
que el flujo es barótropo) , la cual , salvo que existan aportes volumétricos de 
calor , es la relación isentrópica , que para un gas ideal se escribe 

]!_ = constante . (20.31) 
p'Y 

Este sistema de ecuaciones (20.29)-(20.31), junto con v = '14>, se simplifica 
bastante para el caso de un flujo estacionario: 

v' · p'v= 0 v2 1 'v'- + - 'v'p + 'v'U = O. 
2 p 

Desarrollando la ecuación de continuidad, 

'1 - v + � - 'v'p = O 
p 

(20.32) 

(20.33) 

y sustituyendo la definición de la velocidad del sonido (recuérdese que el flujo 
es isentrópico), se tiene 

1 
'y' p = 2 'v'p a 

2 'y' 4> 'y' 4> + -2 • v'p = o , pa 

(20.34) 

(20.35) 
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donde se ha sustituido también v = '1</>. Por último , sustituyendo "\lp de la 
ecuación de cantidad de movimiento, se obtiene una única ecuación para el 
potencial de velocidad, donde aparece la velocidad del sonido: 

a2'12</> = '1</>. '1[('1</>/2)2 + U] 

El límite de esta ecuación para un flujo incompresible (p 
obtiene sin más que hacer a --,  oo: 

(20.3 6) 

constante) se 

(20.3 7) 

que, por supuesto, se podría haber obtenido mucho más fácilmente sin más que 
sustituir v = '1 </> en la ecuación de continuidad para un fluido incompresible , 
'1 • v = o. 

Vemos pues que para calcular el movimiento en un flujo irrotacional esta­
cionario es suficiente con resolver una ecuación de tercer orden para </> con sus 
correspondientes condiciones de contorno (realmente solo son necesarias dos 
condiciones de contorno puesto que cualquier constante aditiva es irrelevante 
en </>, ya que no afecta al campo de velocidad). En el caso de un líquido se 
tiene , simplemente , una ecuación de Laplace. Si el movimiento es , además , 
bidimensional , la resolución es particularmente simple puesto que se puede 
utilizar también la función de corriente y hacer uso de la teoría de funciones 
analíticas en variable compleja (ver capítulo siguiente). Una vez obtenida la 
función potencial se obtiene el campo de velocidad y de la ecuación de can­
tidad de movimiento el campo de presión , que integrado sobre las superficies 
sólidas nos dan las fuerzas que el fluido ejerce sobre ellas. 

20.6. Generación de vorticidad 

Hasta aquí hemos considerado fluidos ideales , en los cuales , según hemos 
visto , el flujo de vorticidad a través de cualquier superficie que se mueva con el 
fluido se conserva. En los flujos no isentrópicos aparecen, según se vió en § 7.6. ,  
dos nuevos términos que afectan a la  variación de la  vorticidad: el movimiento 
angular generado por las fuerzas de presión , '1 p /\ "\lp/ p2 , y la difusión de la 
vorticidad con difusividad v, v'12w. Aunque la difusión de la vorticidad por la 
viscosidad ya fue considerada en el ejemplo de la sección 14.2.3 , aquí se verá de 
forma más general cómo este término no sólo difunde, sino que , además , es el 
encargado de producir la vorticidad en una clase importante de flujos. 

El cambio de w en una partícula fluida , que para un fluido ideal se pue­
de visualizar como resultado del estiramiento y curvamiento de los tubos de 
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vorticidad, se ve suplementado por una difusión que equivale a un flujo cuya 
velocidad es v veces el gradiente de w a lo largo de la normal hacia fuera de 
la superficie dada, fw = -v(v'w) · ñ, de forma análoga a como se difunde el 
calor. Así, la intensidad de un tubo de vorticidad ya no permanece constante 
puesto que la vorticidad se difunde a través de las paredes del tubo. Pero lo 
más importante es que la conclusión de que una partícula fluida con vortici­
dad cero continúa con vorticidad nula a lo largo del movimiento es falsa en 
un fluido viscoso, puesto que existe difusión de vorticidad desde las partículas 
fluidas vecinas. Sin embargo, para que haya difusión de vorticidad, ésta debe 
crearse en algún lugar, puesto que la difusión no puede crear vorticidad de la 
nada. Y ésta se crea en el contacto del fluido con las superficies sólidas. Para 
verlo, consideremos el flujo unidireccional a lo largo de una placa plana en la 
dirección de ex : v = u(y, t)ex . En este flujo, la única componente no nula 
de la vorticidad sería Wz = -8u/8y; es decir, la componente transversal al 
movimiento, pero en el plano del mismo. El flujo difusivo de esta vorticidad 
desde la superficie (y = O) hacia el fluido (y > O) sería: 

8wz 82u 2 -v-- = v-- = vv' 11, 

{)y [)y2 (20.38) 

En el caso de un movimiento estacionario se tendría que este flujo de vorticidad 
es proporcional al gradiente de presión reducida [ver ecuación ( 14.2) para los 
flujos unidireccionales] : 

8wz 1 8(p + pU) -v-- = - ----
8y p 8x 

(20.39) 

Así, hay una generación neta de vorticidad en la superficie que se difunde al 
resto del fluido si el movimiento está generado por un gradiente de presión. 
Esto explica, por ejemplo, que el flujo alrededor de un cuerpo con número 
de Reynolds alto no sea irrotacional, puesto que se genera vorticidad en la 
superficie y, aunque su difusión está confinada a una capa límite delgada, 
ésta se convecta hacia la estela formando un torbellino en el caso de perfiles 
aerodinámicos (ver sección 21 .8 en el capítulo siguiente) , o modificando com­
pletamente el flujo, el cual deja de ser irrotacional en su mayor parte, cuando 
el cuerpo es romo ( en estos casos se separa la capa límite y los efectos viscosos, 
confinados originalmente en una capa delgada, terminan por impregnar a casi 
todo el flujo; ver sección 21 .8 y capítulo 27) . 
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Capítulo 21  

Movimiento irrotacional y 

bidimensional de un fluido 

incompresible 

21 . 1 .  Introducción 

Los movimientos irrotacionales ( o potenciales) que además son incompre­
sibles son particularmente fáciles de describir porque la función potencial </J 
(v = 'lil</J) satisface la ecuación de Laplace (ver sección 20.5) 

(21.1) 
Como esta ecuación es lineal, permite aplicar el principio de superposición. Es 
decir, soluciones de (21.1) con condiciones de contorno complejas y, por tanto, 
difíciles de obtener directamente, se pueden construir superponiendo (suman­
do) soluciones sencillas, correspondientes a condiciones de contorno más sim­
ples, siempre que la suma de estas condiciones de contorno reproduzcan las 
condiciones de contorno originales. Esta técnica es de mucha utilidad pues se 
conocen un conjunto de soluciones elementales ( con condiciones de contorno 
sencillas), bidimensionales y tridimensionales, de la ecuación de Laplace. De 
particular interés son los movimientos bidimensionales, pues se pueden des­
cribir mediante una función de corriente que, como se verá , también satisface 
la ecuación de Laplace. Esto hace que se pueda introducir el denominado po­
tencial de velocidad complejo y utilizar toda la potencia de la teoría de las 
funciones analíticas en el campo complejo para describir estos movimientos. 

En esta lección se utilizarán ambos procedimientos, el de superposición y 
el de la función potencial compleja, para describir algunos movimientos po-
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tendales e incompresibles de interés. En particular, se aplicará al movimiento 
potencial alrededor de perfiles aerodinámicos bidimensionales, que histórica­
mente fue la principal aplicación de estas técnicas y que tanto contribuyó al 
arranque de la aviación a principios del siglo XX. Téngase en cuenta que, una 
vez que el campo de velocidad potencial se ha obtenido mediante alguno de 
estos procedimientos, el campo de presión se obtiene directamente de la ecua­
ción de Bernoulli. También se describirán otras técnicas típicas de resolución 
de la ecuación de Laplace como, por ejemplo, el método de las imágenes. 

21 .2 .  Movimientos potenciales elementales 

El movimiento potencial más simple posible es la corriente uniforme unidireccional, cuyo campo de velocidad viene dado por 

(21 .2) 

donde se ha supuesto que la corriente tiene la dirección del eje x, y U es la 
magnitud (constante) de la velocidad. La función potencial de velocidad </> y 
la función de corriente 1P de este movimiento se obtienen, en el plano (x, y), 
de las ecuaciones 

o<j) - - - o'l/! - - Vx - U - -OX 8y ' 

8</> 8'l/! - = Vy = 0 = -- ,  8y 8x 
de donde, omitiendo constantes aditivas irrelevantes, 

</> = Ux ,  'l/! = Uy .  

(21 .3) 

(21 .4) 

(21 .5) 

Obviamente, las líneas de corriente son rectas paralelas al eje x, mientras 
que las líneas de potencial constante, denominadas líneas equipotenciales, son 
rectas paralelas al eje y. 

Otro movimiento elemental importante es la fuente o manantial bidi­mensional, y el correspondiente sumidero bidimensional, que son mo­
vimientos puramente radiales asociados a un caudal por unidad de longitud 
constante Q que sale de, o entra en, un punto del plano que se toma como el 
origen de coordenadas (por supuesto, estos movimientos son singulares en ese 
punto). En coordenadas cilíndricas planas (r, 0) , el campo de velocidad viene 
dado por 
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(21.6) 

donde el valor de Vr en función de Q se obtiene hallando el caudal por unidad de 
longitud perpendicular al plano en un círculo de radio r centrado en el origen 
y suponiendo que su valor Q no varía con r. El signo positivo corresponde a un 
manantial o fuente y el negativo a un sumidero ( compruébese que, ademas de 
incompresible por definición, este movimiento es irrotacional). Las funciones 
potencial y de corriente se obtienen de las ecuaciones 

de donde 

8</> ±Q 1 87/; - - v - -- - - -
8r - r - 27rr - r 80 ' 

l 8</> 87/; - - = vo = 0 = --
r 80 8r ' 

±Q </> = -- ln r ,  
27!" 

(21. 7 )  

(21.8) 

(21.9) 

Las líneas de corriente son rectas que pasan por el origen ( 0 = constante), 
naturalmente, mientras que las curvas equipotenciales son círculos centrados 
en el origen (r = constante) . Obsérvese que, como en el caso anterior, ambos 
conjuntos de líneas son ortogonales, lo cual será evidente en general cuando 
introduzcamos el potencial complejo más adelante. 

Un tercer movimiento elemental es el denominado torbellino potencial 
o (irrotacional) plano, ya introducido previamente en la sección 14.2. Se 
define como el movimiento puramente circunferencial, v = voeo, que es además 
irrotacional . Teniendo en cuenta que la componente z (perpendicular al plano) 
de la vorticidad se escribe 

(21.10) 

se tiene v0 = C / r .  La constante de integración C se suele relacionar con la 
circulación r alrededor de un círculo de radio r centrado en el origen, que se 
supone independiente de r: C = r / (27r). De hecho, otra forma de definir este 
tipo de torbellinos es como un movimiento plano puramente circunferencial 
cuya circulación alrededor de cualquier curva cerrada que encierra al origen es 
siempre igual a r. Obsérvese que, a pesar de que el movimiento es irrotacional, 
su circulación a lo largo de una curva cerrada que encierra al origen no es cero. 
Pero esto no vulnera el teorema de Stokes porque el campo de velocidad, que 
viene dado por 
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- r -
v = -2 ee , 1rr (21.11) 

es singular en el origen. Si r es positivo, el torbellino gira en el sentido de 
() creciente, es decir , en el sentido opuesto a las agujas del reloj (si tanto las 
coordenadas r - () corno el reloj son los que se usan convencionalmente) . Las 
funciones potencial y de corriente se obtienen de las ecuaciones 

de donde 

8q; 1 87/J 
ar 

= Vr = Ü = ;: é)() , 

1 8</J r 87/J 
-- = ve = -- = --r é)() 21rr ar ' 

r 1/J = - - ln r. 
21r 

(21. 12) 

(21.13) 

(21.14) 

Obsérvese que las líneas de corriente son círculos centrados en el origen y las 
líneas equipotenciales son rectas que cruzan el origen. 

Para terminar con los movimientos elementales planos, se considerará el 
dipolo bidimensional. Se define como la superposición de un manantial 
centrado en (x = -a, y =  O) y un sumidero centrado en (x = a ,  y =  O), ambos 
con la misma intensidad Q, en el límite en que a ----t O, Q ----t oo, pero con el 
producto Qa manteniéndose constante. Para hallar la correspondiente función 
de corriente, primero se escribe la función de corriente de cada uno de sus dos 
elementos de acuerdo con ( 21. 9), pero en coordenadas cartesianas [ x = r cos (), y = r sin fJ, r2 = x2 + y2 , () = arctan(y/x)] , y desplazando el origen a los 
centros respectivos del sumidero y del manantial: 

Q y 1/J± = ±- arctan --. 
21r x ± a  

Haciendo 7/J = 7/J+ + 7/J- y hallando el límite a ----t O, se obtiene 

1/J = _ 2aQ y M y 
21r x2 + y2 - - 21r x2 + y2 ' 

(21. 15)  

(21. 16) 

donde M = 2aQ se denomina intensidad del dipolo, que tiene unidades de 
caudal. El signo negativo proviene de que se ha colocado al manantial a la 
izquierda del sumidero. Si se cambia el manantial por el sumidero, la expresión 
sería la misma, pero con signo positivo. En ambos casos, las líneas de corriente 
son circunferencias centradas en algún punto del eje y tangentes al eje x en el 
origen. En coordenadas cilíndricas, (21. 16) se escribe 
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'¡/; = - : si
:

0
. (21.17)  

El campo de velocidad y e l  potencial de velocidad se  obtienen de (21.17)  
utilizando las ecuaciones 

de donde 

a</) 1 a'lj; M cos 0 
V - - - - - - - - --

r 
- ar - r 80 -

271" r2 , 

1 a</) a'lj; M sin 0 
vo = -- = -- = -- --r 80 ar 271" r2 ' 

M cos 0 
Vr = - 271" � , 

M sin 0 
vo = ---- , 21r r2 

(21.18) 

(21.19) 

(21.20) 

(21.21) 

En cuanto a los movimientos potenciales tridimensionales simples, se consi­
derará primero la fuente o manantial tridimensional (y el correspondiente 
sumidero tridimensional) que se define, de forma análoga al caso bidimensio­
nal, como el movimiento incompresible puramente radial originado por un 
caudal Q que sale de ( o entra en) un punto que se toma como el origen de 
coordenadas ( obsérvese que, en el caso tridimensional, Q tiene unidades de 
caudal). En coordenadas esféricas (r, 0, <p), el campo de velocidad viene dado 
por ( téngase en cuenta que r y 0 tienen aquí un significado distinto que las en 
coordenadas cilíndricas anteriores; véase la figura 1.1 del capítulo 1): 

(21.22) 

Esta expresión se obtiene calculando el caudal que atraviesa una esfera de radio r e imponiendo el requisito de que su valor Q no varía con r. El signo posi­
tivo corresponde a un manantial y el negativo a un sumidero. Se comprueba 
fácilmente que este movimiento es irrotacional, por lo que admite potencial de 
velocidades. También se puede definir una función de corriente pues, aunque 
tridimensional, el movimiento es unidireccional en coordenadas esféricas. Esto 
último hace que la ecuación de continuidad tenga un sólo término en estas 
coordenadas, de forma que la función de corriente se puede definir en el plano (r, 0) o en el plano(r, <p) . Por razones evidentes es preferible utilizar la primera 
posibilidad; en particular, se suele usar la denominada función de corriente 
de Stokes (véase sección 17.2). Así, las funciones potencial y de corriente se 
obtienen de las ecuaciones 
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de donde 

X 

�� - - - - - - - - - - - - - - - - - - - - - - - - -
: ', , 
: ',,, ' , R -- , : 

y 

Figura 21 . 1 :  

_ ±Q _ 1 87/l _ 8</> 
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z 

Vr - -- - --- -- - -41rr2 r2 sin 0 ae ar ' {21.23) 

1 87/J 1 8</> vo = 0 = --- - = - -
r sin 0 ar r ae '  

=r=Q 
7/J = 

471' 
cos 0 .  

{21.24) 

{21.25) 

A diferencia de las funciones de corriente bidimensionales {planas) que se 
ha utilizado anteriormente, que en virtud de ('v /\ v)z = O siempre satisfacen 
la ecuación de Laplace 'v27j; = O ( tanto en coordenadas cartesianas como 
en cilíndricas), la función de corriente de Stokes no satisface la ecuación de 
Laplace. En efecto, sustituida en ('v /\ v)v:> = O, se tiene 

� 
(-1 87/J

) 
+ � ( 1 87/J

) = O ar sin 0 ar ªº r2 sin 0 80 

que, aunque lineal, no es una ecuación de Laplace. 
Por último se considerará el dipolo tridimensional. Para ello se defi­

nen las coordenadas polares (R, <p, z) asociadas a las coordenadas esféricas 
(r, 0, <p)(véase figura 21.1). Tanto el manantial como el sumidero, ambos de la 
misma intensidad Q, se sitúan en el eje polar z (R = O), el primero en z = -a 
y el segundo en z = a. Escribiendo la función de corriente superposición de 
ambos elementos en las coordenadas polares y hallando el límite a ---+ O, pero 
con el producto Qa finito, se llega a 
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1/J = -
Qa R2 

= - Qa sin2 e = - M sin2 8 (21 .26) 21r (z2 + R2)3/2 21r r - 41rr 

donde M = 2Qa es la intensidad del dipolo, que ahora tiene dimensiones de 
caudal por longitud. De (21.26) se obtienen el campo de velocidad y la función 
potencial, que valen: 

M 
Vr = - --3 cos e ,  21rr 

M . e V9 = --- Sln 
41rr3 

M 
<P = -- cos e .  41rr2 

(21.27) 

(21.28) 

21 .3.  Superposición de movimientos elementales 

En esta sección se considerarán varios ejemplos de superposición de al­
gunos de los flujos potenciales elementales anteriores que dan lugar a flujos 
potenciales también simples y de interés práctico. 

Por ejemplo, la superposición de una corriente uniforme con velocidad U 
y una fuente bidimensional en el origen de intensidad Q simula la corriente 
potencial alrededor de un cuerpo bidimensional semiinfinito, cuya forma se 
obtendrá a continuación. Para ello se escribe la función de corriente suma de 
las funciones de corriente de estos dos elementos [ecuaciones (21.5) y (21.9)] 
en coordenadas cartesianas: 

Q y 1/J = U y + - arctan - . 
271" X 

El campo de velocidad viene dado por 

Q X 
Vx = U + -2 2 2 ,  7r X + y Q y 

V - - --,,---,-
y 

- 21r x2 + y2 • 

(21.29) 

(21.30) 

En la figura 21.2 se representan las líneas de corriente de este movimiento para 
diversos valores de 21r'l/J/Q = C. Se observa que el eje x (y = O) es una línea 
de corriente, correspondiente a C = O. En esta línea se sitúa el único punto 
de remanso del flujo, que, haciendo uso de (21.30), viene dado por [x = xn = 
-Q/(21rU), y =  O]. De este punto de remanso parten dos líneas de corriente, 
correspondientes a C = ±1r, de manera que todo el caudal que sale de la fuente 
permanece entre esas dos líneas, mientras que la corriente procedente de x -
-oo no atraviesa nunca a esas dos líneas de corriente. De esta forma, el campo 
de velocidad (21.30) simula el flujo potencial e incompresible alrededor de un 
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Figura 21 .2: Líneas de corriente dadas por (21 .29) con 21rU /Q = 1 para diversos valores de C = 2mj;/Q. 

cuerpo semiinfinito bidimensional que viene dado por las líneas de corriente 
correspondientes a C = ±1r; es decir, dado por las curvas 

� = tan ( ±1r -
2
;

U y) (21.31) 

que en la figura 21.2 están en trazo grueso. Las ordenadas de estas dos líneas 
tienden asintóticamente a y - ±Q/(2U) cuando x - oo, lo cual se podría 
haber predicho de antemano sabiendo que la corriente es uniforme con veloci­
dad U lejos de la fuente, y que todo el caudal Q que sale de la fuente pasa por 
entre esas dos asíntotas . Se puede decir , por tanto, que el presente flujo simula 
el movimiento potencial e incompresible alrededor de una placa semiinfinita 
de espesor Q/U con un borde de ataque romo dado por (21.31). 

Si quisiéramos simular el flujo potencial de una corriente uniforme con 
velocidad U sobre un cuerpo bidimensional finito, habría que añadir un sumi­
dero a la derecha de la fuente, con la misma intensidad Q, para que se trague 
todo el caudal que sale del manantial. Supongamos, por simplicidad, que el 
manantial está situado en (x = -a, y =  O) y el sumidero en (x = a, y =  O). La 
función de corriente y el campo de velocidad se obtienen de la superposición 
de los tres movimientos elementales. En coordenadas cartesianas se escribe 
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a=1 , 2 x U / 0 =  1 

-1 

-3 �--�---�---�--�---�--� -3 -2 -1 o 
X 

2 3 

Figura 21.3: Líneas de corriente dadas por (21.32) con 21rU /Q = 1 y a = l .  No se han 
dibujado líneas de corriente en el interior del óvalo. 

Q ( y y ) '1/J = Uy + -2 
arctan -- - arctan --

1r x + a x - a (21.32) 

(21.33) 

El campo de velocidad tiene ahora dos puntos de remanso situados en el eje 
x ( que sigue siendo una línea de corriente), dados por 

XR = ±aJl + 1r
�

U ' YR = O. (21.34) 

En estos dos puntos de remanso se cruzan las líneas de corriente y = O, 
correspondiente a 'lj; = O, y las dos líneas de corriente correspondientes a 
21r'lj) / Q = C = ±1r. La unión de estas dos últimas líneas de corriente for­
man una curva cerrada, cuya forma exacta depende de los dos parámetros a 
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y 2rrU /Q, que a veces se denomina óvalo de Rankine. Así, el campo de velo­
cidad dado por (21.33) simula el flujo potencial e incompresible alrededor de 
un cuerpo cilíndrico cuya sección viene dada por dicho óvalo (ver figura 21.3) . 

Un caso particular del anterior es el límite a --t O, pero con Qa finito. Es 
decir, la superposición de una corriente uniforme de velocidad U y un dipolo 
de intensidad M. Haciendo uso de (21.5)  y (21.17),  y utilizando coordenadas 
cilíndricas, la función de corriente se escribe: 

'ljJ = U r sm - - -- = U r sm 0 l - -. 0 M sin 0 . 
( 

r; 
) 2rr r r2 (21.35) 

donde se ha definido 

(21.36) 

Las dos líneas de corriente correspondiente a 'ljJ = O son el eje x (0 = O) y 
un círculo de radio r O centrado en el origen. Estas dos líneas de corriente se 
cortan en los puntos de remanso (x = ±r0 , y = O), que son los únicos que 
existen. Por tanto, todas las líneas de corriente del dipolo tangentes al eje x 
en el origen permanecen dentro de la circunferencia de radio r 0 , mientras que 
todas las líneas de corriente que provienen del infinito no cruzan dicho círculo. 
Así, el movimiento dado por (21.35) ,  cuyo campo de velocidad se escribe en 
coordenadas cilíndricas como 

(21.37) 

representa el flujo potencial e incompresible de una corriente uniforme con 
velocidad U alrededor de un cilindro circular infinito de radio r0 (figura 21.4). 

De forma análoga, la superposición de un dipolo tridimensional de inten­
sidad M, que en las coordenadas esféricas de la figura 21.1 viene dado por 
(21.26)-(21.28), con una corriente uniforme en la dirección polar z, 

·'· = !u R2 = !r2 sin2 0 
o/ 2 2 

(21.38) 

simula el flujo alrededor de una esfera de radio r 0 , dado por 

(21.39) 
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r =1 o 

2L-----=======--------J 

-1 r------

-2¡-------

Figura 21 .4: Líneas de corriente dadas por (21 .35) con r0 = l .  
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Téngase en cuenta que las dimensiones de Jvl no son las mismas para un dipolo 

bidimensional que para un dipolo tridimensional. En coordenadas esféricas, la 
función de corriente y el campo de velocidad de este flujo se escriben 

w = � U sin2
0r2 [1 - e: r] , 

Vr = U cos 0 [1 - (� r] , Vo = - � U sin 0 [2 + (�r] 

(21.40) 

(21.41) 

Esta técnica de superposición de fuentes y sumideros con una corriente 
uniforme se puede extender para simular el flujo potencial alrededor de una 
gran variedad de cuerpos planos o con simetría de revolución. Para ello no 

hay más que distribuir una serie de fuentes y sumideros con diferentes inten­
sidades Qi a lo largo de un eje. Si la suma neta de los caudales es cero, el 
cuerpo simulado será finito, mientras que en caso contrario será semiinfinito. 
Esto se puede generalizar incluso para una distribución contínua de fuentes. 
Considérese, por ejemplo , el caso plano. El flujo alrededor de un cuerpo bidi­
mensional de longitud L ( el perfil del ala de un avión, o el del álabe de una 
turbina) ,  puede ser simulado mediante una fuente contínua con intensidad por 
unidad de longitud q(x), O <  x < L. La función q(x) tiene unidades de caudal 
por unidad de área (velocidad), y puede tomar valores positivos (fuente) o 

negativos (sumidero). Para que el cuerpo sea cerrado, 

fo
L q(x)dx = O. (21.42) 

La forma del objeto plano simulado se obtiene de la función de corriente. Para 
ello se tiene en cuenta que una fuente infinitesimal de intensidad dQ = q(x')dx' 
situada en x' tiene por función de corriente (véase (21.9) ) 

q(x')dx' y dw = --- arctan --, , (21.43) 27r x - x  
de forma que la función de corriente total, superposición de la corriente uni­
forme y la distribución contínua de fuentes, viene dada por ( compárese con 
(21.32) ) 

1 lL y w = Uy + - q(x') arctan --, dx' . 
27r O X - X 

(21.44) 

Conocida la función de corriente se obtendría el campo de velocidad. Este sería 
el denominado problema inverso, donde conocida la distribución de fuentes se 
calcularía el flujo potencial alrededor de un objeto dado por esa distribución. 
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Normalmente a uno le interesa conocer el campo de velocidad alrededor de 
un objeto de forma conocida ,  y para ello tiene que calcular la distribución de 
fuentes que lo origina (problema directo). Esto se puede hacer sustituyendo la 
forma del objeto para un determinado valor de '¡/; en (21.44) y resolviendo la 
ecuación integral resultante para q(x' ) .  Existen diversas técnicas para resolver 
ese tipo de ecuaciones integrales, pero que no van a ser comentadas aquí. 
En cualquier caso , conocido v(x, y) ,  la presión se obtiene de la ecuación de 
Bernoulli , 

- p - Poo v2 
Cp = l 2 = l - U2 ' 2pU (21.45) 

donde p00 es la presión en el infinito y Cp es el denominado coeficiente de pre­
sión. Conocido p se obtiene la fuerza que la corriente potencial ejerce sobre el 
objeto , que es lo que se va buscando desde un punto de vista práctico. Sin em­
bargo, uno se encuentra con la sorpresa de que esa fuerza es cero (paradoja de 
D'Alambert). Este resultado es fácil de intuir a partir de los flujos planos dibu­
jados en las figuras 21.3 y 21.4, donde la simetría del campo de velocidad con 
respecto a los ejes x e y proporciona, de acuerdo con la ecuación de Bernoulli , 
un campo de presión también simétrico, que da como resultado una fuerza de 
presión nula. Para que al menos la fuerza en la dirección perpendicular a la 
corriente no sea nula, y se pueda así simular la fuerza de sustentación sobre 
un perfil aerodinámico, lo que se suele hacer es superponer una distribución 
adicional de torbellinos sobre el eje, que rompe la simetría del flujo en relación 
al eje x.  Pero esta técnica se va a considerar más adelante, ya que es más 
fácil simular perfiles aerodinámicos planos, con sustentación incluida, hacien­
do uso de la función potencial compleja, que será introducida en la sección 
21.5. También se demostrará en general la paradoja de D'Alambert para este 
tipo de movimientos potenciales planos alrededor de un cuerpo cerrado y se 
verá cómo la inclusión de circulación alrededor del perfil genera una fuerza de 
sustentación ( secciones 21. 7-9). 

21 .4. Método de las imágenes 
Antes de pasar a formular la función potencial compleja, que facilitará el 

análisis de los movimientos potenciales planos, se comenta brevemente aquí otra 
de las técnicas generales que se suelen utilizar , junto con el principio de super­
posición, para componer flujos potenciales e incompresibles (bidimensionales 
o tridimensionales) de interés. 
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El método de las imágenes se puede emplear siempre que exista algún tipo 

de simetría que permita reformular el problema original. Para introducirlo se 
usará un ejemplo sencillo: el flujo potencial originado por una fuente bidi­
mensional en presencia de una pared. Supongamos, por simplicidad, que 
la pared se corresponde con el eje y, y la fuente (de intensidad Q) está situada 
a una distancia a de la pared sobre el eje x. Para simular el efecto que la pared 
tiene sobre el flujo, el método de las imágenes lo que hace es situar otra fuente 
de la misma intensidad con simetría especular con respecto a la pared; es decir, 
en el punto x = -a, y = O. Aunque el campo de velocidad engendrado por 
estas dos fuentes no tiene significado físico para x < O, donde no hay fluido, el 
flujo resultante tiene, por simetría, una línea de corriente que coincide con la 
pared (x = O) y, por tanto, simula para x > O el flujo buscado. En particular, 
la función de corriente correspondiente a las dos fuentes viene dado por 

Q ( y y ) Q 2xy VJ = -2 
arctan -- + arctan -- = -2 

arctan 2 2 2 , 1r x - a  x + a  1r x - a  - y  
con campo de velocidad 

Q [  x + a  x - a ] Vx = 21r (x + a)2 + y2 + (x - a)2 + y2 

Q [ y y ] Vy = 
21r (x + a)2 + y2 + (x - a)2 + y2 • 

(21.46) 

(21.47) 

De particular interés en este problema sería calcular la fuerza de presión sobre 
la pared producida por el manantial. Para calcular la presión sobre la pared 
se aplica (21.45) con v evaluado en x = O: 

(21.48) 

donde se ha tenido en cuenta que la velocidad es nula en el infinito. La fuerza 
sobre la pared ( en la dirección x) por unidad de longitud se obtendría de la 
integración de (21.48): 

JO() 

pQ2 Fx = (p(O, y) - Poo )dy = --4 , 
-oo a1r 

que, lógicamente, tiene signo negativo. 

(21.49) 

Otra información que se puede obtener de la solución anterior es el efecto 
que la pared tiene sobre la fuente. En particular, si la fuente no tiene ninguna 
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2 

Fuente imagen 

-1 

-2 . . . . . . . . . . .  . .  

-3'---�----'-----''------'------'---""'--"'-_,__,_ __ .....__� 
-1.5 -1 -0.5 o 0.5 1 .5 2 2.5 3 

X Figura 21 .5: Líneas de corriente dadas por (21 .46) para x � O con a =  l .  
ligadura, se  mueve con una velocidad que viene dada por el  valor del campo 
de velocidad generado por la otra fuente ( que simula la pared) en el punto 
(x = a, y = O) : 

(21.5 0) 

Por tanto, la fuente se aleja de la pared a lo largo del eje x de acuerdo con 

da 
dt 

Q 47ra ' a(t) = ✓�: + a5 , 

donde ao es la posición inicial de la fuente. 

(21.51) 

Una de las aplicaciones típicas del método de las imágenes es simular el 
efecto que una pared tiene sobre el flujo alrededor de un perfil aerodinámico. 
La pared, si está suficientemente cerca del perfil , puede cambiar sustancial­
mente la distribución de presiones sobre el mismo y, por tanto, la fuerza que 
la corriente ejerce sobre el perfil. Para simular la pared, se superpone una 
distribución de fuentes idéntica a la que simula el perfil , pero con simetría 
especular en relación a la pared. 
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21 .5 .  Potencial complejo 

Como ya se ha comentado anteriormente, en un movimiento irrotacional, incompresible (solenoidal) y bidimensional, es posible hacer uso de la teoría de las funciones analíticas en variable compleja para describir el movimiento fluido, con toda la elegancia y potencia analítica que ello comporta. Con tal fin se define el potencial complejo como se describe a continuación. En este tipo de movimientos, la función potencial de velocidad </> y la función de corriente '!/J , proporcionan dos formas alternativas de especificar el campo de velocidad que, en coordenadas cartesianas, están relacionadas mediante 
8</> é)'ljJ 

Vx = OX 
= ay 1 (2 1.52) 

Estas son las conocidas condiciones de Cauchy-Riemann que deben satisfacer las partes reales e imaginarias de las funciones analíticas en variable compleja. Así, se define la función compleja 
J(z) = <l>(x, y) +  i'!/J(x, y) ,  z = x + iy , (2 1 . 53) 

denominado potencial complejo, que por las relaciones anteriores es una fun­ción analítica (o diferenciable, u holomórfica). Una particularidad de las fun­ciones analíticas en el plano complejo es que tanto la parte real como la parte imaginaria satisfacen la ecuación de Laplace, lo cual es algo que ya conocemos del potencial de velocidad y la función de corriente de este tipo de flujos: 
(2 1.5 4) 

Por otra parte, debido a las condiciones de Cauchy-Riemann, las líneas equi­potenciales </> = constante, o líneas de gradiente de velocidad constante, son ortogonales a las líneas de corriente 'IP = constante. La derivada del potencial complejo es la velocidad conjugada: 
df 8</> . a'lj; . 1 ( ª</> . 8'!/J ) 
dz = ax + 

z ax = Vx - ZVy = i ay 
+ i ay 

Los puntos de remanso del flujo vienen dados por la ecuación 
df = O dz 

(2 1.5 5 )  

(2 1.5 6 ) 
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21 .6. Soluciones elementales 

Se enumeran a continuación las soluciones elementales de la ecuación de 
Laplace más representativas, escritas en términos del potencial complejo , jun­
to con una descripción del flujo potencial que representan. Algunas de ellas se 
obtienen por superposición de otras más elementales, o por el método de las 
imágenes. La mayoría de ellas ya se han descrito en las secciones anteriores, 
pero se repiten aquí para poner de manifiesto la simplicidad de escritura que 
representa el potencial complejo. Se incluye también un comentario sobre su 
utilidad en la teoría potencial de perfiles aerodinámicos, que se tratará bre­
vemente más adelante. No se incluye el campo de velocidad o la función de 
corriente pues se pueden derivar fácilmente de f utilizando (21.55 )  o (21.53). 

21 .6. 1 .  Corriente uniforme 

Potencial complejo: 

J(z) = Uze-iª .  (21.5 7) 

U es la velocidad y o: el ángulo que forma la corriente respecto al eje x ( ángulo 
de ataque en la teoría de perfiles). 

21 .6.2. Manantial o sumidero 

Potencial complejo: 

J(z) = � ln(z - z0) .  (21.58) 

Q es la intensidad del manantial ( Q > O) o del sumidero ( Q < O) situado en 
el punto del plano z = z0 . Se utiliza para simular el espesor de un perfil. 

21 .6.3. Torbellino potencial 

Potencial complejo: 

ir J(z) = 
27r 

ln(z - z0) .  (21.5 9) z0 es el centro del torbellino de circulación -r [el giro dado por (21.5 9) es en 
el sentido horario]. Se utiliza para simular el efecto sustentador en un perfil. 
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(a) 

(b) 

lt / n 

(d) (e) 

n=2/3 

n=ln 

Figura 21 .6: (a) Dipolo. (b) Flujo en una esquina. (e) Flujo en las proximidades de un punto 
de remanso. (d) Flujo sobre una esquina de 90° . (e) Flujo alrededor de una placa plana. 

21 .6.4. Dipolo 

Potencial complejo: 

·13 J(z) = Mei _1_ . 
21r Z - Zo 

(21 .60) 

El dipolo, de intensidad Mei/3 de acuerdo con la notación de (21 . 16) , está cen­
trado en z = z0 e inclinado un ángulo /3 respecto al eje x [ver figura 21 .6(a)] . 
Al igual que las fuentes y sumider:_os, sirve para simular el efecto de espesor. 
En particular, sirve para simular el flujo alrededor de un cilindro circular. 

21.6.5.  Corriente en una esquina 

Potencial complejo: 

(21 .61)  

Las líneas de corriente representan el  flujo potencial en una esquina de ángulo 
1r /n [ver figura 21 .6(b)] . La constante A es real, representando la intensidad del 
flujo. Es un ejemplo del método inverso: ¿Qué representa una función analítica 
sencilla? El caso particular con n = 2 sirve para simular el flujo potencial que 
incide normalmente sobre un plano [flujo en las proximidades de un punto de 
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remanso; ver figura 21 .6(c)] . El caso n = 2/3 simula el flujo alrededor de una 
esquina convexa de 90° [figura 21 .6(d)] , mientras que el caso n = 1/2 simula 
el flujo potencial alrededor de un plano semiinfinito [figura 21 .6( e)] .  

21 .6.6. Corriente incidente sobre un cuerpo romo 

Potencial complejo: 

f ( z) = U z + � ln z . (21 .62) 

Como ya se ha visto, la superposición de una corriente uniforme y un manantial 
en el origen simula un cuerpo plano semiinfinito, con borde de ataque romo 
(ver figura 21 .2)  y con espesor Q/U. 
21.6.  7. Corriente alrededor de un cilindro circular 

Potencial complejo: 

(21 .63) 

Superposición de una corriente uniforme U y un doblete que simula el flujo 
potencial alrededor de un cilindro circular de radio a. En la sección 21 .8 se le 
superpondrá también un torbellino potencial para simular el efecto sustenta­
dor. 

21 .6.8. Corriente alrededor de un óvalo de Rankine 

Potencial complejo: 

Q z + a  J(z) = Uz + -2 ln -- . 
1r z - a 

21.6.9. Fuente en la proximidad de una pared 

Potencial complejo: 

Q Q J(z) = - ln [(z - a)(z + a)] = -2 ln(z2 - a2 ) .  21r 7r 

(21 .64) 

(21 .65) 

a es la distancia de la fuente a la pared, representada por el plano x = O. 
Como se analizó en la sección 21.4, el flujo se obtiene mediante el método de 
las imágenes por superposición de dos fuentes simétricas respecto a x = O. Si 
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la pared está situada en el plano y =  O y la fuente en x = O, y =  a, se tiene el 
potencial complejo 

Q Q 2 2 f(z) = - ln [(z - ia) (z + ia)] = - ln(z + a ) . 
2� 2� 

21.6 .10. Torbellino en la proximidad de una pared 

Potencial complejo: 

f ( z) = ir ln z + a . 
2� z - a  (21.66) 

También se obtiene por superposición de dos torbellinos especularmente simé­
tricos a la pared, representada en este caso por el plano x = O. Téngase en 
cuenta que el torbellino imagen, situado en x = -a, y = O, tiene circulación 
-r. 

21 .  7. Fuerza sobre un perfil. Paradoja de D'  Alambert 
y fórmula de K utta-J oukowski 

Una de las aplicaciones más importantes de la teoría potencial es el cálculo 
de la fuerza de sustentación en perfiles aerodinámicos, de interés sobre todo en 
aeronáutica, en ingeniería naval y en la teoría de las turbomáquinas hidráuli­
cas. En esta sección se derivará de forma general las fuerzas sobre un perfil 
considerado como la superposición de fuentes, sumideros y torbellinos. 

Para ello se aplicará el principio de la conservación de la cantidad de mo­
vimiento en forma integral a un volumen de control como el de la figura 21. 7 :  

r piJiJ . ñds = - r (p - Poo )ñds - F '  
lse lse 

(21.67) 

donde Se es la superficie cilíndrica con centro en el perfil y radio R -+ oo, y 
F es la fuerza que el flujo ejerce sobre el perfil. El campo de velocidad iJ se 
obtiene de un potencial complejo f(z) superposición de: 

■ una corriente uniforme, U z; 
■ una superposición de manantiales y sumideros de intensidad por unidad 

de longitud q(z' ) ,  dado por 

2
� / q(z') ln(z - z')dz' , con J q(z')dz' = O ;  (21.68) 
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R 

u 

Figura 21 .7: Fuerza sobre un perfil. 

■ una superposición de torbellinos de circulación por unidad de longitud 
'Y(z'), cuyo potencial complejo es 

2
� j r'(z') ln(z - z')dz' , con j r'(z')dz' = I' .  

El potencial total será: 

(21 .69) 

f(z) = Uz + 2
� j q(z') ln(z - z')dz' + 2

� j r'(z') ln(z - z')dz' . (21 .70) 

Sobre la superficie Se, dada por lzl - oo, se tiene 

de donde 

ln( z - z') = ln z + O (:) 

iI' ( z' ) f ( z) = U z + - ln z + O -271" z (21 .7 1 )  

sobre Se. Es  decir , lejos del perfil la corriente es, con errores de orden l z l - 1 - O ,  
una superposición de una corriente uniforme y un torbellino centrado en el 
origen de intensidad r. La velocidad conjugada es 
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df iI' 

( 
1 

) dz = U + 21r z + O z2 

por lo que las componentes de la velocidad según los ejes x e y son: 

Vx = U + 2�r sin 8 + Q ( :2 ) 

Vy = - 2�r 
COS 8 + Q ( r

l
2 ) 

De la ecuación de Bernoulli, la presión en Se viene dada por 

Si definimos 

1 ur . ( 1 )  P = Poo - -p- sm 8 + O - . 
2 1rr r2 

(21 .72) 

(21.73) 

(21.74) 

(21.75)  

(21.7 6) 

siendo D la fuerza de resistencia ( componente de la fuerza en la dirección 
del movimiento) y L la fuerza de sustentación ( componente de F normal a 
la corriente exterior), teniendo en cuenta que sobre Se ñ = cos Bex + sin Bey 
y iJ • ñ = U cos 8 + O ( 1 / r2) ,  la ecuación integral de cantidad de movimiento 
proporciona los siguientes valores para D y L:  

pUr 
fo

21r 
fo

21r 
( 

r 
) D = -- cos 8 sin 8rd8 - pU U cos 8 + - cos 8 sin 8 rd8 = O , 

21rr o o 21rr 

L = [!__ sin2 8rd8 + [!__ cos2 8rd8 = prU . ur 
fo

21r ur 
fo

21r 
21rr o 21rr o 

(21 . 7 7) 

(21.78) 

La primera expresión es una demostración general de que la fuerza de 
resistencia es nula para el flujo potencial , estacionario e incompresible so­
bre un cuerpo cerrado bidimensional. El mismo resultado se obtendría si el 
cuerpo fuese tridimensional. Este resultado se suele denominar paradoja de 
D' Alambert. La segunda expresión es la denominada fórmula de Kutta­
Joukowski, que nos dice que la componente perpendicular a la corriente de 
la fuerza sobre un perfil es distinta de cero si, y sólo si, la circulación en una 
curva cerrada que lo encierra es distinta de cero. 

Evidentemente, la fuerza de resistencia no es nula en fluidos reales. Sin 
embargo, a diferencia del flujo alrededor de un cuerpo romo ( como, por ejem­
plo, un cilindro), donde el flujo viscoso real se parece muy poco al obtenido 
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Figura 21.8: Distribución de presión alrededor de dos perfiles en términos del coeficiente de presión. Los puntos corresponden a los valores experimentales medidos en un túnel de viento para un número de Reynolds alto, y la curva contínua representa los resultados de la teoría potencial. (Figura tomada de Prandtl y Tietjens (1957), que a su vez reproduce los resultados de la tesis doctoral de Fuhrmann (1912) , que constituye uno de los trabajos pioneros en aerodinámica experimental. )  
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por la teoría potencial, incluso si el nümero de Reynolds es muy alto (véase 
sección 21. 9) , en perfiles esbeltos los resultados de la teoría potencial se pare­
cen mucho a los reales si el número de Reynolds es suficientemente alto (ver 
figura 21.8) y, aunque la fuerza de resistencia no es nula, es realmente muy 
pequeña. Dado, por tanto, que la teoría potencial es una buena aproximación 
en perfiles aerodinámicos esbeltos, y dado que la fuerza de sustentación es, 
evidentemente, distinta de cero (los aviones vuelan y las turbomáquinas inter­
cambian cantidad de movimiento con el fluido que impulsan), la pregunta que 
surge es: ¿cómo se genera la circulación r en el flujo alrededor de perfiles y 
cuánto vale? 

21 .8 .  Generación de sustentación en perfiles aero­
dinámicos 

En el marco de la teoría del flujo potencial alrededor de un cuerpo, la 
generación de circulación es un tanto paradójica debido a que el teorema de 
Kelvin ( ver capítulo anterior) nos dice que si la circulación es inicialmen­
te nula (que lo es, pues el flujo parte del reposo), seguirá siendo nula si la 
aceleración Dvj Dt deriva de un potencial, lo cual se verifica en el presente 
flujo [Dv/Dt = -v'(p/p) ] .  Como se verá a continuación, lo que ocurre es que 
aunque la hipótesis de fuerzas viscosas nulas es aproximadamente válida (si 
Re -+ oo) en la mayor parte del campo fluido, el hecho de que no lo sea en una 
capa límite muy delgada alrededor del perfil juega un papel muy importante 
en el establecimiento del movimiento en sus etapas iniciales ( en concreto, en 
el establecimiento de una circulación) ,  aunque una vez que se ha alcanzado 
el régimen estacionario, la capa límite viscosa no afecta apreciablemente a la 
distribución ele presión y, por tanto, a la fuerza sobre el perfil (salvo, por su­
puesto, en la resistencia viscosa, y siempre que la separación ele la corriente se 
produzca muy cerca del borde de salida del perfil ; véase el capítulo 27 ). 

Considérese un perfil como el de la figura 21.9(a) ,  donde se dibuja un 
esquema de la configuración del flujo potencial con circulación nula. Existe 
una línea divisoria que separa la corriente del estradós del intradós; dicha 
línea se bifurca en el punto de remanso anterior (a) ,  pero ambas ramas salen de 
nuevo unidas del punto de remanso posterior ( b). Esta configuración no puede 
parecerse a la realidad en las proximidades de la salida ya que la corriente 
se decelera en el pequeño espacio que hay entre el borde de salida e ( donde, 
teniendo en cuenta que el potencial complejo vendría localmente dado por 
(21.61), con n próximo a 1/2, la velocidad es teóricamente infinita) y el punto 
de remanso b (donde la velocidad es cero) . Esta deceleración se traduce en 
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(e) 

r=  o D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C 
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Figura 21.9: (a) : Flujo potencial alrededor de un perfil. (b) y (e): Generación de un torbellino 
aguas abajo. 

un gradiente adverso de presión muy intenso y en el desprendimiento de la 
capa límite (véase lección 27). Ahora bien, el flujo de cortadura resultante es 
inestable (inestabilidad de Kelvin-Helmholtz; véase capítulo 30) ,  y el resultado 
es que se forma un torbellino que viaja aguas abajo, como se esquematiza en 
las figuras 21.9(b) y (c). Alrededor de la curva ABCD de la figura 21.9(a), 
así como de la figura 21.9(c), donde engloba tanto al torbellino producido 
como al perfil, la circulación debe ser nula, pues se verifican las hipótesis 
del teorema de Kelvin. Como consecuencia, aparece una circulación no nula 
alrededor de la curva AEFD que engloba sólo al perfil, que es de signo contrario 
y aproximadamente igual en valor absoluto a la del torbellino generado (sería 
exactamente igual si la viscosidad fuese exactamente cero, pues la circulación 
a lo largo de ABCD sería exactamente nula). 

El efecto de la circulación es aproximar el punto de remanso posterior al 
borde de salida del perfil, aumentando para ello la velocidad en el estradós a 
costa de la del intradós. La formación del torbellino continúa hasta que el punto 
de remanso se sitúa en el borde de salida del perfil (ver figura 21.lü(a)) . Dicho 
de otra forma, la circulación es la apropiada para que el borde de salida del 
perfil sea un punto de remanso , si el borde tiene un ángulo finito, o desaparezca 
el punto de remanso si el borde de salida es un punto de retroceso ( ver sección 
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(b) 

\.J V 

Figura 21 . 10: (a) Flujo potencial con circulación alrededor de un perfil. (b) Flujo potencial 
y flujo tras la separación de la corriente alrededor de un cuerpo romo. 

21.10 más adelante). Esto se conoce como la hipótesis de Kutta-Joukowski. 

En el caso de un borde de salida romo [figura 21. lO(b)], se forman una serie 
de torbellinos de signo opuesto de manera que tanto la circulación alrededor 
de una curva que engloba al objeto y a los torbellinos, como alrededor de una 
curva que sólo engloba al cuerpo romo, es prácticamente nula. La sustentación, 
por tanto, es nula, o casi nula, en un cuerpo romo. Por supuesto, la corriente 
real no se parece en nada a la ideal y el resultado de D' Alambert de resistencia 
nula no es ni siquiera aproximado. Precisamente aquí es donde reside una de 
las principales ventajas del perfil aerodinámico sobre el romo: La fuerza de 
resistencia es mucho menor en el perfil, al ajustarse el flujo real bastante bien 
al ideal (salvo muy cerca del borde de salida; véase la figura 21.8), siendo esta 
fuerza principalmente debida a la fricción viscosa, cuyo efecto es mucho menor 
que el de la presión cuando la corriente se separa en un cuerpo romo. Por 
otro lado, la sustentación en un perfil aerodinámico es distinta de cero debido 
a la generación de circulación neta alrededor del perfil, de acuerdo con la 
hipótesis de Kutta-Joukiwski, mientras que en un cuerpo romo la sustentación 
es prácticamente nula pues los torbellinos generados aguas abajo tienen una 
circulación neta total casi nula. En el capítulo 27, dedicado a la capa límite, 
se dará la explicación física de porqué se separa la corriente en un cuerpo 
romo mucho antes que en un perfil aerodinámico, que a su vez explica la razón 
por la cual el flujo potencial reproduce mucho mejor el flujo real sobre un 
perfil esbelto que sobre un cuerpo romo, en el que el flujo potencial tiene muy 
poco parecido con el real ( como también se verá a continuación para el caso 
particular de un cilindro circular). 
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21 .9.  Flujo con circulación alrededor de un cilindro 
circular 

. Otro procedimiento muy usado para obtener el flujo alrededor de un perfil 
aerodinámico, además de la superposición de flujos elementales ( con o sin el 
uso del potencial complejo), es mediante la transformación conforme del flujo 
alrededor de un cilindro circular, flujo que repasamos en la presente sección 
con especial énfasis en el efecto sustentador de los torbellinos. 

Como ya se ha visto, el flujo potencial alrededor de un cilindro circular se 
obtiene mediante la superposición de una corriente uniforme y un doblete o 
dipolo alineado con la corriente ( a = /3 = O, por ejemplo) :  

M 
( ª2

) f(z) = Uz + 211"Z = U z + -; (21 .79) 

donde a =  JM/(27rU) representa el radio del cilindro. La parte imaginaria 
de f es la función de corriente, que en coordenadas cartesianas se escribe 
(compárese con (21 .35) , donde r0 = a) 

?j;(x, y) = Uy (l - 2
ª2 

2 ) ' X + y 

que ya ha sido representada en la figura 21 .4. 

(21 .80) 

El campo de velocidad sobre el cilindro (r = a) viene dado, en coordenadas 
polares, por [véase (21 .37)] 

vx (r = a) =  2U sin2 0 ,  vy (r = a) =  -2U sin 0 cos 0 ,  (21 .81) 

de donde, utilizando la ecuación de Bernoulli, la distribución de presión sobre 
el cilindro es 

es decir, el coeficiente de presión local viene dado por 

P - Poo 4 . 2 O Cp = l 2 = 1 - Slll . 
2pU 

(21 .83) 

Se observa que la distribución de presión sobre el cilindro tiene simetría res­
pecto a los planos x = O e y = O: 

p(0) = p(7r - 0) = p(-0) , (21 .84) 
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por lo que la fuerza resultante sobre el cilindro es nula, de acuerdo con los 
resultados generales (21 .  77) y (21 .  78) . 

La solución anterior no es única, en el sentido de que si se le superpone un 
torbellino centrado en el origen de intensidad arbitraria r, la circunferencia r = a sigue siendo una línea de corriente, por lo que el flujo resultante tam­
bién representa el flujo potencial alrededor de un cilindro circular, pero con 
circulación no nula. Es decir, el potencial complejo 

f ( z) = U z + - + i - ln z , ( ª2 ) r z 27T" 

cuya parte imaginaria es 

( a2 
) 

r 
'l/J(x, y) = Uy l -

2 2 + -4 
ln(x2 + y2 ) ,  

X + y 7r 

también tiene por línea de corriente la circunferencia x2 + y2 

correspondiente a 'ljJ = .J: ln a) para cualquier valor de r. 
La posición de los puntos de remanso se obtiene de f' ( z) = O:  

( �) 
2 

+ i 
27r

�
U � - 1 = O • 

(21 .85) 

(21 .86) 

a2 (ahora 

(21 .87) 

Si ¡r / ( 47raU) 1 :s; 1 ,  los puntos de remanso están situados en la circunferencia 
x2 + y2 = a2 : 

:. = ± cos ¡3 - i sin ¡3 , 
a 

sin ¡3 = _r_ .  
47raU 

(21 .88) 

Estos dos puntos de remanso convergen en uno sólo, situado en z = ai, para 
r / ( 47raU) = l .  Si I r/ ( 47raU) 1 > 1 ,  los puntos de remanso están sobre el 
eje imaginario y, uno de ellos en el interior del cilindro (que no tiene mucho 
interés) ,  y el otro en el exterior: 

:. = i( ± sinh ¡3 - cosh ¡3) , a r 
cosh ¡3 = -- . 

47raU 
(21 .89) 

Aunque no existe ningún criterio físico (de momento) para fijar r, y por 
tanto la solución deseada, lo que sí está claro es que la introducción de un 
torbellino rompe la simetría del flujo (ver figura 21 . 1 1 )  e introduce una fuerza 
de presión en la dirección perpendicular a la corriente U. En efecto, de la 
ecuación de Bernoulli , la distribución de presión sobre el cilindro r = a viene 
dada por 
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< I  

4 1t a U _f_ = I  
4 1t a U  _r __ > i 

4 n a  U 

Figura 2 1 . 1 1 :  
p = Poo + 1 pU2 [ 1 - ( 2 sin 0 

+ 2!u) 2
] 

Las componentes de la fuerza de presión según los ejes x e y son: 

¡2n: Fx = - Jo (p - Poo ) cos 0ad0 = O , 

Fy = - fo2n: (p - Poo ) sin 0ad0 = pUI' , 
lo cual corrobora, obviamente, el resultado general (21 .77)- (21 . 78) . 

(21 .90) 

(21 .91)  

(21 .92) 

21 .9. 1 .  Utilidad práctica de la solución potencial del flujo al­
rededor de un cilindro circular 

Los experimentos muestran que la corriente real alrededor de un cilindro 
circular (y, en general, alrededor de cualquier cuerpo romo) es bastante dife­
rente de la obtenida mediante la solución potencial, incluso si la viscosidad es 
muy pequeña (Re -----> oo). En la figura 21 . 12  se muestran los flujos reales alre­
dedor de un cilindro circular para varios números de Reynolds. Para Re « 1 ,  
el flujo es prácticamente simétrico, pero, por supuesto, no es potencial (flujo de 
Stokes; ver capítulo 17) .  Para Re � 1 ,  el flujo pierde la simetría con respecto 
al plano y = O debido a la separación de la corriente, y para 5 � Re � 40, 
aproximadamente, se desarrollan torbellinos simétricos estacionarios. Para Re 
del orden de 100, se forman contínuamente torbellinos en una estructura de­
nominada calles de van K ármán. Para Re � 2000 y mayor, el flujo detrás del 
cilindro se hace turbulento. 
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( a )  

( e )  

Figura 21 . 12: Flujo alrededor de un cilindro circular para diferentes números de Reynolds. 
Re = 26 (a) , Re = 200 (b) y Re = 2000 (c) . Figura tomada de Ryhming ( 1991 ) ,  que a su vez está basada en fotografías recogidas en M. Van Dyke ( 1982) . 
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Figura 21 . 13: Coeficiente de presión del flujo alrededor de un cilindro circular. Figura tomada 
de White ( 1983) . 

La distribución de presión sobre el cilindro se representa, en términos del 
coeficiente de presión Cp, en la figura 21.13. La presión experimental se aproxi­
ma bastante a la obtenida por la teoría potencial [ecuación (21.83)] hasta que 
se separa la capa límite, lo cual ocurre para ángulos () bastante menores que 
90° si la capa límite permanece laminar hasta la separación, o para 0 � 90° si 
la capa límite se hace turbulenta (esta transición ocurre para Re � 3 x 106). 
Debido a esto, la resistencia de presión (y por tanto la total) disminuye cuan­
do la capa límite se hace turbulenta (ver capítulo 27 y siguientes para una 
explicación física de estos fenómenos). 

De todo lo anterior podría parecer que la solución ideal del flujo alrededor 
de un cilindro circular no tiene ninguna utilidad práctica, ya que la corriente 
ideal se parece muy poco a la real . Sin embargo, sí tiene utilidad debido a que a 
partir de ella, mediante la transformación conforme que se verá a continuación, 
se pueden obtener los flujos potenciales alrededor de perfiles aerodinámicos, 
que sí tienen gran parecido con los reales debido a que la capa límite se separa 
muy aguas abajo si el perfil es lo suficientemente esbelto. 
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21 . 10. Transformación conforme 
Una herramienta muy potente para calcular la sustentación en perfiles 

aerodinámicos es la transformación conforme, que permite obtener el flujo 
alrededor de un perfil a partir del flujo alrededor de un cilindro circular me­
diante una transformación del plano complejo. Este método es alternativo al 
de superponer fuentes, sumideros y torbellinos. 

Considérese la correspondencia entre los planos z = x + iy y T = ( + ir¡ 
a través de la función z = F(T) = <P((, r¡) + i\Jl((, r¡) .  Si F'(T) # O en el 
entorno del punto T = T0, la transformación en las proximidades de ese punto 
es, además de biunívoca, conforme, llamada así porque a un pequeño triángulo 
en el plano T le corresponde un triángulo semejante en el plano z ( es decir , 
conserva los ángulos). Para demostrarlo no hay más que desarrollar en serie 
de Taylor alrededor de T0 : 

Si z - z0 = (6r)ei0 y T - T0 = (6s)é:t, aplicando el desarrollo anterior a dos 
segmentos T1 - T0 = ( 6s ) i  él'.1 y T2 - T0 = ( 6s )2eiº2 , y dividiendo, se tiene 

por lo que, en el límite (6s) - O, los ángulos se conservan y un triángulo 
se transforma en otro semejante. Estos resultados se generalizan a dominios 
finitos sin más que exigir que la función sea regular y con derivada no nula en 
el dominio. 

Dos contornos cerrados se corresponden si vienen representados por curvas 
diferenciables (al menos a trozos) y si la función F es analítica en el recinto 
contorneado; además, si se verifica lo anterior, al recorrer una única vez el 
contorno en un sentido , se recorre una única vez el contorno transformado en 
el mismo sentido. De acuerdo con esto se puede enunciar el siguiente teorema 
(debido a Riemann) que no demostraremos (para los detalles matemáticos for­
males de la transformación conforme, el alumno puede consultar, por ejemplo, 
L.M. Milne-Thomson, 1996) : Dado un recinto simplemente conexo con más de 
un punto frontera, existe una transformación que lo convierte en el interior de 
una circunferencia, y para definir la transformación basta dar dos puntos y un 
par de direcciones homóloga.<,. 

Naturalmente, el que exista la transformación no implica que sea fácil en­
contrarla para cada caso particular. U na primera dificultad aparece en relación 
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Figura 21 . 14: 
al borde de salida del perfil , que tiene que ser anguloso para que sustente. Co­
mo la transformación conforme conserva los ángulos [si F' ( T) es distinta de 
cero], para que z = F(T) transforme un punto de la circunferencia en el bor­
de de salida de un perfil, este punto, por ejemplo Za = F(Ta) ,  tiene que ser 
un cero o un polo de F' ( T). Suponiendo que sea un cero de orden n, en las 
proximidades de Ta el desarrollo en serie de Taylor proporciona: 

z - Za = C(T - Tat Ó (..6.r)e·iO = C(..6.syieino: , 

siendo C una constante compleja [proporcional a dn F /dTn (Ta)]. Dos segmentos 
infinitesimales que tiene T0 como punto de unión se transforma de acuerdo con 

Para transformar 01 - 02 = 1r en 0:1 - 0:2 = 21r - /3, el cero debe ser de orden 
7f n = 21r - /3

. 

Si n fuese negativo (que no es el caso de un perfil ; véase figura 21.14) , el punto 
Ta sería un polo en vez de un cero. 

En lo que sigue se llamará z al plano del círculo, T al del perfil, z = F( T) a 
la transformación, f(z) al potencial complejo en el plano z y G(T) = f [F(T)] 
al potencial complejo en el plano T . Algunas propiedades de la transformación 
son las siguientes: 

■ Las líneas equipotenciales se corresponden en la transformación 

■ Las líneas de corriente también. En particular, las líneas de corriente 
cerradas se transforman en líneas de corriente cerradas 

■ Fuentes, sumideros y torbellinos se convierten en fuentes, sumideros y 
torbellinos de la misma intensidad, si los puntos en los que están centra­
dos son puntos regulares de la transformación. 
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Los puntos de remanso no tienen porqué convertirse en puntos de remanso. Teniendo en cuenta que 

dG dT df dz dz dT df dF dz dT ' 
los puntos de remanso en el plano z, dados por df /dz = O, se corresponden con los puntos de remanso en el plano T si dF / dT es distinto de cero. Si dF/dT ~ (T - T0) 2,.."...s -1 (borde de salida), puede ocurrir que el punto z0 no sea de remanso, en cuyo caso la velocidad en T0 es infinita, o que sí lo sea . En este último caso, df /dz ~ (z - z0) ----► O, de donde 

dG ( ) (  ) -" -1 ( ) -" ( ) -" -1 ( ) __JL_ dT ~ Z - Zo T - To 21r-fJ ~ T - TO 21r-fJ T - To 21r-fJ = T - To � ; 
es decir, si el borde de salida es anguloso (/3 -::/= O), hay punto de remanso en To, y si el borde de salida es de retroceso (/3 = O), no hay punto de remanso (velocidad finita). Obsérvese que si se quiere que en T0 la velocidad no sea infinita, G'(T0) -::/=  oo, es necesario que el homólogo de T0 sea punto de remanso. Esto fija la circulación: la circulación alrededor del cilindro circular debe ser tal que el homólogo del borde de salida del perfil sea un punto de remanso, pues en caso contrario el borde de salida tendrá velocidad infinita. Esta es la hipótesis de Kutta-Joukowski, ya comentada anteriormente. El borde de salida será de remanso si es anguloso, o de velocidad finita si el borde es de retroceso. Finalmente, hay que indicar que la transformación debe ser tal que en el infinito se reduzca a una identidad, para que así las velocidades de las corrientes incidentes sobre el cilindro y sobre el perfil sean iguales. Esto quiere decir que el desarrollo de Laurent de la transformación debe ser de la forma 

oo B T = z + '\"'"' � . 6 zn 
n=l 

21. 10. 1. Placa plana con ángulo de ataque a 
La transformación conforme se puede aplicar para simular el flujo alre­dedor de prácticamente cualquier perfil. El caso más simple es la simulación de la corriente alrededor de una placa plana con un ángulo de ataque o:. Este modelo sencillo proporciona una estimación de la sustentación en perfiles aero­dinámicos muy esbeltos cuando sobre ellos incide una corriente con un ángulo o:. Para ello se utiliza la transformación de J oukowski, 
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TI 
y 

t ;;; z + a2 /z 

t = 2  a cos 8 � 

(l '. _ -2• 

u 

Figura 21. 15: 

a2 
T = z + - ,  z 

2a 

(21.93) 

que convierte la circunferencia de centro en el origen y radio a del plano z,  en 
la placa situada entre (-2a, O) y (2a, O) del plano T (ver figura 21.15 ). 

Como lejos de la circunferencia la transformación es una identidad, T = z,  
la corriente no perturbada tiene que incidir sobre el cilindro formando el mismo 
ángulo o: con la horizontal que el que queremos que forme con la placa. El 
potencial complejo en el plano z será, por tanto, 

(21.94) 

La circulación r se elije de forma que el homólogo del borde de salida del perfil T = 2a, dado por z = a, sea punto de remanso [Hipótesis de Kutta -Joukowski ;  
véanse los esquemas de la figura 21.16]. Es decir, J'(a) = O, lo que implica que 

r = 41raU sin o: . 

La velocidad conjugada en el plano z será, por tanto, 

j' (z) = U e-m - -em + -2i sin o: , ( 
• a2 • a 

) z2 z 
y la velocidad conjugada en el plano T, 

G' (T) = df dz 
= J' (z\ = U (cos o: - i sin o: 1 - a/z

) dz dT 1 - � 1 + a/ z z 

(21.95 ) 

(21.96) 

(21.97) 
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y 
r = O  r = 4 Jt  a U sen a 

2a 

Figura 2 1 . 16: Esquemas de las líneas de corrientes en los planos z (flujo alrededor de un cilindro circular) y T (alrededor de una placa plana) cuando la circulación es nula y cuando es la apropiada para que el borde de salida de la placa sea un punto de remanso. 
Para obtener la velocidad sobre la placa, se hace z = aeiO , para así recorrer la circunferencia cuando 0 varía entre O y 21r: 
G'(z) lplaca = U (cos a - i sin o: 1 - e-i:) = U (cos o: + sin o: tan �) , 1 + e-i 2 (21 .98) que, obviamente, es real. En términos de { ,  teniendo en cuenta que { = 2a cos 0, se tiene la velocidad sobre la placa 

v€ = U (cos o: ± sin aj2ª - {) 2a + {  (21 .99) 
Se observa que la velocidad es infinita en el borde de ataque ({ = -2a, 0 = 1r) ,  lo cual es debido a que el borde de ataque tiene espesor nulo (ver figura 2 1 . 16) . Uno se plantea entonces la cuestión de porqué se tolera una velocidad infinita en el borde de ataque y no en el borde de salida. Físicamente la razón estriba en que la capa límite en el borde de ataque acaba de formarse, lleva mucha cantidad de movimiento y es capaz de soportar con éxito los fuertes gradientes adversos de presión que tratan de desprenderla (véase capítulo 27) . Por el contrario, en el borde de salida, la capa límite lleva ya muy poca cantidad 
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(a) (b) 
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L F 

J:t
--====-

- a -2a 2a u 

Figura 21 . 17 : (a) Burbuja de recirculación sobre el borde de ataque en el flujo real sobre una 
placa plana con ángulo de incidencia no nulo. (b) Fuerzas de sustentación y de succión. 

de movimiento y se desprende con facilidad. Lo que realmente ocurre es que en 
el estradós del borde de ataque se forma una burbuja con flujo recirculatorio 
[ver figura 21.17 (a)]. Esta burbuja es pequeña debido a que la corriente se 
readhiere enseguida. 

La singularidad en el borde de ataque produce una succión en la dirección 
de la placa [fuerza Fr en la figura 21.17 (b)] tal que sumada vectorialmente 
a la resultante de las fuerzas de presión sobre la placa (FN ) ,  la fuerza total 
satisface la fórmula de Kutta-Joukowski, L = pUI'. Para ver esto, calculamos 
la fuerza de presión sobre la placa ( normal a ésta) :  

(21.100) 

donde P+ y P- son la presión en el estradós e intradós, respectivamente. De la 
ecuación de Bernoulli y de (21.99) se tiene 

P- - P+ = � P ( vr - vt+ ) = 2pU2 sin a cos a✓�: � � , 
cuya integración da 

FN = 41rapU2 sin a cos a = pUI' cos a = L cos a , 

donde 

L = 41rapU2 sin o: = pUI' 

(21 .101) 

(21.102) 

(21.103) 

es la sustentación dada por la fórmula ele Kutta-Joukowski. Por tanto, FN es la 
proyección de la fuerza de sustentación L ( que es normal a la corriente) sobre 
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y 

X 

Figura 21 . 18: Transformación de una circunferencia en una elipse mediante (21 .93). 
la dirección normal a la placa [ver figura 2 1.17(b)]. La componente paralela a la placa (succión) es Fr = L sin a. Los experimentos confirman que la sustentación viene dada por (2 1. 103) ,  cuando Re » l para que el flujo pueda considerarse ideal, y siempre que el ángulo de ataque a sea pequeño. Para ángulos de ataque por encima de un cierto valor, la corriente se separa en el estradós poco después del borde de ataque, cayendo bruscamente la sustentación (ver figura 2 1.20 más adelante). Cuando esto ocurre, la corriente ya no se parece en nada a la obtenida mediante la teoría ideal, y el valor de L es mucho menor. Como a debe ser pequeño para que la teoría ideal valga, la expresión de Kutta-Joukowski se suele linealizar en a: 
de donde el coeficiente de sustentación viene dado por 

L L CL = Y--u2 = 1 2 '.:::'. 21ra ' 2p e 2pU 4a 
donde e es la cuerda del perfil ( e = 4a en el presente caso). 
21 .10.2.  Perfiles de Joukowski 

(2 1 . 104) 

(2 1. 10 5 )  

Al conjunto de perfiles obtenidos mediante la transformación de Joukows­ki (2 1.93) aplicada a una circunferencia cualquiera del plano z se denomina perfiles de Joukowski. El caso más simple visto anteriormente es el de una circunferencia centrada en el origen de radio a, que da lugar a una placa plana de cuerda 4a. Si la circunferencia está centrada en el origen del plano z, pero 
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y 11 

z 

-2• 

Figura 21 . 19: Perfiles de Joukowski. 
su radio r -=/- a, se obtiene una elipse, que será más esbelta cuanto menor sea 
Ir - a l  (ver figura 21.18). 

De forma más general, si la circunferencia está centrada en el punto z = 
b = b,. + ibi y tiene radio r, el perfil obtenido mediante la transformación 
de Joukowski tiene la forma esquematizada en la figura 21.19, que sirve para 
modelar el flujo alrededor de perfiles más realistas. La cuerda del perfil es 
4a, donde a es la distancia al origen del punto de corte de la circunferencia 
con el semieje real positivo. Si la parte imaginaria del centro, bi , es nula, el 
perfil es simétrico en relación al eje (; es decir, la línea media, marcada con 
una línea a trazos en la figura 21.19, coincide con el eje f Por tanto, bi o, 
más concretamente, el ángulo /3, está relacionado con la curvatura del perfil : 
a mayor /3, mayor curvatura. Por otro lado, al igual que ocurre con la elipse 
de la figura 21.18 , el espesor del perfil está relacionado con Ir - a l , de manera 
que cuanto mayor sea su valor, mayor será el espesor del perfil. 

Para una corriente uniforme con ángulo a, el potencial complejo en el plano 
z viene dado por [compárese con (21.94)] 

[ 
• r2 

] 
r [ • ] f(z) = U (z - b)e-iª + (z _ b)e-ia + i 27r ln (z - b)e-m 

Sin entrar en los detalles de los cálculos, para que el borde de salida Q8 , 

imagen del punto Ps de corte de la circunferencia con el semieje x positivo, 
sea un punto de remanso, la circulación debe ser 

r = 41rrU sin( a + /3) , 

de forma que la fuerza de sustentación viene dada por 
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Figura 21 .20: Comparación entre los resultados teóricos (recta a trazos) y experimentales 
para el coeficiente de sustentación en función del ángulo de ataque o en un perfil de Jou­
kowski. Los resultados experimentales fueron obtenidos por Betz ( 1915) .  También se incluye 
el coeficiente de resistencia Cv medido experimentalmente. (Figura tomada de Batchelor, 
1967. ) 

L = 41rrpU2 sin(a + (3) . (21.106) 

Al igual que en el caso de la placa plana, la teoría potencial tiene utilidad 
sólo si el ángulo a +  (3 es pequeño, pues en caso contrario la capa límite y la 
corriente se separan muy cerca del borde de ataque en el estradós. Por tanto, es 
costumbre utilizar la forma linealizada de (21.106) para escribir el coeficiente 
de sustentación: 

L r CL = -1-2- = 81r- sin(a + (3) � 21r(a + (3) , 
2pU e e (21.107) 

donde la cuerda e ha sido aproximada por 4r suponiendo que tanto el espesor 
como la curvatura son pequeños en relación a la cuerda. Obsérvese que, debido 
a la curvatura (/3 =f. O), el coeficiente de sustentación es positivo incluso para 
ángulos de ataque a negativos. 

En la figura 21.20 se compara (21.107) con los resultados experimenta­
les para un determinado perfil de Joukowski cuando el número de Reynolds 
es suficientemente alto. Los valores de CL medidos siguen la tendencia lineal 
(21.107) hasta un cierto valor de a, por encima del cual la sustentación cae 
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bruscamente debido a la separación de la corriente. Esta caida de la sustenta­
ción viene acompañada por un aumento notable del coeficiente de resistencia, 
también mostrado en la figura 21.20, de forma que se suele decir que el perfil 
ha entrado en pérdida. Por supuesto, el coeficiente de resistencia CD no puede 
ser obtenido mediante la teoría potencial , que predice una resistencia nula. Si 
el perfil es esbelto, casi toda la fuerza de resistencia es debido a la fricción, y 
suele ser muy pequeña comparada con la sustentación. Su valor se puede ob­
tener teóricamente analizando la capa límite viscosa en la pared ( véase lección 
27). También se observa en la figura 21.20 que la sustentación real se hace 
negativa para un valor del ángulo de ataque negativo , pero ligeramente mayor 
que el valor -/3 que predice la teoría potencial. 

Para obtener el flujo potencial alrededor de perfiles aerodinámicos distin­
tos de la familia de Joukowski se suele utilizar el método de superposición 
comentado anteriormente. Para simplificar el álgebra, se emplea la denomi­
nada teoría linealizada de perfiles, que consiste en aproximar linealmente las 
distintas funciones alrededor de la cuerda del perfil. Para los detalles de este 
método, que no va a ser discutido aquí, el alumno interesado puede consultar, 
por ejemplo , Milne-Thomson (1973). Más detalles sobre la teoría de perfiles, 
incluyendo los efectos de la viscosidad, pueden encontrarse, entre otros textos, 
en la monografía de B. Thwaites, 198 7 , Incompressible aerodynamics (Dover, 
Nueva York; reimpresión). 
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Capítulo 22 

Discontinuidades en los 

movimientos de fluidos 

ideales . Ondas de choque 

22. 1 .  Introducción 

Ya se comentó en la lección 19 que las soluciones de las ecuaciones de 
Euler que describen el • movimiento de los fluidos ideales a veces presentan 
discontinuidades. En esta lección se considerarán las discontinuidades que se 
presentan en el interior del flujo. La estructura de las discontinuidades sobre 
superficies sólidas, o capas límites, serán estudiadas en la parte VIII. 

Un ejemplo típico donde se presenta una discontinuidad de las soluciones 
de las ecuaciones de Euler es el flujo supersónico alrededor de un obstáculo 

M<I 
V<a 

M>I 
V>a 

Figura 22. 1 :  Flujo subsónico y supersónico alrededor de un cuerpo romo. 
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(ver figura 22.1). La presencia del obstáculo se deja sentir en el movimiento 
del fluido mediante la emisión contínua de pequeñas perturbaciones u ondas 
sonoras (ver capítulo 25) que informan al fluido incidente sobre su presencia. 
Esta información viaja a la velocidad del sonido, de forma que si el flujo es 
subsónico (V < a) ,  las ondas sonoras pueden avisar a la corriente incidente 
sobre la presencia del obstáculo, que así se amolda a su presencia bastante antes 
de llegar a él. Sin embargo, si la corriente incidente es supersónica (V > a), 
la información sobre el obstáculo no puede llegar a la corriente incidente; las 
ondas sonoras emitidas por el obstáculo se agolpan a una corta distancia de 
él y producen una onda de choque. Aguas arriba de la onda de choque la 
corriente no percibe la presencia del obstáculo. A través de la onda de choque 
el flujo pasa de supersónico a subsónico ( como veremos más adelante en este 
capítulo), de forma que detrás de la onda de choque la corriente se acomoda 
rápidamente a la presencia del obstáculo. Otros ejemplos característicos de 
una corriente supersónica donde se produce una onda de choque se verán en la 
lecciones siguientes. Característica general de todos ellos es que el flujo debe 
ser supersónico en alguna región del mismo, y pasan a subsónico a través de 
una discontinuidad. 

Por supuesto, las presuntas discontinuidades no son tales en la realidad, 
sino que son regiones delgadas donde los gradientes de las magnitudes fluidas 
son tan acusados que la hipótesis de idealidad del fluido falla. Como el espe­
sor de estas regiones tienden formalmente a cero cuando Re -+ oo, desde el 
punto de vista de la teoría de los fluidos ideales se considerarán como disconti­
nuidades, sin importarnos su estructura interna. En lo que sigue se derivarán 
relaciones cuantitativas generales de los cambios de las magnitudes fluidas a 
través de estas discontinuidades. 

22.2 .  Ecuaciones de conservación a través de una 
discontinuidad 

Considérese una superficie, de forma arbitraria, a través de la cual las mag­
nitudes fluidas (v, p y p) experimentan un salto finito (ver figura 22.2). Para 
derivar las relaciones que ligan las condiciones delante de la discontinuidad 
(región 1) con las existentes detrás de la misma (región 2), aplicaremos las 
leyes de conservación de masa, cantidad de movimiento y energía a un volu­
men de control en forma de cilindro infinitesimal como el de la figura 22.2. 
En él, la superficie lateral, de altura <5, cruza la discontinuidad, y las otras dos 
superficies son planas, paralelas y tangentes a la discontinuidad en el punto 
considerado, de normal unitaria ·ñ. El área ds de estas dos superficies verifica: 
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Q) 

Figura 22.2: Salto de las propiedades fluidas a través de una discontinuidad. 
(ds) I/2 » <5 .  (22. 1 )  

Este requisito es siempre posible ya  que se trata de una discontinuidad mate­
mática y, a pesar de que ds es también infinitesimal, '5 puede hacerse tan 
pequeño como se quiera. En la realidad, la discontinuidad tiene espesor finito, 
pero tiende formalmente a cero en el límite Re --, oo; la única limitación sobre 
'5 es que debe ser lo suficientemente grande como para que las dos superfi­
cies frontales estén inmersas en el fluido ideal, es decir, lejos de la región de 
transición donde los efectos disipativos son importantes. 

Con la condición (22 . 1 )  se verifica que los flujos de las magnitudes flui­
das a través de la superficie lateral del volumen de control son muy pequeños 
comparados con los flujos frontales, y que los términos volumétricos de las 
ecuaciones de conservación, proporcionales a <5ds/t0 , donde t0 es un tiempo 
característico, son también despreciables frente a los términos convectivos so­
bre las superficies frontales, de orden v · ñds. En general, la discontinuidad 
será móvil y tomaremos unos ejes ligados a la misma . 

Con estas condiciones, las ecuaciones de conservación de masa, cantidad de 
movimiento y energía en el volumen de control pueden escribirse en la forma 
siguiente (ver figura 22.2) : 

P1 VI • ñds = p2v2 • ñds , (22 .2) 
-pi (v1 • ñ)vids + p2 (v2 • ñ)v2ds = (P1 - P2)ñds , (22 .3) 

-p¡ (e¡ + vr/2)v1 - ñds + P2 (e2 + vV2)v2 - ñds = PI V¡ - ñds -p2v2 - ñds ' (22.4) 
donde se ha supuesto que no hay absorción ni emisión de calor en la super­
ficie de discontinuidad (por radiación o reacción química). Obsérvese que las 
relaciones anteriores son locales, válidas para cada punto sobre la superficie 



350 MECÁNICA DE FLUIDOS 

Figura 22.3: Ejemplos de discontinuidades tangenciales. 

de discontinuidad. En términos de las componentes normal y tangencial a la 
discontinuidad de la velocidad, Vn = v · ñ y Vt = v - vnñ, y proyectando la 
ecuación de cantidad de movimiento en esas dos direcciones, se obtienen las 
cuatro ecuaciones siguientes: 

(22.5) 

(22.6) 

(22.7) 

(22.8) 

22.2. 1 .  Discontinuidad tangencial 

Hay dos tipos básicos de discontinuidades en función de que haya o no 
flujo másico a través de ella. Una discontinuidad tangencial es aquella en 
la cual no existe flujo másico que atraviese la discontinuidad: Vn1 = Vn2 = 
O. De acuerdo con esto, las relaciones (22.5) , (22.7) y (22.8) se satisfacen 
identicamente para cualquier salto en las magnitudes p, Vt y h. La ecuación 
(22.6) nos dice que la presión se conserva a través de la discontinuidad, p¡ = P2 , 
lo cual es intuitivo puesto que en caso contrario existiría movimiento en la 
dirección normal asociado a la diferencia de presión. Así, en una discontinuidad 
tangencial, son contínuas las magnitudes fluidas Vn y p (vn = O) ,  y discontínuas 
todas las demás, las cuales pueden tomar valores arbitrarios a un lado y otro 
de la discontinuidad, puesto que las ecuaciones anteriores no fijan ninguna 
relación entre ellas. 

Un caso típico de discontinuidad tangencial es la que se forma cuando 
dos flujos paralelos de fluidos ideales a distinta velocidad (y, en general , con 



CAPÍTULO 22. DISCONTINUIDADES EN LOS MOVIMIENTOS DE FLUIDOS 
IDEALES. ONDAS DE CHOQUE 35 1 

distinta densidad y temperatura) se ponen en contacto, como, por ejemplo, 
en el borde de salida de un perfil aerodinámico o en la capa de mezcla de un 
chorro que descarga en otro fluido (ver figura 22.3). El problema con estas 
discontinuidades es que dejan de serlo, por lo general, muy rápidamente, ya 
que son muy inestables (ver capítulo 30). Debido a esta inestabilidad se forman 
torbellinos inmediatamente después del inicio de la discontinuidad tangencial, 
que van impregnando de vorticidad ambos lados del flujo ideal, por lo que sólo 
muy en sus comienzos puede ser considerada como una discontinuidad. 

22.2.2.  Discontinuidad normal. Relaciones de Rankine-Hugoniot 

Discontinuidad normal es aquella en la que hay flujo másico normal, VnI -=f. 
Vn2 , VnI -=/- O, Vn2 -=/- O. Las ecuaciones anteriores quedan: 

(22.9) 

(22.10) 

v'n = v't2 , (22.11) 

(22.12) 

Se observa que la entalpía de remanso se conserva a través de la discontinui­
dad, pero no la presión de remanso. Estas relaciones se suelen denominar de 
Rankine-Hugoniot; formas más útiles de las mismas serán derivadas en las 
secciones siguientes. 

Aparte de las ondas de choque, de las que se han visto algunos ejemplos y 
se verán algunos más, otros ejemplos de discontinuidad normal son los frentes 
de combustión: deflagraciones y detonaciones. En ellos se produce una reac­
ción química exotérmica [por tanto, a la ecuación (22. 12) hay que añadirle 
un término de calor de reacción] que separa una zona de gases quemados de 
otra de gases reactantes. El espesor de estos frentes, aunque por supuesto fi­
nito, y generalmente bastante mayor que el de una onda de choque, suele ser 
muy pequeño en relación a las escalas de longitud del flujo ideal circundante, 
pudiéndose considerar a estos frentes como discontinuidades, en primera apro­
ximación. Aunque no vamos a entrar en detalles ( el alumno interesado puede 
consultar cualquier texto sobre la teoría de la combustión como, por ejemplo, 
el libro de F.A. Williams, Combustion theory, 1985 ,  Addison -Wesley, Redwood 
City), para su estudio, además de las ecuaciones de conservación anteriores es 
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necesario considerar las ecuaciones de conservación de las especies químicas 
presentes, puesto que éstas reaccionan químicamente entre sí en el interior 
del frente variando su concentración de un lado a otro de la discontinuidad, 
además de modificar la ecuación de la energía como ya se ha dicho, puesto que 
las reacciones químicas son exotérmicas. La escala de tiempo de las reaccio­
nes químicas suele ser muy pequeña en relación a los tiempos característicos 
del movimiento fluido y por ello hablamos de un frente (discontinuidad) de 
combustión. Para que estas reacciones químicas se produzcan, la temperatu­
ra tiene que subir por encima de un cierto valor, ya que la cinética química 
es proporcional (en un gas ideal) a exp(-E0/R9T), donde E0 es una energía 
de activación. Superada esa temperatura (de ignición), las reacciones quími­
cas se propagan espontáneamente debido a su exotermicidad; de esta forma, 
un frente de combustión avanza hacia los gases reactantes o frescos y los va 
transformando en gases quemados. En esencia, esto es lo que se denomina 
una deflagración, donde la energía liberada por la reacción química (la cual 
se inicia por un calentamiento externo o ignición) calientan por conducción 
los gases reactantes circundantes, que así reaccionan químicamente y hacen 
propagar la combustión. La velocidad de propagación de estas ondas de defla­
gración dependen, pues, de la velocidad de la conducción de calor, y su valor 
se determina como un autovalor de las ecuaciones que gobiernan el proceso 
interno de la onda, siendo siempre menor que la del sonido (para los detalles 
se puede consultar, por ejemplo, la referencia antes citada). En una detona­
ción, el calentamiento de los gases reactantes se produce mediante una onda 
de choque, que eleva brutalmente la temperatura de los mismos y los hacen 
reaccionar químicamente. Así, aunque sea considerada como una discontinui­
dad en la escala del flujo ideal, su estructura interna consta de dos zonas más 
o menos delimitadas: una onda de choque que va calentando a los gases fres­
cos, y una segunda región, generalmente de espesor bastante mayor, donde se 
produce la reacción química, calentándose aún más el gas. Al ser una onda de 
choque la que hace posible la combustión, las detonaciones se propagan su­
persónicamente ( veremos en las secciones siguientes que toda onda de choque 
se mueve, relativamente al fluido circundante, a una velocidad mayor que la 
velocidad local del sonido). 

En lo que resta de lección nos ocuparemos sólo de las ondas de choque, 
olvidandonos de otros tipos de discontinuidades normales y de las tangenciales. 
En particular, consideraremos las ondas de choque en gases ideales, tanto 
normales (ilt = O) como oblícuas (ilt -:f O), que son las únicas que podrán 
aparecer en algunos de los flujos considerados en las siguientes lecciones. 
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22.3. 

y--1 

Curva isentropica _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ¿ 
y+I 
y::r 

Figura 22.4: Curva de Hugoniot. 

Curva de Hugoniot 
De las relaciones (22.9)-(22.12) para un gas ideal, teniendo en cuenta que h = �p/ p, se puede deducir la siguiente relación entre los saltos de presión 

y de densidad a través de una onda de choque: 

y+l E!:l_ - 1 P2 = -y-1 Pl 1+1 - E!:l. ' Pl -y-1 p¡ 

(22.13) 

denominada relación de Hugoniot, la cual se representa en la figura 22.4 junto 
con la relación isentrópica p2fp1 = (p2/ pi)'Y. Se observa que para una onda 
de intensidad infinita, p2/p1 - oo, la relación de densidades tiene un valor 
finito, p2/ PI - ('y + 1)/ (, - 1 ) ,  contrariamente a una compresión isentrópica 
que, en teoría, puede dar lugar a una densidad infinita, p2/ PI - oo. Por otro 
lado, una onda de choque débil, p2/PI � 1, es casi isentrópica, como se puede 
comprobar fácilmente desarrollando en serie la relación de Hugoniot alrededor 
de p2/P1 - 1  « 1: 

P2 = l + 1 (
P2

. 
_ i) + ... , 

p¡ p¡ 
(22.14) 

que concuerda con el desarrollo de la relación isentrópica alrededor de p2/ p1 = 
1, 
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P2 = (

P2 ) ' = (
P2 _ l + 1) ' = l + ,  (

P2 _ 1) + .... 
PI PI PI PI 

(22.15 ) 

La curva de Hugoniot representada en la figura 22.4 proviene de las ecuacio­
nes de conservación a través de una onda de choque (22.9)-(22.12) y cualquier 
punto de la misma es posible en principio. Sin embargo, el Segundo Principio 
de la Termodinámica, que nos dice que debe haber un incremento de entropía 
a través de la onda de choque al existir procesos disipativos en el interior de 
la misma ( efectos de la viscosidad y de la conducción de calor no desprecia­
bles), excluye parte de la curva como realmente posible. En efecto; teniendo en 
cuenta que para un gas ideal la entropía es proporcional a Cu ln p / p1, el salto 
de entropía a través de una onda de choque viene dado por: 

s2 - s1 = ln P; - ln p� = ln [
P2 

( 
PI ) '] 

Cv P2 Pi PI P2 

implicando que 

:y+l f!1. - 1 
= ln ,-i Pi > O ( '.Y±!. - l!l.) ( l!l.) 1 - ' 

,- 1 p¡ p¡ 
(22.16) 

, + l > p2 > l · 
, - 1 - Pl - ' (22.17) 

es decir, una onda de choque sólo puede ser de compresión, 

(22.18) 

excluyendo así, como físicamente imposible, la parte inferior de la curva de 
Hugoniot (ver figura 22.4) correspondiente a las ondas de choque de expansión. 
De estas expresiones y de (22.13) se tienen las siguientes desigualdades para 
las restantes magnitudes fluidas: 

(22. 19) 

(22.20) 

(22.21) 

donde Mn es el número de Mach relativo a la componente normal de la veloci­
dad. Se tiene pues que, a través de una onda de choque, la presión, la tempe­
ratura y la densidad del gas aumentan [las dos primeras magnitudes pueden 
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hacerlo indefinidamente y la densidad hasta el límite dado por ( 22 .17)], mien­
tras que la velocidad y el numero de Mach relativos al movimiento de la onda 
decrecen ( tanto en sus componentes normales como en sus valores absolutos, 
puesto que la componente tangencial de la velocidad se conserva). En cuanto 
a las magnitudes de remanso, de las relaciones (19.26)-(19.29) , se tiene: 

(22.22) 

puesto que P2Pi/P1PJ 2 1 de (22.16). Como la entalpía de remanso se conserva , 

T20 = T10 

comparando con (22.22) se llega a 

P20 P20 
PlO PlO 

(22.23) 

(22.24) 

de donde, al ser , > 1, se deduce que tanto la densidad de remanso como la 
presión de remanso disminuyen a través de una onda de choque, mientras que 
la temperatura (entalpía) de remanso se conserva: 

P20 :s; P10 , P20 :s; P10 , T20 = T10 (22.25) 

El hecho de que no se conserven todas las magnitudes de remanso es con­
secuencia de que el flujo a través de una onda de choque no es isentrópico, con 
lo que estas magnitudes decrecen al aumentar la entropía. Esto no incluye a 
la temperatura de remanso ya que la entalpía de remanso sí se conserva por 
ser la onda de choque un proceso donde no se realiza ningún trabajo ni se 
intercambia calor y es casi estacionario dado que el espesor es teóricamente 
nulo (la entalpía de remanso no se conserva en un frente de combustión, donde 
se libera calor por reacción química, ni en una onda de choque que emitiera o 
absorbiera energía radiante). 

22.4. Ondas de choque normales en gases perfectos 

U na onda de choque normal es aquella en donde las corrientes incidente 
y saliente de la onda son normales a la misma: Vt = O, v = Vnñ = vñ. Por 
supuesto, este tipo de ondas de choque sólo se puede producir en movimientos 
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unidireccionales como, por ejemplo, el flujo supersónico en un conducto (ver 
capítulos 23, 26 y 33). 

Las relaciones de Rankine-Hugoniot (22.9) -(22.12) se suelen escribir en 
función del número de Mach de la corriente incidente: 

2 
2 2 V¡ 

M¡ = Mnl = a� 

Teniendo en cuenta que para un gas perfecto 

¡ p ª2 
h = -- - = --

1 - l p 1 - 1  ' 

(22.26) 

(22.27) 

después de ciertas manipulaciones algébricas se llega a las siguientes expresio­
nes que relacionan los saltos de las magnitudes fluidas a través de una onda 
de choque normal en función de M[ : 

v2 Pl 2 + (, - l)Mf 
(, + l )M[ , 

V¡ P2 

P2 21Mf + 1 - 1 
Pl , + 1 

T2 (21Mf + 1 - ,)[2 + (, - l)Mfl 
Ti (, + 1)2Mf 

El número de Mach de la corriente detrás de la onda es 

y la diferencia de entropía 

s2 - s 1 = ln [
P2 ( 

Pi 
) -y] = ln [ 

2, M[ + l - 1 ( 
2 + (, - 1) M[ 

) 
'
] ev PI P2 , + 1 (, + 1 )Mr 

(22.28) 

(22.29) 

(22.30) 

(22.31) 

(22.32) 
Por último, teniendo en cuenta las relaciones (19.28)-(19.29), el salto en las 
presiones y densidades de remanso es: 

[ 
2 ( +1)/ l -y/(-y-1) P20 P20 M1 (, + 1) -r -r 

Pio 
= 

P10 
= 

[2 + (, - l)Mfl [2,Mf + 1 - ,J lh 
(22.33) 
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Figura 22.5: Propiedades detrás de una onda de choque en función del número de Mach 
normal de la corriente incidente para 1 = 1 ,4. 

Las relaciones anteriores permiten obtener las magnitudes fluidas detrás 
de una onda de choque normal de un gas perfecto conocidas las magnitudes 
delante de la onda de choque y el número de Mach incidente (y, por supuesto, 
1, que depende exclusivamente del gas). Algunas de estas relaciones se repre­
sentan en la figura 22.5 para 1 = 1,4 (un gas diatómico; por ejemplo, aire) . 
Los valores numéricos están tabulados en el apéndice A al final de la lección. 

U na propiedad muy importante de las relaciones anteriores y del Segundo 
Principio de la Termodinámica es que el número de Mach incidente es siempre 
mayor o igual que la unidad, mientras que el número de Mach detrás de la 
onda es siempre menor o igual que la unidad: M'f 2: 1, M} 5 1. En efecto; 
tomando, por ejemplo, la expresión (22.29), como p2/P1 2: 1 debido a que 
s2 - s1 2: O, se tiene que 

21 M¡ + 1 - , 2: , + 1 , (22.34) 

que implica Mf 2: 1; por otra parte, de (22.31), para M'f ---+ 1 (onda de 
choque muy débil) , M} ---+ 1, mientras que para M'f ---+ oo (onda de choque 
muy fuerte), M} ---+ ('y - 1)/21 < 1; es decir, (1 - 1)/21 < M} 5 l. Esto 
quiere decir que a través de una onda de choque normal el movimiento del gas, 
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(b) 

(e) 

Zona de accion 

Figura 22.6: Ondas generadas por una partícula que se mueve a velocidad U en un fluido en 
reposo con velocidad del sonido a para los casos subsónico (a) , sónico (b) y supersónico (c). 

relativo a la onda de choque (no se olvide que todas las relaciones derivadas 
hasta aquí son en relación a unos ejes ligados a la onda de choque), pasa de 
supersónico a subsónico, siendo ello consecuencia del segundo principio de la 
termodinámica. 

22.5. Ondas de Mach y ondas de choque oblícuas 
en gases perfectos 

En flujos bidimensionales y tridimensionales supersónicos las ondas de cho­
que dejan de ser planos perpendiculares al movimiento del fluido y pueden 
adoptar la forma de una superficie cualquiera ( ver figura 22.1). En ellas la 
componente tangencial de la velocidad ya no es igual a cero, 'Üt # O. En esta 
sección consideraremos ondas de choque en flujos bidimensionales supersóni­
cos; en particular, consideraremos las denominadas ondas de choque oblicuas 
planas, que se forman, por ejemplo, en el movimiento sobre cuñas y esquinas 
(ver figura 22.9 más adelante). Sin embargo, las relaciones que se derivarán 
son localmente válidas para cualquier onda de choque. 
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Pero antes de considerar estas ondas de choque oblícuas, es conveniente 
introducir la noción de onda de Mach. Cuando una partícula infinitesimal 
se mueve en el seno de un fluido, contínuamente choca con las partículas 
fluidas de los alrededores, enviando hacia afuera ondas sonoras esféricas que 
emanan de cada punto a lo largo de su recorrido. En la figura 22.6 se muestran 
algunos de estos frentes de perturbación esféricos. El comportamiento de estos 
frentes es bastante diferente según sea subsónica o supersónica la velocidad 
de la partícula. Si la partícula se mueve subsónicamente, U < a ( M < 1), 
las perturbaciones esféricas se alejan en todas las direcciones sin alcanzarse 
unas a otras. Avanzan también por delante de la partícula, porque recorren 
una distancia aót en el intervalo de tiempo ót, durante el cual la partícula 
sólo ha recorrido una distancia U ót. Por tanto, cuando un cuerpo se mueve 
subsónicamente su presencia se percibe en todo el campo fluido: se puede oir o 
sentir el incremento de presión debido a un cuerpo que se acerca antes de que 
llegue. A la velocidad sónica, U =  a [M = 1; figura 22.6(b)], las perturbaciones 
se mueven a la misma velocidad que la partícula y se acumulan a la izquierda 
de ella formando un cierto tipo de frente que lleva el nombre de onda de 
Mach1 Ninguna perturbación se desplaza aguas arriba de la partícula; si nos 
situamos a la izquierda de la partícula, no oiremos el móvil que se acerca. En 
movimiento supersónico, U > a, la falta previa de aviso del peligro es mucho 
más pronunciada. Las esferas de la perturbación no pueden seguir el rápido 
movimiento de la partícula que las originó. Todas ellas son arrastradas detrás 
de la partícula y son tangentes a una superficie cónica denominada cono de 
Mach. De acuerdo con la figura 22.6(c) , el ángulo del cono de Mach (ángulo 
de Mach) es 

. _ 1 aót . _1 a . _1 1 
µ = sm 

U ót = sm 
U 

= sm M 
(22.35) 

Cuanto mayor es el número de Mach de la partícula, tanto más esbelto es el 
cono de Mach; por ejemplo, µ = 30° cuando M = 2 y es 11,5 ° cuando M = 5. 
En el caso límite de flujo sónico, M = 1, µ = 90º , y el cono de Mach se 
convierte en un frente plano que se mueve con la partícula [figura 22.6(b)]. 
No podríamos oir la perturbación originada por la partícula supersónica de la 
figura 22.6(c) a menos que estemos en la zona de acción en el interior del cono 
de Mach. No hay peligro de que las perturbaciones alcancen nuestro oído si 
estamos en la zona de silencio, fuera del cono. Por tanto, un observador en el 

1 En honor de Ernst Mach, quien por 1887 introdujo este concepto; en particular, la construcción gráfica de la figura 22.6, que aparece en casi todos los libros de texto de Macánica de Fluidos, se debe a él. En su honor también se denomina el número adimensional más importante de los movimientos compresibles. 
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Figura 22. 7: Geometría de una onda de choque oblícua. 

suelo por debajo de un avión supersónico no oye el estampido o bang sónico 
debido al cono que viaja ligado al avión hasta cierto tiempo después de haber 
pasado éste. 

La onda de Mach no tiene por qué ser cónica. Por ejemplo , ondas de Mach 
se forman en la superficie de cualquier cuerpo en movimiento supersónico 
debido a las rugosidades de la misma. A diferencia de las ondas de Mach 
producidas por el movimiento de una partícula infinitesimal, éstas no tienen 
necesariamente forma conica, sino que partiendo de los distintos puntos de la 
superficie se van agolpando sobre una superficie envolvente, que constituye una 
discontinuidad finita u onda de choque, generalmente no normal a la corriente 
(ver figura 22.1). En lo que sigue se derivarán relaciones cuantitativas para las 
propiedades de estas ondas de choque oblícuas. 

Como en las relaciones de Rankine-Hugoniot (22.9) -(22.10) y (22.12) sólo 
interviene la componente normal de la velocidad , las relaciones (22.28)-(22.33) 
siguen siendo válidas para una onda de choque oblícua si uno reemplaza v y M 
por sus componentes normales Vn y Mn. De esta forma, sólo es necesario añadir 
relaciones que nos permitan conocer Mn1 en función del Mach incidente, M1 , y 
Mn2 en función de M2. Llamando /3 al ángulo que forma la corriente incidente 
con el plano tangente a la onda, y 0 al ángulo que forma la corriente detrás 
de la onda en relación a la corriente incidente (ver figura 22.7), se tiene 

Vn1 = V1 sin /3 ,  (22.36) 

Vn2 = v2 sin(/3 - 0) . (22.37) 
Como v'n = Vt2 = Vt, se tiene además que 

v1 cos /3 = v2 cos(/3 - 0) . (22.38) 
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Figura 22.8: Curvas fJ - (3 - M para una onda de choque oblícua [ecuación (22.41)] para un gas con -y = 1 ,4. 
De estas relaciones y de (22.28) se llega a: 

Vn2 

Vnl 

tan(/3 - 0) 
tan /3 

Teniendo en cuenta que, de (22.36) ,  
2 + (, - l)M�1 (, + l)M�1 

Mn1 = M1 sin /3 ,  

se obtine, finalmente, la siguiente relación entre 0, /3 y Mf: 
[ Mf sin 2 /3 - 1 l tan 0 = 2 cot /3 Mf (, + cos 2/3) + 2 

(22 .39) 

(22.40) 

(22 .41) 
El proceso de resolución sería el  siguiente: conocido M1 y, por ejemplo, la 
deflexión de la corriente a través de la onda de choque 0 ( que normalmente 
viene impuesta por restricciones externas al flujo, ver figura 22.9) , de (22 .41)  
se obtiene /3, y ele (22 .40) Mnl · Con Mn1 y el  conocimiento, por ejemplo, de 
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',,, 8>8

n'lll 

5 Figura 22.9: OndaB de choque en flujos sobre cuñaB y esquinaB. Si 0 > Bmax la onda de choque se separa. 
la corriente incidente (p1, p1 ), de (22.28)-(22.33) se obtienen las propiedades 
de la corriente detrás de la onda de choque, P2, P2, etc., y el número de Mach 
normal detrás de la onda, Mn2 - Finalmente, el número de Mach detrás de la 
onda viene dado por 

(22.42) 

La relación (22.41) entre 0 y /3 se representa en la figura 22.8 para varios 
valores de M1. De esta figura se desprenden las siguientes características de 
las ondas de choque oblícuas: 

1. Para cada valor del Mach incidente existe un ángulo máximo de desvia­
ción 0max . Si la geometría física es tal que 0 > 0max , no existe solución 
para una onda de choque oblícua recta, y en su lugar se forma una onda 
de choque curva separada del obstáculo (ver figura 22.9). 

2. Para un 0 < 0max hay dos valores posibles de /3 para cada M1 , corres­
pondientes a una onda de choque débil y otra fuerte. La onda de choque 
fuerte da lugar a un ángulo /3 mayor, puesto que, de (22.40), para un 
mismo M1 corresponde a un Mn1 mayor. La onda de choque más fuerte 
suele ser inestable y no se presenta en la práctica. Por ello, la solución que 
se produce físicamente es la correspondiente al ángulo f3 menor (líneas 
contínuas en la figura 22.8), que corresponde a M2 > 1, es decir, a un 
flujo supersónico detrás de la onda de choque (por supuesto, Mn2 < 1, 
segun vimos en la sección anterior), excepto en una pequeña franja cer­
ca de 0max (ver figura 22.8). Las ondas de choque fuertes dan lugar a 
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Figura 22.10: Ondas de choque oblícuas fuerte y débil. 

M2 < 1 (flujo subsónico) y no suelen producirse en la práctica, salvo 
que las condiciones detrás de la onda así lo exigiese; por ejemplo, si la 
presión detrás de la onda de choque de la figura 22.10 fuese incrementa­
da por algún mecanismo independiente a la onda, se podría producir la 
onda de choque fuerte, que aparece en la figura con línea de trazos. 

3. Si 0 = O, (3 = 1r /2 ( correspondiente a una onda de choque normal) 
o (3 = µ ( correspondiente a una onda de Mach). Es decir , una onda 
de choque oblícua infinitesimal ( deflexión infinitesimal de la corriente) 
coincide con una onda de Mach (ver sección 22.7), salvo en el caso de 
que la onda de choque sea normal ( M2 < 1). 

4. Para un ángulo de deflexión 0 fijo, al decrecer M1 incrementa el ángulo 
de la onda (3 (para ondas débiles), y existe un número de Mach mínimo 
por debajo del cual no existe solución. Este Mach mínimo corresponde 
a 0 = 0max , y para números de Mach menores que él la onda de choque 
se separa, tal y como se ilustra en la figura 22.9. 

22.6. Ondas de choque fuertes y débiles 

Se obtienen a continuación expresiones simplificadas en los límites de ondas 
de choque débiles (p2/P2 --t 1) y fuertes (p2/p1 » 1). 

22.6 .1 .  Ondas débiles 

De (22.29) se tiene que 

P2 _ l = 2,(M�1 - 1) « l 
PI , + 1 

(22.43) 



364 MECÁNICA DE FLUIDOS 
por lo que .MJ1 - 1 « 1 para una onda de choque débil (lo cual ya sabíamos). 
Llamando 

(22.44) 
de la expresión anterior y de las relaciones restantes de Rankine-Hugoniot se 
tiene, desarrollando en potencias de m y reteniendo sólo los términos de mayor 
orden, las relaciones siguientes: 

Vnl P2 2 - - 1 = - - l '.:::' -- m  
Vn2 PI 'Y + 1 

P2 _ 1 '.:::' _!r_ m T2 _ 1 '.:::' 2(, - 1 )  m 
Pl 'Y + 1 T1 1 + 1 

s2 - s 1  2, 3 
c11 

'.:::' 3(, + 1 )2 m 

(22.45) 
(22.46) 
(22.47) 

Se observa que una onda de choque débil es casi isentrópica, con errores del 
orden del cubo del parámetro pequeño m, lo cual ya sabíamos de la sección 22.3 
[ecuaciones (22 .14) y (22. 15)] . Por último, de las relaciones (22 .41)  y (22 .39) 
se tiene 

0 2m tan /3 
tan '.:::' --- ---..,,....-(, + 1) 1 + tan 2 /3 

tan(/3 - 0) Vn2 2m ---- = - ~ l - --
tan /3 Vnl - 1 + 1 • 

(22.48) 
(22.49) 

Es decir, una onda de choque muy débil tiene un ángulo de deflexión 0 muy 
pequeño, lo cual corresponde, según lo dicho en la sección anterior, a /3 '.:::' 1r /2 
ó /3 '.:::' µ, dependiendo de que 1\12 < 1 o 1\12 > 1, respectivamente (para este 
último caso, ver sección 22.7) . 
22.6.2. Ondas fuertes 

En el límite P2/P1 -. oo se tiene, de (22.29) , M1 -. oo. Por tanto, de las 
otras relaciones de Rankine -Hugoniot y de (22.41 ) ,  

P2 Vnl 'Y + 1 - = - - --
Pl 11n2 'Y - 1 (, - 1 ) 1 /2 

1\12 -. --
2, 

P2o = P20 -. 0 
PIO PlO 

(22.50) 
(22 .51)  
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0 

sin 2(3 
tan ---+ ---­

, + cos 2(3 
Como P2 y T2 tienden a infinito, se suelen expresar en la forma: 

P2 2 -- - --
p1v;1 1 + 1 (, + 1)2 
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(22.5 2) 

(22.5 3) 

donde se ha hecho uso de las relaciones de Rankine-Hugoniot en su forma 
original (22.9) -(22.12) y se han despreciado Pl y h1 frente a P2 y h2 , respecti­
vamente. 

22. 7. Expansión de Prandtl-Meyer 

Hasta aquí sólo se han considerado ondas de choque o de compresión, a 
través de las cuales el fluido incrementa su presión, temperatura y densidad. 
Existen también ondas de expansión, aunque éstas no satisfacen las relaciones 
de Rankine-H ugoniot ( es decir , no son propiamente discontinuidades fluidas) , 
ya que en tal caso violarían, como se vio en la sección 22.3, el segundo prin­
cipio de la termodinámica; por el contrario, las ondas de expansión son casi 
isentrópicas y ocupan una región finita del flujo ideal (para más detalles sobre 
ondas de expansión y de compresión, en general, ver capítulo 26). 

En esta sección se va a considerar un tipo especial de onda de expansión 
que se produce cuando un flujo supersónico tuerce una esquina convexa ( ver 
figura 22.11), denominada expansión de Prandtl-Meyer. Este tipo de expansión 
es bastante frecuente en la práctica (ver, por ejemplo, lección siguiente), y es 
la antítesis de una onda de choque oblícua sobre una esquina cóncava, aunque, 
como se verá , no puede ser considerada como una discontinuidad fluida, sino 
que está constituida por un abanico de ondas de Mach entre el flujo incidente 
y el flujo saliente de la expansión. La región de expansión está así limitada 
por los ángulos µ1 = arcsin(l/M1) y µ2 = arcsin(l/M2) ,  donde M1 y M2 son 
los números de Mach de la corriente incidente y de la corriente aguas abajo, 
respectivamente. Al estar formada la expansión por una sucesión infinita de 
ondas de Mach, las líneas de corriente son contínuas a lo largo de la misma, 
contrariamente a lo que ocurre en una onda de choque, siendo además el 
proceso isentrópico, ya que ds � O a través de cada onda de Mach. Una onda 
de expansión se produce siempre que un flujo supersónico es deflectado por una 
superficie convexa. Aquí se considerarán las ondas de expansión producidas 
sobre una esquina formada por dos planos que intersectan con un cierto ángulo 
0 = 02 - 01. Este tipo de expansión fue originalmente estudiado por Prandtl 
(1907) y posteriormente por su discípulo Meyer (1908), y de ahí su nombre. 
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Figura 22. 1 1 :  Expansión de Prandtl-Meyer. 

Lo que se pretende calcular son las condiciones a la salida de la onda, M2 , 
P2 y T2 , conocidas las magnitudes del flujo supersónico incidente, M1 , Pl y T1 , 
así como el ángulo de deflexión 02 (se supone que 01 = O; ver figura 22. 1 1 ) .  
Para ello consideraremos el cambio infinitesimal de las magnitudes fluidas a 
través de una onda muy débil, u onda de Mach, producido por una deflexión 
infinitesimal d0 de la corriente. 

Como se vió en la sección anterior, cuando 0 --. O, (3 --. 1r /2 ó (3 --. 
µ1 = sin- 1 ( 1/M1 ) ,  dependiendo de si el número de Mach detrás de la onda es 
menor o mayor que la unidad. Está claro que ahora tenemos el segundo caso. 
Suponiendo que la velocidad de la corriente pasa de v a v + dv al atravesar la 
onda de Mach, de (22.36)-(22 .38) se tiene 

(v + dv)2 v2 (vn + dv)2 + v; V� + Vf (vn + dv)2 /v; + 1 
v2 /v2 + 1 n t 

Teniendo en cuenta que 

1 
tan /3 :::: tan µ = --;===;¡== JM2 - 1  

tan2 (/3 - d0) + l 
tan2 /3 + 1 

(22 .54) 

(22.55) 

donde M es el número de Mach de la corriente incidente, y reteniendo sólo los 
términos lineales en d0, se llega a 

es decir, 

dv d0 = ----;:::=== 
V JM2 - l 

(22.56) 
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,--- dv d0 = ✓M2 - 1 - , (22. 57) 

V que constituye una ecuación diferencial para la deflexión de la corriente en función de su velocidad. La relación entre las magnitudes fluidas a la entrada y a la salida de la expansión se obtiene de la integración de la ecuación anterior entre los ángulos 01 y 02 :  
/82 d0 = {M2 JM2 - I dv . Í01 ÍM1 V (22.58) 

Para integrar el segundo miembro es preciso relacionar dv/v con el número de Mach. De la definición de este último se tiene 
dv dM da - = - + - . v M a (22. 59) 

Particularizando para un gas perfecto, al ser el flujo adiabático (se conserva la entalpía de remanso) ,  se verifica 
( ' - 1 2) -1/2 a = a0 I + -2-M 

que diferenciada proporciona 
�a = - ( ' ; l )  M ( 1 + ' ; 1 J\'!2 ) -1 dM 

Sustituyendo en (22.59) , 

y en (22.58) ,  
dv 1 dM -;; - 1 + 1-1 M2 M ' 2 

lo
82 _ - 1M2 JM2 - 1 dM d0 - 02 - O - 1 · 81 M1 1 + 12 M2 M 

Se suele definir la función de Prandtl-Meyer 

J JM2 - I  dM v M  = --�- -( ) - I + 1-;;1 Af2 M 

(22.60) 

(22.6 1 )  

(22.62) 

(22.6 3) 
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_,_-_l (M2 - 1) - arctan J�M-2---1 
, + 1 

(22. 64) 

de forma que (22. 63) se puede escribir como 

(22.65) 

La constante de integración en (22.64) no es importante puesto que en (22.65) 
aparece una diferencia de v(M) ;  se ha elegido v(M = 1) = O. La función de 
Prandtl-Meyer (22.64) se encuentra tabulada en el apéndice B al final de esta 
lección para 1 = 1,4, donde también se incluyen los valores del ángulo de Mach µ. 

El proceso de cálculo sería el siguiente: dado !vf 1 se calcularía v( !vf 1 ) de 
la tabla del apéndice B; conocido el ángulo de deflexión 02, de (22.65) se cal­
cularía v(M2) y, del apéndice B, M2; con M2, y teniendo en cuenta que la 
expansión es isentrópica y adiabática (se conservan las magnitudes de reman­
so), se calcularían todas la.<; magnitudes fluidas detrás de la expansión; por 
ejemplo, 

T1 _ 1 + 1
2

1 M:j T2 1 + Y.=..!. !vf2 , (22.66) 
2 1 

Pl 
[
1 -+  1; 1 M:}

]
1/('y-l)  

P2 
= 

1 + Y.=..!. !vf2 (22. 67) 
2 1 

Al ser v(M) una función monótona creciente (ver apéndice B), de (22. 65) se 
tiene que M2 > M1 (> 1); es decir, el flujo se hace más supersónico a través de 
una expansión de Prandtl-Meyer. Por otro lado, de (22.66)-(22.67), T2 < T1 , 

P2 < P1 y P2 < p¡ :  temperatura, presión y densidad disminuyen a través de 
una onda de expansión, contrariamente a lo que ocurría en una onda de choque 
o de compresión. 
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22.8. APÉNDICE A: Propiedades de una onda de 
choque normal para , = 1 ,4 

Mn1 p2/p1 p2/p1 T2 /T1 Po2/Po1 po2/p1 Mn2 
1 .00 1 .0000+00 1 .00000 1.0000+00 1 .0000+00 1 .89293+00 1 .0000+00 
1 .05 1 . 1 1958+00 1 .08398 1 .03284+00 9.99854-01 2.00825+00 9.53125-01 
1 . 10 1 .24499+00 1 . 16908 1 .06493+00 9.98929-01 2 . 13285+00 9. 1 1 770-01 
1 . 15 1 .37624+00 1 .25504 1 .09657+00 9.96691-01 2.26608+00 8.75024-01 
1 .20 1 .51333+00 1 .34161 1 . 12799+00 9.92800-01 2.40750+00 8.42170-01 
1 .25 1 .65624+00 1 .42857 1 . 15937+00 9.87058-01 2.55676+00 8 . 12636'-01 
1 .30 1 .80499+00 1 .51569 1 . 19087+00 9.79375-01 2.71359+00 7.85957-01 
1 .35 1 .95958+00 1 .60278 1 .22261 +00 9.69739-01 2.87781 +00 7.61753-01 
1 .40 2 . 1 1999+00 1 .68965 1 .25469+00 9.58196-01 3.04924+00 7.39709-01 
1 .45 2.28624+00 1 .77613 1 .28720+00 9.44839-01 3.22776+00 7. 19561-01 
1 .50 2.45832+00 1 .86206 1 .32021+00 9.29789-01 3.41328+00 7.01088-01 
1 .55 2.63624+00 1 .94731 1 .35378+00 9 .13191-01 3.60571+00 6.84101-01 
1 .60 2.81999+00 2.03174 1 .38796+00 8.95203-01 3.80498+00 6.68437-01 
1 .65 3.00957+00 2 . 1 1524 1 .42280+00 8.75991-01 4.01104+00 6.53958-01 
1 . 70 3.20499+00 2 .19771 1 .45833+00 8.55724-01 4.22384+00 6.40543-01 
1 . 75 3.40624+00 2.27906 1 .49457+00 8.34568-01 4.44335+00 6.28088-01 
1 .80 3.61332+00 2.35922 1 .53157+00 8 .12687-01 4.66953+00 6.16501-01 
1 .85 3.82624+00 2.438 1 1  1 .56934+00 7.90235-01 4.90235+00 6.05700-01 
1 .90 4.04499+00 2.51567 1 .60791 +00 7.67359-01 5 .14179+00 5.95616-01 
1 .95 4.26957+00 2.59187 1 .64729+00 7.44198-01 5.38784+00 5.86184-01 
2.00 4.49999+00 2.66666 1 .68750+00 7.20877-01 5.64046+00 5.77350-01 
2.05 4.73624+00 2.74001 1 .72854+00 6.9751 1-01 5.89965+00 5.69062-01 
2 . 10 4.97832+00 2.81 190 1 .77045+00 6.74206-01 6 .16540+00 5.61276-01 
2 .15 5.22624+00 2.882:10 1 .81321+00 6.51054-01 6.43769+00 5.53953-01 
2.20 5.47999+00 2.95121 1 .85685+00 6.28139-01 6.71651+00 5.47055-01 
2.25 5.73957+00 3.01863 1 .90138+00 6.05532-01 7.00185+00 5.40551-01 
2.30 6.00499+00 3.08454 1 .94680+00 5.83297-01 7.29�71+00 5.3441 1-01 
2.35 6.27624+00 3.14896 1 .9931 1+00 5.61487-01 7.59208+00 5.28607-01 
2.40 6.55332+00 3.21 189 2.04033+00 5.40146-01 7.89695+00 5.231 17-01 
2.45 6.83623+00 3.27334 2.08845+00 5. 19313-01 8.20832+00 5 . 17918-01 
2.50 7. 12498+00 3.33333 2 . 13750+00 4.99017-01 8.52618+00 5.12989-01 
2.55 7.41957+00 3.39187 2. 18746+00 4.79282-01 8.85053+00 5.08312-01 
2.60 7.71998+00 3.44897 2.23834+00 4.60125-01 9 . 18136+00 5.03871-01 
2.65 8.02623+00 3.50467 2.29015+00 4.41559-01 9.51867+00 4.99649-01 
2 .70 8.33832+00 3.55899 2.34289+00 4.23592-01 9.86245+00 4.95633-01 
2.75 8.65623+00 3.61 194 2.39656+00 4.06228-01 1 .02127+01 4.91810-01 
2.80 8.97998+00 3.66355 2.451 17+00 3.89466-01 1 .05694+01 4.88167-01 
2.85 9.30956+00 3.71385 2.50672+00 3.73303-01 1 .09326+01 4.84693-01 
2.90 9.64498+00 3.76286 2.56320+00 3.57735-01 1 . 1 3023+01 4.81379-01 
2.95 9.98623+00 3.81061 2.62063+00 3.42752-01 1 . 16784+01 4. 78214-01 
3.00 1 .03333+01 3.85714 2.67901+00 3.28346-01 1 .20610+01 4.75190-01 
3.05 1 .06862+01 3.90246 2.73833+00 3.14503-01 1 .24501+01 4.72299-01 
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Propiedades de una onda de choque normal para 'Y = 1 ,4 (continua­
ción). 

Mn1 P2/P1 P2/P1 T2/T1 P<J2/Po1 Po2/p1 Mn2 
3 . 10 1 . 10449+01 3.94661 2. 79860+00 3.01213-01 1 .28456+01 4.69533-01 
3 . 15 1 . 14095+01 3.98961 2.85982+00 2.88460-01 1 .32475+01 4.66885-01 
3.20 1 . 1 7799+01 4.03149 2.92199+00 2.76230-01 1 .36560+01 4.64348-01 
3.25 1 .21562+01 4.07228 2.98511+00 2.64508-01 1 .40709+01 4.61917-01 
3.30 1 .25383+01 4 . 1 1202 3.04919+00 2.53277-01 1 .44922+01 4.59585-01 
3.35 1 .29262+01 4. 15071 3 . 1 1422+00 2.42522-01 1 .49200+01 4.57348-01 
3.40 1 .33199+01 4.18840 3 .18020+00 2.32227-01 1 .53542+01 4.55200-01 
3.45 1 .37195+01 4.2251 1 3.24715+00 2.22374-01 1 .57949+01 4.53136-01 
3.50 1 .41249+01 4.26086 3.31505+00 2.12949-01 1 .62421 +01 4 .51153-01 
3.55 1 .45362+01 4.29569 3.38390+00 2.03934-01 1 .66957+01 4.49247-01 
3.60 1 .49533+01 4.32962 3.45372+00 1 .95313-01 1 .71557+01 4.47412-01 
3.65 1 .53762+01 4.36266 3.52450+00 1 .87072-01 1 .76222+01 4.45647-01 
3.70 1 .58049+01 4.39486 3 .59624+00 1 . 79195-01 1 .80952+01 4.43947-01 
3.75 1 .62395+01 4.42622 3.66894+00 1 .71666-01 1 .85745+01 4.42310-01 
3.80 1 .66799+01 4.45679 3.74260+00 1 .64471-01 1 .90604+01 4.40731-01 
3.85 1 .71262+01 4.48656 3.81722+00 1 .57596-01 1 .95527+01 4.39210-01 
3.90 1 . 75783+01 4.51558 3.89281 +00 1 .51028-01 2.00514+01 4.37742-01 
3.95 1 .80362+01 4.54386 3 .96936+00 1.44752-01 2.05566+01 4.36326-01 
4.00 1 .84999+01 4.57142 4.04687+00 1 .38757-01 2 .10682+01 4.34958-01 
4.05 1 .89695+01 4.59829 4 . 12535+00 1 .33029-01 2 . 15863+01 4.33638-01 
4 . 10 1 .94449+01 4.62448 4.20479+00 1 .27557-01 2 .21108+01 4.32362-01 
4.15 1 .99262+01 4.65001 4.2851 9+00 1 .22329-01 2.26417+01 4 .31129-01 
4.20 2.04133+01 4.67491 4.36657+00 1 . 17334-01 2.31791+01 4.29937-01 
4.25 2.09062+01 4.69918 4.44890+00 1 . 12562-01 2.37230+01 4.28784-01 
4.30 2 .14049+01 4.72286 4.53221 +00 1 .08002-01 2.42733+01 4.27669-01 
4.35 2 . 19095+01 4.74595 4.61647+00 1 .03645-01 2.48300+01 4.26589-01 
4.40 2.24199+01 4.76847 4.70171 +00 9.94814-02 2.53932+01 4.25544-01 
4.45 2.29362+01 4.79044 4.78791 +00 9.55021-02 2.59628+01 4.24532-01 
4.50 2.34582+01 4.81 188 4.87508+00 9.16986-02 2.65388+01 4.23551-01 
4 .55 2 .39862+01 4.83279 4.96322+00 8.80629-02 2.71213+01 4.22601-01 
4.60 2.45199+01 4.85321 5.05232+00 8.45872-02 2.77103+01 4.21680-01 
4.65 2.50595+01 4.87313 5. 14239+00 8. 12640-02 2.83057+01 4.20786-01 
4 .70 2.56049+01 4.89258 5 .23343+00 7.80862-02 2.89075+01 4.19919-01 
4.75 2.61562+01 4 .91156 5 .32544+00 7.50472-02 2.95158+01 4.19079-01 
4.80 2.67132+01 4.93009 5.41841+00 7.21404-02 3.01305+01 4 . 1 8262-01 
4.85 2.72762+01 4.94819 5.51235+00 6 .93597-02 3.07516+01 4 .17470-01 
4.90 2.78449+01 4.96587 5.60727+00 6.66992-02 3. 13792+01 4. 16701-01 
4.95 2.84195+01 4.98313 5 .70315+00 6.41533-02 3.20133+01 4.15953-01 
5 .00 2.89999+01 5.00000 5.80000+00 6 . 17168-02 3.26537+01 4 . 15227-01 
5 . 10 3.01782+01 5.03257 5.99660+00 5.71518-02 3.39540+01 4 . 13835-01 
5.20 3. 13799+01 5.06367 6 .19708+00 5.29664-02 3.52800+01 4. 12519-01 
5.30 3.26049+01 5.09338 6.40144+00 4.91264-02 3.66318+01 4 . 1 1273-01 
5.40 3.38532+01 5. 12177 6.60968+00 4.56009-02 3.80094+01 4 . 10093-01 
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Propiedades de una onda de choque normal para --y =  1 ,4 (continua­ción) . Mn1 P2/p1 P2/ P1 T2/T1 Po2/Po1 Po2/P1 Mn2 5.50 3.51249+01 5.14893 6.82179+00 4.23618-02 3.94127+01 4.08974-01 5.60 3.64199+01 5 . 17491 7.03779+00 3.93836-02 4.08418+01 4.0791 1-01 5.70 3.77382+01 5 . 19978 7.25766+00 3.66434-02 4.22966+01 4.06902-01 5.80 3.90799+01 5.22360 7.48142+00 3.41203-02 4.37772+01 4.05943-01 5.90 4.04449+01 5.24642 7.70906+00 3 . 17953-02 4.52835+01 4.05030-01 6.00 4 .18332+01 5.26829 7.94058+00 2.96512-02 4.68156+01 4.04161-01 6 . 10 4.32449+01 5.28926 8. 1 7598+00 2.76725-02 4.83735+01 4.03333-01 6.20 4.46799+01 5.30939 8.41527+00 2.58451-02 4.99571+01 4.02543-01 6.30 4.61382+01 5.32870 8.65844+00 2.41560-02 5 .15665+01 4.01789-01 6.40 4.76199+01 5.34725 8.90549+00 2.25938-02 5.32016+01 4.01069-01 6.50 4.91249+01 5.36507 9 .15643+00 2 . 1 1477-02 5.48625+01 4.00381-01 6.60 5.06532+01 5.38220 9.41 125+00 1 .98082-02 5.65491+01 3.99723-01 6.70 5.22049+01 5.39867 9.66996+00 1 .85665-02 5.82615+01 3.99093-01 6.80 5.37799+01 5.41451 9.93255+00 1 .74145-02 5.99997+01 3.98491-01 6.90 5.53782+01 5.42976 1 .01990+01 1 .63451-02 6 .17636+01 3.97913-01 7.00 5.69999+01 5.44444 1 .04693+01 1 .53516-02 6.35533+01 3.97359-01 7.10 5.86449+01 5.45858 1 .07436+01 1 .44280-02 6.53687+01 3.96828-01 7.20 6.03132+01 5 .47220 1 . 10217+01 1 .35687-02 6.72099+01 3.96318-01 7.30 6.20049+01 5.48533 1 . 13037+01 1 .27687-02 6.90768+01 3.95829-01 7.40 6.37198+01 5.49799 1 . 15896+01 1 .20234-02 7.09695+01 3.95359-01 7.50 6.54582+01 5.51020 1 . 18794+01 1 . 13286-02 7.28879+01 3.94907-01 7.60 6. 72198+01 5.52198 1 .21731+01 1 .06805-02 7.48321+01 3.94472-01 7.70 6.90048+01 5.53336 1 .24707+01 1 .00754-02 7.68020+01 3.94054-01 7.80 7.08132+01 5.54434 1 .27721+01 9.51030-03 7.87977+01 3.93651-01 7.90 7.26448+01 5.55496 1 .30774+01 8.98203-03 8.08192+01 3.93263-01 8.00 7.44998+01 5.56521 1 .33867+01 8.48793-03 8.28664+01 3.92889-01 8.10 7.63782+01 5.57513 1 .36998+01 8.02550-03 8.49393+01 3.92529-01 8.20 7.82798+01 5.58471 1 .40168+01 7.59245-03 8. 70380+01 3.92182-01 8.30 8.02048+01 5.59399 1 .43377+01 7.18666-03 8.91625+01 3.91846-01 8.40 8.21532+01 5.60296 1 .46624+01 6.80620-03 9.13127+01 3.91523-01 8.50 8.41248+01 5.61 165 1 .49911+01  6.44925-03 9.34887+01 3.9121 1-01 8.60 8.61 198+01 5.62006 1 .53236+01 6. 1 1418-03 9.56904+01 3.90909-01 8.70 8.81381+01 5.62820 1 .56601+01 5.79946-03 9.79179+01 3.90617-01 8.80 9.01798+01 5.63609 1 .60004+01 5.50370-03 1 .00171+02 3.90335-01 8.90 9.22448+01 5.64374 1 .63446+01 5.22558-03 1 .02450+02 3.90063-01 9.00 9.43331+01 5.65 1 16 1 .66927+01 4.96391-03 1 .04754+02 3.89799-01 9. 10 9.64448+01 5.65835 1 .70447+01 4.71 760-03 1 .07085+02 3.89543-01 9.20 9.85798+01 5.66532 1 .74005+01 4.48560-03 1.09441+02 3.89296-01 9.30 1 .00738+02 5.67209 1 . 77603+01 4.26698-03 1 . 1 1823+02 3.89057-01 9.40 1 .02919+02 5.67866 1 .81239+01 4.06085-03 1 . 14231 +02 3.88825-01 9.50 1 .05124+02 5.68503 1 .84915+01 3.86640-03 1 . 16664+02 3.88600-01 9.60 1 .07353+02 5.69123 1 .88629+01 3.68288-03 1 . 19124+02 3.88383-01 9.70 1 .09604+02 5.69724 1 .92382+01 3.50959-03 1.21609+02 3.88171-01 
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Propiedades de una onda de choque normal para , =  1,4 (continua­
ción) . 

Mn1 P2/p1 P2/ Pl T2/T1 Po2/Po1 Po2/p1 Mn2 9.80 1 . 1 1879+02 5.70308 1 .96174+01 3.34587-03 1 .24119+02 3.87967-01 9.90 1 . 14178+02 5 .70876 2.00005+01 3 .19112-03 1 .26656+02 3.87768-01 10.0 1 . 16499+02 5.71428 2.03875+01 3.04479-03 1 .29218+02 3.87575-01 10.5 1 .28458+02 5.73969 2.23806+01 2.42220-03 1 .42416+02 3.86690-01 1 1 .0 1 .40999+02 5.76190 2.44710+01 1 .94508-03 1 .56257+02 3.85922-01 1 1 .5 1 .54124+02 5.78142 2.66586+01 1 .57559-03 1 .70742+02 3.85251-01 12.0 1 .67833+02 5.79865 2.89434+01 1 .28663-03 1 .85871+02 3.84661-01 12.5 1 .82124+02 5.81395 3 . 13255+01 1 .05860-03 2.01644+02 3.84139-01 13.0 1 .96999+02 5.82758 3.38047+01 8.77103-04 2 .18061+02 3.83677-01 13.5 2 .12457+02 5.83978 3.63811+01 7.31494-04 2.35121+02 3.83264-01 14.0 2.28499+02 5.85074 3.90548+01 6.13804-04 2.52825+02 3.82894-01 14.5 2.45124+02 5.86062 4 .18257+01 5. 18014-04 2 .71173+02 3.82562-01 15.0 2.62332+02 5.86956 4.46938+01 4.39535-04 2.90165+02 3.82262-01 15.5 2.80124+02 5.87767 4.76591+01 3.74840-04 3.09801+02 3.81990-01 16.0 2.98499+02 5.88505 5.07216+01 3.21 198-04 3.30080+02 3.81744-01 16.5 3 . 17457+02 5.89179 5.38814+01 2.76475-04 3.51003+02 3.81519-01 1 7.0 3.36999+02 5.89795 5.71384+01 2.38994-04 3.72570+02 3.81314-01 17.5 3.57124+02 5.90361 6.04926+01 2.07428-04 3.94781+02 3.81 126-01 18.0 3.77832+02 5.90881 6.39440+01 1 .80720-04 4 . 17636+02 3.80953-01 18.5 3.99124+02 5.91360 6.74926+01 1 .58022-04 4.4 1 134+02 3.80794-01 19.0 4.20999+02 5.91803 7. 1 1385+01 1 .38650-04 4.65276+02 3.80648-01 19.5 4.43457+02 5.92212 7.48815+01 1 .22052-04 4.90062+02 3.80512-01 20.0 4.66499+02 5.92592 7.87218+01 1 .07776-04 5.15492+02 3.80387-01 20.5 4.90124+02 5.92945 8.26593+01 9.54533-05 5.41565+02 3.80270-01 21 .0 5 . 14332+02 5.93273 8.66941+01 8.47789-05 5.68283+02 3.80162-01 21 .5  5.39124+02 5.93579 9.08260+01 7.55021-05 5.95644+02 3.80061-01 22.0 5.64499+02 5 .93865 9.50552+01 6.74146-05 6.23649+02 3.79967-01 22.5 5.90457+02 5.94132 9.93816+01 6.03426-05 6.52298+02 3.79879-01 23.0 6 .16999+02 5.94382 1 .03805+02 5.41407-05 6.81590+02 3.79797-01 23.5 6.44123+02 5.94616 1 .08326+02 4.86867-05 7. 1 1526+02 3.79720-01 24.0 6.71832+02 5.94836 1 . 12944+02 4.38778-05 7.42107+02 3.79648-01 24.5 7.00123+02 5.95043 1 . 1 7659+02 3.96267-05 7.73331+02 3.79580-01 25.0 7.28998+02 5.95238 1 .22472+02 3.58596-05 8.05198+02 3.79516-01 25.5 7.58457+02 5.95421 1 .27381+02 3.25135-05 8.37710+02 3.79456-01 26.0 7.88498+02 5 .95594 1 .32388+02 2.95346-05 8.70865+02 3.79399-01 26.5 8. 19123+02 5.95758 1 .37492+02 2.68767-05 9.04664+02 3.79346-01 27.0 8.50331+02 5.95912 1 .42694+02 2.45004-05 9.39107+02 3.79295-01 27.5 8.82123+02 5.96059 1 .47992+02 2.23714-05 9.74194+02 3.79247-01 28.0 9.14498+02 5.96197 1 .53388+02 2.04604-05 1 .00992+03 3.79202-01 28.5 9.47456+02 5.96329 1 .58881+02 1 .87416-05 1 .04629+03 3.79159-01 29.0 9.80998+02 5.96453 1 .64472+02 1 .71931-05 1 .08331+03 3.79118-01 29.5 1 .01512+03 5.96572 1 . 70159+02 1 .57953-05 1 . 12097+03 3.79079-01 30.0 1 .04983+03 5.96685 1 .75944+02 1 .45316-05 1 . 15928+03 3.79043-01 
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Propiedades de una onda de choque normal pára 1 = 1,4 ( continua­
ción). 

Mn1 p2/p1 p2/p1 T2/T1 P<l2/Poi Po2/P1 Mn2 30.5 1 .08512+03 5.96792 1 .81826+02 1 .33872-05 1 . 19823+03 3.79007-01 31 .0 1 . 12099+03 5.96894 1 .87805+02 1 .23490-05 1 .23782+03 3.78974-01 31 .5 1 . 15745+03 5.96991 1 .93881+02 1 . 14060-05 1 .27806+03 3.78942-01 32.0 1 . 19449+03 5.97084 2.00055+02 1 .05479-05 1 .31894+03 3. 78912-01 32.5 1 .23212+03 5.97173 2.06326+02 9.76612-06 1 .36047+03 3.78883-01 33.0 1 .27033+03 5.97257 2 . 12694+02 9.05274-06 1 .40263+03 3.78856-01 33.5 1 .30912+03 5.97338 2. 19159+02 8.40093-06 1 .44545+03 3.78829-01 34.0 1 .34849+03 5.97416 2.25722+02 7.80458-06 1 .48890+03 3.78804-01 34.5 1 . 38845+03 5.97490 2.32381+02 7.25827-06 1 .53300+03 3.78780-01 35.0 l .4289!H03 5.97560 2.39138+02 6.75717-06 1 .57775+03 3.78757-01 35.5 1 .47012+03 5.97628 2.45992+02 6.29699-06 1 .62313+03 3.78734-01 36.0 1 .51 183+03 5.97694 2.52944+02 5.87387-06 1 .66916+03 3.78713-01 36.5 1 .55412+03 5.97756 2.59992+02 5.48439-06 1 .71584+03 3.78693-01 37.0 1 .59699+03 5.97816 2.67138+02 5 . 12547-06 1 .76316+03 3.78673-01 37.5 1 .64045+03 5.97874 2.74381+02 4.79435-06 1 .811 12+03 3.78655-01 38.0 1 .68449+03 5.97929 2.81722+02 4.48855-06 1 .85973+03 3.78637-01 38.5 1 . 72912+03 5.97982 2.89159+02 4.20584-06 1 .90898+03 3.78619-01 39.0 1 .77433+03 5.98034 2.96694+02 3.94422-06 1 .95887+03 3.78602-01 39.5 1 .82012+03 5.98083 3.04326+02 3.70187-06 2.00941+03 3.78586-01 40.0 1 .86649+03 5.98130 3. 12055+02 3.47716-06 2.06059+03 3 .78571-01 40.5 1 .91345+03 5.98176 3. 19881+02 3.26861-06 2. 1 1242+03 3.78556-01 41 .0 1 .96099+03 5.98220 3.27805+02 3.07488-06 2.16489+03 3.78542-01 41 .5 2.00912+03 5.98263 3.35826+02 2.89477-06 2.21800+03 3.78528-01 42.0 2.05783+03 5.98304 3.43944+02 2.72715-06 2.27176+03 3 .78515-01 42.5 2. 10712+03 5.98343 3.52159+02 2.57104-06 2.32616+03 3.78502-01 43.0 2.15699+03 5.98381 3.60472+02 2.42553-06 2.38120+03 3.78489-01 43.5 2.20745+03 5.98418 3.68881+02 2.28978-06 2.43689+03 3.78477-01 44.0 2.25849+03 5.98454 3.77388+02 2. 16305-06 2.49322+03 3.78466-01 44.5 2.31012+03 5.98488 3 .85992+02 2.04463-06 2.55020+03 3.78454-01 45.0 2.36232+03 5.98522 3.94694+02 1 .93391-06 2.60782+03 3. 78444-01 45.5 2.41512+03 5.98554 4.03492+02 1 .83030-06 2.66608+03 3.78433-01 46.0 2.46849+03 5.98585 4 .12388+02 1 .73327-06 2.72499+03 3.78423-01 46.5 2.52245+03 5.98615 4.21381+02 1 .64235-06 2.78454+03 3.78413-01 47.0 2.57699+03 5.98644 4.30472+02 1 .55709-06 2.84473+03 3.78404-01 47.5 2.63212+03 5.98673 4.39659+02 1 .47709-06 2.90557+03 3.78395-01 48.0 2.68782+03 5.98700 4.48944+02 1 .40196-06 2.96705+03 3.78386-01 48.5 2.74412+03 5.98727 4.58326+02 1 .33137-06 3.02918+03 3.78:H7-01 49.0 2.80099+03 5.98753 4.67805+02 1 .26500-06 3.09195+03 3.78369-01 49.5 2.85845+03 5.98778 4.77381+02 1 .20256-06 3 .15536+03 3.78360-01 50.0 2.91649+03 5.98802 4.87055+02 1 . 14379-06 3.21942+03 3.78353-01 
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22.9. APÉNDICE B:  Función de Prandtl-Meyer y 
ángulo de Mach para , =  1 ,4. 

M v(º
) µ(º

) M v(º
) µ(º

) 1 .00 0.00000+00 9.00000+01 2.0 2.63797+01 3.00000+01 1 .05 0.48741+00 7.22472+01 2 .1  2.90970+01 2.84368+01 1 . 10 1 .33620+00 6.53800+01 2.2 3.17324+01 2.70356+01 1 . 15  2.38104+00 6.04081+01 2.3 3.42827+01 2.57714+01 1 .20 3.55823+00 5.64426+01 2.4 3.67465+01 2.46243+01 1 .25 4.82988+00 5.31301+01 2.5 3.91235+01 2.35781+01 1 .30 6 .17028+00 5.02848+01 2.6 4. 14147+01 2.26198+01 1 .35 7.56072+00 4.77945+01 2.7 4.36214+01 2 .17384+01 1 .40 8.98702+00 4.55846+01 2.8 4.57458+01 2.09248+01 1.45 1 .04381+01 4.36028+01 2.9 4.77903+01 2.01712+01 1 .50 1 . 19052+01 4. 18103+01 3.0 4.97573+01 1 .94712+01 1.55 1 .33812+01 4.01777+01 3.1 5 . 16497+01 1 .88190+01 1 .60 1.48603+01 3.86821+01 3.2 5.34703+01 1.82099+01 1 .65 1 .63378+01 3.73052+01 3.3 5.52219+01 1 .76397+01 1 .70 1 .78099+01 3.60318+01 3.4 5.69075+01 1 .71046+01 1 .75 1 .92731+01 3.48499+01 3.5 5.85297+01 1 .66015+01 1 .80 2.07250+01 3.37489+01 3.6 6.00914+01 1 .61276+01 1 .85 2.21633+01 3.27204+01 3.7 6. 15952+01 1 .56803+01 1 .90 2.35861+01 3.17568+01 3.8 6.30437+01 1 .52575+01 1 .95 2.49920+01 3.08518+01 3.9 6.44395+01 1 .48571+01 4.00 6.57848+01 1 .44775+01 14.0 1 . 10179+02 4.09604+00 4.50 7. 18317+01 1 .28395+01 15.0 1 . 1 1509+02 3.82255+00 5.00 7.69202+01 1 . 15369+01 16.0 1 . 12675+02 3.58332+00 5.50 8.12447+01 1 .04756+01 17.0 1 . 13708+02 3.37228+00 6.00 8.49554+01 9.59406+00 18.0 1 . 14627+02 3 .18473+00 6.50 8.81681+01 8.84988+00 19.0 1 . 15452+02 3.01696+00 7.00 9.09727+01 8.21321+00 20.0 1 . 16195+02 2.86598+00 7.50 9.34396+01 7.66225+00 21 .0 1 . 16868+02 2.72940+00 8.00 9.56246+01 7. 18075+00 22.0 1 . 17481+02 2.60525+00 8.50 9.75722+01 6.75632+00 23.0 1 . 18041+02 2.49190+00 9.00 9.93180+01 6.37937+00 24.0 1 . 18555+02 2.38801+00 9.50 1 .00891+02 6.04232+00 25.0 1 . 19028+02 2.29244+00 10.0 1 .02316+02 5.73917+00 26.0 1 . 19465+02 2.20422+00 10.5 1 .03612+02 5.46502+00 27.0 1 . 19870+02 2 .12255+00 1 1 .0 1 .04795+02 5.21590+00 28.0 1 .20246+02 2.04671+00 1 1 .5 1 .05880+02 4.98854+00 29.0 1 .20596+02 1 .97610+00 12.0 1 .06878+02 4.78019+00 30.0 1 .20924+02 1 .91021+00 12.5 1 .07799+02 4.58856+00 31.0 1 .21230+02 1 .84857+00 13.0 1 .08652+02 4.41172+00 32.0 1 .21517+02 1 .79078+00 13.5 1.09443+02 4.24802+00 33.0 1 .21787+02 1 .73650+00 



Capítulo 23 

Movimiento de fluidos ideales 

en conductos 

23. 1 .  Ecuaciones para el movimiento casiunidirec­
cional de un fluido ideal 

En esta lección consideraremos el movimiento adiabático de fluidos idea­
les (flujo isentrópico) en conductos de sección lentamente variable . Es decir, 
consideraremos que se verifican las siguientes hipótesis: 

D/L « 1 , ReD/L » 1 , PeD/L » 1 (23.1) 

donde D y L son un diámetro y una longitud característica del conducto, res­
pectivamente. La primera condición y la ecuación de continuidad nos permite 
suponer que el flujo es casi unidireccional: Vr « VL , donde Vr y VL son velo­
cidades características transversal al eje del conducto y longitudinal al mismo, 
respectivamente. Además, de la ecuación de cantidad de movimiento se tiene 
que las variaciones transversales de presión reducida son despreciables frente a 
las variaciones longitudinales, análogamente a como ocurría en el flujo viscoso 
en conductos (ver sección 15.2): 

b.rP pV,f (D) 2 

b.LP ~ pV[, ~ L « l (23.2) 

La segunda y tercera condición en (23.1) nos dice que los efectos viscosos y 
de conducción de calor son despreciables en las ecuaciones de cantidad de 
movimiento y de energía, esto es, el fluido es ideal. Suponemos, además, que 
no hay aportes volumétricos de calor, por lo que el flujo es isentrópico. Por 
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X 

Figura 23. 1 :  Volumen diferencial de control. 
supuesto, los efectos disipativos son importantes en una capa delgada cerca 
de la pared del conducto cuyo espesor tiende a cero cuando ReD / L y PeD / L 
tienden a infinito (ver lección 27) . 

Al no existir efectos disipativos, las magnitudes fluidas no dependen, en 
primera aproximación ( es decir , salvo en la capa límite sobre la pared antes 
citada) de las coordenadas transversales al conducto, siendo así uniformes en 
cada sección del mismo. Por ello, en las ecuaciones que se escriben a continua­
ción, se supone que las magnitudes fluidas son sólo función de la coordenada 
longitudinal a lo largo del conducto x, y del tiempo t. Estas ecuaciones no las 
escribiremos para el caso general, sino para dos casos particulares que son los 
más comunes en la práctica: el movimiento de líquidos y el movimiento casi estacionario de gases. 

23.1 . 1 .  Movimiento de líquidos 
La ecuación de continuidad unidireccional se obtiene aplicando la ecuación 

de conservación de la masa a un volumen de control diferencial como el de la 
figura 23. 1 .  Como la densidad es constante por ser un líquido y la velocidad 
es uniforme en cada sección, 

8A 8v Av = (A + dA) (v + dv) = (A +  Bx dx)(v + Bx dx) o 

que proporciona 

A(x)v(x, t) = Q(t) , 

donde Q es el caudal, constante a lo largo del conducto. 

8Av 
= O 8x (23.3) 

(23.4) 

Para la ecuación de cantidad de movimiento se supondrá que las fuerzas 
másicas derivan del potencial U, que unido a las hipótesis anteriores implica 
que el flujo es irrotacional, puesto que las propiedades son uniformes en cada 



CAPÍTULO 23. MOVIMIENTO DE FLUIDOS IDEALES EN CONDUCTOS 377 

sección; se puede así utilizar la ecuación (19.14), sustituyendo l por x, ya que 
todas las líneas de corriente son idénticas o, directamente, la ecuación (20.28) 
para flujos irrotacionales : 

(23.5) 

Por último, la ecuación de la energía (entropía) dice que la temperatura 
debe ser constante por ser el flujo isentrópico de un líquido. Pero esta ecuación 
no va a ser necesaria al estar desacoplada de las anteriores. 

Escribiendo la variación temporal de v en (23.5) en función del caudal e 
integrando respecto a x, se tiene: 

donde 

{x dx I(x) = Ío A(x) 

(23.6) 

(23. 7) 

(23.8) 

y C(t) es una constante de integración. Normalmente se conocen p y U en los 
extremos del conducto (x = O y x = L) y, por supuesto , A(x) .  Suponiendo que 
p + pU = P0 (t) en x = O y p + pU = PL(t) en x = L, sustituyendo en (23 .7) ,  

1 Q2 Po dQ 
2 A2(ü) + P = -I(O)

-¡¡¡ 
+ C '  

1 Q2 PL dQ 
2 A2(L) + P = -I(L)

-¡¡¡ 
+ C ;  

(23.9) 

(23.10) 

restando ambas expresiones se obtiene la siguiente ecuación diferencial para 
Q(t): 

I(L) dQ � 
[-

1- _ _ 1_] Q2 ( )  = P0 (t) - PL (t) 
dt 

+ 
2 A2 (L) A2 (ü) 

t 
p ' (23. 11) 

que habrá que resolver con la condición inicial Q(O) = Q0 . Una vez conoci­
do Q(t) , las ecuaciones (23.4) y (23.7)  proporcionarán p(x, t) y v(x, t) .  Otra 
variante de este problema , que a veces interesa, es calcular PL (t) [o Po (t)] 
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conocido Q(t) y P0(t) [o PL(t)] . La misma ecuación {23.11) proporciona, ob­
viamente, la respuesta. 

En el supuesto de que el flujo sea estacionario ( o casi estacionario), el 
primer término de {23.11) desaparece y la ecuación anterior se simplifica no­
toriamente, puesto que deja de ser diferencial : 

Q2 = 2A2 {L)A2 (0) P0(t) - PL(t) 
A2 {0) - A2 (L) p 

(23.12) 

donde se ha mantenido el tiempo, pero como un parámetro, para el caso de 
que sea casi estacionario. 

23. 1 .2. Movimiento casi estacionario de gases 

La ecucación de conservación de masa en el volumen de control de la figura 
23.1, para el flujo casi estacionario (St « 1) de un gas, proporciona 

8 
ox 

(pvA) = O o pvA = G = constante , {23.13) 

donde G es el gasto, constante a lo largo del conducto, pero que puede depender 
paramétricamente del tiempo en el caso de que el flujo no sea estrictamente 
estacionario. La ecuación de cantidad de movimiento, en el supuesto de que 
las fuerzas másicas sean poco importantes, como normalmente ocurre en el 
flujo de gases, se puede escribir como (ecuación de Bernoulli) 

v
ªv + �

ªP = 0 . 
ox p ax 

Como el movimiento es isentrópico, 

os = o 
ax 

s = s0 = constante , 

(23.14) 

(23.15) 

la ecuación (23.14) se puede integrar puesto que el fluido es barótropo. Ya se 
vió que la función de barotropía es la entalpía, y que (23.14) es equivalente a 
la conservación de la entalpía de remanso (ver sección 19.5) :  

v
2 

h + 2 = h0 = constante . (23.16) 

Así, tenemos tres primeras integrales del movimiento, {23.13), {23.15) y {23.16), 
donde G, s0 y h0 son constantes a lo largo del conducto. Para un gas ideal 
{22.15) se escribe 



CAPÍTULO 23. MOVIMIENTO DE FLUIDOS IDEALES EN CONDUCTOS 379 
P Po - = -;;¡ = constante . (2 3. 17) 
p"f Po Como ya se vió en la sección 19.5 , las dos ecuaciones (2 3. 1 6 ) y (2 3. 17) , junto con la ecuación de estado p/ p = R9T, permiten expresar las magnitudes p, 

p y T en función de las correspondientes magnitudes de remanso, Po, p0 , T0 ( que se conservan a lo largo del flujo) y el número de Mach en cada sección. Esta es la forma habitual de utilizar esas ecuaciones, a las que hay que unir la ecuación de continuidad (2 3 . 1 3 ). En la sección siguiente se aplicarán al flujo en toberas convergentes-divergentes, de gran interés práctico. Pero antes se derivará una importante relación general entre las variaciones de velocidad y de área . Escribiendo la ecuación de continuidad (2 3.1 3 ) ,  en su forma diferencial, como 
! ap + ! av + _!_ dA - O (2 3. 18) p ax V ax A dx -

y sustituyendo dp = a2dp y la ecuación de cantidad de movimiento (2 3 . 1 4) en el primer término, se llega a: 
v av 1 av 1 dA --- + -- + - - = O a2 ax v ax A dx (2 3.19) 

Esta expresión se puéde escribir en función del número de Mach local, M2 = v2/a2 , como 
(2 3.20) 

Consecuentemente, si el flujo es subsónico (M < 1 ) ,  un incremento de la sec­ción (dA/dx > O) implica una disminución de la velocidad y un aumento de la presión [de (2 3 . 1 4 ) ] , mientras que una disminución de la sección aumenta la ve­locidad del gas y disminuye su presión. Cualitativamente esto es lo que ocurre también en los flujos incompresibles.1 Sin embargo, si el flujo es supersónico (M > 1 ) ,  ocurre todo lo contrario: un aumento de la sección del conducto provoca un aumento de la velocidad y una disminución de la presión ( el flujo se hace más supersónico aún) ,  mientras que una disminución del área da lugar a una disminución de la velocidad y a un aumento de la presión. Finalmente, el flujo sólo puede ser sónico (M = 1) donde la sección presente o un máximo o un mínimo (dA/dx = O). De estas dos posibilidades la única físicamente 
1En el límite M2 -+ O, la ecuación anterior es la ecuación de continuidad de un líquido [ecuación (23.3)) . 
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M=I M= I 

M<l M>I M>I M< I 
v aumenta v disminuye 

Figura 23.2: Flujo en un conducto convergente-divergente. 

posible es la segunda (M = 1 donde la sección presente un mínimo) ,  como se 
verá a continuación . 

De lo anterior se desprende que para expandir un gas isentrópicamen,te des­
de velocidad subsónica a supersónica el flujo debe transcurrir por un conducto 
convergente-divergente (ver figura 23.2). La sección de área mínima divide al 
flujo en dos partes, una subsónica aguas arriba y otra supersónica aguas aba­
jo, siendo sónica la corriente en la sección de área mínima, que usualmente 
se llama garganta. De análoga manera, para comprimir isentrópicamente un 
gas desde velocidades supersónicas a subsónicas , también debe fluir por un 
conducto convergente-divergente: el flujo es supersónico en la parte conver­
gente, sónico en la garganta y subsónico en la zona divergente. Claramente se 
observa que el flujo en una configuración divergente-convergente, es decir, en 
un conducto con un máximo de la sección en vez de con un mínimo o gar­
ganta, nunca puede ser sónico en la sección de área máxima, puesto que si 
inicialmente M < 1, M decrece, y si M > 1, M crece. 

En la siguiente sección se derivarán expresiones cuantitativas para el flujo 
en conductos (o toberas) convergentes-divergentes.2 Obviamente, el caso más 
interesante desde un punto de vista práctico de los dos descritos anteriormente 
es aquel en el que el flujo es subsónico en la sección convergente, puesto que 
permite obtener flujos supersónicos partiendo de flujos subsónicos (por ejemplo 
del reposo) .  Este tipo de conductos se suelen denominar toberas Laval , en 
honor a Carl G.P. de Laval, un ingeniero sueco que presentó la primera tobera 
de este tipo en la Exposición Universal de Chicago de 1893. Desde entonces, 
el uso de estas toberas ha sido muy importante, sobre todo en el desarrollo de 
la aviación supersónica y de los vuelos espaciales. 

2La ecuación {23.20) es general, válida para gases reales, incluso si hay reacción química, 
siempre que el flujo permanezca isentrópico, ya que sólo se han usado ecuaciones de conser­
vación. En la sección siguiente se aplicará esa y las dermis ecuaciones de esta sección al caso 
de un gas perfecto, haciendo uso de las relaciones de la sección 19.5. 
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23.2. Flujo isentrópico de un gas perfecto a través 
de una tobera convergente-divergente 

Considérese una tobera convergente-divergente de sección A(x) conocida. 
Teniendo en cuenta la ecuación de continuidad (23.13) y las relaciones (19.26)­

(1 9.29) [las cuales son equivalentes a las ecuaciones de cantidad de movimiento 
y de energía (23.16) y (23.17)] se pueden expresar todas las magnitudes fluidas 
en cada sección en función de las correspondientes magnitudes de remanso, 
que se conservan a lo largo del flujo y vienen fijadas por las condiciones de 
contorno (por ejemplo, si el gas descarga a través de la tobera de un depósito, 
las magnitudes de remanso son las existentes en el interior del depósito al ser 
nula la velocidad en el mismo) y el número de Mach en la sección, M(x) . En 
efecto, de (23.13), 

de (19.28), 

p V p a 
G = pvA = p0v0A- - = p0a0AM- - ; 

Po Vo Po ªº 

Po ( 'Y - 1 2) 1 /(-y-l) 
- =  1 + --M 
p 2 

� = ( ]!_ Po ) 
1/2 

= (!!_) (-y-1)/2 
= (1 + , - 1 M2) - 1/2 ' 

ªº Po P Po 2 

(23.21) 

(23.22) 

(23.23) 

que sustituidas en (23.21) proporcionan una relación entre el gasto, el área de 
la sección, el número de Mach y las magnitudes de remanso: 

_ ( 1 _ 1 2) (--y+l)/2 ( 1--y) 
G - p0a0AM 1 + -2-M 

Estas relaciones se completan con [ecuaciones ( 19.26) y (19.29)] : 

To = 1 + , - 1 M2 
T 2 ' 

Po ( 'Y - 1 2) -y/(--y -l ) 
- =  1 + --M 
p 2 

(23.24) 

(23.25 ) 

(23.26) 

Dado un gasto y las magnitudes de remanso (y, por supuesto, 1, que viene 
fijado por el tipo de gas), la ecuación (23.24) proporciona el número de Mach 
en función del área de la sección. Con este número de Mach, las expresiones 
(23.22)-(23.23) y (23.25 )-(23.26) nos permiten conocer todas las magnitudes 
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fluidas (la velocidad se obtendría de v = aM) . Normalmente el gasto no es 
dato del problema, sino que viene fijado por la condición de contorno de la 
presión a la salida de la tobera , p8 . La ecuación (23.26) permite obtener el 
número de Mach a la salida, que sustituido en (23.24) fija el gasto y así todas 
las magnitudes en cada sección, como se acaba de describir. Sin embargo, dada 
una tobera y una presión de remanso p0 (por ejemplo, la presión del depósito 
que descarga a través de la tobera en cuestión) , la solución anterior no existe 
para todo valor de Ps , sino sólo en un cierto rango y para un valor concreto. 

Para ver esto expresamos las relaciones anteriores, como es costumbre, en 
función de las denominadas magnitudes críticas, que son aquellas corres­
pondientes a M = l. Por lo dicho en la sección anterior , estas magnitudes, en 
el caso de que realmente se den en la tobera, ocurren en la sección de área 
mínima o garganta. Esta área mínima, o crítica, para cada gasto y magnitudes 
de remanso, se obtiene de (23.24) haciendo M = 1: 

A* = __2.___ (' + 1
)

(-y+l)/2(-y-l) 

Poao 2 
(23.27) 

Las restantes magnitudes críticas se obtienen de las expresiones anteriores 
sustituyendo M = 1 en ellas: 

T* = T. -
2-

º , +  1 

* - (-2
-)

-y/(-y-l ) 
P - Po 

1 + l 

* _ (-2-) 1/(,,-1) 
P - Po 

1 + l 

v* = a* = ªº (-2-) 1/2 , + 1 

(23.28) 

(23.29) 

Como se ve, las magnitudes críticas dependen sólo de las de remanso ( además 
de, por supuesto, 'Y). En el caso particular en el que las magnitudes de remanso 
y el gasto sean tales que el área de la garganta coincida con el área crítica, Am = A* , sustituyendo (23.27) en (23.24) se obtiene una única relación entre 
el área y el número de Mach en cada sección: 

A - 1 
[ 

2 
( 

'Y - 1 2) ]  
<,,+1)/2<,,-1) - - - -- 1 + --M A* M 'Y + 1 2 

(23.30) 

De esta forma, para una tobera dada [A(x) dada] , el número de Mach y, por 
consiguente, todas las demás magnitudes fluidas, quedan fijadas en cada sec­
ción [de (23.22)-(23.23) y (23.25) -(23.26)]. En particular , en la garganta estas 
magnitudes vienen dadas por (23.28)-(23.29). El gasto (crítico) vendrá dado 
por (23.27) y es función de las magnitudes de remanso, de 'Y y del área mínima 
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X 

Figura 23.3: Flujo isentrópico subsónico (a) y supersónico (b) en una tobera convergente­
divergente para 1 = 1 ,4. 

Am = A* . Una representación cualitativa de algunas de estas magnitudes para 
flujos subsónicos y supersónicos se da en la figura 23.3. Las más importantes 
de ellas están tabuladas (cuantitativamente) en el apéndice al final de esta 
lección. 

Obviamente, fijados Po y la relación entre las áreas de salida y de la gar­
ganta, As/ A* , la solución isentrópica anterior con M = l en la garganta y su­
persónica a la salida se presenta sólo para una única presión de descarga, que se 
obtiene de (23.26) después de sustituir el valor de Ms que resulta de (23.30) con 
As /A* .  Esta presión la denominaremos Ps2 · Para ilustrar qué ocurre cuando 
la presión de salida no coincide con Ps2 , consideraremos el proceso de descar­
ga a través de una tobera convergente-divergente, de sección A(x) conocida, 
desde un depósito que contiene un gas a presión p0 a otro depósito con presión 
Pa ::; Po a medida que Pa disminuye (ver figura 23.4) .  

Si Pa es muy próxima a p0 (puntos a y b de la figura) , no se alcanzan condi­
ciones sónicas en la garganta, siendo la solución subsónica a través de toda la 
tobera. Esta solución se obtiene de la forma descrita tras la ecuación (23.26) :  
<lado Pa/Po , (23.26) proporciona Ms , que sustituido en (23.24) y conocido As 
nos da el gasto G. Con este gasto y (23.24) se puede obtener M = M(A) , y 
así todas las magnitudes fluidas en cada sección. 

Si se va disminuyendo la presión Pa , llegará un momento en que se alean-
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'·� '· 
p/p o 

M 

Figura 23.4: Efecto de la presión de descarga en el flujo de una tobera convergente-divergente 
(adaptada de Liepmann y Roshko, 1957) . 

zarán condiciones sónicas en la garganta (M = 1 en A =  Am = A*). Para esa 
presión de descarga (punto e de la figura) , el gasto es el crítico (23.27): 

* _ * (
' + 1 )  (,+1)/2( 1 -1) 

G - PoaoA -2-
(23.31) 

que es el gasto máximo al que se puede descargar el depósito con la tobera 
dada de área mínima Am (= A*). Si seguimos disminuyendo Pa , lo único que 
se modificará es el flujo en la región divergente de la tobera (según veremos 
a continuación) , pero no el flujo subsónico en la parte convergente , puesto 
que no se puede superar la velocidad sónica en la garganta. Se suele decir 
que la tobera se ha bloqueado, ya que cualquier variación de las magnitudes 
fluidas agua.8 abajo de la garganta no afecta al flujo aguas arriba de la misma 
al ser sónica la velocidad en ella. Para la presión Pa dada por el punto e 
de la figura (Pa = Psi) , el flujo es subsónico e isentrópico en toda la tobera 
(excepto en la garganta que es sónico) y viene dado por (23.30) , (23.22) y 
(23.25)- (23.26) con M '.S 1 ,  tabulado en el apéndice para 1 = 1 ,4. En la 
garganta se tienen las propiedades críticas dadas por (23.28)-(23.29). Para 
1 = 1 ,4 (aire , por ejemplo) , p* /p0 = 0,5 28 ,  caso representado en la figura. 
Esta solución es la rama subsónica de la expresión (23.30). Si M > 1 en la 
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zona divergente de la tobera, dicha relación fija la presión de salida Ps2, como 
se indicó anteriormente, y la solución sólo será isentrópica en toda la tobera 
si Pa = Ps2 (punto j en la figura). 

Para presiones de descarga intermedias entre Psl y Ps2 (puntos d, f, g y h 
de la figura), la solución no puede satisfacer las relaciones isentrópicas anterio­
res y se produce una discontinuidad u onda de choque en la solución, dejando 
de ser, por tanto, isentrópica en toda la tobera. Lo que ocurre es cualitatíva­
mente similar al proceso que se describió en la sección 22.1 en relación al flujo 
supersónico sobre un obstáculo: si Psl < Pa < Ps2, la corriente después de 
la garganta no puede adaptarse a las condiciones de descarga, puesto que es 
supersónica; antes de la salida esta corriente supersónica pasa bruscamente a 
subsónica a través de una onda de choque, y así se adapta a la presión de sali­
da. La posición de la onda de choque se obtiene de resolver conjuntamente las 
relaciones isentrópicas anteriores y las expresiones para una onda de choque 
obtenidas en la lección anterior. Por ejemplo, si Pa viene dado por el punto d 
de la figura, se tiene una solución isentrópica, que es sónica en la garganta y 
supersónica desde la garganta hasta un cierto punto s; en este flujo isentrópico 
la presión de remanso viene dada por la presión de remanso del depósito, p0. 
En s se forma una onda de choque normal donde aumenta la presión (punto d') y disminuye la presión de remanso (ver lección anterior) , de forma que la 
región isentrópica d' d detrás de la onda de choque tiene una presión de reman­
so menor que p0 . La posición de la onda de choque es tal que, para el número 
de Mach en el punto s [dado por (23.30)], el salto de las propiedades a través 
de la onda de choque verifica que la solución isentrópica subsónica que parte 
del punto d' satisface la condición de contorno p = Pa a la salida. Para obtener 
la posición de la onda de choque se suele proceder de forma iterativa: cono­
cidos Pa y Po, A* y el área de salida As, se supone una posición, es decir, un 
área A1 donde se encuentra la onda de choque; de las relaciones isentrópicas 
anteriores se obtiene el número de Mach M1 y demás propiedades delante de 
la onda de choque, en particular pif p0 ; con las ecuaciones (22.28)-(22.33) de 
una onda de choque normal se determinan el número de Mach detrás de la 
onda, M2, y demás propiedades detrás de la onda, por ejemplo p2/P1, p�/p0, 
donde p� es la nueva presión de remanso; con M2 y A1 se obtiene, de (23.30), 
el área crítica correspondiente a la nueva rama isentrópica subsónica, A*', que 
junto con el área de salida, As, proporciona el número de Mach a la salida, 
M5 ; con este número de Mach se determina Ps!P� de (23.26), que finalmente 
proporciona Ps, puesto que se ha calculado la presión de remanso detrás de 
la onda; si Ps -f Pa, se vuelve a suponer un nuevo valor ele A1 y se repite el 
proceso. 
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Si Pa viene dado por el punto f de la figura 23.4, la onda de choque 

normal se produce justo a la salida de la tobera. Para Pa menores (puntos g, 
h) se produce ondas de choque oblícuas, ya que la intensidad del salto de las 
propiedades es menos que en una onda de choque normal, para un número 
de Mach dado. Para Pa = Ps2 (punto j), el flujo es isentrópico en toda la 
tobera, como queda dicho, y se dice que la tobera está adaptada (las toberas 
convergente-divergente se diseñan para que ocurra este tipo de flujo). A la 
salida de la tobera se produce una discontinuidad tangencial que, como se dijo 
en la lección anterior, suele ser inestable. Para Pa inferior a Ps2 (punto k de la 
figura), la tobera no es capaz de expandir isentrópicamente al gas como para 
que descargue a esa presión, por lo que sigue expandiéndose detrás de la salida 
de la tobera mediante una expansión del tipo Prandtl-Meyer (sección 22. 7) .  
El ángulo de deflexión de la corriente se calcula a partir de las condiciones a 
la salida de la tobera (p = Ps2) y la presión detrás de la expansión, Pa · 

Para terminar esta sección es conveniente recordar que una vez que Pa es 
inferior a Psl = p* , el flujo en la región convergente de la tobera no se modifica, 
por más que se disminuya la presión de descarga, siendo sónicas ( o críticas) 
las condiciones en la garganta. Así, para una tobera convergente, el flujo es 
siempre subsónico e isentrópico. Para Pa = Psl (p8i fp0 = 0,5 28 para aire), el 
flujo es sónico en la garganta y la descarga se produce con el gasto crítico, 
G* . Para Pa < Psi , se produce una expansión de Prandtl-Meyer a la salida de 
la tobera, y el gasto permanece igual a G* . Este tipo de toberas constituyen, 
por tanto, un medio eficaz de fijar el gasto. Es lo que se suele denominar un 
orificio crítico, que intercalado en un conducto fija el gasto a través del 
mismo. 

23.3. Forma semiintegral de las ecuaciones de Euler 

Como complemento a los flujos de fluidos ideales en conductos, se concluye 
esta lección con la derivación de relaciones semiintegrales para el movimiento 
de un fluido ideal a través de compresores (o turbinas, o bombas) y para la 
carga (o descarga) de depósitos. Estas relaciones serán indispensables para 
resolver problemas prácticos de flujos en conductos, ya que éstos aparecen 
invariablemente asociados a alguno, o varios, de aquellos elementos. Para ello 
se utilizarán formas semiintegrales de las ecuaciones de Euler. De hecho, las 
ecuaciones anteriores para el flujo en conductos también se podrían denominar 
semiintegrales, puesto que, aunque son diferenciales en la dirección x, se han 
integrado en cada sección del conducto (ver figura 23. 1) . 
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Figura 23.5: Movimiento a través de un compresor y carga de un depósito. 
23.3 .1 .  Movimiento a través de un compresor Consideraremos al compresor (o a la turbina, o a la bomba) como una caja negra intercalada en un conducto por donde circula un gasto G. Antes del compresor las magnitudes fluidas son v1 , p¡ y PI y a la salida v2, p2 y P2 (ver figura 23. 5). Lo que se pretende es relacionar esas magnitudes con la potencia W suministrada por el compresor al fluido. Supondremos que no hay aportes volumétricos de calor, ni conducción de calor a través de las paredes, por lo que la entropía se conserva a través del compresor. Como ésta también se conserva a lo largo del conducto, en el ejemplo de la figura 22 . 5 la entropía sería igual a la atmosférica: 

s = Sa = constante ; PI P2 Pa -;:;¡ = -;:;¡ = constante = -;:;¡ . P1 P2 Pa 
(23 .32) 

Normalmente el flujo no es completamente adiabático en el compresor y además existen perdidas por fricción, por lo que la relación anterior no es válida . Sin embargo, en la práctica se suele suponer que la forma de la ecuación (23.32) sí que es válida, y sólo se cambia la relación de calores específicos 'Y por un coeficiente experimental n. En cuanto a la entalpía de remanso, ésta no se conserva ya que el movi­miento del fluido en el compresor es esencialmente no estacionario. De hecho, es a través de este movimiento de las partes móviles del compresor como se le comunica energía al fluido mediante el trabajo de las fuerzas de presión, aumentando su entalpía de remanso. De una forma más precisa, si aplicamos 
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la ecuación de la energía en su forma integral al volumen de control delimitado 
por las superficies de entrada y de salida del compresor, por las paredes del 
conducto y compresor y por las partes móviles de este último, se tiene: 

d
d 

Í p(e + v
2 

)dV + Í p(e + v
2 

) (v- vc) • ñds = - f pv• ñds - f p"vU · vdV , 
t lvc 2 lsc 2 lsc lvc 

(23.33) 
donde se han eliminado los términos de trabajo de las fuerzas de fricción 
y de flujo de calor, por tratarse de un fluido ideal, y se ha supuesto que 
las fuerzas másicas derivan del potencial U. El primer término de {23.33) es 
normalmente nulo puesto que el movimiento de las palas del compresor suele 
ser con velocidad constante y la energía total contenida en el volumen de 
control permanece constante en el tiempo. El segundo término es distinto de 
cero sólo en las secciones de entrada y salida, donde las magnitudes fluidas son 
uniformes por la hipótesis de idealidad. El trabajo de las fuerzas de presión 
en las secciones de entrada y salida puede incluirse en el término anterior, 
transformando la energía interna en entalpía. El trabajo de las fuerzas másicas 
generalmente se pueden despreciar en el flujo de gases. (En el caso de un 
líquido, es decir, en el caso de una bomba, el término de las fuerzas másicas 
también se suele incluir en el convectivo tras aplicar el teorema de Gauss 
y tener en cuenta que 8p/8t = O.) Por último, el trabajo de las fuerzas de 
presión sobre las paredes móviles del compresor es igual a la potencia W que 
el compresor le comunica al fluido ( estrictamente, W es igual al trabajo de las 
fuerzas de presión y al de las fuerzas másicas menos el trabajo que se pierde 
en forma de calor por fricción en las paredes móviles que, aunque despreciable 
en las otras superficies del volumen de control, no suele serlo aquí) . Si G es el 
gasto que circula por el conducto, la ecuación anterior queda 

G(ho2 + U2 - ho1 - Ui) = W , (23 .34) 
donde ho es la entalpía de remanso y se ha retenido el término U2 - U1 para que 
así esté incluido el caso de un líquido. Si la energía cinética es despreciable, 
lo cual ocurre cuando M2 « 1 [recuérdese que v2 /h = (, - l)pv2 /,p = 
(, - l)v2 /a2 = (, - l)M2] ,  y U2 '.::::'. U1 , se tiene, simplemente, 

(23.35) 
Frecuentemente se utilizan estas expresiones en función de la presión. Para 

un gas, quitando las fuerzas másicas en (23.34) , utilizando la relación isen­
trópica {23.32) y teniendo en cuenta que la entalpía de remanso se conserva a 
lo largo del conducto, ho1 = hoa = ha , se llega a:  
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W = G (-r_ P2 + V� _ _ r_ Pa
) 1 - 1 P2 2 , - 1 Pa 

[ (P2 )
(-y-l )h 

( 1 - 1 2) 
l 

= Gha Pa 
1 + -

2
-M2 - 1 , (23 .36) 

donde Mi es el número de Mach a la salida del compresor. Las relaciones 
anteriores valdrían para el caso de una turbina sin más que cambiarle el signo 
a W. 

Para un líquido (p = constante), es decir , para una bomba, la relación 
isentrópica nos dice que T2 = T1 = Ta , y (23.34) queda 

W = Q(po2 - Poi ) =  Q(po2 - Pa) (23.37 )  

donde la presión de remanso es ahora Po = p + pv2 /2 , Q = G / p es el caudal 
que circula por la bomba y se ha despreciado la diferencia de potencial de 
fuerzas másicas. En el caso de una turbina hidráulica habría que cambiarle el 
signo a W en la expresión anterior y, en ocasiones, no se puede despreciar la 
diferencia de potencial de fuerzas másicas debido a la considerable diferencia 
de altura entre la entrada y la salida. 

23.3.2. Carga de un depósito 

Las ecuaciones de conservación de masa y de energía aplicadas a un volu­
men de control que incluye al depósito y a la sección de entrada (ver figura 
23.5 )  son: 

d

d f pdV + f pv . ñds = O , (23.38) 
t lvc lsc 

:t !vc
p (e +  �

2

) dv + fs
c

p (e + �
2

) v • ñds = - fs
c

pv • ñds , (23.39) 

donde se supone que en Se los efectos disipativos son despreciables . Suponiendo 
además que en el depósito, de volumen V constante, las propiedades fluidas 
son espacialmente uniformes y que la velocidad es nula en su interior, las 
ecuaciones anteriores se escriben: 

V dp = G  
dt 

(23.40) 
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(2 3 .41)  

donde p y p son la densidad y presión en el depósito, hoe es la entalpía de 
remanso en la sección de entrada ( donde se ha supuesto que las magnitudes 
fluidas son uniformes), y se ha hecho uso de pe = p/(, - 1), válida para un 
gas ideal. 

Si al depósito le añadiésemos o eliminásemos un cierto calor por unidad de 
tiempo Q, las ecuaciones anteriores serían válidas sin más que añadir ±Q 
al segundo miembro de (2 3 .41). Por otra parte, si el volumen del depósi­
to no fuese constante, éste aparecería dentro de las derivadas temporales, 
además de aparecer un término adicional en (2 3 .41) correspondiente al tra­
bajo de expansión ( o compresión) realizado por las paredes del depósito: 
- fsc JJV • ñds = -p fsc iJ • ñds = -pdV/dt. Con estos dos efectos adiciona­
les, las ecuaciones quedarían: 

dpV = G  dt 

1 dpV dV 
1 _ 1 dt = Ghoe + Q - P-¡¡¡ . 

(2 3 .42) 

(2 3 .4 3 ) 

El proceso de carga de un depósito no es isentrópico, incluso si Q = O, ya 
que el chorro de entrada se frena en el interior del depósito, transformando su 
energía cinética en calor (energía interna del gas en el depósito). Obviamente, 
si la energía cinética de la corriente de entrada es muy pequeña en relación a su 
entalpía, este efecto se puede despreciar y el proceso de carga es prácticamente 
isentrópico (suponiendo que Q = O). Esto ocurre cuando el número de Mach 
a la entrada del depósito es muy pequeño: hoe = he + v';,/2 = he [l + (, -
l)M;/2] � he si M; « l. De hecho, haciendo hoe = he = [,/(, - l)]Pe/Pe y 
Q = O en las ecuaciones anteriores, eliminando dV / dt se llega a 

Vp-r d(p/p-Y) = ,G (
Pe _ !!.) dt Pe P 

(23.44) 
pero como la corriente de entrada es subsónica, Pe = p, y al ser M; « 1, las 
variaciones de densidad del fluido son muy pequeñas, verificándose que Pe � p 
con errores del orden de M;. Así, el segundo miembro es nulo y se satisface la 
relación isentrópica 

]!_ = constante 
p'Y 

(2 3 .45) 
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en primera aproximación (con errores del orden de M;) .  Por tanto, las ecua­
ciones que gobiernan la carga de un depósito adiabático (Q = O) con M; «: 1 
se reducen a {23.42) y la relación isentrópica {23.45). 

Las ecuaciones {23.42)-(23.43) también son válidas para describir la des­
carga de un depósito sin más que cambiar G por -G y hoe por la entalpía de 
remanso de la corriente que sale del depósito, hos. El proceso de descarga es 
mucho más simple que el de carga puesto que es isentrópico si Q = O. De he­
cho, la entalpía de remanso se conserva a la salida, ya que estamos suponiendo 
que el fluido es ideal (no hay fricción) :  hos = h = b/(-y - l)]p/p. Utilizando el 
mismo razonamiento que acabamos de ver, esto implica que p/ p'Y = constante 
{si Q = O). 

Referencias. 

■ J.D. ANDER SON, 1990. Capítulo 5 .  

■ H.W. L IEPMANN y A. RO SHKO, 195 7. Capítulo 5 .  
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23.4. APÉNDICE: Flujo isentrópico en una tobera para 

'Y = 1 ,4 

M &. e,,_ L,_ A 
n o T A-

2.00-02 1 .00028+00 1 .00020+00 1 .00008+00 2.8941 7+01 
4.00-02 1 .00112+00 1 .00080+00 1 .00032+00 1 .44813+01 
6.00-02 1 .00252+00 1 .00180+00 1.00072+00 9.66579+00 
8.00-02 1 .00448+00 1 .00320+00 1 .00128+00 7.26152+00 
1 .00-01 1 .00701+00 1 .00500+00 1 .00200+00 5.82175+00 
1 .20-01 1 .01011+00 1 .00721+00 1 .00288+00 4.86425+00 
1 .40-01 1 .01378+00 1.00982+00 1 .00392+00 4 .18234+00 
1 .60-01 1 .01803+00 1 .01284+00 1 .00512+00 3.67269+00 
1 .80-01 1 .02286+00 1 .01627+00 1 .00648+00 3.27788+00 
2.00-01 1 .02828+00 1 .02012+00 1 .00800+00 2.96348+00 
2.20-01 1 .03429+00 1 .02437+00 1 .00968+00 2.70756+00 
2.40-01 1 .04090+00 1 .02904+00 1 .01 152+00 2.49553+00 
2.60-01 1 .04812+00 1 .03414+00 1 .01352+00 2.31725+00 
2.80-01 1 .05596+00 1 .03966+00 1 .01568+00 2.16552+00 
3.00-01 1 .06443+00 1 .04560+00 1 .01800+00 2.03504+00 
3.20-01 1 .07353+00 1 .05198+00 1.02048+00 1 .92182+00 
3.40-01 1 .08328+00 1 .05880+00 1 .02312+00 1 .82285+00 
3.60-01 1 .09369+00 1 .06606+00 1 .02592+00 1 .73575+00 
3.80-01 1 . 10478+00 1 .07377+00 1 .02888+00 1 .65867+00 
4.00-01 1 . 1 1655+00 1 .08193+00 1 .03200+00 1 .59012+00 
4.20-01 1 . 12902+00 1 .09054+00 1 .03528+00 1 .52888+00 
4.40-01 1 . 14220+00 1.09962+00 1 .03872+00 1 .47398+00 
4.60-01 1 . 15612+00 1 . 10918+00 1 .04232+00 1 .42461+00 
4.80-01 1 . 17078+00 1 . 1 1921+00 1 .04608+00 1 .38008+00 
5.00-01 1 . 18621 +00 1 . 12972+00 1 .05000+00 1 .33982+00 
5.20-01 1 .20242+00 1 . 14073+00 1 .05408+00 1 .30337+00 
5.40-01 1 .21943+00 1 . 15223+00 1 .05832+00 1 .27030+00 
5.60-01 1 .23727+00 1 . 16425+00 1 .06272+00 1 .24027+00 
5.80-01 1 .25595+00 1 . 17678+00 1 .06728+00 1 .21299+00 
6.00-01 1 .27550+00 1 . 18983+00 1 .07200+00 1 . 18818+00 
6.20-01 1 .29594+00 1 .20342+00 1 .07688+00 1 . 16563+00 
6.40-01 1 .31729+00 1 .21755+00 1 .08192+00 1 . 14513+00 
6.60-01 1 .33958+00 1 .23223+00 1 .08712+00 1 . 12652+00 
6.80-01 1 .36284+00 1 .24748+00 1 .09248+00 1 . 10964+00 
7.00-01 1 .38710+00 1 .26329+00 1.09800+00 1 .09435+00 
7.20-01 1 .41237+00 1 .27969+00 1 . 10368+00 1 .08055+00 
7.40-01 1 .43870+00 1 .29669+00 1 . 10952+00 1 .06813+00 
7.60-01 1 .46612+00 1 .31429+00 1 . 1 1 552+00 1 .05698+00 
7.80-01 1 .49465+00 1 .33251+00 1 . 12168+00 1 .04704+00 
8.00-01 1 .52434+00 1 .35136+00 1 . 12800+00 1 .03821+00 
8.20-01 1 .55520+00 1 .37085+00 1 . 1 3448+00 1 .03045+00 
8.40-01 1 .58730+00 1 .39100+00 1 . 1 41 12+00 1 .02368+00 
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M &. &. .!.ll. A 
" n T A• 

8.60-01 1 .62065+00 1 .41181+00 1 . 14792+00 1 .01785+00 
8.80-01 1 .65530+00 1 .43331+00 1 . 15488+00 1 .01292+00 
9.00-01 1 .69130+00 1 .45551+00 1 . 16200+00 1 .00885+00 
9.20-01 1 .72868+00 1 .47841+00 1 . 16928+00 1 .00558+00 
9.40-01 1 . 76748+00 1 .50204+00 1 . 1 7672+00 1 .00309+00 
9.60-01 l .80776+00 1 .52641+00 1 . 18432+00 1 .00135+00 
9.80-01 1 . 84956+00 1 .55154+00 1 . 19208+00 1 .00032+00 
1 .00+00 1 .89292+00 1 .57744+00 1 .20000+00 1 .00000+00 
1 .02+00 1 .93791+00 1 .60412+00 1 .20808+00 1 .00031+00 
1 .04+00 1 .98457+00 1 .63162+00 1 .21632+00 1 .00129+00 
1 .06+00 2.03296+00 1 .65993+00 1 .22472+00 1.00289+00 
1 .08+00 2.08312+00 1 .68909+00 1 .23328+00 1 .00510+00 
1 . 10+00 2.13513+00 1 . 7191 1+00 1 .24200+00 1 .00791+00 
1 . 12+00 2 . 18904+00 1 .75000+00 1 .25088+00 1 .01 129+00 
1 . 14+00 2.24491+00 1 . 78179+00 1 .25992+00 1 .01525+00 
1 . 16+00 2.30281 +00 1 .81449+00 1 .26912+00 1 .01976+00 
1 . 18+00 2.36280+00 1 .84813+00 1 .27848+00 1 .02482+00 
1 . 20+00 2.42496+00 1 .88273+00 1 .28800+00 1 .03042+00 
1 .22+00 2.48935+00 1 .91831+00 1 .29768+00 1 .03655+00 
1 .24+00 2 .55604+00 1 .95488+00 1 .30752+00 1 .04321 +00 
1 .26+00 2.62512+00 1 .99247+00 1 .31752+00 1 .05039+00 
1 .28+00 2.69666+00 2.03 1 1 1+00 1 .32768+00 1 .05808+00 
1 .30+00 2.77074+00 2.07081+00 1.33800+00 1 .06629+00 
1 .32+00 2.84744+00 2. 1 1 159+00 1 .34848+00 1 .07500+00 
1 .34+00 2.92686+00 2 . 15349+00 1 .35912+00 1 .08422+00 
1 .36+00 3.00907+00 2.19653+00 1 .36992+00 1 .09395+00 
1 . 38+00 3.09418+00 2.24073+00 1 .38088+00 1 . 10417+00 
1 .40+00 3 .18227+00 2.2861 1+00 1 .39200+00 1 . 1 1491+00 
1 .42+00 3.27344+00 2.33271+00 1 .40328+00 1 . 12614+00 
1 .44+00 3.36780+00 2.38054+00 1 .41472+00 1 . 13788+00 
1 .46+00 3.46544+00 2.42964+00 1 .42632+00 1 . 15013+00 
1 .48+00 3.56648+00 2.48003+00 1 .43808+00 1 . 16288+00 
1 .50+00 3.67103+00 2.53174+00 1 .45000+00 1 . 1 7615+00 
1 .52+00 3.77919+00 2.58480+00 1 .46208+00 1 . 18992+00 
1 .54+00 3.89108+00 2.63924+00 1 .47432+00 1 .20421+00 
1 .56+00 4.00684+00 2.69508+00 1 .48672+00 1 .21902+00 
1 .58+00 4 . 12657+00 2.75237+00 1 .49928+00 1 .23436+00 
1 .60+00 4.25041+00 2.8 1 112+00 1 .51200+00 1 .25022+00 
1 .62+00 4.37849+00 2.87137+00 1 .52488+00 1 .26661 +00 
1 .64+00 4.51095+00 2.93315+00 1 .53792+00 1 .28353+00 
1 .66+00 4.64792+00 2.99649+00 1 .551 12+00 1 .30100+00 
1 .68+00 4.78955+00 3.06143+00 1 .56448+00 1 .31902+00 
1 . 70+00 4.93599+00 3 . 12800+00 1 .57800+00 1 .33759+00 
1 . 72+00 5.08739+00 3 .19624+00 1 .59168+00 1 . 35671+00 
1 . 74+00 5.24390+00 3.26617+00 Ul0552+00 1 .37641+00 
1 .76+00 5.40570+00 3.33784+00 1 .61952+00 1 .39668+00 
1 .78+00 5.57294+00 3.41128+00 1 .63368+00 1 .41752+00 
1 .80+00 5.74579+00 3.48652+00 1 .64800+00 1 .43896+00 
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M 1!.ll. &. .!..ll. ...!!.. " o T A• 1 .82+00 5.92444+00 3.56361+00 1 .66248+00 1 .46099+00 1 .84+00 6.10906+00 3.64259+00 1 .67712+00 1 .48363+00 1 .86+00 6.29983+00 3.72348+00 1 .69192+00 1 .50687+00 1 .88+00 6.49696+00 3.80633+00 1 .70688+00 1 .53074+00 1 .90+00 6.70063+00 3.89119+00 1 .72200+00 1 .55523+00 1 .92+00 6.91 105+00 3.97808+00 1 .73728+00 1.58037+00 1 .94+00 7. 12843+00 4.06706+00 1 .75272+00 1 .60615+00 1 .96+00 7.35297+00 4.15816+00 1 . 76832+00 1 .63259+00 1 .98+00 7.58490+00 4.25143+00 1 .78408+00 1 .65969+00 2.00+00 7.82444+00 4.34691+00 1 .80000+00 1.68747+00 2.05+00 8.45814+00 4.59557+00 1 .84050+00 1 .75996+00 2.10+00 9.14468+00 4.85902+00 1 .88200+00 1 .83692+00 2. 15+00 9.88809+00 5 . 13800+00 1 .92450+00 1.91852+00 2.20+00 1 .06927+01 5.43328+00 1 .96800+00 2.00495+00 2.25+00 1 . 15631+01 5.74565+00 2.01250+00 2.09640+00 2.30+00 1 . 25042+01 6.07593+00 2.05800+00 2. 19310+00 2.35+00 1 .35213+01 6.42498+00 2.10450+00 2.29524+00 2.40+00 1 .46200+01 6.79368+00 2.15200+00 2.40307+00 2.45+00 1 . 58061+01 7. 18295+00 2.20050+00 2.51680+00 2.50+00 1 .70859+01 7.59375+00 2.25000+00 2.63668+00 2.55+00 1 .84662+01 8.02704+00 2.30050+00 2.76297+00 2.60+00 1 .99540+01 8.48385+00 2.35200+00 2.89594+00 2.65+00 2.15569+01 8.96524+00 2.40450+00 3.03584+00 2.70+00 2.32828+01 9.47228+00 2.45800+00 3.18297+00 2.75+00 2.51403+01 1 .00061 +01 2.51250+00 3.33761+00 2.80+00 2.71382+01 1 .05678+01 2.56800+00 3.50008+00 2.85+00 2.92862+01 1 . 1 1587+01 2.62450+00 3.67067+00 2.90+00 3.15940+01 1 . 17800+01 2.68200+00 3.84972+00 2.95+00 3.40725+01 1 .24329+01 2.74050+00 4.03755+00 3.00+00 3.67327+01 1 .31188+01 2.80000+00 4.23451+00 3.05+00 3.95864+01 1 .38390+01 2.86050+00 4.44096+00 3.10+00 4.26462+01 1 .45948+01 2.92200+00 4.65725+00 3.15+00 4.59251 +01 1 .53878+01 2.98450+00 4.88377+00 3.20+00 4.94370+01 1 .62194+01 3.04800+00 5.12089+00 3.25+00 5.31964+01 1 .70912+01 3 . 1 1250+00 5.36902+00 3.30+00 5 .72187+01 1 .80046+01 3 . 17800+00 5.62857+00 3.35+00 6 .15201+01 1 .89613+:01 3.24450+00 5.89996+00 3.40+00 6.61174+01 1 .99630+01 3.31200+00 6.18362+00 3.45+00 7. 10286+01 2. 101 12+01 3.38050+00 6.47999+00 3.50+00 7.62722+01 2.21079+01 3.45000+00 6.78953+00 3.55+00 8. 18681+01 2.32547+01 3.52050+00 7. 1 1272+00 3.60+00 8.78369+01 2.44534+01 3.59200+00 7.45002+00 3.65+00 9.42001+01 2.57061+01 3.66450+00 7.80193+00 3.70+00 1 .00980+02 2.70145+01 3.73800+00 8.16896+00 3.75+00 1 .08201+02 2.83808+01 3.81250+00 8.55163+00 3.80+00 1 . 15888+02 2.98068+01 3.88800+00 8.95047+00 3.85+00 1 .24067+02 3 . 12947+01 3.96450+00 9.36603+00 3.90+00 1 .32766+02 3.28466+01 4.04200+00 9.79885+00 
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n n T A* 3.95+00 1 .42011+02 3.44647+01 4 .12050+00 1 .02495+01 4 .00+00 1 .51835+02 3.61512+01 4.20000+00 1 .07186+01 4.05+00 1 .62267+02 3.79084+01 4.28050+00 1 . 12067+01 4.10+00 1 .73340+02 3.97387+01 4.36200+00 1 . 17145+01 4.15+00 1 .85088+02 4. 16444+01 4.44450+00 1 .22425+01 4.20+00 1 .97547+02 4.36280+01 4.52800+00 1 .27914+01 4.25+00 2. 10754+02 4.56920+01 4.61250+00 1 .33619+01 4 .30+00 2.24747+02 4.78390+01 4.69800+00 1 .39547+01 4.35+00 2.39567+02 5.00715+01 ,4. 78450+00 1 .45704+01 4.40+00 2.55255+02 5.23923+01 4.87200+00 1.52096+01 4.45+00 2.71856+02 5.48041+01 4.96050+00 1 .58733+01 4.50+00 2.89414+02 5.73097+01 5.05000+00 1 .65619+01 4.55+00 3.07977+02 5.99119+01 5 .14050+00 1 .72764+01 4.60+00 3.27594+02 6.26136+01 5.23200+00 1 .80175+01 4.65+00 3.48317+02 6.54179+01 5.32450+00 1 .87860+01 4.70+00 3.70200+02 6.83278+01 5.41800+00 1 .95825+01 4.75+00 3.93296+02 7.13463+01 5.51250+00 2.04081+01 4.80+00 4 . 17664+02 7.44766+01 5.60800+00 2.12634+01 4.85+00 4.43365+02 7.77219+01 5.70450+00 2.21494+01 4.90+00 4.70459+02 8. 10857+01 5.80200+00 2.30668+01 4.95+00 4.99011+02 8.4571 1+01 5.90050+00 2.40166+01 5.00+00 5.29089+02 8.81816+01 6.00000+00 2.49997+01 5.10+00 5.94102+02 9.57920+01 6.20200+00 2.70692+01 5.20+00 6.66083+02 1 .03945+02 6.40800+00 2.92829+01 5.30+00 7.45664+02 1 . 12672+02 6.61800+00 3.16486+01 5.40+00 8.33522+02 1 .22002+02 6.83200+00 3.41743+01 5.50+00 9.30383+02 1.31969+02 7.05000+00 3.68685+01 5.60+00 1 .03702+03 1 .42604+02 7.27200+00 3.97397+01 5.70+00 1 . 15427+03 1 .53944+02 7.49800+00 4.27969+01 5.80+00 1 .28302+03 1 .66022+02 7.72800+00 4.60494+01 5.90+00 1 .42422+03 1 .78877+02 7.96200+00 4.95068+01 6.00+00 1 .57887+03 1 .92546+02 8.20000+00 5.31791+01 6. 10+00 1 .74806+03 2.07068+02 8.44200+00 5.70764+01 6.20+00 1 .93294+03 2.22484+02 8.68800+00 6.12094+01 6.30+00 2.13472+03 2.38836+02 8.93800+00 6.55890+01 6.40+00 2.35469+03 2.56168+02 9.19200+00 7.02265+01 6.50+00 2.59424+03 2 .74523+02 9.45000+00 7.51334+01 6.60+00 2.85483+03 2.93948+02 9.71200+00 8.03217+01 6.70+00 3.13799+03 3.14491+02 9.97800+00 8.58038+01 6.80+00 3.44537+03 3.36200+02 1 .02480+01 9.15924+01 6.90+00 3.77871+03 3.59125+02 1 .05220+01 9.77005+01 7.00+00 4.13983+03 3.83318+02 1.08000+01 1 .04141+02 7. 10+00 4.53068+03 4.08832+02 1 . 10820+01 1 . 10929+02 7.20+00 4.95329+03 4.35722+02 1 . 13680+01 1 . 18078+02 7.30+00 5.40983+03 4.64045+02 1 . 16580+01 1 .25603+02 7.40+00 5.90258+03 4.93857+02 1 . 19520+01 1.33518+02 7.50+00 6.43392+03 5.25218+02 1 .22500+01 1 .41839+02 
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V o T A• 
7.60+00 7.00640+03 5.58190+02 1 .25520+01 1 .50583+02 
7.70+00 7.62266+03 5.92834+02 1 .28580+01 1 .59764+02 
7.80+00 8.28551+03 6.29215+02 1 .31680+01 1 .69400+02 
7.90+00 8.99787+03 6.67399+02 1 .34820+01 1 .79509+02 
8.00+00 9.76285+03 7.07453+02 1 .38000+01 1 .90107+02 
8 .10+00 1 .05836+04 7.49446+02 1 .41220+01 2.01212+02 
8.20+00 1 . 14637+04 7.93449+02 1 .44480+01 2 .12843+02 
8.30+00 1 .24066+04 8.39535+02 1 .47780+01 2.25019+02 
8.40+00 1 . 34161+04 8.87778+02 1 .51120+01 2.37759+02 
8.50+00 1 .44960+04 9.38255+02 1 .54500+01 2.51083+02 
8.60+00 1 .56505+04 9.91043+02 1 .57920+01 2.65011+02 
8 .70+00 1 .68839+04 1 .04622+03 1 .61380+01 2.79563+02 
8.80+00 1 .82006+04 1 . 10387+03 1 .64880+01 2.94762+02 
8.90+00 1 .96054+04 1 . 16408+03 1 .68420+01 3 .10629+02 
9.00+00 2 . 11032+04 1 .22693+03 1 .72000+01 3.27185+02 
9. 10+00 2.26991+04 1 .29251+03 1 . 75620+01 3.44454+02 
9.20+00 2.43984+04 1 . 36091+03 1 . 79280+01 3.62458+02 
9.30+00 2.62067+04 1 .43221+03 1 .82980+01 3.81222+02 
9.40+00 2.81298+04 1 .50652+03 1 . 86720+01 4.00770+02 
9.50+00 3.01739+04 1 .58393+03 1 .90500+01 4.2l l26+02 
9.60+00 3.23453+04 1 .66453+03 1 .94320+01 4.42315+02 
9.70+00 3.46504+04 1 . 74843+03 1 .98180+01 4.64364+02 
9.80+00 3.70963+04 1 .83572+03 2.02080+01 4.87298+02 
9.90+00 3.96901+04 1 .92651+03 2.06020+01 5. l l l44+02 
1 .00+01 4.24392+04 2.02091+03 2 .10000+01 5.35931+02 
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Capítulo 24 

Flujos ideales de líquidos con 

superficie libre 

En este capítulo se tratarán brevemente algunos flujos ideales de líquidos 
que presentan una superficie libre con un gas. En particular, se introducirán 
dos tipos de flujos muy relevantes en Mecánica de F luidos: las ondas gravita­
cionales y capilares en la interfaz líquido-gas y el flujo ideal en canales abiertos. 
El primero servirá para introducir el importante tema de las ondas en fluidos, 
que se complementará en los capítulos siguientes con las ondas en flujos com­
presibles. El segundo, que como se verá es matemáticamente análogo al flujo 
unidireccional de un gas ideal en un conducto (capítulo anterior), es la base 
del flujo turbulento de líquidos en canales abiertos, tema de gran importancia 
práctica, pero que no se considerará aquí. 1 

24.1 .  Ondas de superficie 

Considérese una capa de espesor ho de un líquido que reposa en una super­
ficie sólida horizontal e infinita. Encima del líquido existe un gas a una presión 
uniforme Pa con una densidad y viscosidad que supondremos despreciables en 
relación a la densidad p y la viscosidad µ del líquido. La tensión superficial en 
la interfaz se supone constante y de valor cr. 

En esta sección se considerará el movimiento de pequeñas perturbaciones 
en la superficie libre. Es decir, se supondrá que, debido a alguna perturbación, 
la superficie, inicialmente en reposo, se pone en movimiento y el espesor de la 
capa de líquido deja de ser constante (ver figura 24.1): 

1 El alumno interesado puede consultar, por ejemplo, la monografía de Chaudhry, 1993. 
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h 

Figura 24. 1 :  Geometría de las ondas de superficie. 

h(x, t) = ho + h' (x, t) , l h' I « ho .  (24.1) 

Como consecuencia, el líquido adquiere un movimiento con velocidad v y pre­
sión p que satisfacen las ecuaciones del flujo incompresible 

v" · v= 0 , 

OV - o - - o n2 -p 
Ot + pV • V V = pg - V p + µ V V . 

(24.2) 

(24.3) 

Debido a que las perturbaciones de la superficie se suponen pequeñas, la velo­
cidad también será pequeña y, en primera aproximación, se puede despreciar 
el término no lineal pv • Vv en (24.3). También es razonable que en este mo­
vimiento la influencia de la viscosidad sea despreciable ( estas dos hipótesis 
se justificarán cuantitativamente más adelante), por lo que (24.3) se puede 
escribir 

ov - t"7 
p ot 

= pg - v
p

. 
(24.4) 

Debido a que el flujo es no viscoso e inicialmente parte del reposo ( además 
de ser barótropo y de que las fuerzas másicas derivan de un potencial), se 
cumplen los requisitos del teorema de Kelvin y el flujo es irrotacional : 

v" A v = 0, v = v"</J, (24.5 )  

donde </J(x, t) es la función potencial de velocidad. Sustituyendo en (24.2), se 
tiene que </J debe satisfacer la ecuación de Laplace: 
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v24> = o . (24.6) 

Una vez que esta ecuación se resuelve con las correspondientes condiciones 
de contorno ( de las que se hablará más adelante) , la presión se obtiene de 
sustituir (24.5) en (24.4) : 

V ( �: ) = -V ( �) + V(§ · x) , (24. 7 )  

que integrada proporciona 

(24.8) 

donde la constante de integración se ha absorbido en </J dado que esto no afecta 
a v. 

24. 1 . 1 .  Ondas bidimensionales 

Por simplicidad se va a considerar el caso en el que </J sólo depende de dos 
coordenadas espaciales, </J = cp(x, y, t). Es decir, la superficie perturbada es sólo 
función de x y de t, h' = h'(x, t) , donde el origen de y se toma en la superficie 
no perturbada ( ver figura 24.1). La ecuación a resolver es, por tanto, 

f)24> éPcp 8x2 + 8y2 = O . (24.9) 

Las condiciones de contorno para </J hay que imponerlas en el fondo de la capa 
líquida, y = -ho y en la superficie libre, y = h'. En esta última se tiene que 
la componente y de la velocidad viene dada por 

Dh' 8h' 8h' 8h' Vy = Dt = 8t + Vx 8x '.::::'. 8t ' (24.10) 

donde se ha despreciado, en primera aproximación, el término no lineal vx8h' / 8x 
dado que es el producto de dos perturbaciones pequeñas. Sustituyendo (24.5) ,  
se tiene 

84> 8h' 8y 8t • (24.11) 

Por otro lado, en la superficie libre, la presión satisface la ecuación de Young­
Laplace (ver sección 13.3): 
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(24.12) 

donde se ha tenido en cuenta que uno de los radios de curvatura es infinito al 
no depender h' de z,  y se ha despreciado (oh' /8x)2 frente a la unidad al ser 
lh' I pequeña frente a cualquier otra longitud característica. Sustituyendo p de 
(24.8) y teniendo en cuenta que g • x = -gh' , se tiene 

(24.13) 

Derivando respecto a t y sustituyendo (24.11), se llega a la siguiente condición 
de contorno para cp: 

(24.14) 

Como h' es mucho menor que ho, la condición de contorno anterior se puede 
imponer en y = O en vez de en y = h', en primera aproximación. Como 
condición de contorno en la base del líquido se impone que no hay flujo a 
través de esa superficie, Vy = O en y =  -h0 . Es decir, 

{)cp {)y = O en y = - ho . (24.15) 

Dado que la ecuación (24.9) no contiene derivadas temporales y que no 
hay ninguna restricción en la dirección x, la solución se puede escribir como 
una superposición de ondas bidimensionales de la forma 

cp = f(y) exp[i(kx - wt)] , (24.16) 

donde w es la frecuencia y k el número de onda, que está relacionado con la 
longitud de onda ,,\ mediante 

k = 21r 
,,\ 

. 

Por simplicidad se supondrá que las ondas son senoidales, 

cp = f(y) sin(kx - wt) . 
Sustituyendo en (24.9), se llega a la ecuación 

(24.17) 

(24.18) 

(24.19) 
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cuya solución es de la forma 

(24.20) o 
(24.2 1) donde C1 y C2 son constantes arbitrarias, que se obtienen de las condiciones de contorno (24. 14) en y = O y (24. 1 5 )  en y = - ho :  

C1 - C2 
C C 

= tanh(kho) , 
1 + 2 

(24.22) 
(24.23) 

Por tanto, f(y) se puede escribir como 
f(y) = B[cosh(ky) + tanh(kho) sinh(ky)] , (24.24) donde la constante B = C 1 + C2 queda sin determinar, pero existe la siguiente relación entre la frecuencia y el número de onda [o la longitud de onda a través de (24. 17)] : 

( k3c, ) w2 = tanh(kho) gk + p (24.2 5 )  
que es la relación de dispersión de la onda. Haciendo uso de (24. 1 1 )  en 
y �  O, se tiene que, salvo una constante aditiva, 

h' = A cos(kx - wt) , (24.2 6) donde A = B k tanh( kho) / w es la amplitud de la onda de superficie. Los valores de la constante libre A(k) y del número de onda k se determinan expresando la condición inicial de -h' ( no considerada aquí) como una serie de Fourier en términos de (24.2 6) .  Antes de pasar a describir los distintos tipos de ondas que la relación de dispersión (24.2 5 )  recoge, es interesante expresar las condiciones de validez de la solución obtenida. Como lh' I  ~ A � h0, se tiene que vy = 8</)/oy = 
oh' /at ~ Aw y Vx ~ Avy/ho . Por tanto, el despreciar los términos convectivo y viscoso frente al de variación local en la ecuación de cantidad de movimiento (24.3) es equivalente a 
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Le 
A » 1 ,  

L2 pw e » 1 , (24.27) 

donde la longitud característica Le es la menor entre ho y la longitud de onda 
.A. La primera de estas condiciones es la hipótesis de pequeñas perturbaciones 
de la superficie, y la segunda nos dice que el número de Reynolds basado 
en Le y la velocidad característica ½ = wLe debe ser grande. En (24.10) se 
despreció vx8h' /8x frente a 8h' /8t, lo cual es válido si A/ho « l .  Por último, 
en (24.12) se despreció (8h' /8x)2 frente a la unidad, que es lo mismo que 
suponer que (A/ ..\)2 « l. 

24.1 .2. Ondas cortas y largas. Ondas gravitacionales y ondas 
capilares 

Si la profundidad de la capa de líquido es mucho menor que la longitud de 
onda, ho « ,\ = 21r/k, se tiene que tanh(kho) ::: kho , con lo que la relación de 
dispersión (24.25) se puede aproximar por 

w "'  (gk'ho + k':
ho ) 

1/2 
(24.28) 

Este límite se suele denominar aproximación de onda larga ( o de agua poco 
profunda ). El límite opuesto de onda corta (o de agua profunda ), teniendo 
en cuenta que para ho » ,\ = 21r/k, tanh(kho) ::: 1, tiene por relación de 
dispersión 

( 
k3 

)
1 /2 

w :::  gk + 
P
u (24.29) 

La velocidad de fase, o velocidad de propagación, de las ondas se define 

Así, para ondas largas se tiene 

~ ( k2uho ) 
112 

_ 
( 

41r2uh0 ) 
112 

e - gho + -- - gho + ,x2 p p 

mientras que para ondas cortas 

(24.30) 

(24.31) 

(24.32) 
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La importancia relativa entre las fuerzas gravitatorias y las de tensión 
superficial en la propagación de las ondas viene dada por un número de Bond 
basado en la longitud de onda: 

(24.33) 

Si B « 1, es decir, si la longitud de la onda es mucho menor que la longitud 
capilar, las fuerzas de tensión superficial son dominantes y la onda se suele 
denominar onda capilar o rizo. La velocidad de fase de una onda capilar larga 
es 

(24.34) 

mientras que la velocidad de fase de una onda capilar corta se escribe 

(24.35) 

Finalmente, si B » 1 (longitud capilar mucho menor que la longitud de on­
da) , las fuerzas gravitatorias dominan frente a las de tensión superficial y la 
onda se suele denominar onda gravitatoria. La velocidad de fase de una onda 
gravitatoria corta es 

e � (�� r/
2 

(24.36) 

mientras que para una onda gravitatoria larga se tiene 

(24.37)  

En la  figura 24.2 se representan todos estos límites asintóticos en función de 
la longitud de onda. 

24. 1 .3. Velocidad de grupo 

Con la excepción de las ondas gravitatorias largas, todas las ondas ante­
riores son ondas dispersivas, es decir, ondas cuya velocidad de fase depende 
de la longitud de onda, de forma que ondas con diferentes longitudes de onda 
( distintas frecuencias) se propagan con velocidades diferentes. En este tipo 
de ondas juega un papel muy importante la denominada velocidad de grupo, 
definida como 
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c 

c (a) c 

. . . . . . .. (�t'(g%)'i' 

Onda gravitatoria 
larga 

Onda gravitatoria 
corta 

/ ·- . .  
(

2 
) 

1/2 

: ·- . . . _ _ * (e) 

/(*)
1/2 

c 

( 4,r;:,"º ) 1 /2 (b) 

· - - - • •  \.
�::

· · · ·
(�) 

1/2 

Onda capilar • • 
corta 

Onda capilar larga · - • 

. __ - - Onda capilar larga 

Onda gravitatoria larga 

- - - - - - - -'- - - - - - - - - --:-: • •  :-:-.::-, • •  -=, • •  �--L-----
(gho)l/2 

·
· · · .(.4";f2ho ) 

1/2 (d) 

Figura 24.2: Esquemas de la velocidad de fase en función de la longitud de onda para (a) ondas gravitatorias, (b) ondas capilares, (c) ondas cortas y (d) ondas largas. 

(24.38) 

En una onda no dispersiva, c9 = e, mientras que si la onda es dispersiva, c9 no 
tiene por qué coincidir con la velocidad de fase. En el presente caso, de (24.25) 
se tiene 

c9 k dJ.,.; 1 
[
1 + (3uk2 / pg) 2kh0 l e = z; dk = 2 1 + (uk2 / pg) + sinh{2kho) ' (24.39) 

de forma que c9 / e es igual a la unidad para una onda gravitatoria larga ( no 
dispersiva), y vale 1/2 para una onda gravitatoria corta,  2 para una onda 
capilar larga y 3/2 para una onda capilar corta.  

La importancia de la velocidad de grupo reside en que es a esa velocidad, 
y no a la de fase, a la que se propaga la energía de los paquetes de onda con la 
misma longitud de onda (misma frecuencia), siendo, además, la velocidad a la 
que se tendría que mover un observador para ver ondas con la misma longitud 
de onda. Para ilustrar esto último, considérese una onda arbitraria de la forma 
[compárese con (24.26)] 

h'(x, t) = A(x, t)i0(x,t) , (24.40) 
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donde la función 0(x, t) es la fase de la onda. El número de onda local y la frecuencia local de la onda se definen 

80 W = - - .  
8t (2 4. 4 1 )  

Por tanto, de la igualdad de las derivadas cruzadas, se tiene 
8k 8w 
8t + 8x = O ,  (2 4 . 42) 

que usando la relación de dispersión w = w(k), se escribe 
8k dw ok 
8t + dk ox = O . (2 4.4 3 )  

Es decir, 
(2 4.4 4 )  

mostrando que el número de onda k(x, t) permanece constante para un ob­servador que se mueve con la velocidad de grupo. Dicho de otra manera, la solución general de (2 4.4 4 )  se puede escribir como k = J[x - c
9
(k)t] , donde 

f es una función arbitraria , que se determina a través de la condición inicial. Por tanto, aunque las crestas y los valles de una onda general como (2 4 . 40) se propagan a la velocidad de fase local e, la longitud de onda asociada a estas crestas y estos valles va cambiando, en general, a lo largo de la propagación debido a que distintas longitudes de onda se propagan a velocidades de fase diferentes. Si uno quiere seguir una determinada longitud de onda se tiene que mover a la velocidad de grupo correspondiente a esa longitud de onda. Pare­ce, por tanto, razonable que la energía asociada a un determinado número de onda k se propague a la velocidad de grupo c
9
(k) . La demostración de esto es, sin embargo, algo compleja y no se va a dar aquí [el lector puede consultar, por ejemplo, Lighthill ( 1978)]. 

24.2 .  Flujo ideal en un canal bidimensional 
Considérese un canal bidimensional por el que circula un líquido de densi­dad p. Para describir el flujo se usarán las coordenadas cartesianas (x, y) de la figura 2 4. 3 . La base del canal viene dada por S(x) ,  que tiene una inclinación 

a(x) (tan a =  -dS/dx) respecto a la horizontal, y la altura vertical del líquido es h(x, t). Las ecuaciones que gobiernan el flujo ideal del líquido son: 
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Figura 24.3: Canal bidimensional de pendiente lentamente variable. 

avx avy _ O 
ax + ay -

avx avx avx 1 ap 
at + Vx ax + Vy ay = - p ax ' 

avy avy avy 1 ap 
at + 'Vx ax + Vy ay = - p ay - g • 

(24.45) 
(24.46) 
(24.47) 

Se supondrá que IDvy/ Dtl « g,  lo cual es razonable siempre que tanto S 
como h varíen suavemente ( esta hipótesis habrá que comprobarla a posteriori 
para cada solución), con lo que la ecuación de cantidad de movimiento en la 
dirección y se simplifica a: 

I ap 0 = - - - - g ,  
p ay 

que integrada proporciona la presión en función de h, 
p = Pa + pg(S + h - y) .  

(24.48) 

(24.49) 
Por otro lado, integrando la ecuación de continuidad entre y = S e y = S + h, 

(24.50) 
En la base del canal , la velocidad normal es cero, es decir, v11 l y=S = -vx ly=S tan a, 
mientras que en la superficie libre v11 ly=S+h = D(S + h)/ Dt. Por tanto, 
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8h 8(S + h) [8+h OVx 

8t + Vx ax 
+ Vx l y=S tan a = - 1s ax 

dy . 

Derivando (24.49) respecto a x, 

op = pg (
ºh - tan a) ax ax 

y sustituyendo en (24.46), se tiene 

OVx OVx OVx ( 
oh) ot + Vx ax 

+ Vy By 

= g tan 
a, - ax 

409 

(24.51) 

(24.52) 

(24.53) 

Como el segundo miembro es independiente de y, también lo es Dvx/ Dt. Lue­
go si inicialmente, o aguas arriba, el flujo parte del reposo, o proviene de una 
región donde Vx no depende de y, Vx permanecerá independiente de y. Su­
pondremos que éste es el caso, con lo que las ecuaciones (24.53) y (24.51), 
haciendo u = Vx y teniendo en cuenta que as/ ax = - tan a ' se escriben 

ou ou oh 
at + u 

ax 
+ g 

ax 
= g tan a , (24.54) 

(24.55) 

que constituyen un par de ecuaciones diferenciales para la altura y la compo­
nente horizontal de la velocidad. 

24.2 .1. Flujo estacionario 

En el flujo estacionario e ideal en un canal bidimensional, la ecuación 
(24.55) se puede escribir como 

Es decir, 

o(uh) = O. 
ax 

uh = constante = q , 

(24.56) 

(24.57 )  

donde q es  el caudal por unidad de longitud transversal. Sustituyendo en 
(24.54) y dividiendo por g, se llega a 

oh dS - (1 - Fr) = tan a = --
ox dx ' (24.58) 
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Fr<I 

Fr>I ------
Figura 24.4: Transición de un flujo subcrítico a otro supercrítico en un máximo de S(x) .  

donde Fr es el número de Froude local ,  

u2 u2 

Fr = - = - e = � , gh c2 (24 .59) 

siendo e la velocidad de propagación de las ondas gravitatorias largas o en 
aguas poco profundas. 

La ecuación anterior es muy similar a la ecuación (23.20) que describe 
el flujo unidireccional e ideal de un gas en un conducto de sección variable, 
jugando aquí el número de Froude el mismo papel que allí jugaba el número de 
Mach (más concretamente M2). El flujo se denomina subcrítico si Fr < 1 ,  es 
decir , si u es menor que la velocidad de propagación de las ondas de superficie, 
mientras que se denomina supercrítico si Fr > 1. Si a > O (base del canal 
inclinada hacia abajo en la dirección de la corriente), h crece (u y Fr decrecen) 
si Fr < 1 y h decrece (u y Fr crecen) si el flujo es supercrítico. Lo contrario 
ocurre si a < O.  El flujo sólo puede ser crítico si a = O, es decir en un máximo 
o en un mínimo local de la base del canal S ( x).  De acuerdo con lo anterior, 
esta situación ocurre sólo si S (x) tiene un máximo local, pues en el caso de 
un mínimo, si el flujo que se aproxima al mínimo (a > O) es subcrítico, Fr 
disminuye, y si es supercrítico, Fr crece a medida que se aproxima al mínimo. 
En la figura 24.4 se esquematiza la transición de un flujo subcrítico a otro 
supercrítico a través de un máximo de S(x). Como ocurría en el flujo ideal de 
gases en toberas, dS / dx = O es condición necesaria, pero no suficiente, para 
que el flujo sea crítico. Una vez que el flujo se hace supercrítico, las condiciones 
aguas abajo no tienen influencia alguna sobre el flujo aguas arriba. 

Dado que la fricción en la base y en las paredes del canal no se puede 
despreciar cuando se considera el flujo sobre distancias grandes en un canal, 
las ecuaciones estacionarias anteriores se utilizan, sobre todo, para analizar 
cualitativamente las transiciones en un canal producidas por cambios más 
o menos bruscos de S(x) en distancias x relativamente pequeñas. Para ello se 
integra (24.54) teniendo en cuenta (24.5 6): 
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h 

h 

q constante 

u 2 /2g e , , - - Flujo supercritico 

E 

Figura 24.5: Relación entre energía específica y profundidad para caudal constante. 

La cantidad 

u2 

29 
+ h + S = constante . (24. 60) 

(24.61) 

que se suele denominar energía específica, se representa en la figura 24.5 
en función de la profundidad h para un valor del caudal q. El núnimo de E 
corresponde a las condiciones críticas: 

_ (
q2

) 
1/3 he - , Ue = #c (Fr = 1 ) . (24. 62) 

Para valores de E > Emin existen dos soluciones, una subcrítica con profundi­
dad h > he y otra supercrítica con h < he. Un caso típico donde se presentan 
estas dos profundidades para un mismo valor de E ( caudal constante con S ( x) 
también constante) es en el flujo bajo una compuerta (ver figura 24 .6): el flu­
jo es subcrítico delante de la compuerta y supercrítico detrás. Delante de la 
compuerta la profundidad es mayor y casi toda la energía está en la forma de 
energía potencial, mientras que detrás, la altura es menor y la mayor parte de 
la energía está en forma de energía cinética. 



412 MECÁNICA DE FLUIDOS 

Flujo subcritico 

Flujo supercritico 

Figura 24.6: Flujo bajo una compuerta. 

Considérese ahora una transición en un canal bidimensional ( anchura cons­
tante) como la de la figura 24. 7 ,  donde una base horizontal (S = O, por 
ejemplo) se incrementa en una cierta altura !::.S. De acuerdo con (24. 60), 
E1 = E2 + t::.S, donde E1 y E2 son las energías específicas aguas arriba y 
aguas abajo de la transición, respectivamente. Si el flujo en la sección 1 (aguas 
arriba) es subcrítico, de la figura 24.5 se tiene que la altura en la sección 2 
(aguas abajo) tiene que ser menor, h2 < h1 , mientras que si el flujo en la 
sección 1 es supercrítico, la profundidad crece, h2 > h1 (ver figura 24. 7 ,  donde 
se ha superpuesto el diagrama E - h de la figura 24.5  en ambas secciones) . Lo 
contrario ocurriría si t::.S < O. En ningún caso el flujo podría pasar de sub­
crítico a supercrítico, o de supercrítico a subcrítico, pues para ello tiene que 
pasar por condiciones críticas Fr = 1 y, de acuerdo con (24.58), es necesario 
que dS / dx = O en algún punto intermedio. Este tipo de transiciones ocurriría 
si la transición desde S = O a S = t::.S no fuera monótona, sino que pasara 
por un valor máximo de S, como se ilustra en la figura 24.4. 

24.2.2. Solución de semejanza para la rotura de una presa 

Como ejemplo de solución no estacionaria de (24.5 4)-(24.55), se conside­
rará a continuación el problema de la rotura de una presa que, para tiempos 
grandes, tiene una solución analítica de semejanza. Esta solución fue original­
mente obtenida por Ritter en 1892. 

Considérese una presa como la esquematizada en la figura 24.8 . En t = O 
la presa desaparece, y se desea hallar la evolución de h(x, t). Es preferible, sin 
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- - - - - ' - , - - - ,· - - - - - - - - - -: : he 

.1.S : 
_ _ _ _  _¡ _ _  

' ' ' ' 
:,-- - - - - - - - - - - �  E2 = E1- .1. S  

: h isupercritico) 

Figura 24.7: Cambio de profundidad en la transición de un canal bidimensional. 

embargo, utilizar 

(24. 63) 

como variable dependiente en vez de h, de forma que las ecuaciones (24.5 4)­
(24.5 5)  se escriben (teniendo en cuenta que a =  O): 

ac ac au 
2 at + 2u ax + e ax = o • 

Estas ecuaciones hay que resolverlas con la condición inicial 

e = { co = ygho en 
O en 

t = O si t = O si 
x � O  
x > O  

Se usarán las variables adimensionales 

u a = - , co /3 = _!:_ _  co 

u = O en t = O . 

(24.64) 

(24.65) 

(24. 66) 

(24.67) 

Como no existen ni longitud característica en la dirección x para adimensio­
nalizar x, ni tiempo característico para adimensionalizar t, la única manera de 
hacer adimensionales las variables independientes es mediante una combina­
ción de ellas, por lo que el problema debe tener solución de semejanza. Para 
buscarla , se ensaya la variable 

b 1/ = at X ,  (24.68) 
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y 

X 

Figura 24.8: Rotura de una presa. 

donde a y b son constantes desconocidas a determinar de forma que a y /3 sean funciones de r¡ exclusivamente. Sustituyendo (24.67)-(24.68) en (24.64)­(24.6 5), se llega a 
1 da x da d/3 - -b- + a - + 2/3- = O ,  co dr¡ t dr¡ dr¡ (24.69) 

2 d/3 x d/3 da - -b- + 2a- + /3- = O .  co dr¡ t dr¡ dr¡ {24.70) 
Para que a y /3 dependan sólo de r¡, y no de x y de t por separado, b tiene que ser o bien cero, lo cual correspondería a una solución estacionaria trivial, o bien b = - l. Tomando b = -1, se tiene 

1 X 1 -b- = - -r¡ . co t coa 
Finalmente, la constante a se elige igual a 1/co para que r¡ sea adimensional: 

X r¡ = - . cot (24.7 1) 
De esta manera, las ecuaciones en derivadas parciales (24.64)- (24.6 5 ) se con­vierten en las ecuaciones diferenciales ordinarias 

(a - r¡/ª + 2/3 d/3 = O , dr¡ dr¡ 
2 ( a _ r¡) d{J + /3 da = O . dr¡ dr¡ 

(24.72) 
(24.7 3) 
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Multiplicando (24. 7 2) por 2d/3/dr¡ y (24. 73) por do:/dr¡ y restando, se llega 

(24.74) 

Como /3 -=/=  O (excepto en el frente móvil del líquido), se tiene que 

(24. 7 5 )  

De los dos signos posibles se elige el negativo dado uno espera que 8u/ 8x > O 
y 8c/8x < O. Sustituyendo en (24. 7 2), se obtiene 

do: dr¡ ( o: - r¡ - /3) = O . 

Dado que do:/dr¡ -=/= O, se tiene 

y, derivando, 

o: - r¡ - /3 = 0  
do: d/3 - - 1 - - - 0 dr¡ dr¡ - ' 

(24.7 6) 

(24. 7 7 ) 

(24. 78) 

que, junto con (24. 7 5 )  (con signo el signo negativo), se llega a las dos ecuaciones 

do: 2 d/3 1 dr¡ 3 '  dr¡ 3 

La integración de estas dos ecuaciones, junto con (24. 7 7 ), proporciona 

2 o: = C1 + 3r¡ 
que en las variables físicas se escribe 

donde C1 es una constante de integración a determinar. 

(24. 7 9) 

(24.80) 

(24.8 1) 

Sumando y restando las ecuaciones (24.64) y (24. 65 ), esas dos ecuaciones 
se pueden escribir como 

(24.82) 
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Esto quiere decir que las magnitudes u +  2c y u - 2c permanecen constantes 
para observadores que se mueven con las velocidades (horizontales) u + e y 
u - e, respectivamente. Las cantidades u ±  2c se suelen denominar invariantes 
de Riemann, que se conservan a lo largo de las trayectorias dadas por dx / dt = 
u ±  e, que se denominan características del sistema de ecuaciones (24.64)­
(24.65).2 Por tanto, de (24.81),  el invariante de Riemann 3C1co permanece 
constante a lo largo de la característica 

(24.83) 

donde el subíndice + hace referencia a que (24.83) es la característica con signo 
positivo (que designaremos por C+), correspondiente a un observador que se 
mueve hacia las x crecientes. (Por supuesto, 3C1co es constante siempre, no 
sólo a lo largo de la característica C+, lo cual es una particularidad de este 
problema, que tiene uno de los invariantes particularmente simple .) Por otra 
parte, el otro invariante de Riemann, (4x/3t) - C1co, es constante a lo largo 
de la característica e_ , dada por 

dx_ x_ 
dt t 

(24.84) 

De las condiciones iniciales (24.66), se tiene que e = co y u = O en t = O 
para x = O, de forma que sobre la característica C+ que pasa por (x = O, t = O), 
u +  2c = 3C1 co = 2co. Es decir, 

2 C1 = 3 
y la solución de semejanza (24.81) se escribe 

u = � ( co + 7) , e = 1 ( 2co - 7) 

(24.85) 

(24.86) 

Se observa que para x = O, y para todo valor de t, u = 2co/3 y e = 2co/3, lo 
cual implica que la altura h en la posición donde estaba la presa (x = O) es 
siempre !ho para t > O. 

Sustituyendo el valor de C1 en (24.83) , 

(24.8 7) 

2Ver capítulo 26, donde se introduce formalmente el método de las características para 
resolver el sistema hiperbólico de ecuaciones que describe el movimiento ideal y unidireccional 
de un gas. 
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-----�- - - - - h 
Liquido 
estacionario 

y 

Aire 

X =2c t + 

X 

Figura 24.9: Características C+y e_ por (x = O, t = O) y su relación con los límites del flujo 
tras la rotura de la presa. 

e integrando, se llega a 

(24.88) 

donde C2 es una constante de integración, que se puede determinar sustitu­
yendo esta expresión en (24.86):  sobre cualquier característica C+, 

(24.89) 

lo cual implica que C2 = O para que esta solución no se haga infinita en t = O 
(característica C+ que parte de t = O) . Por tanto, (24.88) y (24.89) se escriben 

x+ = 2cot ; u(x = x+) = 2co , c(x = x+) = O. (24.90) 

Como h = O y, por tanto, e = O en el frente de avance del líquido, se tiene que 
la característica C+ que pasa por (x = O, t = O) es la trayectoria del frente de 
avance del líquido que, además, se mueve a una velocidad constante 2co ( ver 
figura 24.9). 

La integración de la ecuación (24.84) para las características e_ propor­
ciona 

(24.91) 
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donde Ca es una constante arbitraria. La característica C_ que pasa por (x = 
O, t = O) tiene como invariante de Riemann u - 2c = -2C().  Sustituyendo 
{24.91) en {24.86) , se tiene que sobre esta característica C3 = -C(), con lo que, 
sobre la característica 

{24.92) 
se verifica 

u(x = x- ) = 0 ,  c(x = x- ) = C() . {24.93) 
Dado que h = ho y, por consiguiente, e =  C() tanto inicialmente (t :S O), como 
para t > O en la parte del líquido que todavía no ha empezado a moverse, la 
característica e_ {24.92) que pasa por (x = O, t = O) proporciona la trayectoria 
de la posición del límite entre la región estacionaria del líquido y la región 
donde hay movimiento del líquido, que se mueve a una velocidad -C(). Así, para 
cada tiempo t > O, la región de líquido en movimiento está delimitada entre 
las características C+ {24.90) y e_ {24.92) ,  teniendo una longitud �x = 3cot 
(ver figura 24.9) . La velocidad y altura del líquido en cualquier instante t, para 
valores de x en el intervalo -C()t :S x :S 2C()t, se obtienen de {24.86) . (También 
se pueden obtener por el método de las características, trazando características 
C+ y C_ entre las dos características límites dibujadas en la figura 24.9, con 
valores de C2 y C3 distintos de O y -C(). Pero como este método no es de 
utilidad en este problema al disponerse de una solución de semejanza, no va a 
ser tratado aquí. Ver lecciones siguientes para un ejemplo del uso del método 
de las características. )  

Para terminar esta sección, es conveniente escribir los criterios de validez de 
la solución obtenida. En primer lugar, la suposición de despreciar la velocidad 
vertical, IDvy/ Dtl « g, no es válida en los instantes iniciales tras la rotura 
de la presa, ya que el movimiento inicial cerca de x = O es principalmente 
hacia abajo con aceleración g. Por otro lado, se han despreciado los efectos 
de la viscosidad (Re » 1) y de la tensión superficial (B » 1 ) .  De acuerdo 
con la solución anterior, la velocidad del líquido es del orden de C() = ..fiino. 
Tomando como longitud característica ho (también habría que tomar C()t, que 
es la longitud característica en la dirección horizontal, pero esta longitud se 
hace mayor que ho tras un periodo inicial de duración t = ho/C() = ,/hofg, 
durante el cual es dudosa la validez de la solución de semejanza) , la solución 
es válida si 

1¡2ha/2 

Re = pg o » 1 
µ 

{24.94) 
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e 

B 

A o Figura 24. 10: Resalto hidráulico. 
Por último, el número de Froude es de orden unidad, Fr ~ C{J/(gho) = 1, como 
corresponde a un movimiento donde existe un balance entre la inercia y las 
fuerzas gravitatorias. Más concretamente, el número de Froude local, Fr = 
u2 / c2, es exactamente igual a la unidad en x = O, siendo el flujo subcrítico 
para x < O y supercrítico para x > O [ver solución (24.86)]. 

24.3. Resalto hidráulico 
Ya se ha visto la equivalencia entre el flujo estacionario en un canal bidi­

mensional y el flujo compresible, unidireccional y estacionario en un conducto 
de sección variable, donde el número de Froude en el primer caso juega el mis­
mo papel que el número de Mach al cuadrado en el segundo. En este contexto, 
el equivalente de una onda de choque en el flujo compresible es el denominado 
resalto hidráulico, que permite que el flujo en un canal pase de supercrítico (Fr > 1) a subcrítico (Fr < 1) a través de una discontinuidad donde se disi­
pa energía y, por tanto, el flujo no es ideal en su interior. En esta sección se 
derivarán las relaciones entre el flujo aguas arriba y aguas abajo del resalto 
hidráulico para el caso de un canal bidimensional de fondo plano ( equivalente 
a las relaciones de Rankine-Hugoniot para una onda de choque normal) y se 
verán algunos ejemplos. No se considerarán resaltos hidráulicos oblícuos. 

En ciertas circunstancias, algunas de las cuales se discutirán más adelante, 
el flujo en un canal bidimensional pasa bruscamente de unas condiciones de 
velocidad u1 y altura h1 a otras dadas por u2 y h2 (ver figura 24.10). El salto 
ocurre, por supuesto, en una distancia finita, pero al ser mucho más pequeña 
que la longitud característica de variación del flujo ideal circundante, se suele 
tratar, en primera aproximación, como una discontinuidad. Aunque el flujo 
en el interior del resalto hidráulico es turbulento y, por tanto, disipativo y 
complejo de describir, como ocurre en los flujos compresibles a través de una 
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onda de choque, en la inmensa mayoría de las situaciones sólo interesa conocer 
la relación entre las propiedades del flujo a ambos lados de la discontinuidad, 
para así poder enlazar el flujo ideal de un lado con el del otro. Para hallar 
estas relaciones se toman unos ejes estacionarios con el resalto hidráulico y 
se escriben las ecuaciones de conservación de masa, cantidad de movimiento 
y energía en un volumen de control que contenga al resalto (ABCD en la 
figura 24. 10) . La ecuación de conservación de la masa (por unidad de longitud 
transversal) nos dice que 

u1h1  = u2h2 = q ,  (24.95) 

donde q es el caudal por unidad de longitud. Teniendo en cuenta que el flujo 
es estacionario, que en la superficie libre superior la presión es la atmosférica, 
que no hay disipación en las secciones A1 y A2 al ser el flujo ideal fuera del 
resalto, y despreciando la fricción del líquido tanto con el suelo como con el 
aire al ser la longitud del resalto muy pequeña ( una discontinuidad en primera 
aproximación) , la ecuación de cantidad de movimiento en la dirección del 
movimiento aplicada al volumen de control, por unidad de longitud transversal, 
se escribe 

(24.96) 

Teniendo en cuenta que la distribución de presión en A1 y A2 es hidrostática, 
esta ecuación se escribe 

(24.97) 

Las ecuaciones (24.95) y (24.97) permiten obtener las condiciones detrás 
del resalto hidráulico, u2 y h2 , en función de las condiciones delante, u1 y h1 , 
y viceversa. Es conveniente introducir el número de Froude, Fr = 1t2 / (gh) . De 
las ecuaciones (24.95) y (24.97) se llega a 

(24.98) 

De la primera de estas ecuaciones se tiene que 

(24.99) 

de donde, tomando el signo positivo de la raiz cuadrada, dado que las alturas 
no pueden ser negativas, 
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h2 1 ( ) hi = 2 -1 + Jl + 8Fr1 . 

De forma similar, de la segunda de las ecuaciones (24.98), 
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(24.100) 

(24.101) 

Queda por aplicar la ecuación de la energía al volumen de control. Supo­
niendo que Ti es prácticamente igual a T2 y designando por W la potencia 
disipada (por unidad de longitud) por el movimiento turbulento en la superficie 
libre y en el suelo, esta ecuación se escribe 

(24.102) 

que, junto con (24.95)  y (24.97), permite calcular W conocidas las propiedades 
del flujo en A1 o en A2 . Después de sustituir (24.95) y (24.97), esta ecuación 
se puede escribir 

pgui (h2 - h1 )3 = W .  
4h2 

Como W > O, de esta ecuación se deduce que 

y, de (24.98), 

(24.103) 

(24.104) 

(24.105) 

Es decir , debido a la disipación, en un resalto hidráulico el flujo siempre pasa 
de supercrítico a subcrítico, aumentando la altura y disminuyendo la velocidad 
del líquido en el canal. Se observa, por tanto, una completa analogía con lo que 
ocurre en una onda de choque. La ecuación (24.102) también se suele escribir 
en términos de la energía específica E, definida en (24.61) : 

w 
pgq 

(24.106) 

Ejemplos típicos de resaltos hidráulicos son los que se forman detrás de 
un vertedero o detrás de una compuerta (figura 24.11). En ambos casos el 
flujo pasa primero de subcrítico a supercrítico debido al cambio brusco en la 
sección y, posteriormente, el flujo pasa de nuevo a subcrítico a través de un 
resalto hidráulico para amoldarse a las condiciones que existan aguas abajo. 
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(a) (b) 

Subcritico Subcritico 

Subcritico Subcritico 
Supercritico Supercritico 

Figura 24. 1 1 :  Resaltos hidráulicos detrás de (a) un vertedero y (b) una compuerta. 

Dadas las condiciones aguas abajo, la posición del resalto hidráulico se obtiene 
de las ecuaciones anteriores de forma que el flujo subcrítico inmediatamente 
aguas arriba del mismo está conectado con el flujo existente aguas arriba de 
la compuerta o del vertedero a través de las ecuaciones dadas en la sección 
24.2 . 1 .  

Un ejemplo de resalto hidráulico no estacionario es el que se formaría en 
el problema de la rotura de una presa considerado en la sección anterior en 
el supuesto de que existiera una pared vertical a una cierta distancia Xp de la 
presa inicial {ver figura 24. 12) .  Se supone que la pared es lo suficientemente 
alta como para que el flujo no pueda pasar por encima. Como el frente del 
líquido se mueve con velocidad 2co, la pared no tiene efecto sobre el flujo 
para t < xp/ (2co) .  Para t � xp/ (2co) ,  el líquido se empieza a acumular en la 
pared, elevándose el nivel y formándose un resalto hidráulico que viaja hacia la 
izquierda con una velocidad U =  -dxr/dt , donde Xr es la posición del resalto 
hidráulico considerado como una discontinuidad. Recuérdese que, de acuerdo 
con (24.86) ,  la solución de semejanza dada en la sección 24.2 .2 es supercrítica 
(u > c) para x > O y subcrítica para x < O, permaneciendo el flujo crítico 
en x = O para todo instante. Las ecuaciones (24.95) y (24.97) aplicadas a un 
sistema de referencia que se mueve con la discontinuidad se escriben ( ver figura 
24.12) 

(24.107) 

(24. 108) 

de donde 

(24.109) 
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o x, 

Figura 24. 12: Resalto hidráulico tras la rotura de una presa al encontrarse el flujo con una 
pared. 

(24.110) 

Teniendo en cuenta que u1 y h1 se conocen de la solución de semejanza (24.8 6) 
en función de Xr en todo instante, U y la posición del resalto hidráulico se 
pueden calcular en función del tiempo resolviendo las ecuaciones anteriores, 
junto con (24.5 4)-(24.5 5 )  para x > Xr y la condición de contorno u(x = Xp) = 
o. 
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Capítulo 25 

Ondas sonoras . Acústica 

25. 1 .  Ecuaciones para la propagación de pequeñas 
perturbaciones en un fluido ideal uniforme 

En esta lección se considerará la propagación de pequeñas perturbaciones 
de las magnitudes fluidas (por ejemplo, ondas sonoras) en el seno de un fluido 
ideal. Para ello se parte de las ecuaciones de Euler (19.4)-(19.6) que gobiernan 
el movimiento de un fluido ideal. En ausencia de fuerzas másicas1 y de aportes 
volumétricos de calor, estas ecuaciones pueden escribirse como 

� Dp + v' • v = O p Dt (25.1) 

Dv p Dt + v'p = O ,  (25.2) 

Ds = O  Dt (25 .3) 

Se pretende analizar la evolución de pequeñas perturbaciones de las mag­
nitudes fluidas cuando éstas se producen en un medio que se encuentra en 
reposo , (v0 = O) , con presión y densidad uniformes, p = Po y p = Po ,2 Es decir, 
se supondrá que 

p(x, t) = p0 + p'(x, t) , p(x, t) = Po + p'(x, t) , v(x, t) = O+ iJ'(x, t) , (25 .4) 
1La influencia de las fuerzas másicas se considerará en la sección 25.7. 
2La propagación de pequerias perturbaciones en un fluido no uniforme se considerará tam­

bién en la sección 25.7. 
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donde las magnitudes con prima son pequeñas: 

IP1 /Po i  « 1 , IP1 / Po i « 1 (25.5) 
(ya se verá más adelante en relación a qué 1v' 1 es pequeña) . Esta situación se produce, por ejemplo, al hablar o al golpear un tambor, donde las ligeras perturbaciones locales de la presión, densidad y velocidad se propagan en el aire a una cierta velocidad (la velocidad del sonido) que, según veremos, viene dada por ( 10.16) . De acuerdo con la ecuación (25.3) , la entropía se conserva en cada partícula fluida. Como el fluido parte de un estado uniforme inicial, esta entropía es la misma en todas las partículas fluidas e igual a su valor inicial s0 . Así, la ecuación de estado s(p, p) = s0 implica que el flujo es barótropo, p = p(p) (como ya se vió en la sección 18.4) . Esto permite escribir las variaciones de la presión en función de las variaciones de la densidad y eliminar así la presión en las ecuaciones (25. 1 )- (25.2) .  En efecto, expandiendo la función de estado 
p(p, s) en serie de Taylor en el entorno de (p0, s ) ,  teniendo en cuenta que s = s0, se tiene 

p(p, s) = P(Po, So) +  (!P) (p - Po) + · · · · 
P s=so 

(25.6) 
Utilizando (25 .4) , en primera aproximación (es decir, despreciando términos cuadráticos en las perturbaciones) se puede escribir 

(25.7) 
donde 

(25.8) 
es una propiedad termodinámica del medio no perturbado. Para un gas per­fecto, a� = 1p0/p0 = ,R9T0. La ecuación (25.7) sustituye, en primera aproxi­mación, a la ecuación de la entropía (25.3) . Análogamente, sustituyendo (25.4) y (25.7) en (25 .1 )-(25.2 )  y despreciando los términos cuadráticos en las pequeñas perturbaciones, se llega al siguiente par de ecuaciones lineales para p' y iJ' :  

8p' -8t + Po v' • V = O , 

fü! 2 1 Po ot + a0 v' P = O , 

(25.9) 
(25. 10) 
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donde, por simplicidad en la notación, se ha quitado la prima en la velocidad. Eliminando v entre (25.9) y (25. 10) se obtiene 

a2p' 2v72 1 {)t2 - ªº p = o . 
De igual manera, eliminando p', 

(25.1 1 ) 

(25.12) 
Una ecuación similar para p' se obtiene de (25.7) y (25.1 1). Estas ecuaciones son del tipo denominado ecuación de ondas y, como se verá más adelante, sus soluciones representan ondas que se propagan a la velocidad a0 , que es así la velocidad de propagación de las pequeñas perturbaciones. Por ejemplo, se verá en la sección 25.3 que la propagación de las ondas sonoras satisfacen las hipótesis anteriores, y es por ello que a0 se denomina velocidad del sonido. En lugar de utilizar las ecuaciones anteriores para v, p' y p' , es más útil trabajar con el potencial de velocidad ip. Como el flujo es isentrópico y no hay fuerzas másicas, partiendo además del reposo, se sigue que el movimiento es irrotacional (ver lección 20) , existiendo potencial de velocidad: 

{25. 1 3 ) [Más directamente, tomando el rotacional de {25. 10) se tiene que 8('\71\v)/at = O; como V /\  v = O inicialmente, lo sigue siendo en todo instante posterior.] Sustituyendo {25.1 3) en {25. 10), 

de donde 

y 
, Po {)cp p = - a2 ot ' o 

(25.1 4) 

(25.15) 

(25.1 6 )  
Finalmente, sustituyendo (25.1 3) y (25. 15) en (25.9) se obtiene una ecuación de ondas para (/J: 

(25.17) 
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De la resolución de esta única ecuación se obtiene inmediatamente v, p' y p' 
de (25. 13) y (25 . 15)-(25. 16) .  

25.2. Ondas planas 
Por simplicidad se considerará primero el caso en el que las perturbaciones 

se propagan exclusivamente en la dirección x, es decir, </J = </J(x, t ) ,  v = uex = 
( 8</J / ax )ex . La ecuación anterior se escribe 

(25. 18) 

Esta ecuación se puede resolver fácilmente escribiéndola en su forma canónica 
mediante el cambio de variables 

(25. 19) 

que transforma (25. 18) en 

(25.20) 

Integrando dos veces, la solución general de esta ecuación se puede escribir 
como 

<P = J(() + g(r¡) = J(x - a0t) + g(x + a0t) , (25 .21)  

donde f y g son funciones arbitrarias de sus argumentos. Utilizando u =  8rp/8x 
y (25. 15)-(25 . 16) ,  la solución general del problema en las variables físicas se 
escribe 

(25.22) 

(25.23) 

donde F = df /d( y G = -dg/dr¡ son funciones también arbitrarias de sus 
argumentos. Obsérvese que F(x - a0t) permanece constante para un observa­
dor que se mueve con velocidad dx/dt = a0 (x - a0t = constante) ,  mientras 
que G(x + a0t) permanece constante para un observador que se mueve con 
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velocidad dx/dt = -a0 (x + a0t = constante).3 Por tanto, esta solución re­
presenta dos ondas planas o unidimensionales superpuestas que se propagan 
hacia la izquierda y hacia la derecha con velocidad a0 , que es así la velocidad 
de propagación de las pequeñas perturbaciones (por ejemplo, ondas sonoras, 
siendo a0 la velocidad del sonido).  La forma de estas ondas, es decir, los valores 
concretos de las funciones F y G, que en principio son arbitrarias, dependen 
de las condiciones iniciales o de contorno ( ver los ejemplos que se describen a 
continuación).  

De acuerdo con las expresiones (20.29)-(20.30), para una onda que se pro­
paga hacia la derecha ( función F) , se tiene que 

u p' 
Po 

(25.24) 

y para una onda que se propaga hacia la izquierda ( función G), se verifica 

u p' 
Po 

p' (25.25) 

De estas relaciones se deduce, además, la condición que debe cumplir la per­
turbación de la velocidad para que la solución anterior sea válida: u debe ser 
mucho menor que la velocidad de propagación de las perturbaciones ( velocidad 
del sonido) a0 , puesto que, por hipótesis, p' / Po « 1. 

25.2. 1 .  Propagación de una pequeña perturbación inicial 

Supongamos que perturbamos a un fluido inicialmente en reposo ( u = O) 
mediante un ligero incremento local de la presión dado por p' / p0a0 = f ( x),  
siendo f(x) una función conocida (ver figura 25 .1). De acuerdo con (25 .23), 
inicialmente p' a0/ p0 = f ( x) .  Para que en t = O se satisfagan las ecuaciones 
(25 .22) y (25 .23) ,  las funciones F y G deben verificar 

Es decir, 

O = F(x) - G(x) . 

f(x) = F(x) + G(x) , 

F(x) = G(x) = f�x) , 

(25.26) 

(25 .27 )  

(25 .28) 

3{ = x - a0t = constante y r¡ = x + a0t = constante son las características de la ecuación 
de ondas (25.18); ver lección 26. 
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-, ,x+a O t= constante , x-a d= constante 

----""""-- · - · - · · · · · · · · ·  · · · · · · · · · · · · · ··""'- ---

- - - - - - - - - · - · ·----------· .-.----- -_ .. ·�. · . .  --------,..,:-' ...... ___ _ 
'- ,' 

Figura 25. 1 :  Propagación de una pequeña perturbación inicial. 

de forma que la solución es 

p' 1 1 - = -J(x - aot) + -J(x + aot) 
Poªo 2 2 

X 
t=O 

(25.29) 

(25 .30) 

Tenemos pues que la perturbación de la presión inicial se divide en dos ondas 
iguales cuyas intensidades son la mitad de la perturbación inicial, una que se 
propaga hacia la derecha y otra hacia la izquierda, ambas con velocidad a0 
(ver figura 25.1) .  

25.2.2.  Pequeñas perturbaciones producidas por el movimien­
to de un pistón 

Considérese ahora el movimiento originado en un gas en el interior de 
un cilindro infinito, cuyo eje tiene la dirección del eje x, por el movimiento 
oscilatorio de un pistón en torno a x = O de acuerdo con la ley x = f ( t) 
conocida (ver figura 25.2). El fluido en contacto con el pistón adquirirá una 
velocidad u = df /dt = J'(t). Este movimiento se propagará al resto del gas 
en forma de una onda que, si el diámetro D del cilindro es mucho mayor que 
1 f ( t) 1, puede considerarse plana ( excepto en las proximidades de la pared del 
cilindro) y, si lf' (t) l /a0 « 1, viene dada por (25.22). En particular, para x > O 
sólo existirá una onda propagándose hacia la derecha dada por 
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f(t) 

x-a t= constante 

X 

Figura 25.2: Problema del pistón. 

(25.31) 

y, para x < O, 

p' p'ao u =  -G(:r + a0t) = - - = - - . (25.32) 
Poªo Po 

La condición de contorno u =  f' (t) en x = J(t) fija las funciones F y G: para x > O se tiene 

F[J(t) - a0t] = J'(t) .  
Como lf(t) I « aot por hipótesis, haciendo T = -a0t, 

de donde se obtiene la solución 

P1 p'ao , U = - = - = f ( t - X/ ao) , 
Poªo Po 

(25.33) 

(25.34) 

(25.35 ) 
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que constituye una onda que se propaga hacia x > O. Análogamente, para x < O se obtiene 

P
1 p'ao , u =  - - = -- = f (t + x/a0) (25.36) 

Poªo Po 
En el caso particular en que el pistón oscile armónicamente con frecuencia w, f(t) = A sin wt, A «  D, se tiene f'(t) = Aw cos wt = v0 cos wt, v0 = Aw « a0 , y la onda que se propaga hacia la derecha, por ejemplo, vendría dada por 

(ver figura 25.2) 

p' p' ªº u = -- = - = v0 cos[w(t - x/a0) ] . 
Poªo Po 

(25.37) 

25.2.3. Ondas monocromáticas 
Una onda del tipo (25.37), es decir, una onda armónica definida por una 

única frecuencia w, se suele denominar onda monocromática, por analogía con 
las ondas electromagnéticas. A veces, se suele expresar en variable compleja 
debido a que simplifica el álgebra: 

u = Real [ Aeiw (t-x/ao )
] 
' (25.38) 

donde, en general , la amplitud A puede ser también compleja, A = aé:t, de 
forma que a es el desfase de la onda: 

u =  a cos(wt - wx/a0 + a). (25.39) 

La cantidad a0/w, que tiene dimensiones de longitud, multiplicada por 21r, 
representa la longitud de un ciclo completo y se suele denominar longitud de 
onda: 

ªº A = 21r- (25.40) 
w 

En general, las ondas planas pueden definirse en relación a cualquier di­
rección de propagación ñ, o dirección unitaria normal a los frentes de onda. 
En este caso, en vez de (25.38) se tendría: 

donde 

u = Real [ Aei(wt-k-x)
] 

k- _ 
w _ 271" _ = -n = -n 
ªº A 

(25.41) 

(25.42) 
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es el denominado vector de onda. La importancia de las ondas monocromáti­
cas reside en el hecho de que cualquier onda (plana en este caso) puede ser 
representada como una superposición de ondas monocromáticas con distintas 
frecuencias y vectores de onda mediante un desarrollo de Fourier. La super­
posición es posible debido a que las ecuaciones que describen el movimiento 
de estas ondas son lineales. Así, una onda cualquiera se puede representar 
mediante una cierta distribución de frecuencias. Las diferentes amplitudes Aw 

correspondientes a cada frecuencia w se obtendrían del desarrollo de Fourier 
de la condición inicial o de contorno que origina la perturbación. Las ondas 
sonoras audibles por el oído humano, por ejemplo, están caracterizadas por 
diferentes distribuciones de frecuencias comprendidas entre 20 Hz y 20000 Hz, 
aproximadamente. Componentes de una onda sonora con frecuencias mayores 
o menores no son detectables por el oído humano. 

25.3. Velocidad del sonido. Justificación de las hi­
pótesis 

Se acaba de ver que las pequeñas perturbaciones en un fluido ideal se pro­
pagan a una velocidad a0 dada por la ecuación (25.8), correspondiente a las 
variaciones de presión con la densidad a entropía constante. En esta sección 
vamos a comprobar que, realmente, esta velocidad es a la que se propaga el 
sonido; es decir, vamos a corroborar que, efectivamente, las pequeñas per­
turbaciones perceptibles por el oído humano se propagan isentrópicamente.4 

También se verá bajo qué condiciones la hipótesis de despreciar las fuerzas 
gravitatorias es razonable. 

Para que el fluido pueda ser considerado como ideal, las fuerzas de viscosi­
dad en la ecuación de cantidad de movimiento, así como la disipación viscosa 
y la conducción de calor en la ecuación de la energía, tienen que ser despre­
ciables frente a los términos de variación local (los términos convectivos son 
cuadráticamente pequeños): 

4Newton postuló que el sonido se propaga isotérmicamente, es decir, a una velocidad cuyo cuadrado es a2,. = (8plfJp)r ,  que para un gas ideal es a2,. = Poi Po • En aire atmosférico a 20°G esto daría una velocidad de propagación igual a 290ml s, un valor significativamente menor que el experimental a0 = 340ml s. Fue Laplace, un siglo más tarde, quien se dió cuenta de que la temperatura no permanece constante, puesto que al comprimirse el fluido se produce un trabajo que añade energía interna a las partículas fluidas, variando así su temperatura. Laplace correctamente postuló que las ondas sonoras se propagan isentrópicamente, siendo el cuadrado de su velocidad a� = (8pl8p) ., ,  igual a ,Poi Po para. un gas ideal, que concuerda muy bien con el valor experimental . 
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lpov/ot l » 1v · r' I lp8e/8t l » <P , lp8e/8t l » IV ·  KVTI . (25.43) 
La disipación viscosa es siempre muy pequeña al ser cuadrática en la pertur­
bación de la velocidad. Las otras dos condiciones proporcionan: 

11 
w>.2 « 1 ' 11 1 

w>.2 Pr « l ,  (25.44) 
donde w y >. son una frecuencia y una longitud (de onda) características de 
las perturbaciones. 

Para los gases Pr = 0(1) y ambas condiciones son equivalentes. Teniendo 
en cuenta que >. ~ a0/w, se tiene que verificar que 

(25.45) 
Para el aire atmosférico a 20ºC, 11 � 1 ,5 x 10-5m2 / s, a0 � 340m/ s; tomando 
el caso más desfavorable de w = 20000Hz, se tiene 11w/a� � 2,6 x 10-6, que 
justifica plenamente el considerar isentrópica la propagación del sonido en el 
aire y, por extensión, en cualquier gas en condiciones normales. 

En el caso de un líquido, aunque siempre se haya considerado p � constante , 
ésto no es cierto para la propagación de las ondas sonoras, puesto que una de 
las condiciones de solenoidalidad que se vió en la sección 10.2 [concretamente, 
la condición ( 10.21) ]  no se satisface: w>./a0 ~ l. Esto es obvio puesto que la 
propagación del sonido requiere la compresión local del fluido. Lo que no cabe 
duda es que la velocidad del sonido en un líquido es siempre mucho mayor 
que en un gas, siendo infinita en el límite formal de un líquido ideal ( densidad 
constante).5 Como, además, 11 suele ser menor en los líquidos que en los gases 
debido a la mayor densidad de aquellos (11 � 10-6m2 / s para el agua a 20ºC) ,  
l a  condición (25.45) se verifica con mayor contundencia en los líquidos que en 
los gases, y la hipótesis de isentropía en la propagación del sonido es aun más 
válida. 

En la sección 25. 1  también se hizo la hipótesis de que los efectos gravitato­
rios son despreciables. La gravedad puede en principio afectar en dos niveles: 
en el orden menor, a la distribución de presión del fluido no perturbado, 

5Para el agua a temperatura ambiente a0 � 1400m/ s, siendo, en orden de magnitud, similar para la mayoría de los líquidos. Conviene decir aquí que de consideraciones puramente termodinámicas se obtiene a� = (8p/8p). = 1 (8p/8p)r = ,a'fv . La relación de calores específicos 1 es siempre mayor que la unidad, siendo apreciablemente mayor para los gases (, = 5/3 para gases monoatómicos y 1 = 7/5 para los diatómicos), pero aproximadamente igual a la unidad para los líquidos. Por tanto, aunque la velocidad del sonido en gases difiere apreciablemente de la isotérmica postulada por Newton, no ocurre así para los líquidos. 
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(25.46) 

que ya no sería uniforme, sino que dependería de la coordenada vertical z ( ver 
sección 25.7) . Por supuesto, este efecto es mucho más importante en líquidos 
que en gases. Por otro lado, en el orden lineal de las pequeñas perturbacio­
nes, la ecuación de cantidad de movimiento (25 . 10) quedaría modificada de la 
siguiente forma: 

av 2 , , _ 
Po 8t + a0 V p = p g . (25.47) 

Así, la influencia de la gravedad en la propagación de las pequeñas perturba­
ciones sería efectivamente despreciable si 

(25.48) 

Para el aire, tomando el caso más desfavorable de w = 20Hz, g/wa0 '.:::'. 2 x 
10-4 « l. Para el agua, g/wa0 '.:::'. 5 x 10-5 « l. Curiosamente, el efecto de 
la gravedad es aún menos importante en los líquidos que en los gases al ser la 
velocidad de propagación mucho mayor, aunque, en el fluido no perturbado, 
la gravedad influye mucho más en los líquidos que en los gases, afectando con 
ello a la velocidad de propagación a0 , que dependería de z. 

En definitiva, para el caso de ondas sonoras, las soluciones de onda encon­
tradas anteriormente apenas se ven afectadas por la presencia de la gravedad, 
aunque sí su velocidad de propagación, que dependerá de la coordenada z, pe­
ro en longitudes del orden de a�/ g, mucho mayores que la longitud de onda A 
si se cumple (25.48) . Esta dependencia de a0 modifica, en distancias del orden 
de a�/g, la forma de las ondas (ver sección 25.7) . 

25.4. Energía e intensidad acústica 
Las ondas tienen la interesante propiedad de que pueden transportar energía 

sin la necesidad de un transporte neto de material. En esta sección se defi­
nirá y analizará algunas de las propiedades generales de la energía acústica, 
que es la parte de la energía total del fluido asociada con la presencia de ondas 
sonoras, y de la intensidad acústica, que es la velocidad de transporte de la 
energía acústica. 

Aunque en las ecuaciones de las secciones anteriores se han linealizado las 
ecuaciones de las perturbaciones, despreciando términos cuadráticos que invo­
lucran el producto de dos perturbaciones cualesquiera , debido a que la energía 
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cinética es cuadrática en la velocidad, para poder tenerla en cuenta apropiada­
mente en la definición de la energía acústica se retienen términos cuadráticos 
en las perturbaciones, despreciando términos que involucran productos de tres 
o más perturbaciones. Así, la densidad de energía cinética asociada a las pe­
queñas perturbaciones sobre un fluido en reposo y uniforme se escribe 

(25 .49) 

donde p0 es la densidad del medio no perturbado y v el módulo de la velocidad 
de las perturbaciones. La densidad total de energía acústica será la suma de la 
densidad de energía cinética (25.49) más la densidad de energía interna asocia­
da a la onda. Como la entropía se conserva, el incremento de energía interna 
asociado a la onda es igual al trabajo de compresión del fluido producido por 
el exceso de presión p' = p - p0 ( el trabajo de las fuerzas de presión asociado 
a la presión no perturbada Po se considerará más adelante), que comprime al 
fluido desde la densidad Po hasta p: 

f 
P ( 1 ) [P p1 

- Jn pp'd -
'.'.::= Jn -dp , 

Po P Po Po (25 .50) 

donde, como en (25 . 49), se han despreciado términos cúbicos en las perturba­
ciones. Haciendo uso de (25 . 7) y teniendo en cuenta que dp = dp' , la expresión 
anterior se escribe 

[P' a� p' dp' = !a� p'2 = ! �,2 Jo Po 2 Po 2 a0Po (25.5 1) 

La densidad de energía acústica es la suma de (25 .49) y (25.5 1): 

(25 .5 2) 

donde se ha hecho uso de (25.13) y (25.16) para escribirla en términos de la 
función potencial. 

Para obtener la intensidad acústica es conveniente comenzar por el caso de 
una onda plana que se propaga en la dirección x. La velocidad de transporte 
de energía asociada a una onda que, viniendo desde la izquierda, atraviesa 
cualquier plano x =constante es igual al trabajo de las fuerzas de presión 
asociado al exceso de presión p' = p - p0 . Por tanto, la intensidad acústica, o 
velocidad de transporte de energía acústica por unidad de área, se define como 

l = p'u , (25.53) 
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donde v = uex. Téngase en cuenta que, de acuerdo con (25.24) , I tiene el 
mismo signo que u: 

I - 2 
- Poaou (25.5 4) 

Por otro lado, para el caso de una onda plana que se propaga hacia la derecha, 
la densidad de energía (25.52) se puede escribir como 

W - 2 
- PoU , (25.5 5 )  

de donde se deduce que una onda sonora en un medio uniforme transporta la 
energía a la velocidad a0, puesto que la velocidad de transporte de energía por 
unidad de área, I, es a0 veces la energía por unidad de volumen W. 

En el caso tridimensional, la intensidad acústica es un vector f tal que 
f · ñ representa la velocidad a la que es transportada la energía a través de un 
elemento de superficie orientado según ñ en el entorno del punto x, por unidad 
de área. Esta velocidad de transferencia es el producto del exceso de presión 
p' por la componente v · ñ de la perturbación de la velocidad, de forma que la 
intensidad acústica en un punto genérico viene dada por 

f = p'v = -Po(ocp/ot)'\1</>. 

De (25.5 2) y (25.5 6) se tiene que 

aw - = -'v · I  at 

(25.5 6) 

(25 .5 7)  

que es la  ecuación de conservación de la energía acústica: su velocidad de 
cambio es igual al flujo de energía acústica por unidad de volumen ( téngase 
cuenta que el término v · 'vW no aparece en el lado izquierdo por ser de tercer 
orden en las perturbaciones). A la vista de esta ecuación es ahora posible 
justificar porqué no se ha tenido en cuenta la presión no perturbada (ambiente) 
en la energía e intensidad acústica. Definiendo 

- ¡P dp p Wo = Po- = Po ln - , 
Po P Po 

L = PoV , (25.58) 

como la energía y la intensidad asociadas a Po , respectivamente, de la ecuación 
de continuidad linealizada se tiene 

8Wo _ --- + V • 'vW = -'v . I at º º , (25.59) 

que es lineal en las perturbaciones, en vez de cuadrática como (25.5 7) (por 
ello incluye el término convectivo iJ • 'vW0). Por tanto, (25.5 7) representa la 
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conservación de la energía total a la que se le ha sustraido un múltiplo de la 
ecuación de continuidad. Así, el hecho de tener en cuenta el trabajo asociado 
a la presión no perturbada p0 no añade nada significativo a la ecuación de la 
energía acústica (25 .5 7). 

Cuando se trata de sonido, en vez de la intensidad acústica ( que se mide 
en W/m2), se utiliza su logaritmo, debido a que, para una frecuencia dada, el 
oído percibe diferencias iguales de volumen de sonido para diferencias iguales 
del logaritmo de la intensidad acústica, en vez de la intensidad misma. Por 
ello se utiliza el decibelio (dB) como medida del nivel de intensidad acústica, 
que se define como 

{25.60) 

donde I es el módulo de f (medido en wm-2). Por ejemplo, para una frecuen­
cia relativamente alta (de 5 00 a 8000 Hz), la mínima intensidad audible es O 
dB, aproximadamente, que equivale a J = 10- 12wm-2 . Para frecuencias más 
bajas o más altas, el umbral auditivo del hombre es mayor: por ejemplo, para 
200 Hz y 1 5000 Hz es, aproximadamente, 20 dB (/ = 10-10wm-2) ,  mientras 
que es 40 dB (I = 10-8wm-2 ) ,  aproximadamente, para 100 Hz y 18000Hz. 
(Recuérdese que la audición no es posible por debajo de 20 Hz y por encima 
de 20000 Hz, aproximadamente.) Para la mayoría de las frecuencias audibles, 
el sonido causa dolor en el oído por encima de 120 dB (W = lWm-2). 

25.5 .  Efecto de la viscosidad 

Se ha visto que en la propagación del sonido la influencia de la viscosidad 
y de la conductividad térmica son muy pequeñas; es decir , el fluido puede con­
siderarse como ideal. Pero aunque pequeños, estos efectos disipativos van ate­
nuando la intensidad de la onda hasta amortiguarla completamente si actúan 
sobre distancias suficientemente grandes. (En un fluido exactamente ideal , las 
ondas sonoras permanecerían viajando siempre con velocidad a0, lo cual, evi­
dentemente, no ocurre en la realidad.) En esta sección vamos a considerar éste 
y otros efectos de la viscosidad. 

Por simplicidad, no consideraremos el efecto de la conductividad térmica, 
para que así el flujo pueda seguir suponiéndose isentrópico en primera apro­
ximación (la disipación viscosa no cuenta por ser un término cuadráticamente 
pequeño) . De acuerdo con (25.44) , esta aproximación sólo valdría para fluidos 
con números de Prandtl grandes, pero que aquí utilizamos por motivos me­
ramente ilustrativos. Las ecuaciones (25.9)-(25 . 10), en el caso unidimensional, 
se modificarían a 
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(25 .61) 

(25 .62) 

donde µ0 y µvo son los coeficientes de viscosidad del medio no perturbado. 
Eliminando la densidad entre estas dos ecuaciones se obtiene: 

(25 . 63) 

donde, en relación a (25.12), aparece un nuevo término, siendo r¡ = (4µ0/3 + 
µva)/ Po una especie de viscosidad cinemática media. Buscamos las soluciones 
armónicas de esta ecuación. Para ello definimos la onda monocromática 

(25 .64) 

Si el término viscoso no apareciese, de acuerdo con (25.38) se tendría que 
u0(x) = A exp(-iwx/a0) .  En el presente caso, u0 satisface la ecuación dife­
rencial 

cuya solución general es 

d2u w2/a2 
o o 

o --2 + . / 2 Uo = ' dx 1 + iwr¡ a0 
(25 .65) 

(25 .66) 

Obsérvese que wr¡/a� es el parámetro pequeño (25 .45). Desarrollando en serie 
alrededor de ese parámetro igual a cero obtendríamos, en el orden más bajo, la 
solución no viscosa (25.38). Los siguientes términos del desarrollo se obtendrían 
de 

1 1 .wr¡ 3 
(

wr¡
) 

2 

JI + iwr¡/a� 
� 1 - 2 2 

a� - 8 a� + • • • (25 .67) 

Para fijar la solución (es decir, las constantes de integración c1 y c2) ,  supon­
dremos que la onda está producida por el movimiento de un pistón en torno al 
origen x = O de acuerdo con la ley armónica Xp(t) = A sin wt. Este movimiento 
produce un tren de ondas que, por la acción de la viscosidad, se amortiguan en 
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x - ±oo. Considerando la onda hacia la derecha (x > O), se tiene que c1 = O 
y c2 = Aw: 

Ua( X) = Aw exp [-i :: ( 1 - � (:Ir) - 1  :; :: l 
La solución es, por tanto, 

[ 
1 wr¡ wx

] [ 
x 

( 
1 

(
wr¡

)
2

) ]  u(x,  t) = Aw exp - - 2 - cos w t - - 1 - - 2 2 ªº ªº ªº 8 ªº 

(25.68) 

(25.69) 

Vemos que la viscosidad se deja sentir, en relación a la solución no viscosa 
(25 .37), en dos aspectos: en una amortiguación, que tiene lugar en distancias 
del orden de (a0/w)(a�/wr¡) ~ >..(a�/wr¡) » >.., y en una variación de la ve­
locidad de propagación de las ondas, que ahora depende de la frecuencia w 
(aunque suavemente, puesto que wr¡/a� « 1). Escribiendo la fase de la on­
da (25. 69) como wt - kx, la nueva velocidad de propagación es, en primera 
aproximación, 

(25.70) 

Como ya se comentó en la lección anterior, cuando la velocidad de propagación 
de una onda depende de su frecuencia, como ocurre en este caso, se dice que 
el medio es dispersivo, ya que al superponer ondas con diferentes frecuencias 
la velocidad de fase de cada componente es distinta y la onda se distorsiona. 
Afortunadamente, este efecto dispersivo de la viscosidad es muy débil en las 
ondas sonoras, al ser de segundo orden en el parámetro pequeño wr¡/a� ; si 
no fuese así, sería imposible que nos entendiésemos al hablar, ya que ondas 
con distintas frecuencias originadas en un mismo punto llegarían al oído en 
distintos tiempos. Como se vió también en la lección anterior, una onda con 
una determinada frecuencia w, y la energía acústica asociada a ella, no se 
propaga a la velocidad de fase, sino a la velocidad de grupo, que en este caso 
vale 

= ( ªk ) -1 
Cg - {)w (25. 7 1) 

La distorsión debida a la dispersión viscosa es, en cualquier caso, muy po­
co significativa pues la amortiguación de las ondas debida a la viscosidad es 
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mucho más efectiva al ser de primer orden en wr¡/a� . Además, existe una amor­
tiguación todavía mucho más efectiva que la viscosa debida a la divergencia 
esférica de las ondas sonoras, como se verá a continuación. 

25.6. Ondas esféricas 
Las soluciones de la ecuación de ondas dadas en los ejemplos anteriores 

corresponden a ondas sonoras unidimensionales (planas). Evidentemente, po­
cos son los casos de interés donde esta aproximación es válida. Por ello se 
considerará a continuación un caso más realista como es el de las ondas sono­
ras con simetría esférica. Aunque no deja de ser también una idealización, toda 
onda producida por una fuente más o menos puntual llega a tener simetría 
más o menos esférica a distancias de la fuente mucho mayores que el tamaño 
de ésta. 

En un problema con simetría esférica , la ecuación de ondas (25.17 )  se 
escribe 

(25. 72) 

o, equivalentemente, 

(25. 73) 

Por analogía con la ecuación unidimensional de ondas (25.18) , esta ecuación 
tiene por solución general 

(25.7 4) 

donde F y G son funciones arbitrarias de sus argumentos. En lo que sigue se 
considerará sólo ondas que viajan en la dirección de r creciente, por lo que 
se hará G = O. Las perturbaciones de la velocidad, presión y densidad vienen 
dadas por las ondas 

p'ao Po a0 8t r 
(25.75)  

(25. 7 6) 

Obsérvese que, a diferencia de una onda plana, Vr f. p' / p0a0 , excepto muy 
lejos del origen , r - oo, en donde la onda esférica es casi plana. Por otra 
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parte, la intensidad de las ondas esféricas decae con r y tiende a cero cuando r -+  oo, incluso en el supuesto presente de fluido ideal (divergencia esférica). 
25.6 .1 .  Fuente puntual Como ejemplo simple significativo se considerará primero una onda origi­nada por una fuente puntual de masa, de caudal conocido Q(t), en el origen de coordenadas (esto podría simular, por ejemplo, un silbido) .  Por conservación de la masa en r -+  O, Vr -+ Q(t)/41rr2 ; es decir, </> -+  -Q(t)/41rr para r -+ O. Sustituyendo esta condición de contorno en (2 5.74) se obtiene, teniendo en cuenta que G = O, F( r) = -Q(-T /a0)/41r. Es decir, 

</> = -Q(t - r/a0)/41rr , Q ( t - r / a0) Q' ( t - r / a0) Vr = 2 + ----- , 41rr 41ra0r p' p' a0 Q' ( t - r / a0) Poao Po 41raor El caudal que atraviesa la esfera de radio r es: 
que, obviamente, coincide con Q(t) para r -+ O. 

(2 5 .77) 
(2 5.78) 
(2 5 .79) 
(2 5.80) 

Comparando esta solución con la correspondiente a un flujo incompresible para este problema (solución de la ecuación de Laplace 'v2</> = O, en vez de la ecuación de ondas; ver capítulo 21 ) ,  
</> = -Q(t)/41rr , Vr = Q(t)/41rr2 , q(r, t) = Q(t) , (2 5 .81 ) 

se observa que el efecto de las ondas sonoras es introducir un retraso en la transmisión de la información del caudal en el origen Q(t) en un lapso de tiempo r / a0 , que es el tiempo que tarda una onda sonora en llegar a la distan­cia r y transmitir la información del origen. Como el retraso depende de r, se origina un término adicional en la expresión del caudal y de la velocidad. In­dependientemente de la intensidad del caudal Q, la solución anterior es válida para distancias r que satisfacen 
Vr ~ Q;iax « l 
ªº r ªº Para una fuente armónica, por ejemplo, 

(2 5.82) 
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Q(t) = Q0 cos(wt) , 

las expresiones (25 .78 )  y (25 .79) se escriben 

Q0 [
cos[w(t - r/a0) ]  w • [ ( / ) ]] Vr = -

4 
------ - - sm w  t - r a0 �r r a0 

p' Qow • [ ( / ) ]  -- = - -4
-- sm w t - r a0 Poao �rao 
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(25.83) 

(25 .84) 

(25 .85 ) 

Se observa que la onda se comporta como si fuese plana, es decir, p' / p0a0 '.:::'. Vr, 
cuando el primer término de (25.84) es pequeño comparado con el segundo, lo 
cual ocurre para distancias grandes comparadas con la longitud de onda: 

ªº >. r >> - = - . (25 .86) 
w 2� 

La intensidad del sonido emitido por una fuente puntual, de acuerdo con 
(25 .5 6), tiene dirección radial . Para distancias grandes de la fuente ( comparada 
con la longitud de onda del sonido emitido), su magnitud vale 

donde se ha incluído el caso de una fuente dada por (25.83). 

25.6.2. Dipolo acústico 

Otra solución sencilla de la ecuación de ondas con simetría esférica que 
tiene interés para comprender el comportamiento del sonido producido por 
fuentes más complejas es el denominado dipolo acústico, consistente en una 
fuente puntual de caudal Q(t) y un sumidero de caudal -Q(t) separados por 
una distancia L. En las coordenadas esféricas de la figura 25 .3, de acuerdo con 
(25 .79), las fluctuaciones de la presión vienen dadas por 

donde 

p'(r, 0, t) = _l_ [
Q' (t - r/aO) _ Q' (t -;'/aO)

] ,  
Poªo 4�ao r r 

r' = (r2 + L2 - 2rL cos 0) 112 . 

(25.88) 

(25.89) 

El sonido emitido por un dispositivo como el anterior tiene interés para dis­
tancias grandes comparadas con L. Para r » L, r' '.:::'. r - L cos 0 y, en primera 
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Q(t)�--�L ___ -_Q�(t_) ___________ x 

:' e 

r' 

Figura 25.3: Dipolo acústico. 

aproximac1on, (25 .88) se escribe ( desarrollando en serie de Taylor y despre­
ciando términos cuadráticos en L / r) 

_J!__ � _ L cos 0  

[
Q' (t -

2
r/a0) + Q"(t - r/a0)

] 
L cos 0 8 Q' ( t - r / a0) 

p0ao 41rao r a0r 41rao or r 
(25 .90) 

Para poder comparar mejor el sonido emitido por una fuente puntual de 
masa ( o monopolo acústico) con el emitido por un dipolo acústico, supóngase 
que la fuente es armónica con frecuencia w [ecuación (25.83)]. La expresión 
anterior se escribe 

_J!__ 
= LQOw cos 0  

[
sin [w(t - r/a0)] 

- � cos[w(t - r/ao)l] . 
Poªo 41raOr r aO 

(25 .91) 

Para distancias grandes comparadas con la longitud de onda, r » � = l'1r , el 
primer término de (25.91) es despreciable frente al segundo, teniéndose 

p' LQ Ow2 COS 0 

- � - 2 cos[w(t - r/a0)] . 
Poªo 41ra0r 

(25 .92) 

Como en este límite Vr � p' / pOaO , el módulo de la intensidad acústica viene 
dada por 

( 
Q w ) 2 

(
wL

)
2 

I � pOaO cos
2

0 -4 ° - cos2 [w(t - r/a0)] . 
1rrao a0 

(25.93) 

Comparando con (25 .87)  se tiene, en primer lugar, que a diferencia del mono­
polo, el dipolo emite el sonido direccionalmente, siendo la intensidad máxima 
en la dirección de x ( cos 0 = 1), y nula para 0 = ±1r /2. Por otra parte, si 
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Lw/a0 « l (es decir, si L es mucho menor que la longitud de onda >.), la 
intensidad del sonido emitido por el dipolo es mucho menor que la intensidad 
sonora proporcionada por la fuente puntual ( a distancias grandes comparadas 
con la longitud de onda). Una fuente de sonido se dice que es acústicamente 
compacta si su tamaño es mucho menor que la longitud de onda del sonido 
emitido. Por tanto, el sonido emitido por un dipolo acústicamente compacto 
tiene mucha menos intensidad que el emitido por un monopolo con la misma 
intensidad de la fuente ( al menos a distancias grandes de la fuente). 

25.7. Propagación del sonido en un medio no uni­
forme. Acústica geométrica 

En las secciones anteriores se ha considerado la propagación de pequeñas 
perturbaciones en un medio ideal y uniforme. Cuando el fluido no perturbado 
no es uniforme, es decir, cuando Po

= Po (x) y Po
= p0 (x) [por ejemplo, debido 

a las fuerzas gravitatorias, en cuyo caso Po y p0 están relacionados mediante 
(25.46) si el fluido no perturbado está en reposo], el problema es bastante más 
complejo de resolver. Sin embargo, es bastante habitual que la longitud ca­
racterística de variación de las magnitudes no perturbadas sea mucho mayor 
que la longitud de onda de las perturbaciones u ondas sonoras, pudiéndose 
así simplificar algo el problema, pues en primera aproximación se puede con­
siderar el medio no perturbado como uniforme, tratándose la no uniformidad 
como una corrección que va desviando gradualmente los frentes de onda. Este 
límite, que se suele denominar acústica geométrica, es el que se va a tratar en 
esta sección. 

Se considerará el caso en el que el medio no perturbado está en reposo y 
es estacionario (si p0 dependiese del tiempo, por la ecuación de continuidad el 
medio no perturbado tendría velocidad no nula) . Para el medio no perturbado, 
la ecuación de cantidad de movimiento se escribe 

(25 . 94) 

donde U es el potencial de fuerzas másicas. Como se va a considerar el mo­
vimiento de pequeñas perturbaciones, la descomposición (25.4)-(25.5)  sigue 
siendo válida. Sustituyendo en las ecuaciones de continuidad (25.1) y de canti­
dad de movimiento (25.2), teniendo en cuenta (25.94) y despreciando términos 
cuadráticos en las perturbaciones, se tiene 

ap' -8t + v' • Po V = O, (25.95) 
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(25.96) 

donde el término de (25.96) asociado a las fuerzas másicas, -p''vU, se ha 
despreciado de acuerdo con lo discutido en la sección 25.3 [condición (25.48) ] .  
La ecuación de la  entropía (25.3) se puede escribir como 

Dp 2 DP - = a -Dt Dt ' 2 _ (ªP) a = ap s . 
(25.97) 

Despreciando términos cuadráticos en las perturbaciones, esta ecuación se es­
cribe 

ap' - l"'7 2 (ªP' - l"'7 ) 2 l"'7 -8t + V • v Po = a0 8t + V • v Po = -a0po v • V ,  (25.98) 

donde a� = (8p/8p)8=so(x) , y donde se ha sustituido (25.95) en el segundo 
miembro. 

Análogamente a como se hizo en la sección 25. 1 ,  se puede obtener una 
ecuación que sólo involucra a p' restando la derivada de (25.98) respecto al 
tiempo de la divergencia de (25.96) y eliminando la derivada cruzada de v: 

donde 

82 1 
p 2 2 1 - 1 é)t2 - ªº 'v P = B • 'v P ' 

É(x) = 'vpo - a�'vPo = -'vU - a� 'vpo . 
Po Po 

(25.99) 

(25. 100) 

El primer sumando de .B se puede despreciar en (25.99) de acuerdo con (25.48) . 
Por otro lado, en el caso de un líquido, la densidad del medio no perturbado 
se puede suponer constante ( aunque, por supuesto, existirán perturbaciones 
de la densidad) ,  con lo que (25.99) se reduce a la ecuación de ondas típica 
de un medio uniforme, pero con velocidad de propagación que depende de la 
posición, a0(x) . En general, para obtener .B hay que conocer p0 (x) . Para ello, 
además de (25 .94) y la ecuación de estado del fluido, hay que conocer alguna 
relación más del medio no perturbado, como por ejemplo la distribución de 
temperatura (ver lección 12) .  

Sabemos que en el caso de un medio uniforme (25.99) tiene soluciones que 
pueden escribirse como una superposición de ondas planas (véase §25.2.3) de 
la forma 
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p' = Aei(k-x-wt) , (25.101) donde k es el vector de onda y w la frecuencia. Sustituyendo en la ecuació'n con a0 constante, se obtiene la relación de dispersión 

(2 5 . 102) que relaciona la longitud de onda >. = 21r / k con la velocidad de propagación y la frecuencia, siendo k2 = k • k. Cuando a0 depende de x, la solución (2 5.101) no es válida. Sin embargo, se puede construir una solución que en primera aproximación tiene esa forma en el límite de la acústica geométrica. Es decir, cuando las variaciones de a0 (y, por tanto, de p0 y p0) con x ocurren en una longitud característica l que es mucho mayor que la longitud de onda: 
21r 1 >. = k « l ~ lv7 ln ao l - . 

Para ello escribimos la solución de (2 5.99) en la forma 
p' = A(x)eiw(x,t) ' donde, por identificación con la solución básica (2 5.101 ) ,  se define 

(2 5.103) 
(2 5.104) 
(2 5.10 5) 

En general, A, k y w son funciones de x y t .  Sin embargo, en el presente caso en el que el medio no perturbado no depende del tiempo, dado que la ecuación (2 5.99) tiene soluciones con variables separadas, A sólo puede depender de x y W tiene que ser suma de una función de x y otra de t. Además, como se corroborará más adelante, la función de t tiene que ser tal que su derivada (w) tiene que ser constante. Es decir, en el presente caso se tiene 
w(x, t) = S(x) - wt ,  k(x) = v7S(x) , (2 5.10 6) donde w es una constante. Las ecuaciones para las funciones A y k ( o S) se obtienen de sustituir (2 5.104) , con (2 5.10 6 ) ,  en (2 5.99) :  

1 
(a�k2 - w2 )A - a�v72 A - B • v7 A =  i [2a�k • v7 A +  a�Av7 • k + Ak • B] 

1 >. l 
(2 5.107) 

>. 
l , 
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donde se han escrito debajo de la ecuación los órdenes de magnitud relativos de 
los distintos términos, suponiendo que a�k2 ~ w2 . Por consiguiente, en orden 
más bajo (orden relativo unidad) se tiene, formalmente, la misma ecuación 
que la relación de dispersión (25 .102) de una onda plana: 

(25.108) 

aunque esta relación es ahora una ecuación diferencial para la función S(x) ,  

(25.109) 

De esta ecuación se desprende que, en primera aproximación en ')..jl, w no 
puede depender del tiempo, como se ha supuesto. En el siguiente orden (')../l) , 
se tiene 

(25 .110) 

Por último, en orden ')..2 /l2 , se tiene 

(25.111) 

Antes de pasar a resolver formalmente estas ecuaciones,  conviene decir 
unas palabras sobre la naturaleza física de la solución que se está buscando 
y el por qué se denomina este límite acústica geométrica. Si el medio fuese 
uniforme, S(x) = k · x, donde k, que sería constante, representa la dirección 
en la que se propagan los frentes de las ondas planas con frecuencia w, cuya 
fase es k · x - wt, y cuya amplitud permanece constante. Cuando el medio no 
es uniforme, pero la longitud característica de variación del medio es mucho 
mayor que la longitud de onda de las ondas en las que uno está interesado, 
la solución es formalmente muy parecida, pero el vector de onda k y la am­
plitud varían suavemente a medida que la onda se propaga en el medio. La 
función S(x) , denominada eikonal, representa, en cada instante, los frentes de 
onda, de forma que k es el gradiente de S. Se verá que las ecuaciones (25.109)­
(25.110) se pueden reducir , por el método de las características, a un conjunto 
de ecuaciones diferenciales ordinarias sobre un conjunto de curvas x( t) (lla­
madas características), para el vector de onda k, para los frentes de onda S y 
para la amplitud A. De esta forma, uno va construyendo la solución a lo largo 
de esas características x(t) , que son tangentes en todo momento a los vectores 
de onda y representan, por tanto , la dirección de propagación de las ondas, 
la cual va variando suavemente ( en una escala mucho mayor que la longitud 
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de onda) a medida que las ondas se propagan. En el caso de ondas electro­
magnéticas, este límite se denomina óptica geométrica, pues las características 
representan los rayos de luz que, con ecuaciones análogas a las que se verán 
a continuación, se pueden ir trazando a través del medio ligeramente no uni­
forme. Es por ello que este límite se denomina acústica geométrica. Mediante 
el procedimiento que se verá a continuación, uno puede obtener fácilmente la 
dirección de propagación de los frentes de ondas ( que dejan de ser planos y 
de moverse paralelamente a sí mismos) a medida que se va curvando por el 
medio no uniforme, además de todos los demás detalles de la onda, como por 
ejemplo la variación de su amplitud. 

Una ecuación en derivadas parciales de primer orden como (25.109), que 
se escribirá en la forma 

- - - w2 

F(S, k, x) = k • k - 2( 
_

) 
= O , k = '7 S ,  

ao X 
(25 . 112) 

es equivalente a un sistema de ecuaciones diferenciales ordinarias sobre ciertas 
curvas del espacio (características) que, en coordenadas cartesianas, vienen 
dadas por las ecuaciones6 

dx1 
0F/ok1 

(25 . 113) 

Teniendo en cuenta que en el presente caso, de acuerdo con (25.112) , oF/oki = 
2ki , i = 1, 2, 3, usando la variable auxiliar t para recorrer las curvas (25 .113) , 
las características vienen dadas por el conjunto de ecuaciones diferenciales 
ordinarias 

di = 2k. 
dt 

(25.114) 

Se observa que, como se anunció anteriormente, las características son tangen­
tes a los vectores de onda, proporcionando así la dirección de propagación de 
las ondas (perpendicular a los frentes de ondas). La variable auxiliar t ,  que 
es un parámetro usado para recorrer las características, hace las veces de un 
tiempo. Para poder resolver la ecuación (25 . 114) hace falta conocer k sobre 
las características. Teniendo en cuenta que 

(25.115) 

6Ver, por ejemplo, R. Courant and D. Hilbert, 1989, Methods of Mathematical Physics 
(Wiley, Nueva York; reimpresión) ,  vol. 11, capítulo l .  
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x 

Figura 25.4: Características que parten de un frente inicial r. 

de (25.112) se tiene 

dk 2 ( 
1 

) dt = w 'v a�(i) (25. 1 1 6) 

Aunque no hace falta para calcular k sobre las características, uno puede 
obtener también una ecuación para la eikonal S sobre las características: 

dS di - - w2 - = - · V S = 2k • k = - . dt dt a� (25.1 1 7) 

Las ecuaciones diferenciales ordinarias (25. 1 1 4), (25.116) y (25. 1 17) son las 
denominadas ecuaciones características de la ecuación en derivadas parciales 
de primer orden, no lineal, (25.112). Conocido S = So(i) sobre una cierta 
superficie I'(i) = O, estas ecuaciones permiten conocer S(i) en todo el espacio 
integrando las ecuaciones anteriores sobre las características i( t) que parten 
de r (ver figura 25. 4). Si la superficie r representa, como es habitual, el frente 
de onda inicial ( que como se ve no tiene por qué ser plano) en donde S = S0 

es constante, los sucesivos frente de onda en el tiempo se propagan perpendi­
cularmente a las características. Una ecuación que se puede resolver por este 
método de las características, cuyas soluciones se propagan a partir de una 
condición inicial, se dice que es hiperbólica, y a sus soluciones se le llaman 
ondas.7 

Paralelamente se puede obtener la amplitud de las ondas A(i) integrando 
también a lo largo de las características: 

7Se volverá sobre este tema en el capítulo siguiente. 
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- == - · v' A = 2k • v' A = -A v' • k + -dA dx - ( -- B • f) dt dt a� ' 

4 51 

(2 5 . 1 18) 
donde se ha hecho uso de (2 5. 1 10). Para poder resolver esta ecuación hace falta una ecuación para v' • k a lo largo de las características. Sin embargo, es 
más fácil obtener una ecuación para v' k y después hallar su traza: 

d - dx -- -- --v'k = - • v'v'k = 2k • v'v'k ; dt dt 
v'v'k2 = v(2f . v'k) = 2vf . vf + 2f . vvf ; 

:t vf = v'v'k2 - 2vf . vf = w2v'v' ( :� ) - 2vf . vf . (2 5. 1 19) 
Así, conocido a0 (x) y B(x) , (2 5. 1 14) ,  (2 5 . 1 16) ,  (2 5.1 17), (2 5 . 1 18) y (2 5.1 19) permiten obtener x, k, S, A y v'k (17 magnitudes escalares en total) a lo largo de las características partiendo de los valores de S y A sobre r. T éngase en cuenta, además, que todo lo anterior es para una onda monocromática con frecuencia w. Si la onda inicial sobre r tiene una cierta distribución de frecuencias, se puede aplicar el principio de superposición y aplicar el proceso anterior para cada frecuencia. La integración de este sistema de ecuaciones a veces da lugar a superficies donde k se anula, a partir de las cuales ya no es posible continuar de acuerdo con (2 5.1 14). Lo que ocurre en realidad es que la aproximación de la acústica geométrica deja de valer antes de llegar a estas superficies ( denominados cáus­ticos) ,  debido a que la hipótesis 21r / k « l deja de ser válida. Existen métodos aproximados (asintóticos) para resolver la ecuación de ondas original en las proximidades de estos cáusticos y así poder seguir con la acústica geométrica una vez saltado el escollo (ver, por ejemplo, Lighthill, 1978; formalmente es algo parecido a lo que se hace con una onda de choque en la dinámica de gases). Los cáusticos pueden incluso corresponder a superficies del medio no homogeneo que el sonido emitido desde una determinada fuente no puede atra­vesar, delimitando así una zona de silencio. Esto puede ser de importancia, por ejemplo, para que un submarino no pueda ser detectado por un sonar. 
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Capítulo 26 

Ondas no lineales en gases 

En el capítulo anterior se analizó el movimiento de pequeñas perturbacio­
nes en un fluido ideal, cuyo ejemplo más típico son las ondas sonoras. Cuando 
las amplitudes de las perturbaciones no son pequeñas, es decir, cuando son 
del mismo orden que las magnitudes no perturbadas, las ecuaciones lineales 
utilizadas allí dejan de ser válidas. Sin embargo, bajo la hipótesis de flujo 
isentrópico, las soluciones son formalmente parecidas a las obtenidas en el 
problema lineal, aunque el comportamiento físico del fluido es totalmente dis­
tinto. Más concretamente, en el caso unidireccional que se va a considerar 
a continuación, se verá que las ecuaciones son hiperbólicas, cuyas soluciones 
son, bajo ciertas condiciones, ondas que se propagan a una velocidad que es 
igual a la velocidad del fluido más ( o menos) la velocidad local del sonido. 
Sin embargo, como esta velocidad varía de un punto a otro, las ondas se van 

deformando en su propagación, siendo así el comportamiento físico del fluido 
muy diferente al que se tiene en una onda lineal. 

26. 1 .  Flujo unidimensional e isentrópico de un gas 
ideal 

Como el problema es bastante complejo en general, se abordará sólo el 
caso unidimensional. Las ecuaciones que describen la evolución de la velocidad 
,iJ = u(x, t)ex , la densidad p(x, t) y la presión p(x, t) en un flujo isentrópico de 
un gas ideal son [ecuaciones ( 19.4) , (19.5 ) y (19.20)] :  

(26.1) 
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au au ap 

p &t + 
pu ax + ax = o ' (26.2) 

(i + u�) .!!.... =  O ,  (26.3) &t ax p'Y donde , es la relación de calores específicos. Si el fluido parte de un estado inicial homogéneo, la entropía de todas las partículas fluidas es la misma, con lo que uno puede eliminar la presión del problema utilizando 
(26.4) 

siendo a la velocidad local del sonido. De esta forma, las ecuaciones (26.1 )  y (26.2) se pueden escribir en una forma vectorial compacta como 
A • Üt + B • Üx = O , (26. 5 )  

siendo 
Ü = ( � ) (26.6) 

= ( 1 A = o � ) , = ( u B = a2 ; ) (26.7) 
y donde los subíndices t y x representan derivación parcial en relación a esas variables. 
26. 1 . 1 .  Método de  las características. Invariantes de Riemann Se va a resolver la ecuación (26. 5 )  por el método de las características, que consiste en transformar dicha ecuación en un conjunto de ecuaciones di­ferenciales ordinarias sobre ciertas trayectorias del plano ( t, x), denominadas características. Para encontrarlas, tomamos un incremento arbitrario ( dt, dx) en el entorno de un punto (t, x) cualquiera. La correspondiente variación de ü viene dada por 

dü = Üxdx + Ütdt . 
Despejando Üt y sustituyendo en (26. 5 ) ,  se tiene 

B - A - · Ü + A · - = 0 (= = dx ) = dü dt X dt 

(26.8) 
(26.9) 
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Si se multiplica esta ecuación escalarmente por la izquierda por el vector ar­bitrario ">..T = [>.1 , >.2] ,  el problema se reduc; a un conjunto de ecuaciones diferenciales ordinarias si 

(2 6 . 10) 
Este sistema homogéneo de ecuaciones algebráicas para las componentes de X tiene solución si el determinante de la matriz entre paréntesis es igual a cero, proporcionando así dos (en este caso) direcciones dx/dt en el plano (t, x) que son las características del sistema de ecuaciones en derivadas parciales de primer orden (2 6 .5) . Por tanto, las características vienen dadas por 

(- - dx ) det B - A dt = O . (2 6 . 1 1 )  
S i  todas las características son reales y distintas, e l  sistema se dice que es hiperbólico y el método de las características se puede utilizar para hallar soluciones reales del problema. En el presente caso, las dos características son siempre reales y distintas ( el sistema es siempre hiperbólico) ,  y vienen dadas por: 

dx dt = u ± a .  (2 6 . 12) 
De acuerdo con (2 6 .9) ,  a lo largo de estas características ü satisface la ecuación 

(2 6 . 1 3) 
donde la dirección del autovector XT se obtiene de (2 6 . 10) . Para las dos carac­terísticas (2 6 . 12) , el cociente >.¡ / >.2 viene dado, respectivamente, por 

>-1 - = ±a >.2 de forma que las dos ecuaciones características (2 6 . 1 3 )  son: 
dp du a- + p- = O sobre dt dt 

dx 
dx - = u + a  dt 

dp du 
-a- + p- = O sobre dt dt - = u - a dt 

(2 6 . 1 4 )  

(2 6 . 15) 
(2 6 . 1 6 ) 

Estas dos ecuaciones diferenciales ordinarias sobre sus respectivas carac­terísticas (que se han denominado C+ y e_ por simplicidad) se pueden resolver 
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utilizando cualquier técnica analítica o numérica partiendo de una condición 
de contorno o inicial. En general, conocido el valor de ü sobre una curva 
I'(t, x) = O del plano (t, x),  la solución se propaga a lo largo de las característi­
cas C+ y C_. Por ello, las soluciones de un sistema hiperbólico que parte de 
una determinada condición de contorno se suele denominar onda. Por ejem­
plo, en el caso de pequeñas perturbaciones considerado en el capítulo anterior, 
estas ecuaciones se escriben, teniendo en cuenta (25.4)-(25.5) y considerando 
sólo los términos lineales en las pequeñas perturbaciones, 

dp' du ªº dt + Po dt = O sobre dx 
- = ao dt 

dp' du 
-a0 -;¡¡ + Po dt = O sobre 

dx - - -a 
dt - 0 

(26.17) 

(26.18) 

Por tanto, las características son ahora rectas en el plano (t, x) con pendientes 
±a0 , y representan ondas lineales (es decir, que se propagan sin deformación) 
que viajan hacia la derecha y hacia la izquierda con la velocidad del sonido 
no perturbado a0 . De hecho, (26.17) implica que a0p' + p0u es constante sobre 
dx/dt = a0 , y (26.18) que -a0p' + p0u lo es sobre dx/dt = -a0 • Obviamente, 
ésta es la solución dada en la sección 25.2 para una onda plana. 

De manera análoga al caso lineal, las ecuaciones características {26.15)­
(26.16), se pueden escribir de una forma mucho más simple haciendo uso de los 
denominados invariantes de Riemann, que son funciones que se conservan 
a lo largo de las características C+ y C_ , Para encontrarlos, se sustituyen las 
coordenadas (x, t) por coordenadas (a, /3) a lo largo de las características. Es 
decir, se definen las nuevas coordenadas 

a =  a(x, t) 

{3 = {3(x, t) 

(26.19) 

(26.20) 

de tal forma que cuando a =  constante nos movemos por e_ (dx/dt = u - a) , 
mientras que las funciones {3 = constante constituyen las características C+ 
(dx/dt = u + a) .  Así, por definición de a y {3, 

dx f3t Xa - = u + a = - - = -
dt f3x ta ' 
dx ll!t Xf3 
- = u - a = - - = -
dt ax t¡3 

' 

(26.21) 

(26.22) 

donde las últimas igualdades de las dos expresiones anteriores se obtienen de 
dx/dt = x0/t0 cuando /3 = constante, y análogamente cuando a =  constante. 
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Las ecuaciones (2 6.15) y (2 6.1 6 ) junto con (2 6.2 1) - (2 6.22) se pueden escribir como 

apo, + puo, = O 

-ap13 + pu13 = O 

Xa = (u + a)ta 

x13 = (u - a)t13 

(2 6.23) 
(2 6.2 4) 
(2 6.25) 
(2 6.2 6 ) donde se ha tenido en cuenta que, sobre /3 = constante (característica C+) ,  las variaciones de p y u son variaciones con respecto a a, y análogamente en C_. Buscamos funciones r(u, p) y s(u, p) (invariantes de Riemann) que sean constantes en C+ y C_, respectivamente. Claramente, de (2 6 .23), r = u + g, donde 

apo, go, = -
p 

(2 6 .27) 
ya que en ese caso, ro, = O, es decir, r = constante sobre la característica C+ (/3 = constante). Por otro lado, de (2 6 .2 4) , s = -u + g. Es costumbre definir estas funciones como sigue: 

2r = u + g = u +  f P a(p) 
dp = constante sobre /3 = constante ( C+) 

}Po p (2 6 .28) 2s = -u + g = -u + 1
P a(p) 

dp = constante sobre a = constante (C- ) , 
Po p (2 6.29) que es la forma habitual de definir los invariantes de Riemann r = r(a) y 

s = s(/3) , donde el subíndice o se refiere a valores de referencia. En el caso de un gas ideal, la función a(p) es 
(2 6.30) 

donde A = p/ p'Y es una constante. Sustituyendo en (2 6 .28)-(2 6 .29) se tiene 
(2 6.3 1) 
(2 6.32) 
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Es decir, g = 1:_1 (a - a0) .  De estas expresiones está claro que si se utiliza 
(a, u) como variables dependientes en vez de (p, u) ,  el problema se reduce a 

u a - + -- = constante sobre 
2 , - 1  

u a 
2 - 1 _ 1 

= constante sobre 

dx - = u + a  
dt 

dx - = u - a  dt 

(26.33) 

(26.34) 

Obsérvese que en el caso de pequeñas perturbaciones en torno a las condi­
ciones de referencia, los invariantes de Riemann son r = (u + a0p'/p0)/2 = 
[u +p' /(p0a0)] /2 y s = (-u+a0p' / p0)/2 = [-u +p' / (p0a0)]/2, constantes sobre 
las características dx/dt = a0 y dx/dt = -a0 (que ahora son rectas), respec­
tivamente, lo cual obviamente coincide con la solución dada en el capítulo 
anterior para una onda plana. 

26.1.2.  Ondas simples 

Para tener una idea cualitativa de las propiedades de la solución anterior, 
se considerará un problema típico de condiciones iniciales. Supóngase que se 
tiene un medio (por supuesto unidimensional) que está inicialmente en reposo 
y es uniforme ( u = O, p = p0) en todas partes excepto en una región entre 
x = -L y x = L. Conocida la perturbación inicial en -L $ x $ L, se quiere 
saber cómo evoluciona (se propaga) la perturbación. Para ello se dibuja en el 
plano (x, t) las características C+ (dt/dt = u +  a) y e_ (dx/dt = u - a) que 
parten de la recta t = O, donde se conoce u y p (ver figura 26.1). Por supuesto, 
no se pueden dibujar estas curvas sin conocer previamente la solución, pero es 
posible deducir algunas de sus propiedades cualitativas. 

Por ejemplo, a lo largo de curvas C_ , 2s = -u + g es constante, con un 
valor distinto, en general , en cada una de ellas . Sin embargo, como todas las 
características e_ que se originan en x 2': L parten de una región inicialmen­
te en reposo y uniforme (u = O, p  = p0 , g  = O), la constante de todas las 
características a la derecha de la que pasa por x = L, C� , es nula; es decir 

u = g = ¡P a(�')  dp' a la derecha de C� 
Po p 

Por motivos análogos, 

u =  g a la izquierda de C-�L , 

(26.35) 

(26.36) 
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·L L 

Figura 26. 1 :  Típico problema de valor inicial. 

u =  -g a la izquierda de c¡L , 
u =  -g a la derecha de Ci . 
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(2 6.37) (2 6.38) La conjunción de (2 6 .3 5 )  y (2 6.38) nos dice que u = g = O a la derecha de 
C.f, mientras que (2 6.3 6 )  y (2 6 .37) implican que u =  g = O a la izquierda de c-�L, constituyendo estas características los límites del medio no perturbado a lo largo del tiempo ( medio que no ha sido alcanzado por onda alguna). Por otra parte, a partir de un cierto t* , correspondiente al instante en que C� y c¡L intersectan, la región que queda entre C� y C.f'. también cumple que 
u = g = O; es decir, se queda sin perturbar una vez que ha pasado la onda. En otras palabras, en el período O � t < t* , las perturbaciones están mezcladas; cuando t > t*, las perturbaciones se separan y se propagan como dos ondas 
simples, una hacia la derecha y otra hacia la izquierda, dejando una región sin perturbar entre ellas (ver figura 2 6. 1). Una onda simple se define como una solución en la que alguno de los invariantes de Riemann, r ó s ,  es constante. Por ejemplo, en la onda que viaja hacia la derecha entre c¡L y C_f'., a la derecha de C�, se tiene, de (2 6.3 5 ) ,  que 
u = g. Por tanto, en las características C+ de esta onda 2r = u+g = 2u = 2g = constante. Como g es constante, también lo es a, y las características C+ de esta onda son rectas ya que dx/dt = u +  e = constante (figura 2 6. 1 ) .  Algo análogo ocurre con las características e_ de la onda simple que viaja hacia la izquierda. 
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26.2 .  

MECÁNICA DE FLUIDOS 
U(l) 

u 

Figura 26.2: Problema del pistón. 

Ondas simples generadas por el movimiento 
de un pistón. Ondas de choque 

Ondas simples se producen, como se acaba de ver, en problemas de valor 
inicial cuando parte del fluido está inicialmente en reposo y con densidad 
uniforme. Se caracterizan porque uno de los invariantes de Riemann, bien r 
o bien s ,  es constante en todo el dominio (x, t) considerado, dando lugar a 
características rectilíneas. Las ondas simples están siempre, por consiguiente, 
en contacto con alguna zona en reposo del gas, y están delimitadas por un 
par de características. Un ejemplo típico donde se producen ondas simples es 
en el movimiento de un gas en un conducto provocado por el desplazamiento 
de un pistón, si inicialmente el gas se encuentra en reposo y es uniforme. Se 
utilizará este ejemplo para analizar los dos tipos básicos de ondas simples: 
ondas de expansión y ondas de compresión. 

Supóngase que en el interior de un cilindro, que inicialmente contiene un 
gas en reposo con densidad uniforme p0 , existe un pistón en x = O que se 
pone en movimiento en t = O hacia x > O con velocidad U(t). No todas las 
partes del gas se ven afectadas por el movimiento del pistón instantaneamente, 
sino que sendas ondas avanzan desde el pistón hacia ambos lados de él, y 
sólo las partículas que han sido alcanzadas por el frente de estas ondas se 
ven perturbadas de su estado de reposo inicial . En la región del gas de la 
cual se aleja el pistón (región I en la figura 26.2) se produce una onda de 
expansión, cuyo frente de onda se propaga a la velocidad del sonido a0 = 
J,p0/ Po correspondiente al gas en reposo. En la región hacia la cual avanza 
el pistón (región II) se produce una onda de compresión que, como se verá, 
generalmente degenera en una onda de choque. 
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26.2 .1 .  Onda de expansión 

Supóngase que la velocidad del pistón, que originalmente estaba en reposo, 
aumenta hacia un máximo UF < a0 en un cierto tiempo T. En un diagrama (x, t), la trayectoria del pistón sería como la que se indica en la figura 26.3: la 
pendiente dx / dt del pistón iría creciendo desde cero en el origen hasta alcanzar 
un máximo en el punto F, a partir del cual la trayectoria es rectilínea. 

Como todas las características C+ que parten de x < O son rectas con 
pendiente a0 , con el mismo invariante de Riemann r = O, en todo el gas a 
la izquierda del pistón se tiene g = -u. En la región (A) (ver figura 26.3) a 
la izquierda de la característica C<:._ que pasa por el origen se tiene, además, 
que g = u al ser s = O para todas las características e_ que pasan por el eje 
t = O para x < O. Por tanto, en la región (A) el gas está todavía sin perturbar: 
u =  g = O, p = p0 . En la región (B) entre C<:._ y la característica C!. que pasa 
por el punto F, se tiene que, sobre las características e_ ,  -u+g = 2g = -2'u = 
constante; es decir, u = U, g = 'Y.:_1 (a - a0) = -U. Estas características son 
rectas de pendiente 

dx 1 - l , + 1  - = u - a =  U - a  + --U =  --U - a  
dt º 2 2 º (26.39) 

Debe observarse que estas rectas nunca se cortan si U va creciendo (Ú � O). 
Así, la solución en esta región se puede expresar en términos del parámetro T 

(tiempo asociado al movimiento del pistón) de la siguiente forma: 

X - Xp ( T) = ( 1 ; l U ( T) - a0) ( t - T) , 

u =  U(T) ' , - 1 a =  a0 - -
2
-U(T) , 

2 [Pi"(- 1)/2 - (, - l )U(T)
l -y-1 ' 

2J,Po/ pJ 
p = 

P = Po(P/Po)'Y 

(26.40) 

(26.41) 

(26.42) 

(26.43) 

(26.44) 

Es decir, para cada valor de T ,  que corresponde a una determinada posición 
del pistón xp (T) , en el punto x correspondiente a cada instante t > T dado por 
(26.40), la velocidad, densidad y presión vienen dadas por (26 .41), (26 .43) y 
(26.44), respectivamente. 
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Figura 26.3: Características de la onda de expansión. 

Figura 26.4 :  Esquema de los perfiles de densidad y velocidad en la onda simple de expansión. 
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Esta región (B) constituye una onda simple de expansión que se propa­ga hacia x < O con velocidad (, + l )U /2 - a0 , informando así al fluido del movimiento del pistón. Como cada nueva posición del pistón se propaga a una velocidad menor que la anterior (si U va aumentando) , la información no se cruza. Para cada instante t > T, la extensión espacial de esta onda es xp(t ) -x1 (t) (ver figuras 2 6 . 3  y 2 6 .4), donde XF(t) se obtiene de (2 6.40) hacien­do U = UF, r = T, y x¡ (t) = -a0t es el valor de x para U =  O, r = O. Detrás de esta onda [región (C) en la figura 2 6.3], las expresiones (2 6.40)-(2 6.44) si­guen siendo válidas, pero en ellas U = UF = constante (las características C_ son todas paralelas a C�) - Por tanto, después de pasar la onda el gas queda con una velocidad UF constante y con una densidad y una presión uniformes dadas por (2 6.4 3)-(2 6.44) con U = Up. En la figura 2 6 .4 se esquematiza la forma de los perfiles de u(x) y p(x) para un instante t > T. Estos perfiles se obtienen haciendo t = constante (> T en este caso) en (2 6.40), despejando r y sustituyendo en (2 6.4 1)-(2 6.44) [ver ejemplo en la sección 2 6.2.4]. 

26.2.2. Onda de compresión. Onda de choque 

Consideremos ahora la onda de compresión que se produce a la derecha del pistón. En esta zona de compresión s = O, es decir, g = ,,.: 1 (a - a0) = u. Existen tres regiones, (A) , (B) y (C), similares a las anteriores (ver figura 12. 5 ). En la región (A), las características C+ son rectas de pendiente a0 , y en ellas el gas está sin perturbar. En la región (B) se tiene que, sobre las características C+, u +  g = 2u = constante. Es decir, u =  U, a = a0 + 12 1 U.  La pendiente de estas características es 
dx , +  1 - = u +  a = a0 + --U dt 2 (2 6.4 5 )  

Por tanto, opuestamente a lo que ocurre en una onda de expansión, las pen­dientes crecen desde a0 hasta a0 + 1� 1 UF y llegan a cortarse. En otras palabras, a medida que la velocidad del pistón crece, la información viaja más deprisa y se agolpa con la que han salido antes del pistón. Como el cruce de dos ca­racterísticas implica que en un mismo punto el fluido tiene, por ejemplo, dos velocidades distintas (le ha llegado al mismo tiempo informaciones que salie­ron en tiempos distintos del movimiento del pistón) ,  la situación es físicamente imposible. Lo que ocurre en realidad es que entre las dos envolventes de las carac­terísticas que se cruzan se forma una onda de choque o discontinuidad que separa mediante un salto finito de entropía dos regiones de flujo isentrópico. El proceso se puede ver más claramente si observamos la evolución del perfil 
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X 

Figura 26.5: Onda de compresión. Con línea gruesa a trazos se muestra la trayectoria de la 
onda de choque. 

(a) (b) 

u u 

x ei x º x ef x F 

Figura 26.6: Perfiles de velocidad isentrópicos para t < te (a) y t > te (b) . 
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Piston U 
-'----'--ti -

¡., � - - - Onda de choque Gas ·en reposo 

Figura 26.7: Onda de choque producida por el movimiento de un pistón. 
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de velocidad. Antes de que se corten las dos primeras características [lo cual 
ocurre en el punto ( te, Xe) de la figura 26.5] el perfil de velocidad tiene una 
forma tal como se muestra en la figura 26.6(a), que vale U en x = Xp y se anula 
en x = xp. Como u permanece constante para un observador que se mueve con 
velocidad u +  a = a0 + (, + 1 )u/2, que es la velocidad de propagación sobre las 
características, los puntos con mayor velocidad se propagan más rápidamente ,  
de modo que existirá un instante t = te en el que la pendiente ou/ ox se hace 
infinita en algún punto x = Xe - A partir de ese instante, existe una región (in­
tervalo entre Xei y Xef para cada t > te en la figura 26.5)  donde la función u(x) 
es multievaluada [ver figura 26.6(b), que corresponde a la región de la figura 
26.5 donde se cortan las características], lo cual no es físicamente posible. Así, 
a diferencia de una onda simple de expansión, cuyos gradientes espaciales se 
van haciendo cada vez más suaves a medida que se propaga (ver figura 26.4),  
la deformación de una onda simple de compresión es tal que los gradientes 
son cada vez más acusados, hasta que se alcanza una pendiente infinita en 
algún punto. Antes de que esto ocurra, los procesos disipativos comienzan a 
ser importantes en la región donde se producen los máximos gradientes, y el 
proceso ya no puede ser descrito por las ecuaciones isentrópicas (26.1)- (26.3) 
de partida. Desde un punto de vista isentrópico, el problema se simplifica con­
siderando ese cambio brusco como una discontinuidad ( onda de choque) que se 
sitúa en una posición x0 entre Xei y Xef que cumple las relaciones de Rankine­
Hugoniot (para una onda de choque débil se puede demostrar que la onda de 
choque se sitúa en una posición tal que el área a cada lado de la curva u(x) 
en la región multievaluada es la misma; véase más adelante). 

En definitiva, un proceso de compresión isentrópica siempre degenera en 
un problema no isentrópico donde la producción de entropía está restringida a 
una discontinuidad u onda de choque normal. Desde el punto de vista del flujo 
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isentrópico, el problema se reduce a estudiar la evolución de la onda de choque 
que, a partir del instante te , avanza en el medio en reposo no perturbado (ver 
figura 26.7). Las propiedades del fluido justo detrás de la onda de choque 
están relacionadas con las magnitudes del fluido en reposo a través de las 
relaciones de Rankine-Hugoniot (ver capítulo 22). Desde el pistón hasta la 
onda de choque el fluido (comprimido) evoluciona según las características. 

Se considerará primero, por simplicidad, el caso de un pistón que se mueve 
con velocidad U =  constante (figura 26.8). Las características son dos conjun­
tos de rectas con pendientes a0 y a0 + U, respectivamente. La región donde se 
cruzan estas dos familias de características y, por tanto, donde se encuentra 
la trayectoria de la onda de choque, viene delimitada por las dos envolventes x = a0t y x = (a0 + U)t, que parten ambas del origen. En este caso, la onda 
de choque describe una trayectoria recta que es fácil de calcular a partir de las 
relaciones de Rankine-Hugoniot, ya que las magnitudes fluidas detrás de la on­
da son uniformes (en particular, la velocidad del fluido es la del pistón). Si U0 
es la velocidad de la onda de choque, en un sistema de referencia estacionario 
con ella, la ·ecuación (22.28) nos dice que 

(26.46) 

donde 

M _ Uo 
o - ªº (26.47) 

es el número de Mach del flujo incidente a la onda de choque por la derecha 
( uniforme y en reposo para un observador del laboratorio). Conocida la velo­
cidad del pistón U y las magnitudes del flujo en reposo delante de la onda, 
(26.46) proporciona U0 : 

M = r + 1 M ✓ (' + 1 ) 2 
M2 1 0 4 p + 4 p + ' (26.48) 

Las magnitudes fluidas (uniformes) detrás de la onda se obtiene de las otras 
relaciones de Rankine-Hugoniot una vez que M0 es conocido. Por ejemplo, la 
presión PI y la densidad p1 se obtienen de (22.29) y (22.28): PI 

Po 

(, + l)M; PI 
2 + (, - l)M; ' Po 

2,M; + 1 - , , + 1 (26.49) 

Este dispositivo de un pistón que se mueve a velocidad constante en el interior 
de un conducto se suele llamar tubo de choque y, debido a que todas las 
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x=(a 0+U)t 

X Figura 26.8: Onda de compresión para un pistón que se mueve con velocidad constante U. 

propiedades del gas delante y detrás de la onda de choque son uniformes y 
fácilmente calculables, es el que se utiliza normalmente en el laboratorio para 
producir y analizar ondas de choque. 

En el caso general en el que la velocidad del pistón U no es constante, las 
relaciones de Rankine-Hugoniot se aplican localmente en la discontinuidad. 
Delante de la onda de choque, cuya trayectoria x0(t) buscamos, el gas está en 
reposo. Detrás de ella se tienen las características dadas por (26.45), 

[ , + 1  ] x = xp(r) + a0 + -2-U(r) (t - r) , (26.5 0) 

con velocidad 

u(r) = U(r) . (26.5 1)  

Ahora bien, de las ecuaciones de conservación a través de la onda de choque 
(relaciones de Rankine-Hugoniot), teniendo en cuenta que la velocidad del 
fluido justo detrás de la onda de choque es U(r) ,  se deduce que 

(26.52) 

[esta es la misma relación que (26.46)] de forma que la trayectoria de la onda 
de choque viene dada por 
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X (1) 

X 

Figura 26.9: Esquema de la trayectoria de la onda de choque. 

dxo 
= U = 1 + I

U ( ) l [
(, + l)U(T)

]
2 

dt O 4 T + ªº + 4ao 
(26.53) 

Dado U(T), esta ecuación, junto con (26.5 0) aplicada a la posición de la onda 
de choque x0 (t) , proporciona ésta en función del tiempo. De hecho se ob­
tendría paramétricamente en función del parámetro T: para cada t = t0 , el 
par de ecuaciones anteriores permite obtener x0(T) y t0(T), que proporciona 
la trayectoria de la onda de choque x0 (t0) (ver figura 26.9). Las propieda­
des del fluido entre el pistón y la onda de choque se obtienen de acuerdo 
con las características mediante (26.5 0)-(26.51), junto con a = a0 + 12

1 U(T), 

P = Po + [(, - l)U(T)/(2J,Po/ pJ)]2/h--l ) Y P = Po(P/ Po)'Y. 

26.2.3. Onda de choque débil 

Cuando la velocidad del pistón es pequeña en relación a la velocidad del 
sonido a0 , la onda de choque que se forma es débil. En este caso se puede 
obtener una solución analítica si se tiene en cuenta que U(T) « a0 implica 
xp (T) « a0T, por lo que (26.5 0) aplicada a la posición de la onda de choque 
x0 se simplifica: 

(26.5 4) 
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[obsérvese que se ha retenido U ( T) en primer orden]. Derivando, 

dx0 "( + 1 
['Y + 1 • 

] 
dr dt = ªº + -2- U(r) + -2-U(r)t - ªº dt ' 

y comparando con (26.5 3), se obtiene 

'Y + 1 U(r) + [
'Y + 1 Ú(r)t - a ] dr = O 

4 2 º dt 
Multiplicando por U ( r) , esta ecuación se puede integrar: 

469 

(26.5 5 )  

(26. 5 6) 

(26. 5 7) 

(26.58) 

(26.5 9) 

Una vez calculado t0 , de (26.5 4) se obtiene x0 • Si U(O) > O, la onda de choque 
empieza en t = O, es decir, se forma en el instante en que se empieza a mover 
el pistón, estando en los instantes iniciales descrita por 

y 

4a0r t ~ ----
("! + l)U(O) ' 

[ 
,y + l  

] x0 (t) rv a0 + -4
-U(O) 

La velocidad inicial de la onda es 

dx0 = 'Y + 1 U(O) dt ª
0 + 4 

(26.60) 

(26.61) 

(26.62) 

Sólo si U(O) = O la onda de choque puede no producirse en el instante inicial 
( véase ejemplo siguiente). 

26.2.4. Ejemplo: pistón con aceleración constante 

Para ilustrar las ondas simples de compresión y de expansión analizadas 
anteriormente, se considerará a continuación el caso en el que la velocidad del 
pistón es lineal en el tiempo, U =  bt. Suponiendo que el pistón parte de x = O, 
la trayectoria del pistón viene dada por 
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u 

X 

o 

Figura 26. 10: Esquema de los perfiles de velocidad a la derecha y a la izquierda de un pistón 
que se mueve con aceleración constante b antes de la formación de una onda de choque en 
la zona de compresión. 

bt2 
Xp(t) = 2 . (26. 63) 

En la zona de expansión, x < xp(t), sustituyendo U(r) y xp (r) en (26.40)­
(26.41) , se tiene 

Eliminando el parámetro T , se obtiene u( t, x) : 

(26.64) 

bt2 
x <

2
. 

(26.65) 
La velocidad del gas disminuye monótonamente desde u = U = bt en x = 
xp(t) = bt2/2, hasta cero en x = -a0t (ver figura 26.10). Para x < -a0t,  el 
gas permanece sin perturbar, ya que x = -a0t es la primera característica que 
sale del pistón que va informando al gas de su movimiento (ver figura 26.3). 
Las demás magnitudes fluidas se obtienen de (26.42) -(26.44). 

A la derecha del pistón, x > xp (t) = bt2 /2, antes de que se forme la 
onda de choque, la velocidad del gas se obtiene de forma análoga sustituyendo 
U(r) = lYr y xp (r) = br2 /2 en (26.5 0)-(26.51): 

bt2 
x > - . 

2 
(26.66) 
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El gas pasa ahora de la velocidad del pistón en x = xp (t ) ,  a la velocidad 
nula en x = a0t que, como antes, es la primera característica que sale del 
pistón en la zona de compresión, que va informando al gas del movimiento del 
mismo. Sin embargo, esto deja de ser cierto en cuanto se forma una onda de 
choque, que siempre viaja a una velocidad supersónica en relación al gas no 
perturbado, dx0/dt > a0 . En el presente ejemplo, el instante de formación de 
la onda de choque se puede estimar fácilmente hallando 8u/8x y obteniendo 
el punto ( te , Xe ) que primero hace infinita esa derivada. Se encuentra que esto 
ocurre en la parte frontal de la onda de compresión, donde u = O, para 

2ao Xe = a0te con te = 

b(, + l ) 
(26.67) 

Por tanto, la solución obtenida a la derecha del pistón vale para t < te . A partir 
de este instante, se forma una onda de choque cuya trayectoria x0 (t) se obtiene 
eliminando r entre (26.50) , aplicada a x  = x0 , y (26.53) ,  usando la velocidad 
y la trayectoria del pistón del presente ejemplo. El perfil de velocidad en la 
zona del gas comprimido entre el pistón y la onda de choque se obtiene igual 
que antes de (26.50)-(26.51 ) .  El hecho de haber usado la relación de Rankine­
Hugoniot (26.52) asegura que la velocidad del gas justo detrás de la onda de 
choque, en x = x0 (t) , es la apropiada para que el gas pase a tener velocidad 
nula delante de la onda de choque. 

26.3. Onda esférica tras una explosión intensa 
Se ha visto que el movimiento unidireccional e isentrópico de un gas viene 

gobernado por ecuaciones hiperbólicas que se pueden integrar en general de 
forma analítica usando el método de las características. Particular atención se 
ha prestado a las soluciones denominadas ondas simples. En cuanto el flujo 
deja de ser unidireccional, las ecuaciones isentrópicas dejan de ser hiperbólicas, 
salvo que el flujo sea supersónico, en cuyo caso también se puede aplicar el 
método de las características para obtener soluciones casi analíticas del pro­
blema (ver, por ejemplo, Anderson, 1990, capítulo 1 1) .  Otro movimiento de 
interés que permite obtener soluciones analíticas (en este caso de semejanza) 
es el movimiento puramente radial con simetría esférica. Como ejemplo signi­
ficativo se considerará en esta sección el problema idealizado del movimiento 
del gas tras una explosión instantánea y puntual en la que una cantidad finita 
de energía E se libera en el centro de la explosión. 

Inicialmente, el gas se supone en reposo, con presión Po y densidad Po , ex­
cepto en el centro de la explosión. Las ecuaciones que gobiernan el movimiento 
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puramente radial, v = u(r, t)er, son: 

(26.68) 

(26. 69) 

(26.70) 

Dada la naturaleza ideal del problema , en el que una energía finita se libera 
instantáneamente (en t = O) en un punto (r = O), la solución no puede ser 
regular en t = O. Por otro lado, el flujo no puede ser isentrópico para todo r 
debido a que las ondas no lineales de compresión generadas por la explosión 
producen casi instantáneamente una onda de choque que avanza supersónica­
mente sobre el medio no perturbado ( en cualquier caso, la onda de choque se 
forma en los instantes iniciales en los que la solución ideal que se va buscando 
no vale). Por tanto, para cada instante t > O, las ecuaciones anteriores se apli­
carán a la re�ión O < r < R(t) limitada por una onda de choque esférica de 
radio R(t) que avanza como una discontinuidad con velocidad U =  dR/dt > a0 
sobre el gas en reposo no perturbado. Designando con el subíndice 1 a las pro­
piedades del flujo justo detrás de la onda de choque esférica [en r = R(t)-] ,  las 
relaciones de Rankine-Hugoniot , suponiendo que la onda de choque producida 
por la explosión es muy intensa, proporciona (ver sección 22.6.2): 

, + 1 PI = --1 Po, , - 2 2 PI = ' + I pºU ' U = dR - dt . (26.71) 

La condición adicional para obtener R(t) es que la energía total del fluido en 
todo instante se conserva y es igual a la energía E liberada en la explosión. 
Como la energía total por unidad de volumen vale p(u2 /2 + evT) = p[u2 /2 + p/(, - l)p] ,  esta condición se escribe 

41r {R(t) 
p 
[u

2

2 
+ _l_ p_l r2dr = constante = E . lo , - 1 P 

Las condiciones iniciales son: 

p(r, O) = Po , p(r, O) = O ,  u(r, O) = O (r f= O) , 

(26. 72) 

(26. 73) 

donde, dada la linealidad en la presión de las ecuaciones , se ha sustituido p 
por p - Po • Por último, como no puede existir flujo en el punto central después 
de la explosión , 
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v (O, t) = O (t > O) .  (26.7 4) 

El análisis dimensional del problema anterior muestra que las distintas 
magnitudes fluidas, p, p y u, dependen de t, r, E, p0 y 1. El radio R de la onda 
de choque depende de esos mismos parámetros, excepto de r. Por tanto, el 
teorema II permite reducir el número de variables independientes de 5 a sólo 
2 variables adimensionales, que son I y 

(26.75)  

Es decir , las magnitudes del problema no dependen de r y de t por separado, 
sino de una combinación de ambas dada por �, que es la variable de semejanza 
del problema. Como variables dependientes adimensionales se eligen P, D y V, definidas mediante 

(26. 7 6) 

mientras que el radio de la onda de choque y su velocidad adimensionales son 

(26.7 7)  

Por tanto, un simple análisis dimensional proporciona la posición en función 
del tiempo y la velocidad de la onda de choque salvo por una constante 6 que 
depende de 1. Además, las magnitudes del gas comprimido dentro de la onda 
de choque satisfacen un conjunto ele ecuaciones diferenciales ordinarias, que 
se obtienen de sustituir (26.75)- (26. 76) en (26.68)-(26.70) :  

dV 
( 

2
) 

ln D 
dln �  + V - 5 ln � + 3V = O' 

( 2) dV dP V -
5 

D
d ln � + dln � + DV(V - l) + P = 0 ,  

_d_ (ln �) -
2(1 - V)

= O .  
d ln � D'Y V - 2/5 

(26. 78) 

(26. 7 9) 

(26.80) 

Las condiciones de contorno adimensionales justo detrás de la onda de choque 
(26. 7 1) se escriben: 

P(t:-) -
8 

'>l - 25 (, + 1) ' 
(26.81) 
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Por otro lado, la condición (26. 72) se escribe 

(26.82) 

mientras que la condición (26.74) se satisface idénticamente siempre que V(� = 
O) sea finita ( obsérvese que la solución de semejanza no vale para t -+ O, por 
lo que no se pueden imponer las condiciones iniciales). 

Este problema tiene una solución analítica que se puede expresar como 
sigue: 1 

donde 

( 
� 

)
-S 2 ( 

3-y - 1 
) ª ( 

5 
) 

b 

fa = C1 V 1 - -2-V 2-yV - 1 , 

13-y2 - 7-y + 12 3 a - ------- (3-y - 1)(2-y + 1) ' b = -
5 (-y - 1) 
2-y + 1 ' e = 

2-y + 1 ' 

d = _ 13-y2 - 7-y + 12 
(2 - -y)(3-y - 1)(2-y + 1) 

e - - --- 2 - , ' 

ª1 = [�
(-y + l)

r 
[

5

�,,_+,,
1)

r (�� �r . 

C2 = ( 'Y + l
)

c+e+l 
[
5(-y + l)

]
d

, 
, - 1 7 - -y  

(26.83) 

(26.84) 

(26.85) 

El valor de 6 en función de -y se obtiene de sustituir esta solución en la 
condición integral (26.82). Por ejemplo, para -y =  1,4 se tiene que (1 � 1,033.  

1 Esta solución de  semejanza fue obtenida, independiente y simultáneamente, por Taylor 
y por von Neumann en 1941.  Taylor resolvió numéricamente el sistema de ecuaciones dife­
renciales ordinarias, mientras que la solución analítica que se da a continuación se debe a 
von Neumann. 
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0.5 

o 0.5 r/R 

Figura 26. 1 1 :  Esquema de la solución de semejanza (26.83)-(26.85). 

La solución anterior se esquematiza en la figura 26. 1 1 ,  donde se representa p(r, t)/p1 (t) = ({/6 )2 P({)/  P(6 ) ,  p(r, t)/ Pi (t) = D({)/ D(6) y u(r, t)/ui (t) = ({/6 )V({)/V(6) en función de r/ R(t) = {/6 -
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TEORIA DE LA CAPA 

LIMITE 





Capítulo 27 

Capa límite laminar 

incompresible 

27. 1 .  Introducción 
Hasta principios del siglo XX las teorías que describen los flujos viscosos y 

los flujos ideales se habían desarrollado prácticamente por separado. En rela­
ción a esta última, las ecuaciones fueron establecidas por Euler hacia 175 5 ,  y 
otros avances capitales fueron hechos por Helmholtz (1858) sobre la vorticidad 
y por Kelvin (1869), con su teorema de la circulación. La teoría de los fluidos 
ideales tuvo un gran éxito en relación a la descripción de las ondas sonoras 
y de los diversos tipos de ondas en líquidos, así como en otros muchos ti­
pos flujos, como se puede apreciar, por ejemplo, en el libro Hydrodynamics de 
H. Lamb, cuya primera edición data de 18 7 9  y en cuya quinta edición (1924) 
Lamb añadió un extenso capítulo sobre los flujos viscosos. En cambio, la teoría 
ideal predice que la resistencia que un fluido ejerce sobre un cuerpo sólido en 
movimiento en su seno es nula, lo cual es aproximadamente cierto para flujos 
de fluidos con viscosidad pequeña (más concretamente, para flujos con núme­
ros de Reynolds alto) sobre cuerpos fuselados, pero es estrepitosamente falso 
para flujos sobre cuerpos romos, donde, además, la forma del flujo detrás del 
cuerpo no tiene nada que ver con las predicciones de la teoría ideal , por muy 
pequeña que sea la viscosidad del fluido (véase el capítulo 21 y el final de éste). 

En cuanto a la teoría de los flujos viscosos, aunque ya Newton postuló una 
relación entre los esfuerzos y la velocidad de deformación a finales del siglo XVII, las ecuaciones del movimiento no fueron establecidas hasta los trabajos 
de Navier (1822) , Poisson ( 1829), Saint-Venant (1843) y fundamentalmente 
Stokes (1845) ;  este último obtubo además muchas soluciones exactas elemen -
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tales para diversos tipos de flujos viscosos. Stokes (1851) también estableció la 
teoría de lo que ahora se llama flujo a número de Reynolds pequeño. Otros 
avances importantes fueron hechos por Hele-Shaw (1898 ) ,  quien realizó nota­
bles experimentos con líneas de corriente que se asemejan a las de los flujos 
irrotacionales, y por Reynolds (1883) , con sus magníficos experimentos sobre 
la transición turbulenta. 

Detrás de toda esta disyuntiva entre los flujos viscosos y los flujos idea­
les subyacía el problema de la condición de contorno de no deslizamiento de 
un fluido sobre superficies sólidas. Stokes había postulado esta condición de 
contorno y, tras los experimentos de Hagen (1839) y Poiseuille (1840) y los tra­
bajos teóricos del propio Stokes y de Hagenbach y Neumann (1859) ,  no cabía 
duda de que esta hipótesis era cierta , al menos para flujos lentos o reptan­
tes. Sin embargo, para los flujos de fluidos con pequeña viscosidad alrededor 
de cuerpos, todavía a principios del siglo XX existía incertidumbre sobre la 
validez de esta hipótesis y no era ni mucho menos aceptada, a pesar de que 
los flujos predichos (y sobre todo la resistencia) por la teoría ideal no tenían 
nada que ver con los resultados experimentales en la mayoría de las ocasiones. 
A esta incertidumbre contribuyeron dos factores principales. Por un lado, las 
ecuaciones de los fluidos ideales ( ecuaciones de Euler) , a diferencia de las de 
N avier-Stokes, no permitían imponer la condición de contorno de no desliza­
miento del fluido sobre superficies sólidas (si la superficie era impermeable, 
sobre ellas se suponía simplemente que la componente de la velocidad normal 
a la misma era cero) ,  ya que en las ecuaciones de Euler no aparecen los térmi­
nos viscosos con derivadas de segundo orden en la velocidad; dado el éxito de 
las ecuaciones de Euler en describir algunos flujos reales, no parecía que esta 
condición fuese necesaria. Por otra parte, era conocido que cuando la teoría 
ideal predecía una presión absoluta negativa en algun punto de un líquido, 
como ocurre, por ejemplo, en el flujo detrás de una esquina pronunciada de 
una superficie sólida,1 en realidad se formaban burbujas de vapor, el líquido 
cavitaba; de esta forma se explicaba porqué el flujo de un líquido después de un 
cambio brusco en la superficie de un sólido se parecía tan poco al predicho por 
la teoría ideal: la cavitación era la responsable de la separación del flujo . Así, 
en el caso más evidente en que la teoría ideal fallaba, había una explicación 
sencilla del motivo. Esta explicación ( que, por cierto, no podía ser válida para 
gases) oscurecía el panorama y retrasó la explicación viscosa de la separación 
del flujo. 

No fue hasta que Prandtl , en un cortísimo artículo de menos de ocho pági-

1 Detrás de estas esquinas la teoría ideal predice una velocidad infinita y, de acuerdo con 
el teorema de Bernoulli, la presión es infinitamente negativa (ver capítulo 21) .  
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nas que presentó en un congreso celebrado en Heidelberg en 1904, introdujo 
el concepto de capa límite, que estas paradojas no se resolvieron. Prandtl 
estableció que cerca de las paredes sólidas los efectos viscosos son siempre 
importantes, por muy pequeña que sea la viscosidad del fluido, y son los res­
ponsables de que se cumpla la condición de no deslizamiento del fluido sobre 
la superficie sólida. Así, los flujos de fluidos con viscosidad pequeña (flujos 
a número de Reynolds grande diríamos ahora) constan de dos regiones dife­
renciadas: una externa donde el fluido se puede considerar como ideal, y una 
capa límite delgada, alrededor de las superfices sólidas, donde los efectos vis­
cosos son importantes, no porque la viscosidad sea mayor allí, sino porque el 
gradiente de la velocidad normal a la superficie es muy acusado al ser una 
capa muy delgada. De esta forma, Prandtl esclareció el panorama, unificando 
las hasta entonces dos inconexas ciencias de los fluidos ideales y de los flui­
dos viscosos, y por ello se le considera el padre de la moderna Mecánica de 
Fluidos. En su cortísimo pero intenso artículo, Prandtl no sólo introdujo el 
concepto de capa límite, sino que predijo su espesor (proporcional a la raíz 
cuadrada de la viscosidad y que, por tanto, tiende a cero cuando µ - O; de 
hecho Prandtl predijo cuantitativamente el espesor de la capa límite sobre una 
placa plana; ver secciones siguientes) ,  introdujo la variable de semejanza para 
la capa límite sobre una placa plana e integró numéricamente la ecuación di­
ferencial ordinaria resultante (solución de Blasius que se verá más adelante), 
obteniendo una expresión para la resistencia, etc. También explicó ( cualitati­
vamente) el fenómeno de la separación de la capa límite, comentando como 
el flujo de un fluido de viscosidad prácticamente nula podría ser totalmente 
distinto al predicho por la teoría ideal debido a este fenómeno de la separación 
de la corriente (ver sección 27.5) .  A pesar de lo fundamental del artículo, sus 
ideas no fueron conocidas hasta bastantes años más tarde fuera de su grupo, 
debido, sobre todo, a lo condensado y escondido de la publicación. A medida 
que estas ideas se fueron entendiendo y difundiendo, la Mecánica de Fluidos 
avanzó de forma considerable, no sólo desde el punto de vista teórico, sino, 
sobre todo, en sus aspectos más prácticos y tecnológicos. 

La idea de la capa límite está ahora muy extendida y se aplica en muchos 
problemas en casi todas las ramas de la ciencia, ya que desde un punto de 
vista matemático surge como consecuencia de cualquier simplificación de las 
ecuaciones diferenciales que gobiernan un determinado proceso que elimina 
los términos con derivadas de mayor orden; lejos del contorno las ecuaciones 
simplificadas son válidas, pero cerca del contorno (al menos en parte de él) 
hay que retener los términos despreciados para poder imponer todas las con­
diciones de contorno. A pesar de ello, el problema es mucho más simple que el 
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original puesto que las ecuaciones completas ( con el término que es pequeño 
fuera del contorno) sólo son necesarias en una capa límite muy delgada en las 
proximidades del contorno, que además se simplifican debido a la delgadez del 
dominio (en las secciones 14.1. 4  y 14.1.5 se vieron dos ejemplos sencillos de 
capa límite). En esta lección se considerará sólo la capa límite laminar (la tur­bulenta será considerada más adelante) y estacionaria de un fluido incompre­
sible. Se verán algunas de las soluciones más simples y se discutirá brevemente 
el fenómeno de la separación de la capa límite y su influencia en la resisten­
cia. En la lección siguiente se tratará, de forma muy concisa, la capa límite 
térmica,2 también para un fluido incompresible, más que nada para introducir 
la importante analogía de Reynolds. El lector interesado en otros aspectos de 
la teoría de la capa límite puede consultar, por ejemplo, las monografías de 
Rosenhead (1988) y de Schlichting y Gersten (2000). 

27.2 .  Ecuaciones y condiciones de contorno 

Las ecuaciones en el interior de la capa límite se simplifican, principalmen­
te, por el hecho de que el espesor de la misma ( cuyo orden de magnitud se 
designará por 6) es mucho menor que cualquier otra escala de longitud del pro­
blema, como, por ejemplo, la longitud característica que define el movimiento 
a lo largo de la superficie, L, o el radio de la curvatura característico de la 
superficie, R. Suponiendo que el movimiento es bidimensional, esta última 
condición (6 « R) nos permite utilizar coordenadas cartesianas (x, y) ,  donde 
x es la coordenada (no necesariamente rectilínea) a lo largo de la superficie e 
y es la coordenada normal a la misma(ver figura 27.1).3 

Considerando sólo el problema de la capa límite viscosa o de velocidad, 
es decir, considerando sólo las ecuaciones de continuidad y cantidad de movi­
miento, que se suponen desacopladas de la ecuación de la energía (flujo con 
propiedades constantes), las ecuaciones de partida son: 

(27.1) 

2El fenómeno es análogo al de la capa límite viscosa: cuando Pe » 1 ,  al eliminar el término 
de conducción de calor de la ecuación de la energía, no se puede imponer la condición de 
contorno de la temperatura sobre una superfici� sólida, por lo que existe una capa límite 
térmica donde el efecto de la conducción es importante, permitiendo satisfacer la condición 
de contorno. Esta capa límite permite calcular el flujo de calor intercambiado entre el fluido 
y la pared sólida, que de acuerdo con la teoría ideal sería nulo. 

3 A este resultado se puede llegar rigurosamente tomando coordenadas curvilíneas a lo 
largo de la superficie sólida y aplicando la simplificación de capa límite; pero es bastante 
evidente y no merece la pena tomarse la molestia. 
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Figura 27. 1 :  Capa límite bidimensional sobre una superficie. 
(27.2) 

(27. 3 ) 

donde v = uex + vey , Si, como se ha dicho, 8 y L son las longitudes carac­
terísticas en las direcciones y y x, respectivamente, y V0 y U0 las velocidades 
características en esas mismas direcciones, de la ecuación de continuidad se 
tiene 

(27.4) 

por lo que el movimiento en la capa límite es casi unidireccional. Por otro 
lado, las derivadas con respecto a x en los términos viscosos de las ecuaciones 
son claramente despreciables frente a las otras derivadas con respecto a y, con 
errores de orden ( 8 / L )2 « l. Por último, la variación transversal de la presión 
en la capa límite es también despreciable frente a la variación longitudinal de 
la misma: b..rp pVº2 ( 8 ) 2 

-- ~ -- ~ - « l .  b..LP pU; L (27.5) 

De esta forma, la ecuación de cantidad de movimiento en la dirección y es 
prácticamente irrelevante y puede sustituirse por 8p/8y = O; es decir, p es 
sólo función de x y viene dada por el movimiento (ideal) externo a la capa 
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límite. Suponiendo que u = Ue (x) lejos de la superficie (en la escala r5 de la 
capa límite), la ecuación de Bernoulli proporciona 

(27.6) 

Con todas estas simplificaciones, las ecuaciones que gobiernan el movimiento 
en el interior de una capa límite bidimensional, incompresible y estacionaria 
son: 

au av ax + ay = o ,  
au au dUe a2u u ax + V ay = Ue dx + 11 ay2 , 

(27.7) 

(27.8) 

que son las ecuaciones que escribió Prandtl en su artículo antes mencionado 
(por supuesto, sin deducirlas allí, pues el reducido espacio del mismo no daba 
para tanto). Como condiciones de contorno hay que imponer la condición de 
no deslizamiento en la pared, 

u(x, O) = v(x, O) = O , 
la condición de acople con la solución ideal exterior, 

u(x, y) ---.  Ue(x) , y/8 - oo ,  

y una condición inicial para u, 
u(xo , y) = Uo (Y) • 

(27.9) 

(27.10) 

(27.11) 

De la ecuación de cantidad de movimiento en la dirección x se puede de­
ducir el orden de magnitud del espesor de la capa límite sin más que comparar 
los términos convectivos y de fuerzas viscosas, que deben ser del mismo orden 
por la propia definición de capa límite: 

au au U; a2u 11U0 u- ~ v- ~ - ~ 11- ~ --ax ay L ay2 r52 ' 

r5 
( 11 ) 

1/2 1 
L ~ UoL = Re112 • 

(27.12) 

(27.13) 

Así, r5 / L - O cuando Re - oo, como ya sabíamos. De esta forma, a pesar 
de que II es muy pequeño, la rápida variación de u en una distancia r5 tan 
pequeña (proporcial a 11112 ) es suficiente para que el término viscoso no sea 
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despreciable. Debe observarse también que el acoplamiento con la solución 
exterior [condición (27.10)] no es para y - oo, sino y/v112 - oo; es decir, 
para y muy grande en relación a la escala de la capa límite, pero pequeño en 
relación a la escala exterior L.  

El proceso de resolución de un problema en la aproximación de capa límite 
sería el siguiente (para el caso presente de un flujo estacionario,  bidimensional 
e incompresible alrededor de un cuerpo) : dado el contorno del cuerpo y las 
condiciones aguas arriba (p00, ii'00) ,  las ecuaciones de Euler proporcionarían 
los campos de velocidad y de presión (y de temperatura dada T00 , pero de 
momento nos olvidamos de ella) ideales o solución externa. En particular, esta 
solución nos daría la presión p(x) y la velocidad Ue (x) a lo largo de la su­
perficie del cuerpo, donde Ue no cumple la condición de no deslizamiento, en 
general. Conocido Ue ( x), las ecuaciones y condiciones de contorno de la capa 
límite (27 .7)-(27.11) proporcionarían el campo de velocidad en las proximida­
des de la superficie, con lo que quedaría resuelto el problema completo. Esta 
solución nos permite calcular, por ejemplo, la fuerza de fricción que el fluido 
ejerce sobre el cuerpo, que, por unidad de área, sería r¡ = µou/oyly=O·  La 
fuerza de presión viene directamente dada por la solución ideal p(x), puesto 
que la presión permanece prácticamente constante a través de la capa límite 
( esto último no sería cierto si la capa límite se separase, ver secciones 27.5 y 
27.6). Se observa que este proceso de solución aproximado es mucho más sim­
ple que el de resolver las ecuaciones completas de N avier- Stokes, pues tanto 
las ecuaciones para flujos ideales de Euler, como las de capa límite de Prandtl, 
son bastante más simples; los errores cometidos serían del orden del espesor 
de la capa límite, fJ/L ~ Re-112 « 1 (en el supuesto de que no se separe la 
capa límite). En general, para una forma arbitraria de la superficie [es decir, 
para una forma arbitraria de Ue (x) ] ,  las ecuaciones de la capa límite se tienen 
que resolver numéricamente. Sin embargo, existen varios casos sencillos, que 
tienen también bastante importancia práctica, en los que se puede reducir el 
sistema de ecuaciones en derivadas parciales (27.7)-(27 .8) a una única ecua­
ción diferencial ordinaria, por lo que la velocidad en la capa límite se obtiene 
de forma casi analítica. A estos casos particulares se dedicarán las dos seccio­
nes siguientes, cuyos resultados tienen, como se verá, una trascendencia más 
allá de esos meros problemas particulares. También existen métodos aproxima­
dos (integrales) de solución de las ecuaciones de capa límite para una función 
Ue (x) arbitraria que son muy precisos y fáciles de implementar, pero que no 
serán tratados aquí ( ver referencias). 
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Figura 27.2: Capa límite sobre una placa plana con ángulo de incidencia nulo. 

27 .3. Capa límite sobre una placa plana. Solución 
de Blasius 

Considérese el problema de una corriente sobre una placa plana semiinfinita 
con ángulo de incidencia nulo, de forma que la velocidad del fluido ideal no se 
ve afectado por ella: Ue = constante = U. Las ecuaciones para la capa límite 
(27.7)-(27.8) se reducen a 

au av 
- o ax + ay -

au au 82u 
U ax + V ay = 1/ {)y2 • 

De (27.9)-(27.11), las condiciones de contorno son: 

u =  v = O, y =  O; u ___.  U, y/ó ___. oo; u =  U, x = O . 

(27.14) 

(27.15) 

(27. 1 6) 

Este problema tiene solución de semejanza: u/U no es una función de x y de y por separado, sino de una cierta combinación de ambas variables 
independientes. Físicamente, la semejanza de la solución está basada en el 
hecho de que no hay ninguna longitud característica definida en el problema, 
por lo que u/U debe ser una función de y/ó(x) ,  donde, de acuerdo con la 
discusión de la sección anterior, ó(x)/x ~ Jv/Ux, es decir, ó(x) ~ Jvx/U. 
Desde un punto de vista matemático, la solución de semejanza está basada 
en la invariancia del problema frente a algún tipo de transformación de las 
variables. Para encontrarla, lo primero que se debe hacer es escribir el problema 
en forma adimensional ,  definiendo las variables (las cuales provienen de un 
simple análisis dimensional): 

u 
u = 

c/.>1 (�, () ' 

� =  Ux 
- ' 

1/ 

V u = 
c/.>2 (�, () ' (27 .17) 

( = Uy . (27 .18) 
1/ 
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Sustituyendo en (27 .14)- (27.16), se tiene 

(27.1 9) 

(27.20) 

(27.21) 

Se puede comprobar que si [</>1 (�, (), </>2 (�, ()] es una solución del problema, 
[</>1 (02�, a(), a-1 </>2 (a2�, a()] también lo es, para cualquier valor del número 
real a. Es decir, el problema es invariante frente al grupo de transformaciones e = a2�, (* = a(, <Pi = <Pi, <P2 = a-1 12, que contiene un único parámetro 
a. Esta invariancia sugiere el uso de las siguientes variables de semejanza 
( eliminando a en las transformaciones anteriores) : 

- ( y 
r¡ = ./f. = 

Jvx/U ' 

91 (r¡) = </>1 , 92 (r¡) = vÍf.</>2 • 

(27.22) 

(27.23) 

Con estas variables, (27 . 19)-(27 .21) se convierte en un problema de ecuaciones 
diferenciales ordinarias: 

' 1 ' 92 - 2T/91 = o , 

" 1 ' ' o 91 + 2,T/9191 - 9291 = , 

91 (00) = 1 ,  91 (0) = 92 (0) = O, 

donde las primas significan derivadas con respecto a r¡. 
Antes de seguir, es conveniente utilizar la función de corriente 'ljJ, 

U = o'ljJ/oy , V =  -O'lpjOX , 

(27 .24) 

(27.25) 

(27.26) 

(27.27) 

en términos de la cual la ecuación de continuidad (27.14) se satisface idéntica­
mente. También es conveniente, para simplificar la ecuación que resultará al 
final, redefinir la variable de semejanza r¡ dividiendo (27.22) por \/'2: 

r¡ = y 
- J2vx/U 

(27.28) 
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De (27.27)-(27.28), junto con (27 .17) y (27.23) , se tiene 

'1/; = lay udy = fo11 U91 (17) J2vx/Ud17 , 
por lo que es conveniente definir 

1P [11 f(17) = v2vUx = lo 91 (17)d17 . 
En términos de f, las componentes de la velocidad son: 

Es decir, 

; = !'(17) ' 
a'I/J a � �u v = -- = - - [v 2vUxf(17)] = -[-f + 17Í ] • ax ax 2x 

91 = !' 92 = � [-f + 17 !'] · 

(27 .29) 

{27.30) 

{27.31) 

{27.32) 

(27.33) 

Sustituyendo en {27.24)-(27.26), teniendo en cuenta la redefinición de r¡, se 
llega a 

!"' + J" f = o ' 
f ( 0) = J' ( 0) = 0 , !' ( oo) = 1 . 

{27.34) 

(27.35) 

Esta es la llamada ecuación de Blasius, un discípulo de Prandtl que la derivó y 
resolvió en 1908. Obsérvese que las dos últimas condiciones de contorno (27.16) 
se reducen a la última {27.35). La solución numérica de este problema para !'(17) = u/U se muestra en la figura 27.3. En ella se aprecia que u/U tiende a 
la unidad para 17 de orden unidad, lo cual corrobora que el espesor de la capa 
límite es del orden de Jvx/U. De hecho, la integración numérica nos dice que u/U = 0,97 para 17 = 3, e igual a 0,999936 para r¡ = 5 .  Normalmente se define 
el espesor 8(x) de la capa límite como el valor de y para el cual u/U = 0,99, 
que corresponde a r¡ ::::  3,5 ; es decir, 

8(x) :::: 4 ,9 5 Jvx/U . (27.36) 

Conviene decir aquí algunas palabras sobre la integración numérica de 
la ecuación de Blasius. Ésta se puede hacer por el método del disparo: se 
parte del origen 17 = O con J(0) = f' (0) = O, y con un determinado valor 
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Figura 27.3: Perfil de la velocidad en la capa límite sobre una placa plana. 
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de f"(ü) = a; utilizando cualquier algoritmo numérico, se integra la ecuación 
hasta r¡ ___, oo; el valor de a se va variando hasta que se cumple la otra condición 
de contorno f' ( r¡ ---, oo) ___, l. Sin embargo, la integración se puede hacer de 
una manera más elegante aprovechando dos invariancias más del problema 
que reducen (27.34) a una ecuación diferencial ordinaria de primer orden. La 
primera invariancia es frente a cualquier traslación de r¡ , pues en (27.34) no 
aparece explícitamente la variable independiente r¡. Esto permite reducir el 
orden de la ecuación definiendo 

df w = -- dr¡
' 

que transforma (27.34)-(27.35) en 

d2w ( dw) 2 dw w 
df2 + df + f df 

= 
O ' 

w(O) = O , w(oo) = l .  

(27.37) 

(27.38) 

(27.39) 

Un segundo grupo de transformaciones que dejan invariante (27.38)-(27.39) es 
w* = f32w, f* = /3!, para cualquier /3. Eliminando /3, se obtienen las nuevas 
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variables 

que transforman (27.38) en 

dt t(s + t + l)  
ds s(2s - t) • 

(27.40) 

(27.41) 

La solución que interesa es la que viniendo del infinito ( s --+ oo, t --+ oo), que 
corresponde a la superficie de la placa 7J = O, llega al origen (s = O, t = O) , que 
corresponde a 7J --+  oo. Obsérvese que ambos son puntos singulares de (2 7.41) , 
que hay que analizar previamente para poder salir numéricamente de ellos. 

A veces en lugar del espesor (27.36) se utiliza el denominado espesor de 
desplazamiento de la capa límite, 81 ( x) , definido como el espesor que hay que 
desplazar de la superficie la corriente exterior uniforme para que proporcione 
el mismo caudal: 

t
:,o 

udy = roo 
Udy ; 

lo ló1 
r00 

( u ) fivx r00 
81 = 

lo 
1 - U dy = V U lo [1 - !'(1J)]d1J . 

De los resultados numéricos se obtiene 

81 � 1,72Jvx/U 

El esfuerzo de fricción sobre la placa es 

4 

(811, 8v) (ªu) � ,, r¡ = µ -a + -a � µ -a = µU -
2 

f (o) . y X y� y y� � 

De la integración numérica se obtiene f"(0) = 0,4696, quedando 

r;;;:¡;i TJ � 0,332v � . 

(27.42) 

(27.43) 

(27.44) 

(2 7 .45) 

Este resultado se puede usar para calcular de forma aproximada la resistencia 
que ofrece un fluido de densidad p y viscosidad µ al movimiento con velocidad 

4Se suelen definir otros espesores de capa límite muy útiles para la resolución aproximada 
por métodos integrales, que no vamos a dar aquí (ver, por ejemplo, Schlichting y Gersten, 
2000) .  
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U de una placa plana de longitud L con ángulo de ataque nulo, siempre que L 
sea muy grande en relación a 8(L) ~ JvL/U (o, lo que es lo mismo, Re112 » 1, 
donde Re está basado en L) . Por unidad de longitud transversal al movimiento, 
y teniendo en cuenta las dos caras de la placa, se tiene la fuerza de resistencia: 

F = 2 fo
L 

r¡dx '.:::'. 1,328✓ pµLU3 . 

Se suele definir el coeficiente de fricción 

F 
C¡ = pU2L/2 '.:::'. 2,656Re-1/2 LU Re = - . 

1/ 

(27.46) 

(27.47) 

Este resultado se puede incluso utilizar para estimar la resistencia de cuer­
pos fuselados, siempre que la capa límite no se separe (ver sección 27 .5). Es 
interesante notar que la fuerza de resistencia es proporcional a U312, ley po­
tencial intermedia entre la lineal para flujos muy viscosos (ley de Stokes) y la 
cuadrática para flujos turbulentos desarrollados (ver más adelante). 

27 .4.  Otras soluciones de semejanza. Solución de 
Falkner-Skan 

Se ha visto que las ecuaciones de capa límite (27.7)-(27.8) se reducen a 
una sola ecuación diferencial ordinaria cuando Ue (x) = constante, correspon­
diente a la capa límite sobre una placa plana con ángulo de incidencia nulo. 
Esta simplificación se produce también para ciertos tipos de funciones Ue (x) , 
correspondientes a diversos flujos externos. De hecho, la búsqueda de formas de 
Ue ( x) que permiten una solución en términos de una única variable r¡ = y/ g( x) ,  
donde, obviamente, g(x) depende de Ue (x) , se puede hacer de una forma sis­
temática y rigurosa. Aquí se resume sólo un grupo de ellas, correspondientes 
a un flujo externo dado por 

(27 . 48) 

que modelan el flujo ideal sobre una cuña bidimensional de ángulo 1r(3, donde 
(3 vale 

(3 = 2m / ( m + 1) , (27.49) 

siendo U0 la velocidad aguas arriba de la cuña (figura 27.4; ver sección 21.6.5). 
Por un procedimiento análogo al de la sección anterior ( cuyo desarrollo se deja 
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Figura 27.4: Esquema de la capa límite sobre una cuña bidimensional. 

como ejercicio al alumno), se llega a las siguientes variables de semejanza y 
ecuaciones: 

✓m + 1 Uo (m-1 )/2 r¡ = y -- -X 
2 1/ 

7/J = ✓ �V:o
l x

(m+ l )/2 J(r¡) ' 

U = Ue (X )J
' 
(r¡) , 

J"' + f f" + f)( l  - /2 ) = O ,  

f ( 0) = J' ( 0) = 0 , J' ( oo) = 1 , 

(27.5 0) 

(27.5 1) 

(27.5 2) 

(27.53) 

(27.5 4) 

donde u0 = U0/ Lm. Esta solución de semejanza de capa límite fue encontrada 
por Falkner y Skan en 1930. Obsérvese que para m = O (f) = O) equivale a la 
capa límite sobre una placa plana de la sección anterior. Otro límite interesante 
es m = 1, correspondiente a la capa límite sobre una placa plana normal al 
movimiento (ángulo de la cuña igual a 1r). En la figura 27 .5  se representan 
algunas soluciones. 

27.5 .  Separación de la capa límite 

En la capa límite sobre la superficie de un cuerpo con forma arbitraria la 
presión no es constante, como ocurre en la placa plana, sino que, al existir una 
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Figura 27.5: Algunos perfiles de velocidad en la capa límite sobre una cuña bidimensional (figura tomada de Schlichting y Gersten, 2000) . 

velocidad externa a la capa límite que depende de x, Ue (x), existen gradientes 
de presión a lo largo de la capa límite. La resolución de las ecuaciones (27 . 7)­
(27.8) con un término dp/dx = -pUedUe/dx arbitrario se suele hacer por 
métodos integrales aproximados, que no se van a tratar aquí, o por integración 
numérica directa de las ecuaciones. Lo que sí se verá a continuación es, de forma 
cualitativa, el fenómeno del desprendimiento o separación de la capa límite y 
su relación con los gradientes adversos de presión. 

Considérese, por ejemplo, el flujo alrededor de un cuerpo a Re » l (figura 
27.6). Si no existiese separación de la corriente , habría dos puntos de remanso 
en el flujo, uno en el borde de ataque (R1 en figura 27 . 6) y otro en el lado 
opuesto ( R2) .  En estos puntos la velocidad es cero y la presión, de acuerdo 
con el teorema de Bernoulli, p + pv2 /2 = constante, sería máxima. En los 
puntos de anchura máxima del cuerpo en relación a la corriente incidente 
(puntos marcados con A en la figura), la velocidad es máxima y la presión es 
mínima. Por tanto, la presión p(x) en la capa límite decrece desde R1 hasta A y vuelve a crecer desde A hasta R2 .5 Sin embargo, en la zona donde la 
presión crece , la capa límite no siempre permanece adherida al cuerpo y se 
puede producir el fenómeno de separación de la capa límite; en otras palabras, 
cuando existe un gradiente adverso de presión, puede ocurrir que la suma de las 
fuerzas de fricción en la pared y de presión adversa contrarresten la cantidad 

5Si la teoría ideal fuese correcta esto daría lugar a una resistencia de presión igual a cero, lo que constituye la llamada paradoja de D'Alambert (ver capítulo 21) .  
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Figura 27.6: Separación de la capa límite. (a) Flujo alrededor de un cuerpo con separación. (b) Forma de las líneas de corriente cerca del punto de separación. (c) Perfiles de velocidad cerca del punto de separación (PI = punto de inflexión). 

de movimiento del fluido, llegando a provocar una corriente invertida cerca de 
la pared, separando la capa límite de la misma. Para analizar este fenómeno 
se escribe la ecuación de cantidad de movimiento de la capa límite (27.8) justo 
en la pared (y = O), donde u =  v = O: 

-:: + µ (:2�) = o . y 
y=O 

(27 .5 5 )  

Si se produce la separación de la capa límite (inversión del movimiento cerca 
de la pared), su inicio o punto de separación viene definido por (ou/8y)y=O = O 
(ver figura 27.6); es decir, el esfuerzo de fricción debe ser nulo en ese punto. 
Cuando el gradiente de presión es favorable (dp/dx < O), de la ecuación an­
terior se tiene que (82u/8y2 ) y=O < O, implicando que {J2u/8y2 < O en toda la 
capa límite, y no se puede producir un punto de separación (ver figura 27 .7). 
Sin embargo, si el gradiente de presión es adverso (dp/dx > O), como 82u/8y2 

debe ser negativo lejos de la pared, existe un punto de inflexión (82u/oy2 = O) 
en el perfil de velocidad en la capa límite (figura 27.7) ;  este punto de inflexión 
no implica que se produzca el punto de separación de la capa límite, pero sí 
es una condición necesaria para ello. La existencia de un gradiente adverso de 
presión es, por tanto, condición necesaria, pero no suficiente, para la separa­
ción de la capa límite. Generalmente, si dp/dx > O la separación ocurre. El 
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y y y 
y 

l A  
u 8u/8y 02u/8y2 u 8u/8y 

dp/dx < O dp/dx > O 

Figura 27.7: Perfil de velocidad en la capa límite con dp/dx < O y dp/dx > O. 

que lo haga mucho antes del punto R2 o muy cerca de él depende de cómo de 
intenso sea el gradiente adverso de presión, es decir, de la forma del cuerpo. 
Por tanto, la fuerza de resistencia de un cuerpo depende mucho de su forma 
(lo cual es bastante intuitivo; ver sección siguiente). 

Como se aprecia en el esquema de la figura 27.8, la separación de la capa 
límite no sólo se produce en flujos externos alrededor de cuerpos, sino también 
en flujos internos en conductos, siempre que exista un gradiente adverso de 
presión, es decir, una zona divergente del conducto. 

27.6. Resistencias de fricción y de presión 

Como se apuntó en la sección 17 .1 la fuerza de resistencia que un de­
terminado fluido ejerce sobre un cuerpo que se mueve en su seno se suele 
descomponer en dos sumandos, uno correspondiente a las fuerzas viscosas y 
otro a las fuerzas de presión sobre la superficie del cuerpo: 

(27.5 6) 

Ya se vió (lección 17) que para Re « 1, estas fuerzas son proporcionales a la 
velocidad relativa del cuerpo. Para el caso de una esfera la fuerza total viene 
dada por la ley de Stokes [ecuación (17.45)], donde 2/3 de la resistencia es 
debida a la viscosidad y el tercio restante es resistencia de presión. 

Para fluidos ideales ( Re --+ oo), no existe resistencia de fricción y la re­
sistencia de presión se demostra que es nula (ver capítulo 21), por lo que la 
fuerza de resistencia de un cuerpo que se mueve ( estacionariamente) en un flui­
do ideal es cero. Evidentemente, esto no es cierto para flujos reales, por muy 
grande que sea el número de Reynolds. Por un lado siempre existe una resis­
tencia de fricción asociada a la condición de no deslizamiento entre el fluido y 



496 MECÁNICA DE FLUIDOS 

.. - ·Capa limite 

Nucleo no viscoso 

dp/dx=O 

Figura 27.8: Separación de la capa límite en una tobera convergente-divergente. 

la pared sólida. Esta resistencia se calcula resolviendo la capa límite viscosa 
adyacente a la superficie del cuerpo , de la que ya hemos visto el caso de una 
placa plana con ángulo de incidencia nulo, cuya resistencia viscosa [ecuación 
(27. 46)] se puede utizar aproximadamente para cuerpos fuselados, donde los 
gradientes de presión son pequeños. Por otra parte, aunque la presión en la 
capa límite coincide prácticamente ( cuando Re » 1) con la presión exterior 
dada por la teoría ideal , la resistencia de presión no es nula, como predice di­
cha teoría, puesto que la capa límite se desprende en el movimiento alrededor 
de un cuerpo cerrado. Por consiguiente, en la parte posterior del cuerpo la 
corriente se separa y los efectos viscosos dejan de estar confinados en una capa 
delgada, para afectar a una fracción importante del fluido , formándose lo que 
se denomina una estela (ver , por ejemplo, la figura 21. 12) . Cuando el cuerpo 
es fuselado (ver, por ejemplo , la figura 21.8), los gradientes de presión son 
muy suaves y la corriente se separa casi al final del cuerpo , siendo 8.8Í muy 
pequeña la resistencia de presión en relación a la de fricción. En estos casos la 
corriente exterior predicha por la teoría ideal se aproxima bastante a la real, y 
la única corrección necesaria a esa teoría es la resistencia de fricción calculada 
por la teoría de capa límite. Por el contrario, cuando el cuerpo es romo, los 
gradientes de presión son tan acusados que la capa límite se separa en cuanto 
éstos comienzan a ser adversos (puntos de máxima velocidad A de la figura 
27. 6) o incluso antes, como ocurre en el caso de un cilindro circular (ver figura 
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Figura 27.9: Resistencia de un cuerpo bidimensional fuselado a Re = 106 . (a) Efecto del 
espesor relativo en el porcentaje de la resistencia de fricción. (b) Coeficiente de resistencia 
total basado en dos áreas diferentes, frontal y de planta (tomada de White, 1983) .  

21.13). Detrás del punto de separación el flujo no es irrotacional , sino que la 
viscosidad afecta a todo el fluido, y se forma una estela que suele ser turbulen­
ta. En ella la presión es prácticamente constante y aproximadamente igual a la 
presión del punto de separación, que, por otra parte , coincide prácticamente 
con la presión mínima que se alcanza en los puntos A. Por consiguiente , la 
diferencia entre las presiones en las partes frontal y trasera del cuerpo es bas­
tante grande, dando lugar a una fuerza de presión que suele ser mucho mayor 
que la resistencia de fricción. A la resistencia de presión también se le suele 
llamar de forma puesto que, como se acaba ver, depende casi exclusivamente 
de la forma del cuerpo. 

Resumiendo, en un cuerpo fuselado la resistencia suele ser pequeña y es una 
resistencia de fricción casi exclusivamente. En un cuerpo romo la resistencia 
suele ser grande debido a que la resistencia de presión es mucho mayor que la 
de fricción. Esto se aprecia muy bien en la figura 27.9, donde se representa el 
coeficiente de fricción CD, definido por 
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Figura 27.10: Coeficiente de resistencia para un cilindro circular y una esfera en función 
del número de Reynolds. La línea de trazos representa el coeficiente CD¡ debido sólo a la 
resistencia de fricción para un cilindro circular. (Figura tomada de Roy, 1988). 

CD = 
½PV2A 

= CD¡ + CDp (27 .5 7) 

donde A es un área característica, para el flujo alrededor de un perfil bidi­
mensional con diferentes relaciones entre el espesor t y la cuerda c. Mediante 
análisis dimensional se puede demostrar fácilmente que CD es función exclu­
sivamente del número de Reynolds para un fluido incompresible (los datos de 
la figura están tomados para Re = 106). Se observa que el porcentaje de la 
resistencia de presión crece desde el cero por ciento para t / e --+ O (placa plana) 
hasta el 97 por ciento para t/c = 1 (cilindro circular) . Se observa también que 
CD (basado en el área longitudinal, definida por el producto de la cuerda y la 
envergadura) es mucho menor para la placa plana que para el cilindro circular. 

En la figura 27.10 se representa el coeficiente CD para un cilindro circular 
y una esfera en función del número de Reynolds. Para Re pequeño, CD viene 
dado por las expresiones ( 17 .47) y ( 17. 79), para esfera y cilindro, respectiva­
mente. A medida que Re aumenta, la importancia de la resistencia de forma 
va creciendo, como se aprecia comparando con la curva de trazos, que repre­
senta exclusivamente la resistencia de fricción para el cilindro circular . Para 
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Re alto (Re > 103 , aproximadamente) ,  Cn permanece prácticamente constan­te e igual a 0, 4 para la esfera y entre 1 y 1 .2 para el cilindro.6 Sin embargo, para Re � 2 x 105 , la resistencia cae bruscamente. Este paradógico efecto es debido a que se produce la transición de la capa límite laminar [gobernada por las ecuaciones (27.7)-(27.8)] a la turbulenta (que se considerará en lecciones posteriores). Aunque, como se verá, la resistencia de fricción de la capa límite turbulenta es mucho mayor que la de la capa límite laminar, la cantidad de movimiento en la capa límite turbulenta es mayor cerca de la pared, con lo que se retrasa la separación de la capa límite para un mismo gradiente adverso de presión (una misma forma del cuerpo; en la figura 2 1 . 1 3  se aprecia muy bien este efecto). En otras palabras, en una capa límite turbulenta es necesario un gradiente adverso de presión más acusado para que se separe la corriente, en relación a la capa límite laminar, ya que la cantidad de movimiento que tiene que vencer es mayor. Como la resistencia es mayormente de forma, el efecto global de la transición de capa límite laminar a turbulenta es una disminución de la resistencia total. 7 
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(hoyuelos) facilitan la transición a la turbulencia, reduciendo la resistencia a la cuarta parte, 
aproximadamente. 





Capítulo 28 

Capa límite térmica 

incompresible 

28. 1 .  Introducción 

En esta breve lección se tratará la capa límite térmica en el límite en que 
los efectos de compresibilidad y de disipación viscosa son muy pequeños. El 
objetivo principal es introducir la importante analogía de Reynolds. También 
se verá la solución de semejanza de la capa límite térmica correspondiente a la 
capa límite viscosa considerada en la sección 27 .4, que incluye la capa límite 
sobre una placa plana como caso particular. Por último , se discutirá cualita­
tivamente la generalización de la analogía de Reynolds en flujos compresibles. 

Como ya se vio en la lección 19, los efectos de conducción de calor son 
despreciables en la ecuación de la energía cuando el número de Peclet, Pe = 
RePr = UL/a, es mucho mayor que la unidad. Sin embargo,  cerca de las 
superficies sólidas la conducción de calor debe ser importante en orden a que 
se pueda imponer la condición de contorno de igualdad de temperatura entre 
la pared y el fluido inmediatamente adyacente. Por ello existe una capa límite 
térmica, de espesor ór pequeño comparado con la longitud característica L,  
donde la conducción de calor es  tan importante como la convección de energía. 
Esta condición nos da el orden de magnitud del espesor de la capa límite 
térmica: 

pv · \le ~  \7 · (K\7T) , pUep 
6.T ~ K6.T 
L 8} 

(28 . 1) 

donde 6.T es una diferencia de temperatura característica entre la pared y la 
corriente exterior. Se tiene así que 
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ÓT jK 1 
L ~ Y -¡;¡;z;u = 

Pel/2 
« 1 (Pe » 1 )  (28.2) 

Comparando este espesor con el de la capa límite viscosa, óv/ L ~ Re-112 , se 
obtiene 

(28.3) 

Así, para la mayoría de los fluidos (los gases, el agua y otros líquidos comunes) 
en los que Pr = 0(1), ór ~ óv. Para líquidos muy viscosos (aceites, glicerina, 
etc.) cuyo número de Prandtl es muy alto, la capa límite térmica es mucho más 
delgada que la viscosa. Por el contrario, para los metales líquidos (Pr « 1), 
el espesor de la capa límite térmica es mucho mayor que el de la viscosa. 

La importancia del estudio de la capa límite térmica reside en el hecho 
de que es esencial para calcular el intercambio de calor entre un sólido y un 
fluido que circula por su superficie (cuando Pe » 1). Como se verá, en algunas 
ocasiones las ecuaciones de la capa límite térmica son semejantes a las de la 
capa límite mecánica o de velocidad tratada en la lección anterior y las solu­
ciones para la velocidad (fricción) se pueden extrapolar para la temperatura 
(conducción de calor). 

28.2. Ecuaciones y condiciones de contorno 
Suponiendo que la capa límite es bidimensional y estacionaria, y utilizando 

la misma notación y las mismas aproximaciones que se consideraron en la 
lección anterior, las ecuaciones que gobiernan el flujo de un fluido compresible 
en la capa límite son: 

o(pu) o(pv) 
- o 

ax + 
é)y - ' 

p (u ou + V 
ou

) = - dp + � 
(µ 

au
) ox oy dx oy oy 

( oh oh) dp a ( aT) (ªu) 2 

p u- + v- = u- + - K- + µ  -
ox oy dx oy oy oy 

Estas ecuaciones están sujetas a las siguientes condiciones de contorno: 

y =  O, u =  v = O, T = Tp (x) ; 

y/8 - oo , u = Ue (x) , T = Te (x) ; 

(28.4) 
(28.5) 

(28.6) 

(28.7) 
(28.8) 



CAPÍTULO 28. CAPA LÍMITE TÉRMICA INCOMPRESIBLE 503 

(28.9) donde Tp (x) es la temperatura de la pared y Te y Ue son la temperatura y velocidad en el borde exterior de la capa límite. Estas últimas magnitudes están relacionadas con la presión exterior p(x) (que como se sabe coincide con la presión en la capa límite al ser despreciable su variación transversal en el interior de la misma) mediante las ecuaciones de Euler: 
(28.10) 
(28.11 )  

En el caso de un fluido incompresible con viscosidad constante, la ecuación de la energía (28. 6) está desacoplada de las ecuaciones mecánicas y se puede resolver una vez que se tiene la solución de la capa límite de velocidad. En las secciones siguientes se considerará este límite en el caso en que, además, los términos de trabajo de presión y de disipación viscosa son despreciables. 
28.3. Capa límite térmica incompresible. Analogía 

de Reynolds 

Los términos udp/dx y µ(8u/8y)2 son despreciables frente a pu8h/8x en la ecuación ( 28. 6) si 
u2 eplTp � Te l « l , (28.12) 

donde se ha hecho uso de óv/ L ~ Re- 112 . Para los líquidos, dado que la capa­cidad calorífica suele ser muy alta, la condición anterior se satisface práctica­mente siempre. Para los gases ideales se puede escribir en la forma 
M2 ITp - Te l « (, - l)Te ' (28.1 3 )  

donde M2 = U; /,R9Te es el número de Mach de la corriente exterior. Si se verifica además que 
(28.1 4) o menor, se tiene que M2 « 1 y el gas se puede considerar incompresible. Con estas condiciones, las ecuaciones (28.4)- (28.6) se simplifican a: 
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au av 

- o 
ax + 

ay - ' 

au au dUe a2u 
u 

ax + V ay = Ue dx + V ay2 ' 

fJT fJT V a2T 
U ax + V ay 

= 
Pr ay2 ' 

donde se ha supuesto, además, que µ, K y Cp son constantes. 

(28 . 15) 

(28 . 16) 

(28. 17) 

Se observa que la ecuación de la energía es igual que la ecuación de cantidad 
de movimiento (intercambiando u por T) si Pr = 1 y si Ue = constante = U 
(placa plana). Para que esta analogía sea completa deben ser también iguales 
las condiciones de contorno. Esto se puede conseguir utilizando las variables 
adimensionales 

u 
u = U 

- V R 1/2 V =  - e u r¡ = '!!... Re 1 12 
L 

(28. 18) 
suponiendo que Tp y Te, al igual que U, son constantes, donde Re = U L /v. 
En efecto, en términos de esas variables y con las hipótesis anteriores, las 
ecuaciones de cantidad de movimiento y energía y sus respectivas condiciones 
de contorno quedan 

au au a2u 
u a� + v ar¡ 

= ar¡
2 ' 

aT aT a2T u a� + v ar¡ 
= ar¡

2 ' 

r¡ = 0  , u = v = 0  

� = O , u = l 

(28 . 19) 

(28.20) 

(28.21 )  

(28.22) 

(28.23) 

donde se ha supuesto, además, que en x = O u = U y T = Te. Así, conocida la 
solución de la capa límite viscosa ( que en este caso viene dada por la solución 
de semejanza de Blasius) automáticamente se tiene la solución de la capa 
límite térmica sin más que igualar u =  T. Esta es la denominada analogía de 
Reynolds, que como se ve es estrictamente válida para un fluido con Pr = 1 
en una capa límite estacionaria sobre una placa plana con TTJ y Te constantes y 
que verifican (28.12) -(28.14). En estos supuestos , se puede deducir el flujo de 
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calor en función del esfuerzo de fricción en la pared. Para ello se suele definir 
el denominado número de Stanton 

Sta = qp , 
pUeep(Te - Tp) 

que relaciona el flujo de calor conducido desde la pared al fluido,  

q - -K (8T) 
P - ay y=O 

(28 .24) 

(28.25) 

con el convectado por la corriente. Teniendo en cuenta que u = T, se tiene 

qp = -K ( ªT
) = _ KRe112 (Tp - Te) 

(
ªT

) ay y=o L ar¡ r¡=o 

= _ KRe 112 (Tp - Te) (ou) = _ K(Tp - Te) 
(

ªu
) = K(Te - Tp) 

Tf L ar¡ .,.,=o u ay y=o ¡tU ' 
(28.26) 

donde T¡ = µ(au/ay)y=O es el esfuerzo de fricción. Definiendo el coeficiente de 
fricción local 

Tf C¡ = lpu2 , 
2 e 

(28.27) 

y teniendo en cuenta que Pr = l, se llega a la expresión habitual más simple 
de la analogía de Reynolds 

Sta = C¡/2 . (28 .28) 

Esta expresión es local , es decir, tanto Sta como C¡ dependen de x. Si uno 
usa el resultado (27 . 45) ,  

C¡ '.::::'. 0,664Re; 1/2 , (28.29) 

la analogía de Reynolds (28 .28) se escribe 

Sta '.::::'. 0,332Re; 1/2 . (28.30) 

También, de forma aproximada se puede usar para hallar el flujo de calor total 
intercambiado por el fluido con una placa plana de longitud L.  Definiendo 

2
1

L Q StaL = -
L 

Sta dx = U , (T. _ T, ) 
, 

O P eCp e p 
(28.31) 
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donde Q es el calor intercambiado (por ambas caras de la placa) por unidad 
de longitud, y usando (27 .47), se llega a 

StaL '.::::'. 1,328Re- 1/2 , Re = pUeL
. 

µ 
(28 .32) 

A veces, en lugar del número de Stanton, se utiliza el número de Nusselt 
como parámetro adimensional relacionado con el flujo de calor, que para una 
placa de longitud L se define como 

Nu = Q = PrReStaL . K(Te -Tp) (28.33) 

Para el caso Pr = 1 que se está considerando aquí, la analogía de Reynolds se 
escribiría 

1 
Nu = 2ReC¡ '.::::'. 1,328 Vlk .  (28 .34) 

Obviamente, esta analogía no sería muy útil si sólo sirviese para fluidos 
con Pr = l .  Por ello, en la siguiente sección, se generalizará para cualquier 
valor de Pr. Para que el resultado sea algo más general, se usará el ejemplo 
considerado· en la sección 27 .4, que incluye la capa límite de Blasius sobre una 
placa plana como caso particular y tiene solución de semejanza. 

28.4. Analogía de Reynolds para cualquier Pr 
Considérese el flujo potencial sobre una cuña bidimensional (27 .48) (ver 

figura 27 .4) :  

(28.35) 

Si la temperatura Tp de la pared y la temperatura exterior Te son constantes1 

y se cumple la condición (28 .12) de capa límite térmica incompresible, usando 
las definiciones (27 .50)-(27 .51) junto con 

(28 .36) 

1 Los resultados que se dan a continuación se generalizan sin mucha dificultad al caso en el que Te y Tp son, como Ue , funciones potenciales de x, con potencias en general distintas a m, pues el problema también admite solución de semejanza. Ver, por ejemplo, Schlichting y Gersten (2000) .  
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las ecuaciones (28.15 )-(28.1 7 )  y sus correspondientes condiciones de contorno 
tienen solución de semejanza gobernada por las siguientes ecuaciones diferen­
ciales ordinarias y condiciones de contorno: 

!"' + JJ" + ,6(1 - J'2) = 0 ,  

0" + Pr f 0' = O ,  

f(0) = J'(0) = O , J'(oo) = 1 ,  

0(0) = O ,  0(00) = 1 .  

(28 .3 7 )  

(28 .38)  

(28.39) 

(28 . 40) 

La ecuación (28.37 )  está desacoplada de (28 .38) y su solución está representada 
en la figura 27 .5 para algunos valores de m. Una vez que f(r¡) es conocida, la 
ecuación (28 .38) se puede integrar formalmente: 

0' = 0' (O) exp ( -Pr fo
r¡ 

Jdr¡) (28 .41) 

0 = 0' (O) fo
r¡ 

exp (-Pr fo
r¡ 

f dr¡) dr¡ . (28 . 42) 

Como aquí sólo nos interesa la analogía de Reynolds entre el flujo de calor 
y el esfuerzo de fricción, de la solución anterior sólo se necesita 0'(0) , junto 
con f"(0) . En efecto, de las expresiones para r¡ y Qp se tiene: 

= (ºu) = u2 (m + l)v
f"(O) T¡ µ 8 p e 2U Y y=O eX 

(m + l)v 
0,(0) . 2Uex 

(28 . 43) 

(28.44) 

Sustituyendo en las definiciones de C¡ y Sta (28 .27 ) y {28.24) , se obtiene una 
generalización de la analogía de Reynolds para el presente caso: 

c1 _ 1 01 (0) Sta = 2Pr 
f

" (O) • (28.45 ) 

El valor de 0'(0) se obtiene de (28 .42) sustituyendo la condición de contorno 
0(00) = 1: 
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(28.46) 

El. cociente 0' (0)/ f"(O) es una función del número de Prandtl y de /3 que se 
puede obtener numéricamente. Sin embargo, es posible obtener una relación 
explícita aproximada suponiendo que la contribución principal de la integral (28.46) proviene de las proximidades de r¡ = O, con lo que se puede utilizar el 
primer término del desarrollo de Taylor de f(r¡), 

( ) 1 " ( ) 2 f r¡ = 2J 0 r¡ + . . . . (28.47) 
Esta aproximación es razonable debido a que la exponencial en (28.46) decae 
muy rápidamente a medida que r¡ crece. En todo caso, es tanto más exacta 
cuanto mayor sea el número de Prandtl [recuérdese que si Pr » l , de acuerdo 
con (28.3) , la capa límite térmica es mucho más delgada que la capa límite 
viscosa, por lo que sólo valores pequeños de r¡ son necesarios para hallar 0( r¡), 
lo cual es evidente en (28.42)] . Sustituyendo (28.47) en (28.46) se llega a 

[0' (0)¡ -1  � {':,o e-Prf"(O)r,3/6dr¡ = f(l/3) [ 6 ] 1/3 lo - 3 Pr f"(O) ' 
donde r es la función Gamma. Por tanto , 

(28.48) 

Sta � C¡ 3 [J"(o) ¡ -2/3 Pr-2!3 � [f" (0) ] -213 
C Pr-2!3 (28.49) 2 f(l/3)61/3 0,48 f ' 

donde J" (O) sólo depende de /3. En el caso de una placa plana ( es decir, 
/3 = O), se vió que J"(O) � 0,47, por lo que se recupera , aproximadamente, la 
analogía de Reynolds (28.28) ,  pero incluyendo la dependencia explícita con Pr. 
No coincide exactamente porque se ha supuesto que Pr » l. Sin embargo, se 
observa que aproximadamente vale incluso para Pr = l. Por ello, es costumbre 
escribir la analogía de Reynolds como 

[!"(O) ] -2/3 
Sta � -- C Pr-213 

O 47  f ' , (28.50) 
que es aproximadamente válida para cualquier valor de Pr. Para una placa 
plana, si uno usa (28.29) , se tiene 

(28.51) 
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Por último, (28.3 4) se convierte en 

Nu '.::= l, 3 28Re112 Pr1 13. (28.52) 

Aunque las expresiones anteriores sólo valen cuando Te y Tp son constan­
tes, se suelen usar aproximadamente cuando Ue (x), Tp (x) y Te (x) son funciones 
suaves de x. Por otra parte, la analogía de Reynolds se puede generalizar, sin 
complicarla demasiado (por supuesto, de forma aproximada), a capas límites 
no incompresibles [cuando no se verifican las hipótesis (28.12)-(28.1 4)]. Sin en­
trar en detalles ( el alumno interesado puede consultar, por ejemplo, Schlichting 
y Gersten, 2000, capítulo X I I I), las expresiones anteriores para la analogía de 
Reynolds son aproximadamente válidas si se redefine el número de Stanton 
como 

Sta = Qp 
pUeep(Tpo - Tp) 

donde T po es una especie de temperatura de remanso, 

u2 
Tpo = Te + r-e , 

2ep 

(28.5 3 ) 

(28.54) 

siendo r el denominado factor de recuperación, que es igual a Pr1 12 para una 
capa límite laminar e igual a Pr1 13 para una capa límite turbulenta ( de las que 
se hablará más adelante). De esta forma, existe transferencia de calor desde 
la pared al fluido (por ejemplo) si Tp es mayor, no que Te , sino que Tpo , que 
por ello se denomina la temperatura adiabática de la pared. 

Para terminar es conveniente señalar que el uso de analogías es muy fre­
cuente en los cálculos ingenieriles, no sólo entre la transferencia de calor y la 
fricción, sino también con respecto a la transferencia de masa. Una recopila­
ción de muchas de ellas se pueden encontrar, por ejemplo, en Bird, Stewart y 
Lightfoot (1960). 
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Parte IX 

FLUJOS TURBULENTOS 





Capítulo 29 

Introducción a la turbulencia 

29. 1 .  Propiedades de los flujos turbulentos 

La mayoría de los flujos que se presentan en la Naturaleza y en las apli­
caciones ingenieriles y tecnológicas son turbulentos. Desde las corrientes de 
agua en rios y canales hasta casi todos los flujos que se producen en la indus­
tria química, donde la eficacia de la mezcla fluida es un requisito importante, 
pasando por innumerables tipos de flujos. El flujo laminar es la excepción, 
no la regla; sólo se produce para altas viscosidades, dimensiones pequeñas o 
pequeñas velocidades ( Re « 1). 

Es difícil dar una definición precisa de la turbulencia. Sin embargo, cual­
quiera que haya observado el humo que emana de un cigarrillo o la estela que 
se forma detrás de un objeto interpuesto en la corriente de un rio tiene una 
idea más o menos clara de lo que es un flujo turbulento. Por ello, la mejor 
forma de introducir los flujos turbulentos, antes de pasar a una descripción 
más precisa, es enumerar las propiedades fundamentales que los caracteriza. Irregularidad y aletoriedad. Los flujos turbulentos son irregulares, 
caóticos, si se utiliza el término más de moda. De aquí la imposibilidad ( o, en 
cualquier caso, la ineficacia) de un tratamiento determinista para su descrip­
ción; en su lugar se recurre a métodos estadísticos (ver capítulo 31). Difusividad. Los flujos turbulentos son muy efectivos en difundir cantidad 
de movimiento, masa y energía. Un flujo con aspecto irregular, pero en el 
que esa irregularidad no venga acompañada de una difusión efectiva, no es 
turbulento. Este aspecto de la difusión es el que hace a los flujos turbulentos 
más atractivos en muchas aplicaciones tecnológicas. Es el responsable, entre 
otros ejemplos, de la ·mezcla efectiva y rápida de las diferentes especies químicas 
requerida para que las reacciones químicas se produzcan más rápidamente; 
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retrasa o previene la separación de la capa límite, disminuyendo la resistencia 
aerodinámica; aumenta la resistencia de los flujos en conductos en relación 
al flujo laminar; incrementa la velocidad de transmisión de calor entre una 
pared sólida y un fluido en cualquier máquina que utilice un fluido; etc. Para 
tener una idea aproximada del incremento de la difusividad turbulenta en 
relación a la difusividad molecular (la cual es la única que aparece en los 
flujos laminares}, es interesante estimar, por ejemplo, el orden de magnitud 
del tiempo necesario para que un incremento de temperatura A.T se propague 
a todo el fluido contenido en un volumen de longitud característica L (por 
ejemplo, para que el aire de una habitación cúbica de lado L se caliente desde 
la temperatura inicial T a la temperatura T + A.T de una de sus paredes) . 
Si la difusión es puramente molecular, de la ecuación de la energía se tiene 

que pev&T/at ~ K'v2T, es decir, t¡ ~ L2Pr/v. En cambio, si el flujo es 
turbulento (por ejemplo, si la pared con mayor temperatura es la inferior y se 
produce una convección natural debido a las fuerzas de flotabilidad), se tiene 
que l pv· 'vvl ~ lgApl, donde A.p es la disminución de la densidad del aire cerca 
de la pared con temperatura T + A.T, en relación a la densidad del aire del 
resto de la habitación, p. Suponiendo que A.T « T, que la presión permanece 
prácticamente constante y que el gas es ideal, de la ecuación de estado se tiene 
que !A.pi  ~ pA.T /T, de donde la velocidad de convección natural es del orden 
de V ~  (LgA.T/T) 112 . Así, para aire a T = 293°K (v � 10-5m2/s, Pr � 0, 7 )  
en una habitación de longitud característica L = 5 m  y A.T = lOºC, se tiene 
que tt ~ L/V ~ 4s, muchísimo menor que el tiempo característico de difusión 
laminar, t¡ ~ 20 días. 

Número de Reynolds grande. Los flujos turbulentos ocurren siempre a 
altos números de Reynolds, ya que, normalmente, la turbulencia ocurre como 
consecuencia de inestabilidades de los flujos laminares cuando el número de 
Reynolds supera un cierto valor crítico, que suele ser grande (ver lección si­
guiente) .  Por encima de este número de Reynolds existe una interacción entre 
los términos viscoso e inercial no lineal de la ecuación de cantidad de mo­
vimiento, dando lugar a inestabilidades que desembocan en un movimiento 
caótico, imposible de predecir determinísticamente. La dificultad matemáti­
ca de predecir los flujos turbulentos está a.sí asociada a la no linealidad de 
las ecuaciones, y muchos de los últimos avances que se han hecho en el pro­
blema de la turbulencia provienen del estudio de los sistemas dinámicos no 
lineales que, incluso con un reducido número de grados de libertad, producen 
movimientos caóticos. 

Tridimensionalidad y rotacionalidad. La turbulencia se caracteriza 
por las fluctuaciones, no sólo de la velocidad, sino también de la vorticidad. 
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Es decir, los flujos turbulentos no son nunca irrotacionales, sino que se ca­racterizan por niveles muy altos de las fluctuaciones de la vorticidad. Estas fluctuaciones no se podrían mantener en un flujo bidimensional ya que, como se vio en la lección 20, el principal mecanismo que genera vorticidad es el es­
tiramiento de los vórtices (vortex stretching) proporcional al término w • '\lv en la ecuación 20.2, que es nulo para flujos bidimensionales. Por esta razón, la dinámica de la vorticidad es muy importante en la descripción de los flujos turbulentos (ver lección 31) . A veces se visualiza a la turbulencia como una colección de tubos de vorticidad que por la acción de las fluctuaciones de la velocidad se van estirando, aumentando así su vorticidad, que de esta forma va realimentando este mecanismo, generando cada vez fluctuaciones más fuertes de la velocidad, que dan lugar a más vorticidad . . .  , hasta que la escala es tal que la viscosidad actúa disipando la vorticidad ( ver sección siguiente) . Todo esto no podría ocurrir en flujos con fluctuaciones bidimensionales. 

Disipación. Los flujos turbulentos son siempre disipativos, propiedad re­lacionada con . la difusividad. El trabajo de deformación de los esfuerzos de viscosidad incrementa la energía interna a costa de la energía cinética de las fluctuaciones turbulentas. Por ello, las corrientes turbulentas necesitan un su­ministro contínuo de energía para vencer la disipación viscosa. Sin este sumi­nistro las fluctuaciones turbulentas decaerían por viscosidad y el movimiento dejaría paulatinamente de ser turbulento. Por la misma razón, un movimiento (irregular) en donde no se produzcan esfuerzos viscosos que disipen las fluc­tuaciones no sería turbulento. Ésta es, por ejemplo, la distinción fundamental entre algunos tipos de ondas con movimiento muy irregular, donde no hay disipación, y los movimientos turbulentos, que son esencialmente disipativos. El mecanismo por el cual la energía se transfiere desde las fluctuaciones de mayor tamaño, donde no existe disipación (Re » 1 ) ,  hasta fluctuaciones con escalas mucho menores donde se produce la disipación, esencial en los flujos turbulentos, se describe cualitativamente en la sección siguiente. 
Medio continuo. Se verá también en la siguiente sección que las escalas más pequeñas de las fluctuaciones turbulentas son generalmente mucho mayo­res que las escalas de los movimientos moleculares, por lo que las fluctuaciones de las propiedades del fluido son las de un medio contínuo, gobernadas por las ecuaciones de N avier-Stokes. Esto no quiere decir que se puedan encon­trar soluciones de estas ecuaciones ya que, como se dijo antes, las soluciones son caóticas (irregulares y aleatorias) , haciéndose necesaria una descripción estadística del movimiento, pero tomando como base de partida las ecuacio­nes de Navier-Stokes (ver lección 31) .  Por otra parte, al ser la turbulencia una consecuencia casi exclusiva de la estructura de las ecuaciones del movimiento 
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(no linealidad) y no del fluido en sí (de la estructura molecular),  la mayoría de 
las propiedades dinámicas de los movimientos turbulentos son las mismas pa­
ra todos los fluidos, independientemente de que sean gases o líquidos, siempre 
que el número de Reynolds sea suficientemente grande. Esto hace que, desde 
un punto de vista estadístico, el estudio de la turbulencia se pueda hacer en 
general. 

29.2. Escalas de la turbulencia. Cascada de energía. 
Microescala de Kolmogorov 

Se ha dicho que los flujos turbulentos se caracterizan por la disipación 
viscosa y porque el número de Reynolds es grande. Estas dos características 
podrían parecer contradictorias, pero no lo son debido a que en la turbulencia 
existen muchas escalas espaciales y temporales. 

Las inestabilidades hidrodinámicas, que constituyen el origen de los flujos 
turbulentos (ver lección siguiente), dan primeramente lugar a fluctuaciones 
con un tamaño que, en la mayoría de los casos, es del mismo orden que la 
longitud característica del flujo laminar original , L. Bajo ciertas condiciones, 
estas grandes fluctuaciones son a su vez inestables, dando lugar a fluctuaciones 
y torbellinos cada vez de menor tamaño. El mecanismo fundamental de esta 
transferencia de energía desde los torbellinos de escala mayor a torbellinos 
más pequeños (lo que se suele denominar como cascada de energía) es el esti­
ramiento de los vórtices, ya que el número de Reynolds asociado a estas escalas 
grandes es elevado (requisito indispensable para que pueda existir turbulen­
cia) y el flujo se puede considerar ideal , no existiendo disipación viscosa en esa 
escala. Con el estiramiento aumenta la vorticidad haciéndose más inestable el 
movimiento, dando lugar a torbellinos más pequeños, y así sucesivamente. Este 
proceso continúa hasta que la escala es tan pequeña que la disipación viscosa 
actúa, difundiendo y disipando la vorticidad. De acuerdo con este proceso, la 
turbulencia no se puede mantener a sí misma, dependiendo de su entorno para 
obtener energía . Como se verá en la lección siguiente, las fuentes externas de 
energía pueden ser debidas a fuerzas de flotabilidad, fuerzas centrífugas, etc. 
Paradójicamente, la fuente más común es la difusión transversal de cantidad 
de movimiento debido a la viscosidad, que aparece en los flujos denominados 
de cortadura, de los cuales los ejemplos más significativos son los flujos en 
conductos y en capas límites. Si la turbulencia llega a una región donde no 
exista ningún mecanismo que la mantenga, decae por la disipación viscosa y 
el flujo vuelve a ser laminar. Un ejemplo típico es la turbulencia formada en el 
flujo normal a una rejilla (una red metálica , por ejemplo) : detrás de la rejilla 
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el flujo se hace turbulento debido las inestabilidades originadas por la difusión 
de cantidad de movimiento como consecuencia de los gradientes transversales 
( cortadura) que la rejilla produce en la corriente principal. Pero si no existe 
ninguna fuente de cortadura aguas abajo, la turbulencia se disipa y el flujo 
vuelve a ser laminar. 

Obviamente, la escala de los torbellinos más pequeños donde se disipa la 
energía es tal que el número de Reynolds asociado a ellos es de orden unidad. 
Esto da un criterio para estimar el orden de magnitud de la escala espacial y 
temporal más pequeña de la turbulencia, denominada microescala de Kol­
mogorov. La generación de esta escala pequeña de las fluctuaciones es debida 
a los términos no lineales de la ecuación del movimiento (inestabilidades y es­
tiramiento de vórtices), pero los términos viscosos impiden que las escalas sean 
infinitamente pequeñas, ya que disipan su energía en calor. Por tanto, la escala más pequeña se autoajusta automáticamente al valor de la viscosidad 11, que 
es pequeño (más precisamente, Re-1 es pequeño). Como las fluctuaciones con 
escala de longitud pequeña tienen también una escala temporal pequeña, se 
puede suponer que estas fluctuaciones son estadísticamente independientes de 
las fluctuaciones mucho más lentas de la escala grande y del flujo medio. Es 
decir, la escala más pequeña a la que se disipa la energía turbulenta tiene que 
ser universal, en el sentido de que no depende de las particularidades de los 
grandes torbellinos ni del movimiento medio de cada flujo turbulento, depen­
diendo así, exclusivamente, de la viscosidad cinemática 11 y de la velocidad de 
transferencia de energía E desde las grandes escalas a la escala pequeña, que 
es también la velocidad a la que se disipa la energía en la escala pequeña, 
transformándose en calor. Esta es la llamada teoría de equilibrio universal de Kolmogorov, cuyos resultados concuerdan muy bien con las observaciones 
experimentales. Como E tiene dimensiones de [L]2 [t] -3 y [v] = [L]2 [t]-1 , los 
órdenes de magnitud de las escalas espaciales, temporales y de velocidad a los 
que se disipa la energía turbulenta viene dada por 

z - (�f' , T - m
l/2

, v - (v,) 114 , (29 . 1 )  

que constituyen la microescala de Kolmogorov, también llamada escala in­terna de la turbulencia. Obviamente, el número de Reynolds asociado a esta 
microescala es de orden unidad: lv / 11 = l. 

Para tener una idea más precisa de la microescala de Kolmogorov habría 
que relacionar la velocidad de disipación de energía E con la longitud y la velo­
cidad características de las escalas grandes de la turbulencia ( que en muchas 
ocasiones coinciden con las del flujo medio). Si V es la velocidad característica 
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de las fluctuaciones mayores, la energía cinética por unidad de masa asociada a ellas será de orden de V2 . Suponiendo que esta energía se transfiere a las escalas menores en un tiempo característico del orden de L/V, donde L es el tamaño característico de estas fluctuaciones, se tiene que la energía se trans­fiere a una velocidad V3 / L, que es también la velocidad de energía disipada en la microescala, 

(29.2) 
Esta estimación implica que una fluctuación o torbellino pierde una fracción importante de su energía cinética, proporcional a V2 , en el tiempo que da una vuelta. Esto no quiere decir que en ese tiempo se disipe esa energía, sino que se transfiere a una escala más pequeña, hasta que al final del proceso se disipa en la microescala. Sustituyendo (29.2) en (29. 1 ) se tienen las siguientes relaciones: 

- ~ - = Re-3/4 l ( V L ) -3/4 L v 

; ~ (:L ) -I/4 = Re-1/4 , 

(29. 3 )  
(29.4) 
(29. 5 )  

donde Re = (V L/v) » 1 es el número de Reynolds de la escala grande. Estas relaciones nos indican que las escalas de longitud, tiempo y velocidad de los torbellinos más pequeños son mucho menores que las de los grandes torbellinos. A medida que el número de Reynolds aumenta, la separación entre las escalas también aumenta, por lo que la independencia estadística de la microescala de Kolmogorov será más evidente a grandes números de Reynolds. Para terminar esta sección se comprobará que la microescala de Kolmogo­rov es, en general, mucho mayor que la escala del movimiento molecular, por lo que la turbulencia es realmente un fenómeno del fluido como medio contínuo (y en equilibrio termodinámico local). Para ello se toma el caso más desfavo­rable de un gas, donde el recorrido libre medio entre colisiones moleculares es del orden de .A ~  v/a (ver ecuaciones 8.4, 9.20 y 9. 6 1) , donde a es la velocidad del sonido. Comparando con (29. 3) se tiene 
.A v/a M 
l ~ LRe-314 = Rel/4 ' 

(29.6) 
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donde M = V/ a es el número de Mach. Como Re » 1 y M es a lo sumo de or­
den unidad en la mayoría de las ocasiones, se tiene que .,\ « l . 1 Análogamente, 
el tiempo característico entre colisiones es del orden Te ~ ..\/ a, de donde 
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(29.7) 

1 Esta condición es similar a la de validez de la hipótesis de equilibrio termodinámico local 
(ecuación 1 1 .23) . Lo habitual es que si M es grande, el número de Reynolds asociado sea 
mucho mayor. 





Capítulo 30 

Inestabilidades y transición a 

la turbulencia 

30.1 .  Introducción 
Los flujos laminares pasan a ser turbulentos como consecuencia de inesta­

bilidades que se producen, típicamente, cuando el número de Reynolds supera 
un cierto valor crítico. El ejemplo más representativo es el flujo en conductos, 
que pasa de laminar a turbulento para números de Reynolds, Re = VD/v (V 
es la velocidad media y D el diámetro) , por encima de un valor crítico. En par­
ticular, experimentalmente se comprueba que por debajo de Re '.::::'. 2300, el flujo 
es siempre laminar. Si Re > 2300 el flujo puede ser laminar si se pone un cui­
dado exquisito en evitar perturbaciones en el flujo. Pero, si éstas se producen, 
por encima de un valor Rec � 2300 ( que depende básicamente de la amplitud 
inicial de las perturbaciones; ver figura 30. 1 )  crecen aguas abajo, destruyendo 
el flujo laminar. y dando lugar a un flujo turbulento. Otro ejemplo característi­
co es la capa límite laminar sobre una placa plana con ángulo de ataque nulo 
(gradiente de presión igual a cero), que pasa a ser turbulenta cuando el número 
de Reynolds basado en el espesor de desplazamiento, Re = U8i/v, es mayor 
que aproximadamente 3000, en este caso independientemente de la amplitud 
inicial de las perturbaciones. Como 81 '.::::'. 1 ,72{vx/U) 112 (ver sección 27.3),  a 
una distancia del borde de ataque igual a 3 x 106v/U, aproximadamente, se 
produce siempre la transición de capa límite laminar a turbulenta. Esta capa 
límite turbulenta tiene un espesor considerablemente mayor y da lugar a una 
fricción también mayor (ver lección 32). La transición de capa límite laminar 
a turbulenta no es brusca, sino que existe una región de transición donde el 
flujo es muy complejo, con zonas intermitentemente laminares y turbulentas 
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Inestable 
A 

Es(4ble 

2300 Re 

Figura 30. 1 :  Esquema del número de Reynolds crítico en función de la amplitud de las 
perturbaciones en el flujo en un conducto circular. 

(ver sección 30.5 más abajo). 
En este capítulo se pretende dar una breve introducción a la teoría de 

las inestabilidades hidrodinámicas. Primeramente se formulará el problema 
matemático para flujos incompresibles y se definirán los conceptos básicos 
de la teoría. A continuación se considerarán algunos ejemplos significativos, 
prestando especial atención al origen físico de las inestabilidades . Por último, 
se tratará la estabilidad de los flujos casi unidireccionales en general , y de la 
capa límite sobre una placa plana en particular, y se describirá muy brevemente 
el problema de la transición a la turbulencia en este tipo de flujos. 

30.2.  Conceptos básicos de la teoría lineal de la es­
tabilidad hidrodinámica 

Por simplicidad se considerará un flujo incompresible con propiedades cons­
tantes. Las ecuaciones de continuidad y cantidad de movimiento que gobiernan 
la evolución de la velocidad v y la presión p son: 

V - v = 0 , (30.1) 

ov _ r1 _ 1 r, ¡- r,2 --
0 + V ·  v V  = -- vp + m + 1/ v  V .  t p 

(30.2) 
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Supóngase que uno está interesado en saber si un determinado flujo estacio­
nario (V, P), denominado flujo base, que está gobernado por las ecuaciones 

- - 1 - 2 -v · v'V = --v'P + fm + vv' V ,  
p 

(30.3) 

(30.4) 

y sus correspondientes condiciones de contorno, es o no estable. Para ello, lo 
que se suele hacer es perturbar este flujo base y estudiar la evolución temporal 
y /o espacial de las perturbaciones. Es decir, el flujo perturbado se descompone 
en la forma 

v(x, t) = v(x) + v'(x, t) , (30.5) 

p(x, t) = P(x) + p'(x, t) , (30.6) 

donde las magnitudes con primas son las perturbaciones. En la denominada 
teoría lineal de estabilidad, que es la que se va a considerar aquí, se supone 
que las perturbaciones son pequeñas: 

WI « IV I , P1 « P . (30. 7)  

Con esta premisa, la sustitución de (30.5)-(30.6) en (30.1)-(30.2), teniendo en 
cuenta (30.3)-(30.4) y despreciando los términos cuadráticos en las pequeñas 
perturbaciones, proporciona las siguientes ecuaciones linealizadas para las per­
turbaciones: 

v' - if  = O , (30.8) 

av' - ...., ...., - 1 , 2 ...., - + V - v'v + v  · v'V = --v'p + vv' v .  at P 
(30.9) 

Obviamente, estas ecuaciones son más simples que las ecuaciones no lineales 
originales (30.1)-(30.2). En particular, dada la linealidad de las ecuaciones y 
la independencia temporal del flujo base, las soluciones se pueden escribir en 
la forma1 

s'(x, t) = ( ; ) = S(x)e-iwt , (30.10) 

1 Como las perturbaciones puede ser arbitrarias, en principio uno no tiene en cuenta ningún tipo especial de condición inicial para las mismas. 
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donde w es, en general, una constante compleja: 

(30.1 1 ) 
El problema (30.8)- (30.10) ,  junto con sus correspondientes condiciones de con­torno, suele constituir un problema de autovalores, donde la constante w no puede tomar un valor cualquiera, sino sólo aquellos compatibles con las condi­ciones de contorno. Si todos los valores admisibles de w tienen la parte imagina­ria negativa (wi < O), el flujo base es estable, pues toda posible perturbación decae en el tiempo. Sin embargo, basta que tan solo uno de los autovalores tenga la parte imaginaria positiva para que el flujo base sea inestable, pues ese modo, que en principio puede estar presente en el flujo como cualquier otra perturbación infinitesimal, crecerá indefinidamente en el tiempo, destruyendo la estructura del flujo base. 
30.2 .1 .  Modos normales. Flujos unidireccionales 

Para concretar algo más, se considerará el caso simple en el que flujo base es unidireccional. Por ejemplo, supóngase que, en coordenadas cartesianas, el flujo base viene dado por 
V =  U(y)ex ' (30.12) 

con las restantes componentes de la velocidad nulas y el gradiente de presión reducida constante ( ver sección 1 4.1). En este caso, los coeficientes de las ecuaciones lineales de estabilidad (30.8)- (30.9) sólo dependen de la coordenada y, por lo que la solución se puede escribir como una superposición de modos 
normales: 

s'(x, t) = ( : ) = S(y)ei<ox+/3z-wt) , (30.13) 
donde a y (3 son los números de onda en las direcciones x y z,  respectivamente, y w es la frecuencia. En general, a y w son números complejos, mientras que el número de onda en la dirección perpendicular al movimiento, (3, suele ser real. La sustitución de esta solución normal en las ecuaciones lineales de estabilidad adimensionalizadas con sus respectivas condiciones de contorno da lugar a un problema de autovalores, que se puede escribir en la forma 

A · S = O , (30.1 4 )  
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donde el operador lineal A contiene derivadas primeras y segundas respecto a y (ver ejemplos en las secciones siguientes). Este problema homogéneo sólo tiene solución para una cierta combinación de los parámetros dada por una relación del tipo 

D(a, (3, w; Re, ... ) =  O , ( 30 . 1 5 )  
denominada relación de dispersión. Todos sus argumentos son adimensio­nales, aunque se haya utilizado los mismos símbolos para los números de onda 
a y f3 y para la frecuencia w. Además del número de Reynolds Re, en ( 30 . 1 5 )  aparecerán también todos los demás parámetros adimensionales que definen el flujo base cuya estabilidad se esté analizando ( Re suele ser el parámetro más relevante). Cualquier perturbación del flujo base puede ser considerada como una cierta superposición de los (en general) infinitos modos normales que son solución de ( 30.1 4)- ( 30.1 5). 
30.2.2. Estabilidad temporal y espacial 

La relación de dispersión ( que en la inmensa mayoría de los casos hay que determinarla numéricamente) es la ecuación básica que contiene toda la infor­mación sobre la estabilidad lineal del flujo. Es decir, nos dice si ondas del tipo ( 30.1 3 ) ,  caracterizadas por los autovalores a, f3 y w, son estables o inestables en el flujo considerado para los distintos valores de los parámetros. Tradicio­nalmente, se han considerado dos tipos de análisis estabilidad, constituyendo cada uno de ellos un conjunto de soluciones particulares de la relación de dis­persión: la estabilidad temporal y la estabilidad espacial. En la estabilidad temporal se supone que el número de onda a es real ( como se comentó, f3 suele ser siempre real), y se buscan los autovalores complejos w = Wr + iwi que satisfacen ( 30.1 5 ) .  Es decir, se pretende saber si perturbaciones del tipo ei(ax+/3z-wrt) , que son ondas cuya velocidad de fase en la dirección x viene dada por e = wr/a, crecen o decrecen en el tiempo, comportamiento que viene fijado por el signo de la parte imaginaria de w. Estos son los denominados mo­dos temporales. Para cada valor de Re (y de los demás parámetros),  el flujo es temporalmente estable si Wi < O para todos los valores de a y f3 ( cualquier perturbación decae exponencialmente en el tiempo). Por el contrario, el flujo será inestable si Wi > O para algún valor de a y (3, pues perturbaciones con esos valores de los números de onda, que en principio pueden estar presentes en el flujo, crecen exponencialmente en el tiempo. A Wi se le suele denominar, por tanto, factor de amplificación de la onda. La transición de estable a inestable típicamente viene dada por un valor crítico del número de Reynolds ( o de otro 
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(1) 

Inestable 

a a 

Estable 

Rec 

Figura 30.2: Esquema típico de la parte real e imaginaria de w en función de a para un cierto 
valor de {3 y tres valores del número de Reynolds. Para Re2 el flujo es estable, mientras que 
es inestable para Re1 . El valor Rec para el cual w; se anula en un solo punto Oc es el 
número de Reynods crítico de estabilidad para el valor de {3 considerado (normalmente, 
Re2 < Rec < Re¡ ) .  

parámetro adimensional que caracterize al flujo base), para el que Wi se anula 
para un cierto valor de a y f3 (ver figura 30.2). 

En la estabilidad espacial se supone que w es real y se buscan solucio­
nes ( autovalores) de la relación de dispersión con a = ar + ÍO'.i complejo. Este 
tipo de análisis de estabilidad se suele utilizar principalmente en flujos casi­
unidireccionales (o estrictamente unidireccionales como el ejemplo presente), 
pues experimentalmente es más fácil excitar con una determinada frecuencia w 
un determinado punto del flujo y comprobar si perturbaciones con esa frecuen­
cia crecen o no aguas abajo del flujo . Es decir, una perturbación ondulatoria 
del tipo ei(arx+/3z-wt) (denominado modo espacial al ser w real) será espacial­
mente estable para un determinado valor de Re si la parte imaginaria de a 
es positiva, pues la amplitud de la perturbación decaerá a medida que ésta se 
mueve con el flujo en la dirección x (con velocidad de fase e =  w/o:r) - El flujo 
será espacialmente estable para ese valor de Re si O'.i > O para todo w y f3. Por 
el contrario, el flujo será espacialmente inestable si O'.i < O para al menos un 
valor de w y de {3. En la estabilidad espacial, O:i es el factor de amplificación. 

Obviamente, si un flujo es inestable temporalmente, debe serlo también 
espacialmente, por lo que las transiciones de estable a inestable desde un pun­
to de vista temporal deben coincidir, en principio, con las transiciones desde 
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un punto de vista espacial, y viceversa. 2 Para verlo, considérese el caso gene­
ral de modos espacio-temporales, en los que tanto a como w son complejos. 
Supóngase que para un determinado valor de /3 y de los parámetros adimen­

sionales del flujo, la relación de dispersión (30.15) se puede escribir como una 
función analítica entre esas dos variables complejas: 

w = w(a; /3, Re, ... ) .  

De las relaciones de Cauchy-Riemann se tiene 

OWr OWi OWr OWi 
8ar 00'.i ' 00'.i - 00'.r 

• 

(30.1 6) 

(30.17) 

En el caso temporal, que se designará con (T), se tiene que ai (T) = O, 
a = ar (T) y w = wr (T) + iwi (T); es decir, en el plano complejo de a nos 
moveríamos a lo largo del eje real. Por otro lado, en el caso espacial, que se 
designará mediante (E), wi (E) = O, a = ar (T) + iai (E) y w = wr (E), lo cual 
quiere decir que nos moveríamos en el eje real del plano w. Si se integran las 
relaciones (30.17) con respecto a O'.i desde un estado (T) [en donde ai (T) = O] 
hasta un estado (E) [en el que wi (E) = O] manteniendo O'.r = constante = 
ar (T), se llega a 

(30.18) 

(30.19) 

Como O'.r es constante entre (T) y (E), se tiene que ar (T) = o:r (E). Supóngase 
que los parámetros adimensionales del flujo y /3 son tales que estamos en las 
proximidades de la transición de estable a inestable desde un punto de vista 
temporal ; es decir , que jwi (T) I << l. Justo en el punto de la transición, la 
curva Wi = Wi ( O'.r) tiene un máximo ( ver figura 30. 2), por lo que 8wd 8ar = O. 
En las proximidades de este punto, esta derivada es un infinitésimo de segundo 
orden en relación a jwi (T) j. Por tanto, de (30.19) se tiene que wr (E) '.:::::'. wr (T), 
con errores que tienden a cero cuadráticamente con Wi (T) - O. Expandiendo 
ahora 8wr/8a,. en (30.18) en el entorno de un punto a; entre O y ai (E), se 
tiene 

2Se verá más adelante que esto no siempre es así. 
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Haciendo uso de las relaciones de Cauchy-Riemann, 8wr/8o.i = -8wi/8o.r = 
O(w¡), por lo que el segundo término en el lado derecho de (30.20) es de 
segundo orden en lwi l , y se puede despreciar en el límite wi (T) -+ O. Se llega 
pues a que, en primera aproximación, 

(30.21) 

junto con 

O.r (T) = O.r (E) , Wr (E) = Wr (T) para Wi (T) -+ O .  (30.22) 

Estas relaciones fueron obtenidas por Gaster (1962), siendo c9 la velocidad 
de grupo de las ondas (ver , por ejemplo, sección 24.1.3). Por tanto, para un 
paquete de ondas que se propagan con el flujo base hacia x crecientes (c9 > O), 
si el flujo se hace inestable desde un punto de vista temporal, es decir , si wi (T) 
pasa de negativo a positivo [siendo, por tanto, lwi(T)I « 1], también se hace 
inestable desde un punto de vista espacial, pues o.i (E) pasa de positivo a 
negativo [obsérvese que lo.i(E) I  es, por tanto, también pequeño, por lo que 
los términos despreciados en la deducción anterior son aún más pequeños de 
lo que se ha supuesto] .  Es interesante observar que los pequeños factores de 
amplificación espaciales y temporales están relacionados entre sí no con la 
velocidad de fase e =  wr/o.r, sino con la velocidad de grupo c9 de las ondas. 
Lo cual no es de extrañar si se tiene en cuenta que para un conjunto de ondas 
con diferentes frecuencias w, la velocidad a la que se mueve un paquete de 
ondas que mantienen la frecuencia constante no es la velocidad de fase, sino la 
velocidad de grupo (ver sección 24.1.3). Es por ello que si uno quiere relacionar 
la amplificación espacial de ondas con una determinada frecuencia w con la 
amplificación temporal para un cierto valor del número de onda o., la velocidad 
relevante que se debe tomar no es e sino c9 [de acuerdo con (30.22), 0.1• y Wr 

coinciden en ambos casos en el límite de pequeñas amplificaciones] . 

30.2.3. Estabilidad convectiva y absoluta 

El hecho de que una transición de estabilidad temporal coincida con una 
transición de estabilidad espacial sólo si c9 > O (los paquetes de onda se mue­
ven en la misma dirección que el flujo base) tiene que ver con la naturaleza 
convectiva o absoluta de la inestabilidad. Para ilustrar estos nuevos conceptos, 
supóngase que en un determinado instante (t = O, por ejemplo) uno introduce 
una perturbación infinitesimal (tanto en amplitud como en extensión espacial 
y temporal) en el origen de coordenadas en un flujo con U > O. Si el flujo es 
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X 

(a) (b) Figura 30.3: Inestabilidad convectiva (a) y absoluta (b) . 
inestable desde el punto de vista temporal, la amplitud de esa perturbación 
crecerá a medida que transcurre el tiempo. La perturbación puntual inicial 
también se irá extendiendo espacialmente. El flujo se dice que es convecti­
vamente inestable si los límites espaciales de la perturbación se mantienen 
siempre en x > O y se desplazan hacia las x crecientes [en la misma dirección 
del flujo base; ver figura 30.3(a)] ; es decir, la perturbación, aunque crece expo­
nencialmente en amplitud, es convectada por el flujo. Transcurrido un cierto 
tiempo, la perturbación original sale fuera del dominio del flujo, que vuelve a 
su estado original no perturbado. Por tanto, aunque el flujo es inestable para 
el tipo de perturbaciones considerado, realmente se comporta como un ampli­ficador de ruido, volviendo a su estado original poco después de que cesa la 
fuente de perturbaciones. 

Por el contrario, el flujo se dice que es absolutamente inestable si la 
perturbación inicial, además de crecer su amplitud con el tiempo, se extiende 
tanto para valores de x positivos como negativos. En este caso, la perturbación 
se propaga también corriente arriba, modificando de una forma permanente 
el flujo base original ,  que tras la inestabilidad pasa a tener una estructura 
diferente, aunque la fuente de la perturbación haya cesado. En otras palabras, 
la perturbación inicial no sólo crece en amplitud, sino que se extiende a todo 
el flujo. La diferencia básica entre ambos tipos de inestabilidades es que, en el 
primer caso, la velocidad de grupo de las perturbaciones inestables es siempre 
positiva (tiene el mismo sentido que el flujo base), mientras que la velocidad de 
grupo de las perturbaciones que son inestables absolutamente son nulas o nega-
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tivas para algunos modos (para algunos valores de la frecuencia).  Está claro, 
por tanto, que la equivalencia entre crecimiento espacial hacia x > O (ines­
tabilidad espacial) para una determinada frecuencia de las perturbaciones y 
crecimiento (inestabilidad) temporal sólo tiene sentido cuando c9 > O, es decir , 
para perturbaciones cuyos paquetes de onda se mueven en la misma dirección 
del flujo. En cuanto c9 se hace nula o negativa, esta equivalencia se rompe y 
ya no tiene sentido analizar la inestabilidad espacial del flujo ( aunque sí la 
temporal). 

Normalmente, un flujo que se hace inestable al ir aumentando algún pará­
metro adimensional que lo caracteriza ( el número de Reynolds Re, por ejem­
plo), primero pasa de estable a convectivamente inestable para un cierto va­
lor crítico Rec (para algún valor del número de onda y de la frecuencia de 
las perturbaciones). Al seguir aumentando Re, puede que ocurra una segun­
da transición desde convectivamente inestable a absolutamente inestable para 
otro valor crítico Ret > Rec (generalmente para otros valores del número de 
onda y de la frecuencia). Esta segunda transición, en el caso de que ocurra, 
hay que buscarla haciendo un análisis de estabilidad espacio-temporal. El valor 
Ret se alcanza cuando alguna perturbación que sea convectivamente inestable 
(c9 > O) llega a un estado en el cual la velocidad de grupo se anula. 

30.3. Algunos ejemplos de inestabilidades físicamen­

te relevantes 

En esta sección se considerarán brevemente algunas inestabilidades hidro­
dinámicas clásicas con el objetivo principal de presentar algunos de los me­
canismos físicos más representativos responsables de que un flujo se haga 
inestable. Por ello, aunque se verá también la formulación matemática cuan­
titativa, se prestará atención a los aspectos físicos desde un punto de vista 
cualitativo. Algunas de estas inestabilidades pueden no dan lugar a un flujo 
turbulento. En la sección siguiente se verá un ejemplo sencillo de inestabilidad 
que siempre da lugar a un flujo turbulento, y que es muy relevante desde un 
punto de vista ingenieril: las inestabilidades que se producen en los flujos casi 
unidireccionales en general, y en la capa límite de Blasius en particular. 

30.3 .1 .  Inestabilidad térmica 

De forma general se puede decir que las inestabilidades hidrodinámicas 
ocurren cuando se produce un desequilibrio entre las fuerzas que actúan sobre 
el fluido: fuerzas externas, fuerzas de inercia, fuerzas de presión y fuerzas 



CAPÍTULO 30. INESTABILIDADES Y TRANSICIÓN A LA TURBULENCIA 531 

h 

z 
X 

,, , ,  ' '  ' '  ' 

Figura 30.4: Fluido en reposo entre dos placas paralelas. 

viscosas. Entre las fuerzas externas de interés están las fuerzas de flotabilidad 
en un fluido con densidad variable, las fuerzas de tensión superficial, las fuerzas 
centrífugas y de Coriolis cuando hay una rotación del sistema en el que el 
fluido se mueve y las fuerzas magnetohidrodinámicas. Uno de los ejemplos 
más simples de inestabilidad es la que se produce en un fluido estacionario 
estratificado con densidad variable p = p(z) que aumenta con la altura z.  
Sobre cada partícula fluida actúan dos fuerzas, la gravedad y la fuerza de 
presión, que da lugar a la fuerza de flotabilidad de Arquímedes. Si el fluido 
está en reposo, estas dos fuerzas están equilibradas. Supóngase que, como 
consecuencia de una perturbación, una partícula fluida se desplaza desde el 
nivel z al nivel z + h. Si p(z) decrece con z, para h > O la partícula tenderá a 
bajar debido a la fuerza de la gravedad, y para h < O tenderá a subir debido a la 
acción de la fuerza de flotabilidad, siendo, por tanto, el equilibrio estable. Por 
el contrario, si la densidad crece con la altura, para cualquier desplazamiento h 
de la partícula fluida, ésta tenderá a alejarse más y más de su posición original, 
siendo el equilibrio inestable. Por supuesto, para que el equilibrio sea realmente 
inestable hay que tener en cuenta las fuerzas de viscosidad que se oponen a las 
fuerzas (netas) de flotabilidad y tienden a estabilizar la solución de equilibrio 
fluidostático. La inestabilidad se producirá cuando el cociente entre la fuerza de 
flotabilidad neta desestabilizadora y la fuerza viscosa estatabilizadora supera 
un cierto valor crítico que se calcula resolviendo el problema matemático de 
las pequeñas perturbaciones alrededor de la solución de equilibrio. 

Como ejemplo sencillo, considérese un fluido en reposo confinado entre dos 
placas paralelas e infinitas que se mantienen a distinta temperatura, T1 y T2 , 
constantes (figura 30.4) . Si el fluido fuese aire, este problema simularía una ca­
pa atmosférica (por ejemplo la troposfera) , pero por simplicidad supondremos 
que se trata de un fluido incompresible ( de un líquido) .  

El flujo base sería la solución fluidostática, que se designará con el subíndice 



5 32 
e:  

Ve = O , Pe = Po , Pe = Po - Po9Z ,  

MECÁNICA DE FLUIDOS 

( 30.2 3) 
donde p0 y Po son constantes y h es la separación entre placas. Para averi­guar cuándo esta solución de equilibrio deja de ser estable, se perturba dicha solución: 

v = ve + v' = v' , p = Pe + p' , p = Pe + p' , T = Te + T' . ( 30.24) 
Sustituyendo en las ecuaciones de Navier-Stokes para un fluido incompresible y reteniendo sólo los términos lineales en las perturbaciones, se llega a: 

V · v' = 0, oi! _ V(Pe + p') ... t"'72...., at - - 1 - gez + 1/ v V , 
Po + P 

E)T
f 

....¡ 2 I 

ot + v • VTe = aV T , 

( 30.2 5 )  
( 30.2 6 ) 
( 30.27) 

donde, por simplicidad, se ha supuesto que las propiedades del fluido son constantes y la densidad se ha considerado constante e igual a p0 en todos los términos excepto en las fuerzas de presión, puesto que este término propor­ciona la fuerza de flotabilidad responsable de las posibles inestabilidades del problema. Desarrollando dicho término, y reteniendo sólo el primer orden, se tiene 
V (Pe + p') Vpe p' Vp' ... p' 'vp' - ---- ~ - - + -Vp - - = ge + -Vp - -, - 2 e z 2 e • 

Po + P Po Po Po Po Po 
( 30.28) 

La densidad se supone que sólo varía con la temperatura, teniéndose, en pri­mera aproximación, 
p' = ( ';;;) 

P 
T' = -p0(3T1

, ( 30.29) 
siendo (3 el coeficiente de expansión térmica del líquido [ecuación ( 10.28)]. Sus­tituyendo ( 30.28) y ( 30.29) en la ecuación de cantidad de movimiento ( 30.2 6 )  se llega a :  
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8v' 'vp' 1 - 2,..., ( - = - - + (3T gez + v'v v . 30.30) 8t Po 
La aproximación anterior de suponer que la densidad sólo varía con la tempe­
ratura y afecta sólo a las fuerzas de flotabilidad se denomina aproximación 
de Boussinesq, siendo la aproximación habitual en la convección libre o 
natural. 

Para ver qué parámetros adimensionales gobierna el problema, se definen 
las variables adimensionales 

p' 
Il = -v2 ' Po 

T' 
0 - --­- T1 - T2 ' 'v f- h'v , (30.31) 

donde V y te son una velocidad característica y un tiempo característico, res­
pectivamente, de las perturbaciones, que se elegirán de forma que simplifiquen 
al máximo las ecuaciones ( obsérvese que, para simplificar la notación, se han 
tomado las mismas letras t y x para designar las variables independientes adi­
mensionales) .  Tomando V = v/h y te = h2/v, las ecuaciones (30.25 ) ,  (30.30) 
y (30.27 ) quedan 

'v - ü= 0, 

8ü "{",II G 0 - "{""72 -
Bt 

= - v + r €z + v u ,  

80 
- u = � '720 

8t z Pr 

(30.32) 

(30.33) 

(30.34) 

donde Uz es la componente de ü según el eje z. Los únicos parámetros adimen­
sionales que gobiernan el problema de estabilidad son el número de Prandtl, 
Pr = v/a, y el número de Grashof, 

Gr = (3gh3 (T� - T2) , 
V 

(30.35 ) 

que relaciona las fuerzas de flotabilidad con las fuerzas viscosas, siendo, por 
tanto, el parámetro adimensional que relaciona las dos fuerzas contrapuestas 
cuyo desequilibrio puede provocar la inestabilidad térmica. En realidad, los 
resultados muestran que el parámetro adimensional relevante es el producto del 
número de Grashof y el número de Prandtl, llamado número de Rayleigh, 

(30.36) 
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Las ecuaciones (30.32)-(30.34) se deben resolver con las condiciones de con­
torno 

0 = o, ü = O en z = O y z = 1 . (30.37)  

Como se describió en la sección anterior, el paso siguiente es escribir las 
perturbaciones como una superposición de modos normales. Previamente, es 
conveniente eliminar la presión, ya que no se dispone de condiciones de con­
torno para ella. Tomando el rotacional de (30.33) , se llega a la ecuación (ver 
sección 7 . 4) 

ow G t"'70 - t"72 -fJt = r v /\ ez + v w ,  (30.38) 

donde w = 'v /\ ü es la vorticidad adimensional de las perturbaciones. Tomando 
nuevamente el rotacional y teniendo en cuenta que 'v /\ w = 'v'v • ü - 'v2ü = 
-'v2ü, se tiene 

(30.39) 

que junto con (30.34) constituye un sistema de dos ecuaciones diferenciales 
para las variables Uz y 0. En las paredes z = O y z = 1, además de 0 = 
Uz = O, hacen falta dos condiciones de contorno más para Uz , pues (30.39) 
contiene derivadas cuartas. Para obtenerlas, se tiene en cuenta que todas las 
componentes de la velocidad son nulas sobre esas paredes, por lo que oux/ox = 
ouy/oy = O sobre z = O y z = l. De la ecuación de continuidad se tiene, por 
tanto, que ouz/oz = O. Así, las condiciones de contorno para (30.39) y (30.34) 
son: 

OUz 
0 = Uz = - = 0 en Z = 0 y Z = 1 . 

oz 
(30.40) 

La solución de este sistema se puede escribir como una superposición de 
modos normales en la forma 

(30. 41) 

(30.42) 

donde ax y ay son los números de onda en las direcciones x e y, respecti­
vamente, y w es la frecuencia. La sustitución en (30.34) , (30.39) y (30. 40) 
proporciona 
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Figura 30.5: Esquema de las celdas de convección producidas tras la inestabilidad térmica. 

donde 

D;W + iwD;W - ct2Gr0 = O ,  

W =  dW = 0 = 0  en 
dz 

z = 0 y z = l ,  

( 3 0. 4 3 ) 

( 3 0.44) 

( 3 0 .45) 

d2 
o:2 = a; + ay

2 , D2 = - - a2 ( 3 0. 46) a - dz2 
Para cada valor de los parámetros Pr y Gr, y para cada valor real de 

a,3 ( 3 0. 4 3 )-( 3 0.45) constituye un problema de autovalores que sólo tiene so­
lución para determinados valores complejos de w = Wr + iwi. De hecho, las 
variables dependientes e independientes se pueden reescalar de forma que el 
número de Prandtl desaparece del problema, que así sólo viene gobernado por 
un parámetro a.dimensional que es el número de Rayleigh ( 3 0. 3 6) (ver, por 
ejemplo, Chandrasekhar, 1981). Se encuentra que el flujo se hace inestable pa­
ra Ra = Rae � 1708 .  Es decir, para Ra < Rae , Wi < O para todos los valores 
de a. Para, Ra = Rae , Wi se anula para un cierto valor de a =  ae, que resulta 
ser O'.e � 3 ,117 .  Para Ra > Rae , el flujo es inestable, existiendo un rango de 
valores de a, que depende de Ra, para los que Wi > O. Se tiene, por tanto, que 
la solución correspondiente al equilibrio mecánico es inestable si Ra > 1708 ,  
produciéndose entonces un movimiento (convección natural) entre las placas. 
Este movimiento tiene una periodicidad en los planos xy cuya longitud de on­
da viene dada, aproximadamente, por el valor de a más inestable (wi mayor) 

3En un problema como este en donde el flujo base está en reposo no tiene mucho sentido analizar la estabilidad espacial, siendo más conveniente hacer un análisis de estabilidad temporal. 
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correspondiente al valor de Ra dado. Así, cuando el flujo se hace inestable 
justo por encima de Rae , la periodicidad en xy de la convección natural pro­
ducida tiene una longitud de onda aproximadamente igual a 21r / ae � 2,016 
(ver figura 30.5 ). En la práctica, se producen celdas de convección hexagona­
les cuyo lado es inversamente proporcional al valor de a más inestable (ver, 
por ejemplo, Chandrasekhar, 1981). Estas celdas se suelen denominar celdas 
de Bénard, y al movimiento en sí convección de Bénard, quien en 1900 las 
observó experimentalmente en una capa de líquido calentada por debajo, pero 
con la superficie superior libre.4 

Desde un punto de vista físico, a medida que el número de Grashof ( o 
el número de Rayleigh) aumenta, las fuerzas de flotabilidad se van haciendo 
más importantes en relación a las fuerzas viscosas. Superado un cierto valor 
crítico, dado analíticamente por Rae � 1708, las fuerzas desestabilizadoras 
de flotabilidad pueden más que las fuerzas viscosas estabilizadoras, y se pro­
duce una corriente que tiende a igualar las temperaturas, desestabilizando la 
solución correspondiente al equilibrio mecánico. En otras palabras, dado un 
fluido y fijado h, la solución estática es posible si la diferencia de temperatu­
ras entre las placas, T1 - T2 , es menor que un cierto valor crítico dado por 
T1 - T2 � 1708va/(/3gh3) (obsérvese que si T1 - T2 es negativo, la solución 
estática es siempre estable). Para T1 - T2 mayor que ese valor, aunque la solu­
ción estática sigue siendo solución de las ecuaciones y condiciones de contorno, 
es inestable y no se da en la práctica (si la viscosidad fuese cero, la solución 
sería inestable para cualquier diferencia T1 - T2 positiva, lo cual está de acuer­
do con el argumento no viscoso cualitativo dado al principio de esta sección).  
Una vez producida la inestabilidad, el movimiento resultante tiene la forma de 
celdas convectivas, cuya periodicidad viene dada por h21r/o: (ver figura 30. 5 ) .  

30.3.2. Inestabilidad centrífuga 

Otro ejemplo simple donde una fuerza externa tiende a desestabilizar, y 
las fuerzas viscosas a estabilizar, es el flujo de Couette entre dos cilindros que 
giran coaxialmente [sección 14.2.2; ver figura 30.6(a) ] .  Históricamente, este 
ejemplo ha tenido mucha importancia en la teoría de las inestabilidades hidro­
dinámicas. Uno de los primeros que la consideraron fue Rayleigh en 1916, quien 

4El problema con una superficie libre superior, en vez de limitada por una pared sólida, es matemáticamente muy similar al considerado aquí, cambiando sólo una condición de contorno en z = l .  En particular, en z = 1 se tiene que d2 W/dz2 = O, en vez de dW/dz = O. Los correspondientes valores críticos resultan ser Rae '.:::'. 1 101 y ac '.:::'. 2,682, que da lugar a celdas de convección con una longitud de onda algo mayores, 21r /cr.0 '.:::'. 2,34 (ver, por ejemplo, Drazin y Reíd, 1 981 ) .  
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Figura 30.6: (a) Geometría del flujo de Couette entre dos cilindros coaxiales que giran. (b) Esquema de los vórtices de Taylor que se forman tras la inestabilidad del flujo base. 

desarrolló un criterio de inestabilidad no viscosa mediante argumentos físicos 
que se verá a continuación. Las fuerzas viscosas fueron tenidas en cuenta por 
primera vez por Taylor en 1923. Pero la importancia de su trabajo reside, sobre 
todo, en que fue el primero que comparó de forma cuantitativa los resultados 
de un análisis de estabilidad con resultados experimentales ( experimentos que 
él mismo realizó), prediciendo de forma muy precisa las transiciones que se 
producían en el flujo. Se puede decir que este trabajo asentó de forma defi­
nitiva la teoría de las inestabilidades hidrodinámicas, que así dejó de ser una 
mera especulación teórica. 

En el movimiento laminar estacionario, las fuerzas centrífugas que actúan 
sobre cada partícula fluida están equilibradas con las fuerzas de presión radia­
les, de manera que las partículas fluidas no se mueven radialmente, sino sólo 
circunferencialmente. Así, en coordenadas cilíndricas, el campo de velocidad 
del flujo base es V =  V(r)e0 ,  donde (ver sección 14.2.2) 

(30.47) 

siendo 
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(30.48) 

dos parámetros adimensionales que caracterizan el flujo. La presión del flujo base se obtiene de la ecuación de cantidad de movimiento radial que, como se acaba de decir, expresa un balance entre las fuerzas centrífugas y las fuerzas de presión radiales 
V2 1 8P 
-:¡:- = p 8r (30.49) 

Supóngase que una partícula fluida se mueve, por acción de cualquier per­turbación, desde una posición r O a otra r > r 0 • En ausencia de fuerzas vis­cosas, la ecuación de cantidad de movimiento azimutal se puede escribir co­mo D(rV)/ Dt = O, es decir, el momento angular (por unidad de masa) se conserva: r0V(r0) = rV(r) .  Así, la nueva velocidad de la partícula fluida es r0V(r0)/r, siendo la fuerza centrífuga (por unidad de masa) que actúa sobre ella r�V2 (r0)/r3 . El equilibrio será inestable si esta fuerza es mayor que la fuerza de presión (por unidad de masa) en la distancia r que, de acuerdo con (30.49) ,  es igual a la magnitud de la fuerza centrífuga del fluido no perturba­do, V2 (r)/r. De esta forma, el criterio de inestabilidad (Rayleigh, 1916) se escribe 
(30.50) 

Es decir 
(30.51) 

Teniendo en cuenta (30.47) , la condición anterior se puede escribir (fh� -01Rnv < O. Si los cilindros giran en sentidos opuestos, V debe anularse en algún punto entre ellos y el movimiento es siempre inestable. Si ambos cilindros giran en el mismo sentido, V es positivo (suponiendo que 01 > O y 02 > O) ,  por lo que el criterio de inestabilidad de Rayleigh se escribe 
02 < (R1 ) 2 

0 µ < r¡2 . 01 R2 (30.52) 
Es decir, el movimiento es inestable si la velocidad angular del cilindro interior supera en (R2/ R1 )2 veces la del cilindro exterior. Si 02 = O, el movimiento es siempre inestable. 
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El criterio de inestabilidad no viscoso (30.51) es análogo al del ejemplo 
de la sección anterior, dp/dz > O, en el sentido de que no tiene en cuenta el 
efecto estabilizador de la viscosidad. Para tener en cuenta este efecto hay que 
analizar la evolución de las pequeñas perturbaciones considerando la acción 
de la viscosidad, de forma análoga a como se ha hecho en la sección anterior. 
Para ello, se perturba el flujo base (30.47)-(30.49) en la forma (30.5)-(30.6) , 
y se sustituye en las ecuaciones linealizadas (30.8)-(30.9) . Estas ecuaciones se 
adimensionalizan tomando R1 como longitud característica, 01 1 como tiempo 
característico y 01 R1 como velocidad característica. Aparece así el número de 
Reynolds 

Re = D1Rt 
l/ 

(30.53) 

donde v es la viscosidad cinemática, como parámetro adimensional, que junto 
con los definidos en (30.48) caracterizan el flujo base. Los coeficientes de las 
ecuaciones resultantes sólo dependen de r, por lo que se puede hacer una 
descomposición en modos normales de las perturbaciones: 

( 
i
F(r) 

) 
.... _ G(r) S = H(r) 

· II(r) 

(30.54) 

donde iJ' = u' er + v' ee + w' ez , o: es el número de onda axial, n el número de 
onda azimutal y w la frecuencia. Los parámetros o: y w son en general números 
complejos, mientras que n debe ser un número entero para que las perturba­
ciones no sean funciones multievaluadas de 0. El valor n = O corresponde a 
perturbaciones axilsimétricas, mientras que las perturbaciones no axilsimétri­
cas, o helicoidales, vienen caracterizadas por n = ±1 ,  ±2, . . . .  La amplitud de 
la perturbación u' se ha multiplicado por i por conveniencta. 

Como se comentó en la sección 30.2 .1 ,  la sustitución de (30.53) en las 
ecuaciones linealizadas y sus condiciones de contorno da lugar a un problema 
de autovalores que proporciona la amplitud de las perturbaciones S como 
autofunciones y w ( o o:) como autovalores. En el presente caso, estas ecuaciones 
se pueden escribir como: 

(30.55) 

donde 
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Ao = 

A1 = ( 

• ( d 1 ) -1, - + -dr r • ( nV ) - 1, w - r 
· n  

1, -r _ 2V 
r 
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Q o 
o d 

dr (30. 5 6 ) dV + V Tr r • ( nV ) -1, w - 1' o in 
r 

o 

o -D2 + �2 1 + ª2 
r r 2ni - 7 

o 

o • ( nV ) -i w - 1' ia 
o o 2ni o -D2 + �2 1 + a2 

r r o 
o -D2 + n2 + a2 

r 71' D (30.57) 
d2 1 d D2 = - + -- (30.58) r - dr2 r dr y V viene dado por (30.47), adimensionalizando la velocidad con 01 R1 y r con R1.5 Las condiciones de contorno son: 

(30.59) 
Se considerará primero el límite no viscoso (Re ---+ oo) para perturba­ciones axilsimétricas (n = O) . Las ecuaciones anteriores se escriben 

F F' + - + aH = O ,  r 
2V wF - -G + II = O ,  r 

-iwG + i - + - F = O ,  ( dV iV ) dr r 
-iwH + iaII = O ,  

(30. 60) 
(30. 6 1 ) 
(30. 62) 
(30.63) donde las primas significan derivadas con respecto a r. Estas ecuaciones se pueden reducir a una sola ecuación diferencial de segundo orden para F. Para ello se despeja II, G y H de (30. 63) , (30. 6 1 ) y (30. 60) , respectivamente, 

5 Realmente estas ecuaciones son válidas para cualquier flujo que en coordenadas cilíndri­
cas sólo tiene componente azimutal de la velocidad dada por V(r) . 
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II = �H 
a ' G = rw (F H' ) 2V + a ' 

1 
( 

, F) H = -;_  F +
-:;:-

, 

y se sustituye en (30.62): 

donde 

2 F I 2 W 
( 1 ) -w F + 

02 F + -:;:- + <P F = O, 

1 d 2 <P = - -(rV) , r3 dr 

(30. 64) 

(30.65) 

(30. 66) 

es el denominado discriminante de Rayleigh. Si se hace </> = r F, se tiene un 
problema de Sturm-Liouville (ver, por ejemplo, Butkov, 1968): 

!!_ [� d</>] + (A <P(r) 
-

ª2

) </> = O , dr r dr r r (30. 67) 

(30. 68) 

El problema tiene infinitos autovalores A, que son reales puesto que a2 /r es 
positivo (fijado a real en un problema de estabilidad temporal). Si <P(r) > O 
en el intervalo (1, r¡-1 ), todos los autovalores son positivos, por lo que w es 
real (positivo y negativo) y el flujo es estable. Si <P( r) es negativo, o cambia de 
signo en el intervalo (1, r¡-1 ), algunos autovalores pueden ser negativos, con lo 
que w puede ser imaginario puro, y algunas perturbaciones pueden crecer con 
el tiempo, siendo el flujo inestable. Luego la condición necesaria y suficiente 
para que un flujo puramente circunferencial, con velocidad azimutal V =  V(r) , 
sea estable desde un punto de vista no viscoso frente a perturbaciones 
axilsimétricas es 

<P(r) > O, (30.69) 

en el dominio de definición de V. Este resultado, que fue obtenido por Singe 
en 1933, incluye el obtenido por Rayleigh con argumentos más físicos y vale 
para cualquier flujo puramente circunferencial, no sólo para el flujo de Couette 
entre dos cilindros circulares que se está considerando aquí. 

Si se tiene en cuenta la viscosidad, el criterio de Rayleigh es una condición 
necesaria, pero no sufuciente, de estabilidad, pues la viscosidad puede amor­
tiguar las perturbaciones que las fuerzas centrífugas hacen inestables. Dados 
r¡, µ, n y a, el flujo será inestable (wi > O) por encima de un cierto número 
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T 

Inestable 
T 

e Estable 
a 

Figura 30. 7: Esquema de una curva de estabilidad neutra. 

de Reynolds crítico. En vez del número de Reynolds, es costumbre utilizar el 
denominado número de Taylor: 

T = 
4O¡.Rf 772 - µ 

(
1 - 77

)
4 

v2 1 - 772 1J (30.70) 

Fijados n, 1J y µ, el número de Taylor crítico, por encima del cual el flujo es 
inestable , es una función de o:, pero en su lugar se suele utilizar 

(30. 71) 

En la figura 30. 7 se representa la forma típica de una curva neutra de estabi­
lidad T(a) ,  es decir , una curva para la que wi = O. El menor valor de a es el 
número de onda crítico ac, que proporcionará la longitud de onda 2rr/ac de la 
perturbación que primero se hace inestable a medida que el número de Taylor 
aumenta y se hace mayor que un valor crítico Tc(n, 17, µ). Estos valores críti­
cos hay que obtenerlos, en general , resolviendo numéricamente el problema de 
autovalores. Hay, sin embargo, ciertos límites en los que se puede obtener una 
solución analítica. Por ejemplo, para perturbaciones axilsimétricas (n = O) 
en el límite en el que el espacio entre cilindros es muy pequeño (77 - 1), se 
tiene ( este y otros resultados se pueden encontrar, por ejemplo, en Drazin y 
Reid, 1987) 
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_ 1 
¡ -3 (

1 - µ
)

2 

l Te = 2 ( 1 + µ)Te � 1707,76 1 - 7,61 X 10 
l + µ + . . .  , 11 - µI « 1, 

(30.72) 

(30. 73) 

Obsérvese que estos valores coinciden con los del número de Rayleigh crítico y 
de la longitud de onda crítica dados en la sección anterior para la inestabilidad 
térmica . De hecho, cuando r¡ - 1 ambos problemas de estabilidad coinciden 
matemáticamente si se usa el número de Taylor modificado T y a en lugar de 
o: (ver, por ejemplo, la referencia anteriormente citada). Aunque esta aproxi­
mación es válida para 11 - µI « 1, da buenos resultados para cualquier valor 
de µ en el intervalo 1 > µ > O. 

Cuando T > Te , el flujo puramente circunferencial entre los dos cilindros 
deja de presentarse en la práctica y en su lugar se producen unos vórtices 
toroidales perpendiculares al eje de los cilindros que giran opuestamente en 
celdas adyacentes, llamados vórtices de Taylor, superpuestos al flujo base ori­
ginal [ver esquema en figura 30.6(b); estos vórtices de Taylor son análogos a 
las celdas de Bénard que se producen como consecuencia de la inestabilidad 
térmica ; fotografías de ambos fenómenos pueden verse, por ejemplo, en van 
Dyke, 1982, páginas 7 6  y 83 y en Koschmieder, 1993]. La aparición experimen­
tal de estos vórtices coincide exactamente con el número de Taylor crítico que 
predice la teoría de estabilidad hidrodinámica, como fue comprobado por pri­
mera vez por el propio Taylor [ver figura 30.8(a)]. Para µ < -0, 78, el flujo se 
hace inestable con valores menores de Te para perturbaciones no axilsimétri­
cas (n -=/= 1). Esto quiere decir que los vórtices que se forman tras la primera 
inestabilidad no son axilsimétricos, sino que presentan ondulaciones en la di­
rección azimutal. El número de estas ondulaciones depende del número n que 
primero se hace inestable. A medida que el número de Taylor sigue crecien­
do por encima de Te , otros modos con distintos valores de n pueden hacerse 
más inestables. Así , por ejemplo, un flujo que primero se hace inestable con 
n = O, produciéndose vórtices de Taylor axilsimétricos para T > Te , puede 
experimentar otra transición para T > Tc1 > Te hacia un flujo con vórtices no 
axilsimétricos, que a su vez puede ir cambiando su número de ondulaciones 
n a medida que T crece. En último caso, si se sigue aumentando T, el flujo 
se convierte, para la mayoría de los casos, en un flujo turbulento. Un diagra­
ma experimental de las distintas transiciones se presenta en la figura 30.8 (b) , 
donde se observa la gran complejidad paramétrica del problema. 
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Figura 30.8: (a) Curw1. neutra de estabilidad teórica y experimental para R1  = 3,55cm y 
R2 = 4,035cm en el plano (n2 , n1 ) (tomada del trabajo original de Taylor, 1 923) . La línea discontínua representa el criterio no viscoso de Rayleigh {de acuerdo con este criterio, el flujo es inestable a la izquierda de esa recta). {b) Diagrama experimental de estabilidad en el plano (Ro = r22RVv, R; = 0.1 R?/11) .  [Tomada de Koschmieder { 1993) ,  que a su vez reproduce los resultados de Andereck, Liu y Swinney { 1986).] 
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30.4. Inestabilidades en flujos casi-unidireccionales 

Se ha visto que la viscosidad juega un papel estabilizador frente a ciertas 
fuerzas externas ( como las de flotabilidad o centrífugas) que tienden a producir 
inestabilidades en el flujo; el efecto de la viscosidad en estos casos es disipar la 
energía de cualquier perturbación, estabilizando el flujo. Esta es la razón por 
la cual cualquier flujo confinado es estable si la viscosidad es suficientemente 
alta. Sin embargo, la viscosidad también tiene el efecto de difundir cantidad 
de movimiento, por lo que puede ser el origen de inestabilidades en ciertos 
flujos, principalmente en flujos unidireccionales o casi-unidireccionales en los 
que existe un gradiente de la velocidad en la dirección transversal a la di­
rección del flujo. Como se ha visto en los capítulos precedentes, estos flujos 
son muy importantes desde el punto de vista ingenieril pues describen, más 
o menos aproximadamente, muchos flujos de interés práctico. Ejemplos son el 
flujo de Couette y de Poiseuille entre dos placas, el flujo de Poiseuille en un 
conducto, el flujo en una capa límite bidimensional, chorros bidimensionales 
o axilsimétricos, capas de mezcla, etc. Se verá a continuación que desde un 
punto de vista no viscoso, muchos de estos flujos son estables . Sin embargo, 
si se tiene en cuenta la viscosidad en el análisis de estabilidad, se encuentra 
que estos perfiles de velocidad son inestables en un cierto intervalo del núme­
ro de Reynolds, que depende del tipo de flujo y de las características de las 
perturbaciones. Es decir, las fuerzas viscosas juegan un doble papel: son las 
responsables de la inestabilidad ( el flujo se hace inestable por debajo de un 
número de Reynolds crítico superior), y también amortiguan las perturbacio­
nes ( el flujo se vuelve a hacer estable por debajo de otro número de Reynolds 
crítico inferior). 

Considérese el flujo bidimensional, casi unidireccional en la dirección x, 
V =  U(x, y)ex + V(x, y)éy, con V «  u y au;ax « au¡ay, y el campo de 
presión P = P(x, y) .  Supóngase que todas las variables han sido adimensiona­
lizadas utilizando una velocidad característica U0 , una longitud característica 
L y la densidad p ( el flujo es incompresible) . La introducción de pequeñas per­
turbaciones ( iJ' = u' éx + v' ey + w' ez , p') da lugar a las ecuaciones linealizadas 
(30.8)-(30.9) adimensionales [es decir, en (30.9) la densidad no aparece y en 
lugar de v el término viscoso viene multiplicado por 1/ Re, donde Re = U0L/v 
es el número de Reynolds del flujo base]. Si además se desprecian los términos 
proporcionales a V y a 8U / 8x (lo que se suele denominar aproximación de 
flujo casi-paralelo), la solución se puede descomponer en modos normales 
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( 

F(y) 

) 
- - G(y) 
S = H(y) 

II(y) 

(30.74) 

donde a y f3 son los números de onda en las direcciones x y z, respectivamente 
y w es la frecuencia. Con esta descomposición, las ecuaciones lineales de las 
perturbaciones se pueden escribir como: 

A - S = O ,  
- - 1 -
A =  Ao + ReA1 , 

donde 

Ao = [ 

ia i (aU� � w) 

[ 
o 02 + ¡32 _ d2 

A1 = -¡¡;¡¡z 
o 
o 

d 
3B 
dy i (aU - w) 
o 

o 
o a2 + (32 - d2 

-¡¡;¡¡z 
o 

i/3 
o 
o i (aU - w) 

o 
o 
o 

i: 
)

· 
d ' 

i/3 

02 + ¡32 _ d2 
-¡¡;¡¡z D 

(30.75) 

(30.76) 

(30.77) 

En general, uno tiene que considerar la estabilidad de perturbaciones tri­
dimensionales, con /3 =/ O. Sin embargo, si se hace la transformación 

a* = Ja2 + ¡32, w* w = a* a 
a* F* = aF + {3H , G* = G , II* II a* Re* = aRe , (30.78) = a* o: 

en las ecuaciones anteriores, las ecuaciones con asterisco resultantes son for­
malmente idénticas, pero con f3 = O y H = O. Es decir, cualquier solución para 
una perturbación bidimensional ( con asterisco) se puede usar para describir 
una perturbación tridimensional equivalente haciendo uso de la transformación 
(30.78) . Además, dada una perturbación tridimensional con a, /3 y w = wr +iwi 
(estabilidad temporal) ,  como a* = Jo:2 + /32 � o:, la perturbación bidimen­
sional equivalente es más inestable, puesto que w; = (a*/ o: )wi � Wi , y ocurre 
a un número de Reynolds menor, Re* = (o:/o:* )Re .  Por tanto, si uno quiere 
obtener el número de Reynolds crítico por encima del cual el flujo se hace 
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inestable, es suficiente con considerar sólo las perturbaciones bidimensionales, 
pues éstas son las primeras que se hacen inestables. Por otro lado, para cada 
perturbación tridimensional, existe otra bidimensional equivalente que es más 
inestable ( o menos estable). Todo esto hace que sólo se tenga que considerar 
el problema con perturbaciones bidimensionales (/3 = O, H = O), que es lo que 
se hará en lo que sigue. Esta notable simplificación del problema se debe a 
Squire, quien en 1933 introdujo la transformación (30.78), que ahora lleva su 

nombre. 

30.4. 1 .  Estabilidad no viscosa. Criterio de Rayleigh 

En el límite Re -+ oo, las ecuaciones (30. 75 )-(30. 7 7 )  con /3 = H = O se 
pueden reducir a una única ecuación para G: 

F = -iaG' , II' = -i(aU - w)G , 

G" - G (0.2 + o.U" 
) � O , aU - w  

(30.79) 

(30.80) 

donde las primas representan derivadas con respecto a y. La ecuación (30.80) 
se suele denominar ecuación de Rayleigh que, junto con unas condiciones de 
contorno en dos valores de y, da lugar a un problema de autovalores (en este 
caso un problema clásico de Sturm-Liouville). Por simplicidad se supondrá que 
G(O) = G(l)  = O, lo cual corresponde al flujo entre dos placas paralelas 
separadas por una distancia L. La solución del problema depende de la forma 
particular del perfil de velocidad U(y) . Sin embargo, es posible obtener un 
criterio general de estabilidad sin más que multiplicar la ecuación de Rayleigh 
por el complejo conjugado de G, que se designará por et , e integrar en todo 
el dominio O � y � l. Integrando por partes el primer término, aplicando las 
condiciones de contorno y teniendo en cuenta que cct = !G!2, se llega a 

(30.81) 

Si se considera la estabilidad temporal (a real y w = Wr + iwi ) ,  la parte 
imaginaria de la expresión anterior se puede escribir como 

r l 
2 u" 

ü.Wi lo IG I lo.U - wl2 dy = O .  (30.82) 

Por tanto, para que el flujo pueda ser inestable (wi > O) es necesario que 
U" se anule en algún punto del intervalo O � y � 1; es decir, el perfil de 
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y 

(a) (b) 

(e) (d) 

Figura 30.9: (a) y (b): Perfiles de velocidad estables de acuerdo con el criterio de Rayleigh. 
(c): Perfil potencialmente inestable de acuerdo con el criterio de Rayleigh, pero estable de 
acuerdo con el criterio de Fj0rtoft. (d) : Perfil potencialmente inestable de acuerdo con el 
criterio de Fj0rtoft. 

velocidad U (y) debe tener algún punto de inflexión. Esta condición necesaria, 
pero no suficiente, de inestabilidad se suele denominar criterio del punto de 
inflexión de Rayleigh, quien la derivó en 1880. De acuerdo con ella, perfiles 
de velocidad como los de Couette, Poiseuille y Blasius son estables desde un 
punto de vista no viscoso, pues no tienen punto de inflexión, mientras que los 
perfiles de velocidad en un chorro, en una capa de mezcla o en una capa límite 
con gradiente adverso de presión son inestables. Una condición más fuerte de 
inestabilidad f ue derivada por Fj0rtoft en 195 0:6 Si y0 es la posición del punto 
de inflexión de U [U"(y0 ) = O] y U0 = U(y0) ,  una condición necesaria, pero 
no suficiente, para que el flujo sea inestable es que U"(U - U0) < O en algún 
punto del flujo. De acuerdo con este criterio, algunos perfiles de velocidad con 
un punto de inflexión son siempre estables (ver figura 30.9). 

30.4.2. Estabilidad viscosa. Ecuación de Orr-Sommerfeld 

Los resultados anteriores muestran que flujos como el de Poiseuille entre 
dos placas paralelas o la capa límite de Blasius son estables para Re ---+ oo. 
Sin embargo, los experimentos muestran que ambos flujos son inestables, y de 

6Ver, por ejemplo, Godreche y Manneville, 1998, donde además de la derivación ma­
temática se pueden encontrar las interpretaciones físicas de los dos criterios, el de Rayleigh, 
que está relacionado con la conservación de cantidad de movimiento, y el de Fj0rtoft, que se 
relaciona con la conservación de la energía cinética. 
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hecho se hacen turbulentos, por encima de ciertos valores críticos del número de 
Reynolds. Esto quiere decir que, a diferencia de los ejemplos dados en la sección 
anterior , donde flujos que eran inestables desde el punto de vista no viscoso 
se hacían estables debido a las fuerzas viscosas por debajo de un número de 
Reynolds crítico, la viscosidad juega aquí el papel de fuerza desestabilizadora 
como difusora de cantidad de movimiento en la dirección transversal al flujo 
principal, haciendo inestable un flujo estable desde el punto de vista no viscoso, 
además de su papel estabilizador por debajo de un número de Reynolds crítico. 
Por ello, en este tipo de flujos es esencial el análisis viscoso de estabilidad. 

Las ecuaciones (30.75)- (30.7 7) para perturbaciones bidimensionales (w' = 
O) también se pueden reducir a una única ecuación diferencial ordinaria para 
Re finito si uno utiliza como variable la función de corriente asociada a las 
perturbaciones (las primas ahora denotan perturbaciones, no derivadas): 

I Q
'lpl 

V = -­
OX ' (30.83) 

que satisface idénticamente la ecuación de continuidad de las perturbaciones, 
v' · v' = O. La descomposición normal de las perturbaciones se escribe ahora 
(con f3 = O) 

de donde 

'I/J' = </>(y )i(ax-wt) , 

F = d</> 
G = -ia,1.. . 

dy ' '+' 

(30.84) 

(30.85) 

Sustituyendo en (30.75)-(30.7 7) y eliminando la perturbación de la presión 
II(y) , se llega a una única ecuación para </>(y): 

(30.86) 

que es la denominada ecuación de Orr- Sommerfeld, quienes las derivaron por 
separado en 1907 y 1908, respectivamente. Esta ecuación necesita 4 condiciones 
de contorno para </>, que se obtienen de las dos condiciones de contorno para 
cada una de las componentes de la velocidad u' y v'. En el caso de paredes 
rígidas en y = O e y = 1, serían </> = d</> / dy = O en y = O e y = l. 

Si uno está interesado, como es más habitual, en la estabilidad temporal 
del flujo base U(y) ,  dados el número de onda a y el número de Reynolds Re, 
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Figura 30.10: Esquema de la curva neutra de estabilidad para el flujo de Poiseuille entre 
dos placas planas paralelas. Re = UaL/11, donde L es la distancia entre placas y U0 es la 
velocidad máxima. Rec -:::= 5772 y Oc -::= 1 ,02. Estos resultados concuerdan muy bien con las 
observaciones experimentales. El flujo es estable para Re --> oo. 

la ecuación anterior junto con sus respectivas condiciones de contorno propor­cionan los autovalores w = Wr + iwi . Normalmente los resultados se resumen en la forma de una curva neutra de estabilidad, que es la curva correspondiente a wi (o, Re) = O (ver figura 30.10 para el flujo de Poiseuille entre dos placas pa­ralelas). Es decir, para cada tipo de perturbación infinitesimal ( cada valor de o:), a medida que se va incrementando el número de Reynolds existirá un valor Re1 (0) por encima del cual el flujo se hace inestable, pasando Wi de negativo a positivo. Si el flujo es estable desde un punto de vista no viscoso ( como es el caso de la figura 30.10), existirá además un segundo valor Re2 (0) > Re1 por encima del cual el flujo se vuelve a hacer estable, pasando el valor de Wi a ser negativo de nuevo. En el caso de la figura 30.10, el flujo es estable para todo valor de o cuando Re -t oo, pero es sólo neutralmente estable (wi = O) en este límite si o -t O, lo cual es una característica común en casi todos los flujos que son estables desde el punto de vista no viscoso. El menor valor del número de Reynolds para el que Wi = O es el número de Reynolds crítico, Rec , por encima del cual el flujo se hace inestable para al menos algún valor del número de onda de las perturbaciones. El correspondiente valor del número de onda, oc, es el número de onda crítico. Para el flujo de Poiseuille de la figura 30.10, Rec '.:::'. 5772 y Oc '.:::'. 1 ,02, donde U0 es la velocidad máxima en y =  1/2 y L es la separación entre placas. En la figura 30. 1 1  se representa la curva neutra de estabilidad para U(y) = 
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(a) (b) 

Estable 

a 

Inestable Inestable 

25 Re 

Figura 30.11 :  (a) : Perfil de velocidad en una capa de mezcla. (b) Esquema de la curva neutra de estabilidad para el flujo en una capa de mezcla dado por U(y) = 1 + tanh(y). El flujo es inestable para Re --+ oo. 

1 + tanh y, que modela el perfil de velocidad en una capa de mezcla, producida 
inmediatamente aguas abajo de una discontinuidad tangencial correspondiente 
a un flujo uniforme se pone en contacto con un fluido en reposo [figura 30.ll(a) ; 
en este caso la velocidad característica U0 es la velocidad de la corriente uni­
forme, y la longitud L(x) es un espesor característico de la capa de mezcla 
en cada posición x]. De acuerdo con el criterio no viscoso de Rayleigh y de 
Fj0rtoft ,  esta capa de mezcla puede ser inestable para Re - oo, y de hecho 
los resultados numéricos muestran que así es para O � a � 1. Los resultados 
viscosos [figura 30.ll(b)] muestran que este flujo es siempre inestable: Rec = O. 
Sin embargo, para Re muy pequeño, sólo son inestables las perturbaciones con 

número de onda muy pequeño (longitud de onda muy grande), para las que 
la validez de la aproximación de flujo casi paralelo (8U /ox = O) hecha en esta 
sección es dudosa.7 Un resultado similar se obtiene para un chorro bidimensio­
nal: es linealmente inestable para Re - oo, y el número de Reynolds crítico, 
aunque no cero, es muy pequeño (Rec c::: 4, ac '.::::'. 0,2). 

30.5.  Capa límite de Blasius: inestabilidades y tran­
sición a la turbulencia 

Dada su relevancia práctica, combinada con su relativa sencillez, la capa 
límite sobre una placa plana (solución de Blasius, ver sección 27.3) fue uno de 
los primeros ejemplos para el que se resolvió la ecuación de Orr- Sommerfeld. 

7Resultados de estabilidad teniendo en cuenta que el flujo base no es estrictamente para­lelo se verán en la siguiente sección para la capa límite de Blasius. 
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Figura 30. 12: Curva neutra de estabilidad en el plano frecuencia-Re de la capa límite de 
Blasius. (a): Resultados numéricos de Schlichting { 1933; curva discontínua) y Shen { 1954; 
curva contínua) , y experimentales de Schubauer y Skramstad (1947; círculos) ;  O =  w/Re, 
Re = U81 /v (figura tomada de Panton, 1996) .  {b) : Resultados numéricos teniendo en cuenta 
la variación del flujo base con x obtenidos por Bertolotti, Herbert y Spalart ( 1992; curva 
contínua) , junto con los resultados de la ecuación de Orr-Sommerfeld (curva discontínua) y 
diversos resultados experimentales [los círculos son los mismos que en (a) , mientras los otros 
símbolos corresponden a resultados experimentales más recientes] ; F = 106 t% ,  R = Ju x / v 
(figura tomada de Bertolotti, Herbert y Spalart, 1992). 



CAPÍTULO 30. INESTABILIDADES Y TRANSICIÓN A LA TURBULENCIA 553  

Figura 30. 13: Esquema de las ondas de Tollmien-Schlichting. 

La figura 30.12(a) muestra los primeros resultados aproximados de Schlichting 
(1933) y la mejora de Shen (195 4) , junto con resultados experimentales. A dife­
rencia de los resultados mostrados en las figuras anteriores, en la figura 30.12 
se representa la curva neutra de estabilidad para un análisis de estabilidad 
espacial,8 que es más fácil de reproducir experimentalmente al ser más fácil 
excitar una frecuencia temporal que un número de onda espacial. Obviamen­
te, el número de Reynolds crítico de ambos análisis, el espacial y el temporal, 
coinciden. En la figura se observa que hay un acuerdo bastante bueno entre 
experimentos y teoría. Sin embargo, a pesar de que los cálculos numéricos de 
la ecuación de Orr-Sommerfeld se han ido refinando con el tiempo, a medida 
que se ha tenido acceso a computadoras más potentes, el número de Reynolds 
crítico [en la figura 30.12(a) se utiliza Re = Uói/v, donde 81 es el espesor de 
desplazamiento de la capa límite (27.43)] calculado con esta ecuación resulta 
ser Rec '.::::'. 5 20, bastante superior al valor experimental Rec '.::::'. 45 0. Para in­
tentar resolver esta discrepancia , se han tenido en cuenta los efectos que en 
el análisis de estabilidad tiene el hecho de que el perfil de velocidad no sólo 
depende de y, sino también de x (es decir, que el espesor de la capa límite 
crece aguas abajo), lo cual da lugar a ecuaciones bastante más complejas que 
la de Orr- Sommerfeld. Algunos resultados relativamente recientes se presen­
tan en la figura 30.12(b). Aunque la consideración de los efectos relacionados 
con el hecho de que el flujo base no es paralelo mejora algo los resultados, 
la discrepancia entre el Rec teórico y experimental aún permanece corno una 
cuestión sin resolver completamente. 

Cuando Re > Rec [es decir, x > (Rec/1, 72)2v/U] , el flujo de Blasius se 

8Es decir, tomando frecuencias w reales y números de onda u complejos, estando la curva 
neutra definida por o:; (Re, w) = O. 
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hace inestable, produciéndose en ese valor de x las denominadas ondas de Tollmien-Schlichting (TS para abreviar) .  Estas ondas bidimensionales son si­milares a los vórtices de Taylor considerados en la sección anterior, con una longitud de onda dada por el valor O:c (figura 30. 13). A medida que el flujo avanza (el número de Reynolds aumenta), el flujo base combinación del flujo de Blasius y las ondas de TS  se hace a su vez inestable frente a perturbaciones tridimensionales {3 -¡:: O, produciéndose un flujo que también es ondulado en la dirección z. A partir de aquí, el flujo experimenta una serie de transiciones de inestabilidad más o menos complejas, hasta que se hace completamente turbu­lento ( completamente irregular e impredecible) cuando el número de Reynolds basado en 81 es aproximadamente 3000. Para simular estas transformaciones del flujo hay que hacer uso de la teoría de estabilidad no lineal, es decir, no se pueden usar las ecuaciones linealizadas de las perturbaciones, pues éstas ya han crecido lo suficiente como para que la teoría de la estabilidad lineal deje de ser válida. Las ecuaciones no lineales son lo suficientemente complejas como para que aún hoy no se tenga una pintura detallada de los complica­dos fenómenos que se producen en la transición a la turbulencia de la capa límite de Blasius, que es posiblemente el ejemplo relevante más sencillo de transición a la turbulencia. Un esquema cualitativo de lo que se observa ex­perimentalmente se muestra en la figura 30. 14: Tras el flujo laminar inicial (a), se producen las ondas bidimensionales de TS  para Re > Rec (b) ; estas ondas se hacen inestables, dando lugar a ondas de TS  tridimensionales (c) ;  las ondas de T S  tridimensionales van teniendo cada vez gradientes más im­portantes en la dirección z, formándose vórtices periódicos con forma de A (a veces denominados de Kebanov), intensificándose la vorticidad en los vérti­ces; en estos puntos de vorticidad intensa se producen de manera intermitente erupciones de flujo turbulento (d), que da lugar a puntos turbulentos (e) con fluctuaciones muy intensas de la velocidad; finalmente, la coalescencia de todos estos puntos turbulentos da lugar a la capa límite turbulenta completamente desarrollada (f) , cuya descripción matemática se dará en el capítulo 32. La simulación numérica directa de las ecuaciones de Navier-Stokes para el flujo de capa límite, que ha sido posible sólo recientemente con el uso de poten­tes ordenadores, ha permitido la identificación y explicación cuantitativa de algunas de las estructuras anteriores, habiéndose propuesto además diversas alternativas al esquema clásico anterior, pero quedando aún algunos puntos sin explicar adecuadamente (para más detalles, el alumno interesado puede consultar, por ejemplo, Sherman, 1990 y Schlichting y Gersten, 2000). 

En el capítulo 32, además de la estructura de la capa límite turbulenta, se verá también la estructura del flujo turbulento en un conducto circular, que 
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(a) (b) (e) (d) (e) (f) 
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Transicion Turbulento 

Figura 30.14: Esquema idealizado de la zona de transición a la turbulencia en una capa límite sobre una placa plana. Descripción en el texto. (Figura adaptada de White, 1991 . )  

es quizá el flujo turbulento simple más relevante desde el punto de vista in­
genieril. Conviene comentar aquí que la transición desde el flujo de Poiseuille 
en un conducto al correspondiente flujo turbulento tiene cierto parecido a la 
que se acaba de describir para la capa límite, al menos en las últimas etapas. 
La diferencia fundamental estriba en que el flujo de Poiseuille en un conduc­
to es linealmente estable frente a todo tipo de perturbaciones infinitesimales 
(no existe un Rec en el sentido que se ha discutido más arriba). El flujo es 
inestable frente a perturbaciones de amplitud finita, por lo que el análisis de 
estabilidad (no lineal) es mucho más complejo. Los experimentos y las simu­
laciones directas de las ecuaciones de N avier- Stokes ( más recientes) muestran 
que el número de Reynolds crítico depende de la amplitud de las perturba­
ciones, aumentando a medida que la amplitud disminuye ( ver figura 3 0.1). El 
flujo es incondicionalmente estable por debajo de Re '.:::'. 2 3 00, mientras que 
si no se introduce ninguna perturbación en el flujo (lo cual es prácticamente 
imposible tanto numérica como experimentalmente), el flujo permanece lami­
nar para cualquier número de Reynolds. En su experimento original, Reynolds 
( 188 3 ) consiguió que el flujo fuese laminar hasta Re ~ 1 3 000. Actualmente, 
mejorando las condiciones de entrada, se han conseguido flujos de Poiseuille 
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con números de Reynolds mayores de 105 . Por último indicar que, obviamente, 
las rugosidades de la superficie sólida favorecen la transición a la turbulencia 
(tanto en la capa límite como en el flujo en un conducto). Si la rugosidad rela­
tiva de la superficie es suficientemente grande, algunas de las etapas iniciales 
de la transición desaparecen. 
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Capítulo 31 

Descripción matemática de 

los flujos turbulentos 

31 .1 .  Descripción determinista y estadística de la 
turbulencia 

Se ha visto en la lección 29 que incluso las fluctuaciones más pequeñas de 
la turbulencia ocurren en una escala (microescala de Kolmogorov) mucho ma­
yor que la escala del movimiento molecular. Experimentalmente se comprueba 
que esto es cierto incluso en flujos hipersónicos, hasta números de Mach del 
orden de 15 [ver ecuación (29.6)]. Por tanto, excepto en casos muy extremos (M > 15) ,  los flujos turbulentos pueden ser descritos apropiadamente por las 
ecuaciones de -Navier -Stokes. Estas ecuaciones son deterministas, en el sentido 
de que dadas la posición y la velocidad de todas las partículas fluidas ( en to­
das las escalas) en un instante t0, en principio existe solución de las ecuaciones 
para cada t > t0 • Es decir, la turbulencia es un fenómeno determinista, a pe­
sar de lo intrincado e irregular de los movimientos turbulentos. Con el avance 
espectacular en la capacidad y velocidad de los ordenadores, no parece tan le­
jano el que se pueda simular numéricamente cualquier movimiento turbulento. 

Sin embargo, este panorama tan prometedor es algo engañoso ya que, debido 
a la no linealidad de las ecuaciones, origen de las inestabilidades, cualquier 
perturbación infinitesimal de las condiciones iniciales da lugar a una solución 
sustancialmente diferente. Esto no sólo afecta a la computación numérica, en 
el sentido de que es imposible conocer con precisión absoluta las condiciones 
iniciales, sino que es algo más profundo, relacionado con el indeterminismo intrínseco y, por tanto, la impredecibilidad, de ciertos sistemas dinámicos no 
lineales, como el movimiento de un fluido, en algunos rangos paramétricos. No 
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obstante, la simulación numérica directa está dando resultados cada vez más 
interesantes en flujos con número de Reynolds moderado. Para altos núme­
ros de Reynolds, la simulación sólo puede tratar las escalas mayores del flujo 
[recuérdese que la microescala de Kolmogorov decrece a medida que aumen­
ta Re, ver ecuaciones (29.3)-(29.5 )], y estos resultados están proporcionando 
información muy valiosa sobre la estructura de la turbulencia. Pero la impre­
cisión asociada a las pequeñas escalas y a las condiciones iniciales, amplificada 
por la no linealidad de las ecuaciones, da lugar a que después de un cierto pe­
riodo de tiempo el flujo turbulento simulado difiera significativamente del flujo 
real . Como lo expresó Lorenz (196 3 ) en relación a la predicción atmosférica, 
aunque podamos simular numéricamente el movimiento en las escalas grandes 
y medianas (borrascas, huracanes, etc.) , la imposibilidad de simular las pe­
queñas escalas hace que cualquier perturbación pequeña ( como la producida 
por el vuelo de una mariposa) cambie el comportamiento del flujo, de forma 
que las predicciones atmosféricas no pueden ir más allá de unos pocos días. 
Precisamente fue el meteorólogo Lorenz quien, en su famoso artículo de 1963, 
encontró caos en un sistema dinámico no lineal muy simple, con tan solo tres 
grados de libertad y gobernado por un sistema de tres ecuaciones diferencia­
les ordinarias aparentemente muy sencillas, revolucionando así la física de los 
sistemas dinámicos no lineales.1 

De lo anterior se desprende la conveniencia (y también la necesidad) de usar 
métodos estadísticos para tratar la turbulencia, de los cuales nos ocuparemos 
exclusivamente en lo que sigue. De hecho, el estudio estadístico de la turbulen­
cia es el más antiguo (las ecuaciones de Reynolds que veremos más adelante 
datan de 1895 ). Obviamente, la simulación numérica no ha sido posible hasta 
el desarrollo de los potentes ordenadores modernos, y, aún así, de acuerdo con 
lo dicho anteriormente, hay que utilizar hipótesis estadísticas para modelar las 
escalas más pequeñas de la turbulencia si se quiere simular flujos con núme­
ros de Reynolds moderados y altos. Estas hipótesis introducen ruido de fondo 
en la simulación numérica, haciéndolas poco (o nada) precisas para tiempos 
grandes. Por ello, a pesar de que, como se dijo antes, la simulación numérica 
está proporcionando resultados muy interesantes, el tratamiento clásico es­
tadístico, complementado con hipótesis semiempíricas o fenomenológicas, ha 
sido, y sigue siendo, muy útil para resolver problemas ingenieriles, sobre todo 
para aquellos problemas relacionados con flujos turbulentos en las inmediacio­
nes de paredes sólidas, que son los únicos que se abordarán en las lecciones 
siguientes. 

1La no integrabilidad de ciertos problemas dinámicos simples, como el problema de tres 
cuerpos, era conocida, sin embargo, desde el siglo XIX. 
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31 .2 .  Movimiento medio y fluctuaciones 

En el tratamiento estadístico clásico de la turbulencia las magnitudes flui­
das se descomponen en dos partes, un valor medio y una fluctuación con media 
nula. Así, por ejemplo, la velocidad v(x, t) se descompone en un valor medio 
v(x) y una fluctuación i!(x, t ) ,  

de forma que _ 1 ít+to 
V =  lím - vdt . 

to -+00 ta t 
(31.1) 

(31.2) 

Las magnitudes medias (promediadas en el tiempo) se designarán mediante 
una barra encima. Para simplificar la notación, no se utilizarán vectores, sino 
sus componentes. Obviamente el valor medio de las fluctuaciones es nulo, 

(31.3) 

El uso de promedios temporales es la situación usual que se presenta cuando 
se hacen medidas experimentales, ya que éstas se realizan en un punto fijo 
del espacio y en un medio estadísticamente estacionario pero normalmente 
no homogéneo espacialmente. En un medio no homogeneo no sería apropiado 
usar promedios espaciales, ya que éstos variarían de punto a punto. Por otro 
lado, para que el promedio temporal tenga sentido, la integral (31.2) debe ser 
independiente de ta ; es decir, el flujo medio ½ debe ser estacionario.2 

Análogamente a la descomposición de la velocidad se hará para las demás 
magnitudes fluidas. Por ejemplo la presión y la temperatura (se conside­
rará que el flujo es incompresible, con lo que la densidad es constante): 

T = 0 + T' , p = P + p' , 
T' = p' = O 

(31.4) 

(31.5) 

El valor medio de la derivada espacial de una variable es igual a la de­
rivada del valor medio, ya que el promediado se realiza integrando sobre un 
período largo de tiempo, pudiéndose intercambiar la derivada espacial con la 
integración temporal. Por ejemplo, 

2 Aunque sólo se considerararán en lo que sigue flujos cuyas propiedades medias son esta­
cionarias, la descomposición de Reynolds también se puede usar para describir flujos turbu­
lentos cuyas medias no son estacionarias, siempre que el tiempo característico de variación 
te sea mucho mayor que el tiempo to en el que se promedian las magnitudes fluidodinámicas. 
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8vi D¼ = 8xj 8xj 
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(31.6) 

El promedio del producto de dos variables, como por ejemplo de dos compo­
nentes de la velocidad, sería: 

(31. 7) 

Los términos producto de una fluctuación y un valor medio desaparecen al ser 
constante el valor medio y nulo el promedio de la fluctuación. Si v�vj -/= O se 
dice que v: y vj están correlacionadas, y si v:vj = O, son estadísticamente in­
dependientes o no correlacionadas. Para que v: y vj estén correlacionadas, las 
fluctuaciones de v: y vj en el tiempo no pueden ser independientes estadísti­
camente, sino que, por ejemplo, durante el tiempo que una es positiva, la otra 
tiene también que serlo durante la mayor parte de ese tiempo, y viceversa. Una 
medida del grado de correlación entre dos fluctuaciones v: y vj viene dada por 
el coeficiente de correlación 

C· · = v'v'- / (v'2 v'-2 ) 112 
i] - i J i J , (31.8) 

que vale la unidad cuando v: = vj , y cero si v: y vj no están correlacionadas. 
Las cantidades v? y vj2 son las variancias de las respectivas fluctuaciones. 
Sus raices cuadradas son las desviaciones típicas de las fluctuaciones y nor­

malmente se usan como velocidad característica de fluctuación de un flujo 
turbulento. 

31 .3. Ecuaciones de Reynolds. Esfuerzos aparentes 
de Reynolds 

La descomposición de las magnitudes fluidas en valores medios y fluctua­
ciones fue hecha por Reynolds (1895) con el objetivo de obtener ecuaciones 
para las magnitudes medias. De esta forma, en vez de utilizar las ecuaciones 
de Navier-Stokes para las magnitudes fluidas en cada punto y en cada instan­
te, que no serían integrables para un flujo turbulento en el sentido descrito en 
la sección 31.1, se utilizan las ecuaciones para los valores medios, las cuales, 
con ciertas hipótesis semiempíricas que veremos más adelante, proporcionan 
una información muy útil sobre el flujo, sobre todo desde un punto de vista 
ingenieril. 
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Suponiendo, por simplicidad, que el flujo es incompresible, tornando el 

valor medio de la ecuación de continuidad v' • v y utilizando las definiciones y 
resultados de la sección anterior, se tiene que el flujo medio es incompresible: 

av; = O . 
OXi 

(31.9) 

Restando esta ecuación de ovd oxi = O, se tiene que las fluctuaciones son 
también solenoidales: 

av: = O .  (31.10) 
OXi 

Análogamente, tomando valores medios de la ecuación de cantidad de movi­
miento ( en ausencia de fuerzas másicas) se tiene 

av; aP a 
( 

av; -,-,
) P½ � = - -;:_i-- + � µ� - PViVJ· UXj UXi UXj UXj 

(31.11) 

donde, aparte de suponer que p = constante, se ha tenido en cuenta que el 
flujo medio es estacionario y que 

� ov; , av: V ov; 8 
(-,-, ) Vj � = Vj � + v

j
� = j � + � vivj ux1 ux1 ux1 ux1 ux1 

(31.12) 

siendo la última igualdad consecuencia de (31. 10). La ecuación (31.11) para 
el flujo medio es análoga a la ecuación de cantidad de movimiento para el 
flujo local, pero con un término adicional proveniente de la covencción de la 
cantidad de movimiento de las fluctuaciones de la velocidad. Este término se 
ha escrito como la divergencia del tensor -pv:v.i, por lo que esta magnitud hace 
las veces de un esfuerzo, similar al esfuerzo viscoso µov;/oxj, pero que en vez 
de ser consecuencia del transporte molecular de cantidad de movimiento, es 
consecuencia del transporte de cantidad de movimiento por las fluctuaciones 
turbulentas de la velocidad. Por ello se suele definir el tensor de esfuerzos 
aparentes, o turbulentos, de Reynolds como 

(31.13) 

Los elementos diagonales de Tt son los esfuerzos normales (presiones) turbu­
lentos: -pv?, -pv;2 y -pv;2, que suelen ser muy pequeños en la mayoría de 
los flujos. Por el contrario, los elementos fuera de la diagonal, -pv:vj, i -=/=  j, 
es decir, los esfuerzos tangenciales turbulentos, suelen ser mucho más impor­
tantes que los correspondientes esfuerzos tangenciales viscosos, pues, corno se 
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comentó en la lección 29, el transporte turbulento es mucho más efectivo que 
el molecular. 

La ecuación de la energía, suponiendo por simplicidad que el flujo es in­
compresible, que Cp y K son constantes ( o: = K / pep = constante) y que no 
hay disipación viscosa ni aportes externos de calor, se escribe: 

ar ar a2T - + vj -- = o:--- . at axj axjaxj (31 .14) 

Utilizando la descomposición (31 .4) para la temperatura y promediando, se 
llega a: 

(31 . 15) 

El vector cuya componente j es -pepv;T' es el denominado vector de flujo 
de calor turbulento. Así, desde el punto de vista de las magnitudes medias, el 
flujo de calor es la suma de la contribución del movimiento molecular y de las 
fluctuaciones turbulentas: 

(31 . 16) 

31 .4. El problema del cierre 
La descomposición del flujo en un flujo medio y sus fluctuaciones ha sepa­

rado los efectos de las fluctuaciones en las ecuaciones del flujo medio, apare­
ciendo un tensor de esfuerzos turbulento, Ttij = -pv:v; , y un vector flujo de 
calor turbulento, qtj = pepv;r1 , en las ecuaciones de cantidad de movimiento 
y de energía. Estas magnitudes son desconocidas, por lo que el problema no 
está cerrado. Se podrían escribir ecuaciones para esas magnitudes, pero apa­
recerían nuevas incógnitas del tipo v�v;v� y v�v;T' ,  y así sucesivamente. Por 
ello, la forma habitual de cerrar el problema, sobre todo si uno quiere resol­
ver problemas prácticos en los que ocurren flujos turbulentos, es mediante el 
uso de hipótesis fenomenológicas o semiempíricas para el tensor de esfuerzos 
y el vector flujo de calor turbulentos. Existen diversas aproximaciones más o 
menos adecuadas para describir distintos tipos de problemas (ver referencias) . 
A continuación se verá sólo una aproximación relacionada con la denominada 
longitud de mezcla de Prandtl, que sobre todo tiene utilidad para describir 
flujos turbulentos casi unidireccionales. 
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31 .4. 1 .  Longitud de mezcla 

La longitud de mezcla en flujos turbulentos es un concepto que proviene 
de la analogía formal entre la descomposición de Reynolds (31.1) y la des­
composición de la velocidad molecular que se hace en la teoría cinética de 
gases ( ver lección 9) en una velocidad media o macroscópica y la velocidad de 
fluctuación molecular [ecuación (9.6)]. Ahora la molécula es sustituida por la 
partícula fluida fluctuante. El concepto equivalente a la longitud de mezcla es 
el camino libre medio molecular entre colisiones >.. La analogía se puede hacer 
de una forma rigurosa, pero aquí se presentará brevemente de una forma in­
tuitiva (para un desarrollo mucho más detallado ver, por ejemplo, Schlichting 
y Gersten, 2000) . 

Como el concepto de longitud de mezcla encuentra sobre todo aplicación 
en los flujos casi unidireccionales ( capa límite, flujo en conductos, chorros, 
etc.) que, por otra parte, son los únicos flujos turbulentos que se considerarán 
con algún detalle, se supondrá que movimiento medio es, en primera appro­
ximación, V ::=  U(y)ex. La viscosidad cinemática turbulenta Vt se define 
como 

-,-, aU 
Tt = -pu v = PVt - , 

ay 
(31.17) 

donde u' y v' son las componentes de la velocidad de fluctuación en las di­
recciones x e y, respectivamente. A diferencia de v, que depende sólo de las 
propiedades del fluido, Vt depende mayormente del flujo y, por tanto, de la 
posición de la partícula fluida. Pero, análogamente a la viscosidad cinemática 
molecular, que para un gas es del orden del producto del camino libre medio 
entre colisiones y la velocidad de agitación molecular , v ~ >.cT [ver ecuacio­
nes (8. 4) y (9.61) ; CT es del mismo orden que la velocidad del sonido a] , se 
supone que Vt es del orden del producto de una longitud de mezcla, lm, 
o longitud que recorre una partícula fluida fluctuante antes de que pierda su 
identidad mezclandose con las partículas fluidas de su entorno, y una velocidad 
característica de fluctuaciones u* , 

De esta forma se tiene que 

* aU 
Tt = pu lm ay 

(31.18) 

(31.19) 

Prandtl relacionó la velocidad fluctuante u* con el módulo del gradiente de 
velocidad, u* ~ lm laU/ayl (lo cual se obtiene de (31.17) haciendo lu'v' I  ~ u*2) ,  
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llegando a la expresión: 

_ -,-, _ z2 ¡ au ¡ au 
Tt - -{J'l.t V - p m é)

y 
é)

y • 

MECÁNICA DE FLUIDOS 
(31.20) 

La utilidad de esta expresión depende, obviamente, del grado de precisión 
con que se evalúe la longitud de mezcla ( que es en sí un concepto algo impre­
ciso) en cada tipo de flujo. Para movimientos turbulentos cerca de una pared 
sólida (capa límite turbulenta) se verá en la lección siguiente que lm '.:= "-Y, 
donde y es la distancia perpendicular a la pared y "' es una constante que 
se obtiene experimentalmente. Para una capa de mezcla, para un chorrro o 
para una estela, bidimensionales, de anchura b(x) , l1n '.:= "-ib, donde "-l es otra 
constante a determinar experimentalmente. Ambas constantes, "' y "-l son 
universales, en el sentido de que no dependen ni del fluido ni de la intensidad 
turbulenta. Como la longitud de mezcla es también una longitud característica 
de las fluctuaciones turbulentas (de mayor escala), de estos ejemplos se sigue 
que los torbellinos en una capa límite crecen de tamaño a medida que se alejan 
de la pared, mientras que su tamaño no depende de la coordenada transversal 
para capas de mezcla, chorros o estelas. 

31 .4.2. Analogía de Reynolds 

Para determinar el flujo de calor turbulento también se puede hacer uso 
del concepto de longitud de mezcla. Para el flujo de calor transversal en un 
movimiento casi unidireccional, se tiene 

(31.21) 

donde O:t es la difusividad térmica turbulenta. Sin embargo, en el problema 
que se estudiará en las lección siguiente de la capa límite turbulenta, se suele 
utilizar la analogía de Reynolds y expresar el flujo de calor en función del 
esfuerzo turbulento. 

Esta analogía ya se consideró en el capítulo 28 en relación a la capa límite 
laminar. Se vió que, estrictamente, era válida para el flujo sobre una placa 
plana (gradiente de presión nulo), con temperatura de la pared constante, para 
un fluido con Pr = l. Esta última condición es muy restrictiva en los flujos 
laminares ( transporte exclusivamente molecular), pero no en los turbulentos, 
ya que las difusividades moleculares (de cantidad de movimiento y energía) 
son despreciables frente a las turbulentas, y al ser el transporte turbulento 
debido a las fluctuaciones de la velocidad, con igual intensidad se transporta 
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cantidad de movimiento y energía. Por tanto , el número de Prandtl turbulento 
es prácticamente igual a la unidad siempre. De hecho, comparando (31.20) con 
(31.21) se tiene 

(31.22) 

Así, teniendo en cuenta que en la mayoría de las ocasiones v « Vt y a « at, 
las ecuaciones y condiciones de contorno de la capa límite turbulenta sobre 
una placa plana se escriben (V = Uex + Vey, IV I  « IU I ) :  

(31.23) 

(31.24) 

(31.25 ) 

(31.26) 

Las ecuaciones y condiciones de contorno para U y para 0 son análogos, veri­
ficándose Ue (80/8y)y=O = (0p - 0e) (8U/8y)y=O · Utilizando la terminología de 
la sección 28.3, se tiene 

Es decir, 

q qt (80/8y)y=O Sta pcpUe (0e - 0p) 
CpT � CpTt 

= - (8U/8y)y=0 
= 

C¡pU;/2 

Sta = C¡/2 

(31.27 ) 

(31.28) 

donde ahora Sta y C ¡ son el número de Stanton y el coeficiente de fricción 
basados en el flujo de calor y esfuerzo turbulentos. 

La analogía anterior no tiene la restricción del número de Prandtl que tenía 
en el caso laminar. Sin embargo, la hipótesis hecha de que las difusividades 
turbulentas son mucho mayores que las moleculares, aunque válida en casi la 
totalidad de la capa límite turbulenta, no lo es en una capa muy delgada ( en 
relación al espesor de la capa límite) en las proximidades de la pared (deno­
minada subcapa laminar, ver lección siguiente), donde el transporte molecular 
puede ser muy importante y las fluctuaciones turbulentas muy pequeñas, por 
lo que v y a pueden ser del mismo orden, o incluso mayores, que Vt y ªt ·  
Afortunadamente, esta subcapa es tan delgada que en muchas ocasiones su 
espesor es del mismo orden que el tamaño de las rugosidades de la superficie, 
no existiendo en tales casos. Cuando la subcapa laminar existe, la analogía de 
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Reynolds anterior deja de ser estrictamente válida, siendo necesario corregirla 
mediante otras aproximaciones. 

31.5 .  Vorticidad en los flujos turbulentos 
31.5. 1 .  Vorticidad y esfuerzos de Reynolds 

Antes de pasar a escribir la ecuación de la vorticidad para flujos turbulentos 
utilizando la descomposición de Reynolds, 

( 3 1.29) 

es interesante relacionar los esfuerzos de Reynolds con la vorticidad. Para ello 
la ecuación de cantidad de movimiento se escribe en la forma ( como en toda 
esta lección se supone que el flujo es incompresible y no se consideran las 
fuerzas másicas): 

av l 
O O 2¡2 - - 02 -- = - - vp - vV + v A w + vv v {)t p ( 3 1.3 0) 

El término v !\ w es crucial para los flujos turbulentos, representando una 
fuerza de vorticidad análoga a una fuerza de Coriolis debida al propio giro 
de las partículas fluidas ( el factor 2 no aparece puesto que w es dos veces la 
velocidad angular de giro de una partícula fluida centrada en el punto x, ver 
sección 4.2). Sustituyendo ( 3 1.1) y { 3 1.29) en la ecuación anterior y tomando 
valores medios, suponiendo, como se ha hecho antes, que el flujo medio es 
estacionario, se llega a la ecuación (se pasa a notación con subíndices) :  

{) (p 1 1-, ') ( -,-, ) {)2v¡ ( ) 
o = -

{)xi p + 2 Vj Vj + 2vjvj + lijk VjDk + vjwk + V 8xj8Xj • 3 1.3 1 

Comparando con ( 3 1.11) se observa que el término de los esfuerzos de Rey­
nolds se descompone en dos términos, un gradiente de la presión dinámica de 
las fluctuaciones, ½v,? y un término de interacción entre las fluctuaciones de la 
velocidad y de la vorticidad, lijkVjwk. Como se dijo anteriormente, la contri-' 
bución turbulenta a la presión dinámica suele ser insignificante, ½vf « ½ �2 , 
por lo que las fuerzas originadas por los esfuerzos de Reynolds están asocia­
das, principalmente, a la· interacción entre vorticidad y velocidad. Para ver 
más fácilmente esta interacción, se considerará, como en las secciones prece­
dentes, un flujo medio bidimensional casi unidireccional (Vi » V2 , V3 = O) 
con derivadas espaciales a lo largo del movimiento despreciables frente a las 
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transversales (8/8x1 « 8/8x2). Con estas hipótesis la única componente no nula de la vorticidad es 03 = 8Vi/8x1 - 8Vi/8x2 '.:::'. -8Vi/8x2. En la componente según la dirección x1 de la ecuación (31.31) ,  los términos que contienen productos de la vorticidad media son ViO3 y -ViO2. El segundo es nulo (Vi = 02 = O), mientras que el primero vale -Vi8Vi /8x2 + Vi8Vi/8x1. Por otro lado, -8 (½ ½ ½) /8x1 = - Vi8Vi/8x1 - Vi8Vi/8x1. Así, los segundos sumandos se cancelan, quedando la ecuación 

8Vi 8Vi l oP -,-, -,-, Vi - + Vi- = - - - + V2W3 - V3W2 8x1 8x2 p 8x1 (31 . 32) 
Comparando esta ecuación con la componente según x1 de (31.1 1 )  y teniendo en cuenta que 8vf /8x1 « 8(v�v2)/8x2 , se tiene la siguiente expresión para la componente -v� v2 del esfuerzo de Reynolds: 

(31.33) 
Para tener una idea del significado de cada uno de los dos términos invo­lucrados, se puede hacer uso de la teoría de la longitud de mezcla, apropiada para estos flujos casi unidireccionales, y suponer, de acuerdo con (31.19) , que 

(31.3 4) donde la longitud de mezcla lm es un tamaño característico de las fluctuaciones (vórtices) y u una velocidad característica de las fluctuaciones, que normal­mente depende muy poco de la coordenada transversal x2. Así, 
(31.3 5) 

donde se ha hecho uso de 03 '.:::'. -8Vi /8x2. Por otra parte, por analogía con (31.3 4), se puede escribir 
(31.3 6) 

no existiendo expresión análoga para v�w2 puesto que 02 = O. De esta for­ma, salvo constantes numéricas que no se están considerando, comparando las expresiones anteriores se tiene que 
(31.37) 
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Es decir, la fuerza originada por los esfuerzos de Reynolds se puede descompo­
ner en dos partes: una debida al transporte de vorticidad [ecuación (31 .36)] y 
otra cuyo origen es el estiramiento de los vórtices, que al incrementar la vorti­
cidad de los mismos aumentan la velocidad de fluctuación [ecuación (31 .37)] . 
En algunos flujos como los chorros, estelas y capas de mezcla, lm '.'.::::'. constante 
a través del flujo, por lo que la fuerza correspondiente al estiramiento de los 
vórtices es despreciable y la fuerza dada por el gradiente de los esfuerzos de 
Reynolds se puede interpretar como exclusivamente debida al transporte de 
vorticidad. Por el contrario, para los flujos casi unidireccionales en las proximi­
dades de una pared sólida, que son los que se considerarán con más detalle en 
la lección siguiente, la longitud característica de los vórtices lm varía transver­
salmente (linealmente con la distancia a la pared) ,  y el esfuerzo de Reynolds no 
es exclusivamente debido al transporte de vorticidad, sino que hay una contri­
bución importante debida al estiramiento de los vórtices. Se verá en la lección 
siguiente que el esfuerzo de Reynolds permanece practicamente constante a 
través de gran parte de la capa límite turbulenta, por lo que la vorticidad 
media fh también es constante. De acuerdo con lo visto anteriormente, para 
que esto ocurra, la ganancia de vorticidad media debida al transporte neto de 
vorticidad tiene que compensarse con la pérdida de vorticidad media debida 
al transporte de vorticidad originado por el estiramiento de los vórtices por 
las fluctuaciones de la velocidad. Todo esto quizá se vea más claro a partir de 
la ecuación de la vorticidad, que se considera a continuación. 

31 .5.2.  Ecuación de la vorticidad en flujos turbulentos 

Para un flujo incompresible, la ecuación de la vorticidad se escribe: 

OW - n - - n - n2 -
-¡¡¡ + v ·  vW = W ·  v v + v v w .  (31 .38) 

Ya se describió en la lección 20 el significado físico de los dos términos del se­
gundo miembro: generación de vorticidad debido al estiramiento de los vórtices 
producido por el gradiente de velocidad y difusión de la vorticidacl por viscosi­
dad. El primero de estos dos términos es el responsable, como ya se comentó en 
la lección 29, de la cascada de energía entre las escalas turbulentas más gran­
des y escalas cada vez más pequeñas, hasta que los vórtices son tan pequeños 
que el término viscoso ya no es despreciable y disipa la vorticidad. El efecto 
de éste término w · '\lv, aunque ya se discutió con detalle en el capítulo 20 
cuando se consideraron los teoremas de Helmholtz, puede quizá hacerse aún 
más claro si se tiene en cuenta la descomposición de '\117 en su parte simétrica y 
antisimétrica hecha en la lección 4, '\117 = �+�, donde la parte simétrica � es el 
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tensor de velocidad de deformación y la parte antisimétrica � está relacionada con la vorticidad w mediante ii · � = w A ii [ecución ( 4. 7)] para cualquier vector ii. Por tanto, w · � = O y w • "vv = w • "iy, de donde queda claro que este térmi­no representa la generación ( o destrucción) de vorticidad por estiramiento ( o acortamiento) de los vórtices producida por el campo de velocidad. Sustituyendo la descomposición de Reynolds para v y w en ( 3 1.38) y to­mando valores medios se tiene 

( 3 1.39) 
donde, como anteriormente, se ha supuesto que el flujo medio es estacionario y se ha utilizado la notación de subíndices. Como "v • w = O, se tiene que tanto ñ como w' son también solenoidales. De la ecuación de continuidad, v' también lo es, de donde 

' aw: a 
(-

,-,
) ví ox · = ox · vjwi J J 

' av: a 
(
-, -,

) wí ox · = ax · wjvi 
J J 

( 3 1.40) 
( 3 1.4 1 )  

El término dado por ( 3 1 . 40) es análogo al término de los esfuerzos de Rey­nolds en la ecuación para ¼,  y es debido al transporte medio de w� a trav és de su interacción con las fluctuaciones de la velocidad v; en la dirección de los gradientes 8/8xj. Por supuesto, este término cambia la vorticidad media ni sólo si v;w: cambia en la dirección Xj , de forma análoga a un transpor­te molecular. El término ( 3 1.4 1 )  representa la producción (o eliminación) de vorticidad media ni debido al estiramiento de los vórtices fluctuantes causado por las fluctuaciones del tensor de velocidad de deformación. Para comparar estos términos con lo visto en la sección anterior, se supone un flujo casi unidireccional como el allí considerado: V3 = 01 = 02 = O, 8/8x3 = O, 8/8x1 « 8/8x2 . Los términos ( 3 1.40) y ( 3 1. 4 1 ) correspondientes a la ecuación para 03 son, en primera aproximación, 
( 3 1.42) 
( 3 1.4 3 )  

Los productos v2w3 y v3w2 están relacionados con el gradiente del esfuerzo de Reynolds mediante ( 3 1. 3 3) :  v2w3 se interpretaba como la fuerza originada 
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por el transporte de w3 por v2 en un gradiente medio o03/ox2, mientras que 
v3w2 era interpretado como la fuerza asociada a los cambios de tamaño de 
los torbellinos en un flujo con una variación de la escala de longitud. Esta 
última fuerza, que se dijo era consecuencia del estiramiento de los vórtices, ve 
confirmada esta interpretación por (31.43), ya que su gradiente transversal es 
una fuente ( o sumidero) de vorticidad media. 
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Capítulo 32 

Turbulencia en presencia de 

paredes 

32.1 .  Capa límite turbulenta 

La única aplicación práctica de un flujo turbulento que se va a considerar 
en este curso es el flujo turbulento en conductos. En particular, se calculará el 
esfuerzo de fricción que la pared de un conducto ejerce sobre un fluido en 
movimiento turbulento completamente desarrollado en su interior , cuyo cono­
cimiento es esencial para calcular la potencia necesaria para véhicular dicho 
fluido por el conducto. El intercambio de calor entre la pared del conducto y 
el fluido se calculará mediante la analogía de Reynolds una vez conocida la 
fricción. Pero antes de pasar a considerar este problema es conveniente tener 
una idea previa sobre la capa límite turbulenta. 

Las ecuaciones para la capa límite bidimensional e incompresible sobre una 
placa plana (gradiente de presión nulo) ya se escribieron en la sección 31.4.2. 
La capa límite de velocidad está gobernada por las ecuaciones siguientes: 

aU aV 
- O ax + ay -

u ªu + vªu = � (vªu - u'v') ax ay ay ay y =  O U =  V =  O y/6 ---+ oo U =  Ue . 

(32.1) 

(32.2) 

(32.3) 

Para resolver este problema, tradicionalmente se suele utilizar un modelo mul­
ticapa debido a Prandtl y von Kármán, entre otros. Según este modelo, la 
estructura de la capa límite turbulenta se divide en tres regiones más o menos 
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diferenciadas, en cada una de las cuales alguno ( o varios) de los términos de 
la ecuación de cantidad de movimiento (32.2) es despreciable , simplificándose 
su solución. Estas soluciones más simples en cada capa acoplan unas con otras 
asintóticamente y dan lugar a la estructura completa de la capa límite. 

Para definir las distintas escalas, se define una velocidad característica u* 
asociada al esfuerzo de fricción en la pared Tp, 

(32.4) 

Se supondrá que u* es el orden de magnitud de la velocidad de las fluctuaciones 
de mayor tamaño; es decir , 

(32.5) 

lo cual se comprobará a posteriori. Ya se dijo en la sección 31.5.1 que los 
experimentos muestran que esta velocidad característica apenas depende de 
la coordenada transversal y. Comparando el primer y segundo miembro de la 
ecuación de cantidad de movimiento (32.2) se tiene que 

u* {% - ~ - « l 
Ue L ' (32.6) 

donde L es la longitud característica a lo largo del movimiento y 8 es el espesor 
característico ele la capa límite. 

Muy cerca ele la pared (y ---+ O) es obvio que el término ele esfuerzos viscosos 
es dominante en la ecuación (32.2), de donde 

Es decir, 

8U T. 2 v-
0 

'.:::'. constante = ..1?.. = u* 
y p 

(32. 7) 

(32.8) 

Teniendo en cuenta la condición ele contorno U(y = O) = O, se obtiene el perfil 
lineal ele velocidad 

que se suele escribir como 

u 
u* 

u*y 

V 

u 'U+ = _ 
u* 

+ - 11,*y 
y = ­

V 

(32.9) 

(32.10) 
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Esta solución es válida hasta una distancia a la pared y del orden de v /u* , 
puesto que para y ~  v/u* , U ~ u* , y el término de esfuerzos aparentes de 
Reynolds se hace tan importante como el de esfuerzos viscosos: 

au vu* *2 1 -,-, 
1 V- rv -- rv U rv - U V 

8y v/u* 
(32.11) 

Así, la solución lineal (32.9) [o (32.10)] es válida para y «  v /u* (y+ « 1). Esta 
región del flujo cerca de la pared donde los esfuerzos viscosos son dominantes y 
la velocidad media viene dada por (32.9) se suele denominar subcapa viscosa 
o subcapa laminar. Su espesor, del orden de v/u*, constituye una fracción 
muy pequeña del espesor total de la capa límite: 

V 
- « 1  
u*8 

(32.12) 

Para v /u* « y « 8, de (32.2) se desprende que los esfuerzos aparentes 
de Reynolds son dominantes frente a los esfuerzos viscosos y, por otra parte, 
también son dominantes frente a la convección de cantidad de movimiento 
media, puesto que l8(-u'v')/8y l ~ u*2/y » u*2/8 ~ U;/L ~ 1uau¡ax 1 .  Por 
tanto, la ecuación de cantidad de movimiento se simplifica a 

8(-u'v') 
{)y 

= O , -u'v' '.:::'. constante , (32.13) 

donde la constante vale Tp/ p = u*2 para que acople con la solución en la 
subcapa viscosa cuando y -t v /u* . Es decir , 

-u'v' '.:::'. u*2 , (32.14) 

lo cual corrobora la hipótesis (32.5). Se observa que el esfuerzo es constante 
cerca de la pared, lo cual fue introducido como hipótesis por Prandtl , per­
mitiendo así obtener la solución universal del perfil de velocidad turbulenta 
cerca de la pared que estamos considerando. Para ello, Prandtl hizo uso de 
su concepto de longitud de mezcla, suponiendo que, cerca de la pared, dicha 
longitud es proporcional a la distancia a la misma: 

donde K es una constante universal. Sustituyendo en (32.14), 

-U1V1 = Vt {)U = K,U*y {)U 
= u*2 

Dy 8y 
proporciona un perfil logarítmico para la velocidad: 

(32.15) 

(32.16) 
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U 1 

u+ = - = - ln y + C .  (32.17) 
u* ¡,;, 

Esta expresión se suele escribir 

1 
u+ = - ln y+ + B , 

K, 
(32.18) 

donde tanto C como B = C + (ln v/u*)/¡,;, son constantes en principio arbi­
trarias, al igual que ¡,;,, La comparación con datos experimentales cerca de la 
pared demuestran que ¡,;, '.::::'.  0,41 y B '.::'. 4,9 [ver figura 32. l (a)] . La constante ¡,;, 
se suele denominar constante de von Kármán, quien obtubo (32.18) inde­
pendientemente de Prandtl por otro procedimiento. A esta región de la capa 
límite se le suele denominar subcapa intermedia o subcapa logarítmica. 

Se podría haber obtenido directamente una solución válida tanto para la 
subcapa laminar como para la intermedia sin más que suponer y « 8, en cuyo 
caso el primer miembro de (32.2) es despreciable frente al segundo, teniéndose 

8U - 2 v- - u'v' = constante = Tp/ p = u* 
ay 

Sustituyendo (32 .15), se llega a 

au+ 
(1 + ¡,;,y+) 

ay+ 
= 1 , 

cuya integración con la condición u+ (y+ = O) = O proporciona 

(32.19) 

(32.20) 

(32.21) 

Para y+ « 1 (y « vju+) esta expresión tiene como límite la ley lineal (32.10), 
mientras que para y+ » 1 (y » vju+), u+ = ln(¡,;,y+)/¡,;,. La constante ex­
perimental B '.::'. 4,9 en (32.18) no coincide con el valor (ln ¡,;,)/ ¡,;, dado por la 
expresión anterior debido a que al ser ¡,;, una constante pequeña, la aproxima­
ción ln(l  + ¡,;,y+) '.::::'. ln(¡,;,y+) no es demasiado correcta [aparte de que (32.15) 
no es una ley exacta , sino una aproximación, y los experimentos ajustan las 
constantes ¡,;, y B por separado, no conjuntamente]. 

Para y ~ 8, el movimiento viene gobernado por un balance entre la convec­
ción de cantidad de movimiento exterior y los esfuerzos turbulentos originados 
en el interior. La ecuación que habría que resolver sería (32.2) pero sin el 
término de esfuerzos viscosos (recuérdese que la capa límite laminar se hace 
turbulenta para Ue8/v > 600, aproximadamente; al ser un número de Rey­
nolds muy grande, los esfuerzos viscosos son despreciables a distancias de la 
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Figura 32. 1 :  (a) : Perfil de velocidad en un flujo turbulento cerca de una pared lisa [ecuaciones 
(32. 10) y (32. 18)] y comparación con los experimentos (puntos) . La expresión potencial u+ = 
8,3 (y+ ) 1!7 se obtiene ajustando los resultados experimentales para las subcapas intermedia 
y externa (figura tornada de Hinze, 1975) . (b) : Valores experimentales de la velocidad en 
una capa límite turbulenta sobre una placa plana, donde se aprecia que la ley de defecto de 
velocidad se satisface. Obsérvese que la ley de defecto de velocidad es válida incluso para 
superficies rugosas (cuadrados, triángulos y rombos), ya que la rugosidad sólo afecta a la 
solución muy cerca de la pared (figura tomada de Monin y Yaglom, 1971 ) .  
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pared del orden de ó) . Esta ecuación no se puede resolver analíticamente debi­
do a que la aproximación para los esfuerzos de Reynolds (32.16) no vale lejos 
de la pared, y no existe ninguna correlación simple para ellos. Por tanto, la 
solución en esta región exterior, que constituye la mayor parte de la capa 
límite, se debe obtener experimentalmente. Los experimentos , sin embargo, se 
simplifican notoriamente debido a que el perfil de velocidad en esta región ( de 
forma más precisa, U - Ue) no depende de la viscosidad. Así, 1 

que en forma adimensional se escribe 

U - Ue = ! ('!!.. , Ue ) u* ó u* 

(32.22) 

(32.23) 

Corno Ue/u* » 1 [ecuación (32.6)] se puede eliminar la dependencia de (U -
Ue)/u* con Ue/u* en primera aproximación [de hecho, si se escribe (32.1)-(32.3) 
en términos de U - Ue, Ue desaparece del problema], quedando 

U 
u
-

*
Ue ~- f (-� ) , ( ) 

u 
para y =  O ó , (32.24) 

que es la denominada ley de defecto de velocidad. Esta ley está amplia­
mente corroborada por los experimentos [ver figura 32.l(b)]. 

Resumiendo, la estructura de la capa límite turbulenta sobre una placa 
plana lisa se puede dividir en tres regiones diferenciadas: 

(a) Subcapa laminar o viscosa, donde la velocidad satisface la ley lineal 

(b) Subcapa intermedia o logarítmica , 

( c) Región exterior , 

1 
u+ '.:::::'. - ln y+ + B , 5 < y+ < 30 . 

t übsérvese que la densidad p no aparece en el problema (32 . 1 )- (32.3) . 

(32.25) 

(32.26) 

(32.27) 
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Los valores límites de y+ para los que son válidos los distintos perfiles 
de velocidad anteriores están sacados de resultados experimentales [ver figura 
32.l(a)]. Obsérvese que el rango de validez del perfil lineal (32.25)  se extiende 
mucho más allá de y+ « l. Obsérvese también que el espesor de las dos 
primeras subcapas, y+ :::::: 30, constituye una fracción muy pequeña del total 
del espesor de la capa límite [como se puede apreciar en la figura 32.l (b)], 
puesto que es equivalente a y/ 8 = 30v / 8u*, siendo 8u* / v » l. Concretamente, 
este espesor suele constituir alrededor de un 10 por ciento del total. Esto no 
quiere decir que la solución en esas subcapas no sea importante, ya que, como 
se verá en la sección siguiente, permite obtener la fricción que la pared ejerce 
sobre el fluido (recuérdese que Tp = pu*2) en función de la velocidad exterior. 
Más concretamente, el coeficiente de fricción C¡ en función del número de 
Reynolds. De hecho, las leyes (32.25 ) y (32.26) son universales, puesto que no 
dependen de lo que ocurre fuera de la capa límite. Por ello también valen para 
el perfil de velocidad cerca de la pared en el flujo turbulento en un conducto. 

Sin embargo, este ejercicio de hallar el coeficiente de fricción a partir del perfil 
de velocidad sólo se hará para el caso del flujo turbulento en un conducto 
circular ( sección siguiente), ya que es el caso más interesante desde un punto 
de vista ingenieril (para el cálculo del coeficiente de fricción en una placa plana, 
y otras capas límites, se puede consultar, por ejemplo, Schlichting y Gersten, 
2000) . 

Para terminar esta sección se debe comentar que trabajos más recientes 
[ver, por ejemplo, Barenblatt (1996) y Pope (2000)] han demostrado que la 
ley logarítmica (32.26) se puede considerar como una aproximación de una 
expresión más general en la que u+ depende , no sólo de y+ , sino también del 
número de Reynolds Ue8/v. En particular, (32.26) constituye una envolvente 
aproximada de las distintas curvas u+ (y+ ) para los distintos números de Rey­
nolds. La teoría subyacente a esta expresión más general proporciona, además, 
la constante de von Kármán de forma teórica como "' = 2 / ( vf3e).  Sin embar­
go, como la expresión logarítmica universal (32.26) ha proporcionado buenos 
resultados desde un punto de vista ingenieril desde los tiempos de Prandtl y 
von Kármán, no se considerará aquí esa expresión más general, pues es mucho 
más complicada y, además, todavía no está exenta de controversia algunas de 
las hipótesis que utiliza. 

32.2 .  Flujo turbulento en un conducto circular 

En esta sección aplicaremos los conceptos y soluciones anteriores sobre la 
turbulencia en las proximidades de paredes sólidas para hallar una expresión 
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que nos relacione la fricción en un flujo turbulento en el interior de un conducto 
con el caudal que circula por él. 

Suponiendo que el flujo medio es puramente axial, V = Uex, donde x es 
la coordenada a lo largo del conducto, y siendo iJ' = u' ex + v' er + w' e0 el 
vector de velocidad de fluctuación, las ecuaciones de Reynolds de continuidad 
y cantidad de movimiento en las direcciones ex y er se escriben (por supuesto 
en coordenadas cilíndricas, suponiendo que el fluido es incompresible) : 

au 
8x 

= O, 

O= _ ! oP + ! �  (vr 0U - ru'v') 
p é)x r ar 8r w'2 1 8P 1 8 -- - = - - - - - - (rv'2) .  
r p or r or 

(32.28) 

(32.29) 

(32.30) 

Como hay simetría azimutal, la primera ecuación nos dice que la velocidad 
media es función sólo de r, U = U(r) ,  hecho que se ha utilizado en las otras 
dos ecuaciones para anular idénticamente la convección de cantidad de movi­
miento. La ecuación de cantidad de movimiento en la dirección radial puede 
integrarse con respecto a r: 

_ ¡R w'2 - v'2 
P - Pp + pv'2 - p ---dr = O , 

T r (32.31) 

donde Pp es la presión en r = R (pared del conducto). Para un flujo turbulento 
completamente desarrollado,  las fluctuaciones no dependen de la coordenada 
axial x, y de la ecuación anterior se tiene que 

(32.32) 

Es decir, la variación de P con x es la misma para cualquier r. Sustituyendo en 
la ecuación de cantidad de movimiento en la dirección axial e integrando con 
respecto a r una vez, se obtiene (multiplicando previamente dicha ecuación 
por r) :  

1 r2 8Ps 8U -_ _ _ __ P + vr- - ru'v' = constante = O 
p 2 ax or (32.33) 

siendo la constante de integración nula puesto que para r = O lo es el primer 
miembro de la ecuación. 

Para utilizar los resultados de la sección anterior es conveniente usar la 
distancia a la pared, y = R - r, en vez de r. La ecuación (32.33) se escribe 
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aU - R - y a?. 

11- + u'v' + -- __ P = O . ay 2p ax 

Particularizando esta ecuación en y = O, 
Tp = 11 (ªu) = 

_ R aPp = u*2 
p - ay y=O 2p ax 

579 

(32.34) 

(32.35) 
donde u* = ¡:;;i"p es la velocidad característica de fluctuación asociada al esfuerzo de fricción en la pared. Sustituyendo en (32.34) ,  

11 �� + u'v' = u*2 ( 
R

� y) 
Para escribir esto en forma adimensional se define 

llegándose a 

donde 

u 
u+ = _ 

Re* = 
u*R 

11 

u* 

(32 .36) 

(32.37) 

(32.38) 

(32 .39) 
es el número de Reynolds asociado a la velocidad de fluctuación, que es mucho mayor que la unidad debido a que la longitud característica donde los efectos de la viscosidad molecular son importantes, 11 /u* , es mucho menor que el radio del conducto. El hecho de que Re* � 1 permite resolver la ecuación (32.38) en dos re­giones bien diferenciadas, análogamente a como se hizo en la sección anterior para la capa límite: una capa delgada cerca de la pared, donde r¡ ~ 11 /u* R « 1 
(y ~ v /u* ) ,  y la región externa donde r¡ ~ 1 (y ~ R) . La primera de ellas incluye la subcapa viscosa y la región logarítmica intermedia considerada an­teriormente, mientras que la segunda es análoga a la región externa gobernada por una ley de defecto de velocidad. Para la capa próxima a la pared (r¡ ~ 1/ Re* « 1 ) ,  el segundo miembro de (32.38) se reduce a la unidad, en primera aproximación. Reescalando la variable r¡ mediante 
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yu* r¡+ = r¡Re* = - , 
1/ 
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(32.40) 

que es de orden unidad en esta capa, la ecuación queda, 

du+ u'v' - + - = 1  
dr¡+ u*2 (32.41) 

Si ahora se utiliza la hipótesis de longitud de mezcla de Prandtl [obsérvese 
que y tiene dirección opuesta a r, y por ello el cambio de signo en relación a 
(32.16)] 

(32.42) 

se tiene, 

du+ 
(1 + K,TJ+) 

dr¡+ = 1 , (32.43) 

que debe resolverse con la condición de contorno 

(32.44) 

obteniéndose la ley logarítmica 

(32.45) 

Para r¡+ « 1 (y « v/u* ) ,  esta expresión se reduce a la ley lineal de la subcapa 
laminar: 

(32.46) 

En la región externa, r¡ = 0(1), la ecuación (32.38) se reduce a u'v' /u*2 '.::::'. 
1- r¡, pero ahora la aproximación de Prandtl (32.42) no es válida. Sin embargo, 
análogamente a como se hizo en la sección anterior, el análisis dimensional nos 
dice que se debe verificar una ley de defecto de velocidad del tipo 

U - Uo = F( ) u* 
r¡ ' (32.47) 

donde U0 es la velocidad en el eje (que es la máxima). Esta ley tiene que, por 
un lado, satisfacer la condición F(r¡ = 1) = O y, por otra parte, acoplar con 
la solución (32.45) para r¡ « 1, cuando en (32.45) se hace r¡+ » 1 (acople 
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asintótico de las dos soluciones) .  Esta última condición nos dice que, para 
r¡ -t o, 

U0 l 1 1 1 F(r¡) + - -t - ln K,r¡+ = - ln r¡ + - ln Re* + - ln K, u* K, K, K, K, 

Es decir, 

con 

1 
F(r¡) -t - ln r¡  + B ,  K, 

Uo 1 1 * - = - n Re + A  u* K, ' 

(32.48) 

(32 .49) 

(32 .50) 

donde A y B son constantes arbitrarias, pero que verifican A + B = (ln K,) / K,. 
Estas constantes, al igual que K, ('.:::: 0,41 ) ,  se determinan experimentalmente. Se 
encuentra que B '.:::: 5,5 [obsérvese que (32.49) es análoga a la ley logarítmica 
(32 .26) ;  la pequeña diferencia en la constante se debe a que a medida que 
nos alejamos de la pared el flujo en un conducto se parece menos al flujo 
sobre una placa plana] , de donde A '.::::  7,7. Los experimentos demuestran que 
la ley lineal (32.46) vale para r¡+ < 5, de forma análoga a la capa límite 
sobre una placa plana. La ley logarítmica (32.45) ,  que incluye a la anterior, 
es aproximadamente válida para r¡+ < 70, mientras que para r¡+ > 70 la ley 
de defecto de velocidad se puede aproximar por u+ '.:::: 1 1 ,5 r¡1110 [ver figura 
32.2(a)] . 

En realidad, para el propósito de hallar una relación entre la fricción y el 
caudal, no interesa tanto los detalles del perfil de velocidad como la relación 
(32 .50) . De hecho, debido a que el perfil de velocidad turbulento resultante 
de las expresiones anteriores es mucho más plano que el correspondiente al 
flujo laminar de Poiseuille (ver figura 32.3) , se puede aproximar la velocidad 
media V por la velocidad máxima en el eje U0 [la diferencia se absorberá en 
las constantes empíricas de las expresiones anteriores] , de forma que el caudal 
viene dado por 

(32 .51)  

Definiendo, como de costumbre, el número de Reynolcls basado en la velocidad 
media y el diámetro, 

Re = 2RV '.:::: 2RU0 = Re* 2U0 

v v u* (32.52) 
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Figura 32.2: (a) : Distribución de velocidad en un conducto de pared lisa y su comparación 
con medidas experimentales de Nikuradse y Reichardt. Téngase en cuenta que la abcisa es 
el logarítmo decimal de r¡+ (figura tomada de Schlichting, 1987) .  (b) :  Coeficiente de fricción 
>. en función del número de Reynolds. La curva 1 es la correspondiente al flujo laminar, 
>. = 64/ Re; la curva 2 es la ecuación (32.57) y la 3 corresponde a la aproximación de Blasius 
(32.59) (figura tomada de Monin y Yaglom, 1971) .  
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Figura 32.3: Comparación entre el  perfil de velocidad laminar y turbulento en un conducto circular por el que circula el mismo caudal (misma velocidad media V).  
así como el coeficiente de fricción 

e = ---2E_ ~ ---2E_ = 2 ( u* ) 2 f ½pV2 - ½pU; Uo 
la expresión (32.50) proporciona la siguiente relación entre C ¡ y Re: 

• IT_ = ! ln Re + ! In {C¡ + A - In 2 ye;  K K V2  

(32.53) 

(32.5 4) 

La constante libre A no coincide con el valor dado anteriormente ya que U0 no 
es exactamente igual a V. Experimentalmente se encuentra que para un flujo 
turbulento completamente desarrollado en un conducto circular de pared lisa 
se tiene: 

� � 1 ,76 ln(Re[c;) - 0,7 . (32.5 5)  

Normalmente se suele utilizar, en  vez de C¡, el denominado factor de fric­
ción de Fanning ( también llamado de Darcy-Weisbach en la literatura hidráulica ) 

_ 8Tp >. = 4C¡ = pV2 ' 1 
,/X

� 0,88 ln(Re�) - 0,8 . 

(32.5 6) 

(32.5 7) 

Esta expresión permite calcular , para cada Re, la fricción turbulenta y, por 
tanto, la caida de presión en el conducto debida a la fricción [ecuación (32.35) 
o (15.7)] 
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t::.P 1 >-.L 

½pV2 - 2R ' (32.58) 

Así, dado un caudal y un diámetro, que defienen Re, las expresiones (32.5 7) 
y ( 32. 58) proporcionan el incremento de presión necesario ( en general presión 
reducida) para mover ese caudal. 

La expresión (32.5 7), junto con la correspondiente para un flujo laminar, 
>-. = 64/ Re [ecuación (15.11)] y resultados experimentales, se representan en la 
figura 32.2(b). La expresión laminar vale hasta el número de Reynolds crítico 
( aproximadamente 2300; ver capítulo anterior). Desde Re '.:::'. 2300 hasta Re 
aproximadamente igual a 4000 no existe ninguna expresión analítica, y los 
valores del coeficiente de fricción >-. fluctúan bastante. A partir de Re '.:::'. 4000, 
la expresión (32.5 7) es válida para un conducto de pared lisa (ver sección 
siguiente para una definición precisa de pared hidrodinámicamente lisa). Es­
ta expresión se puede simplificar en ciertos rangos del número de Reynolds 
mediante fórmulas aproximadas semiempíricas. Por ejemplo, Blasius (1911) 
introdujo la simplificación 

>-. '.::::'. 0,316Re-1/4 , 4000 < Re < 105 , (32.5 9) 

que también se representa en la figura 32.2(b). Otra correlación simplificada 
debida a White (197 4), que tiene un rango de validez mayor [prácticamente la 
misma que la ecuación (32.5 7)], es 

>-. '.::::'. 1,02(log Re)-2•5 , 

donde log representa el logarítmo decimal. 

32.3.  Efecto de la rugosidad de la pared 

(32.60) 

La rugosidad de la pared del conducto apenas afecta a la fricción cuando el 
flujo es laminar (flujo de Poiseuille). Sin embargo, cuando el flujo es turbulento, 
su efecto es muy importante: las rugosidades promueven la turbulencia y, sobre 
todo, pueden llegar a destruir la subcapa laminar, cambiando completamente 
el perfil de velocidad y, por tanto, la fricción. 

Es evidente que las rugosidades aumentan la fricción en relación a un con­
ducto liso. Pero la cuantificación de este efecto no se puede hacer de una forma 
analítica como se ha hecho antes para un conducto de pared lisa, teniéndo­
se que recurrir a la experimentación. Por supuesto, esta experimentación se 
hace guiada por el análisis dimensional y la semejanza física. En relación al 
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problema considerado anteriormente del conducto liso, aparece una longitud 
característica adicional que es la altura media de las rugosidades, L Así, el 
problema tiene tres longitudes características: el espesor de la subcapa lami­
nar o distancia a la pared hasta donde se deja sentir la viscosidad molecular, 
v/u* ; el radio del conducto, R, y la altura media de las rugosidades, E. En la 
solución cerca de la pared el radio del conducto no cuenta y se tiene 

U =  U(v, u*, E, y) , 
que mediante análisis dimensional se simplifica a 

(32.61) 

(32.62) 

Es decir, además de la variable adimensional r¡+ que aparecía en la solución 
para un conducto liso, se tiene que u+ depende de la rugosidad a través del 
parámetro adimensional E+ = w* /v. Este simple análisis dimensional nos 
proporciona un criterio para saber cuando un conducto se puede considerar hidráulicamente liso: el efecto de la rugosidad es despreciable cuando 

u*E 
E+ = - « 1 (32.63) 

V 

En otras palabras, el conducto (la superficie sólida en general) se puede con­
siderar liso a efectos hidrodinámicos cuando la altura de las rugosidades es 
mucho menor que el espesor de la subcapa laminar. Cuando esto ocurre, la 
viscosidad se encarga de disipar cualquier perturbación del movimiento origi­
nada por la rugosidad, no dejándose sentir su efecto en el resto del flujo. 

Aunque analíticamente no se puede conocer la expresión (32.62), lo que 
sí se sabe es que debe acoplar con la ley de defecto de la velocidad (27.49) 
para r¡+ » 1, ya que ésta no depende de la rugosidad si E/ R « l, lo cual 
ocurre siempre (en caso contrario no sería un conducto de sección circular) .  
Es decir, para r¡+ » 1, se tiene 

U l u+ = - = - ln r¡+ + fr (E+) , (32.64) 
u* "' 

donde f r es una función que tiende asintóticamente a la constante B definida 
en (32.49) (que es aproximadamente igual a 5,5 ) para E+ _, O. Esta función se 
determina experimentalmente, siendo la única información adicional requerida 
para hallar la fricción en un conducto rugoso en relación a uno liso. 2 Se en­
cuentra que fr -:::= 5,5 para E+ < 5, aproximadamente. Es decir, la aproximación 

2El alumno podrá apreciar con este ejemplo la potencia del análisis dimensional. Un problema aparentemente tan complejo como es el cálculo de la fricción en un conducto 
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de tubo liso va mucho más allá de la condición encontrada dimensionalmente, 
€+ « 1. Por ello se suele escribir 

(32.65)  

donde b.B, que es una función de €+, mide el efecto de  la rugosidad sobre la 
velocidad, valiendo cero para €+ 

< 5 ,  aproximadamente. En el límite opuesto 
de un conducto completamente rugoso , €+ » 1, los datos experimentales se 
ajustan a la expresión 

1 b.B '.:::: - In €+ - 3,5 , (32. 66) 
K, 

que aproximadamente es válida para €+ 
> 70. Para valores intermedios de €+ 

(5 < €+ 
< 7 0), los datos experimentales están algo más dispersos. 

Una vez conocido el perfil de velocidad, por un procedimiento análogo al 
descrito anteriormente para un conducto liso , se puede hallar una expresión 
para el coeficiente de fricción >., que ahora dependerá del número de Reynolds 
y de la rugosidad relativa , €/ D. Una expresión que recoge los datos experimen­
tales tanto para conductos lisos como rugosos dada por Colebrook y corregida 
por White es 

-
1
- = -2 0lo [€/D + �] . 

y>. ' g 
3 , 7  Rev>. 

(32. 67) 

Normalmente toda la información >. = >.(Re, €/ D) , tanto para flujo laminar 
como para flujo turbulento en conductos lisos y rugosos, se suele dar en forma 
de un diagrama denominado diagrama de Moody (1944), que se representa 
en la figura 32.4. 

Una particularidad importante de la relación >. = >.(Re, t/ D) es que deja 
de ser función del número de Reynolds para conductos completamente rugosos (t+ = rn* /v > 70, aproximadamente) . De acuerdo con la expresión (32.67), 
esto ocurre para €/ D mayor que, aproximadamente, 9,3/ Rev).. El valor de Re, 
para cada valor de la rugosidad relativa €/ D, a partir del cual >. sólo depende de 
esta última se representa en la figura 32.4 mediante una línea discontínua. En 
estos casos los cálculos se simplifican muchísimo al no depender el coeficiente 
de fricción del número de Reynolds (ver lección siguiente). 

Para terminar, es conveniente señalar que el valor del factor de fricción 
dado por el diagrama de Moody se suele también utilizar de forma aproximada 

rugoso se reduce (por supuesto una vez introducidas las hipótesis sobre los esfuerzos de 

Reynolds de Prandtl y von Kármán) al cálculo experimental de una constante y una única 
función que depende sólo de la altura media de las rugosidades. 
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en los casos en que el conducto no sea circular , siempre que se utilice , en el 
lugar del diámetro D del conducto circular , un diámetro equivalente obtenido 
en función del denominado radio hidráulico, definido como el cociente entre 
la sección A del conducto dividida por el perímetro mojado IT: 

Th = - .  rr (32.68) 

Para un conducto circular , rh = 1rD2/41rD = D/4. Así , se utiliza el diagrama 
de Moody sustituyendo D ( en el número de Reynolds y en la rugosidad relati­
va) por 4rh. En cuanto a la velocidad que aparece en el número de Reynolds, 
se toma la velocidad media, Q / A. 
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Capítulo 33 

Flujo turbulento en conductos 

33.1 .  Ecuaciones, condiciones iniciales y de contor­
no 

En esta lección se considerará el movimiento turbulento, tanto de gases 
como de líquidos, en conductos de sección lentamente variable, teniendo en 
cuenta la fricción en la pared y el posible intercambio de calor del fluido con 
la pared. Para derivar las ecuaciones se seguirá un procedimiento análogo al 
utilizado en la lección 23, aplicando los principios de conservación de masa, 
cantidad de movimiento y energía a un volumen de control como el de la 
figura 23.1, pero teniendo en cuenta los resultados sobre la fricción turbulenta 
derivados en la lección anterior y el flujo de calor, para el que se utilizará la 
analogía de Reynolds. 

En primer lugar se supondrá que no hay variaciones bruscas de la sección 
ni de la dirección a lo largo del conducto ( el efecto de cambios bruscos en la 
sección y en la dirección se tendrá en cuenta al final de esta lección). Es decir, 
si rh es el radio hidráulico del conducto [ecuación (27.68) ], el cual dependerá, 
en general, de la coordenada axial a lo largo del conducto x, se supondrá que 

(33.1)  

donde L y Re son una longitud axial y un radio de curvatura característicos. 
De la ecuación de continuidad, la primera condición (33.1) implica que el 

movimiento en el conducto es aproximadamente unidireccional: 

rh Vit ~ V- « V  L (33.2) 
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donde V y Vr son velocidades características en las direcciones axial y trans­
versal al eje del conducto, respectivamente. Por otro lado, se supondrá que el 
flujo es turbulento completamente desarrollado y, de acuerdo con la sección 
32.2 (figura 32.3), en primera aproximación se puede suponer que el perfil 
de velocidad en cada sección es prácticamente plano. Es decir, la velocidad 
turbulenta media, v ::::= vex,1 será función sólo de la coordenada axial x y del 
tiempo t, v ::::= v(x, t ) .  El efecto de la fricción queda así relegado a la pared, 
y se tendrá en cuenta de forma global utilizando las expresiones de la lección 
anterior. Para ello se definirá un esfuerzo de fricción medio Ta en cada sección 

Ta = � In Tpdl , (33.3) 

donde II(x) y A(x) son el perímetro y la sección; T0 (x, t) se calculará mediante 
el coeficiente de fricción >., 

1 2 Ta = 

8>.pv (33.4) 

donde >. es una función del número de Reynolds, Re = 4vrh/v, y de la rugo­
sidad relativa, t:/4rh, representada en la figura 32.4. 

En cuanto a la presión media, también se considerará que es una función 
de x y de t solamente, p = p(x, t ) ,  puesto que la hipótesis (33.1) implica, 
como ya se vió en la sección 23.1, que las variaciones transversales de la pre­
sión son mucho más pequeñas que las longitudinales a lo largo del conducto: 
b..rp/ b..LP ~ (rh/ L)2 « l. (Lo mismo ocurre para el potencial de fuerzas 
másicas, por lo que en la expresión anterior se puede sustituir p por la presión 
reducida ; ver sección 23.1.) 

Por último, se supondrá también que la temperatura media es sólo función 
de x y de t , T = T(x, t). La justificación de esta hipótesis es análoga a la de 
suponer que la velocidad media es prácticamente constante en cada sección: 
la turbulencia es muy efectiva transportando calor, como lo es transportan­
do cantidad de movimiento y masa, por lo que el perfil de temperatura en 
cada sección es prácticamente plano, excepto muy cerca de la pared, donde 
la temperatura varía desde aproximadamente el valor medio de cada sección 
hasta la temperatura de la pared. Esta variación se tendrá en cuenta de forma, 
global análogamente a como se hará con la fricción, mediante el flujo de calor 
q8 intercambiado entre la pared y el fluido, el cual se modelará por la analogía 
de Reynolds. 

1 Como en lo que sigue no aparecerán magnitudes de fluctuación, no se utilizarán letras 
mayúsculas para designar los valores medios. 
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En definitiva, se supondrá que el flujo turbulento completamente desarro­
llado en un conducto de sección y curvatura lentamente variables está definido 
por las magnitudes turbulentas medias, no sólo en relación a las fluctuaciones 
turbulentas, sino también en cada sección, 

v(x, t) , p(x, t) , T(x, t) , 2 ( 3 3 .5)  

para las cuales se derivarán ecuaciones y se fijarán condiciones iniciales y de 
contorno a continuación. 

33. 1 . 1 .  Ecuaciones del movimiento 

Aplicando el principio de conservación de la masa al volumen de control 
de la figura 3 3 . 1, despreciando términos de orden (dx)2 y dividiendo por dx se 
tiene 

A 8p 8(pvA) = O 8t + 8x ( 3 3 .6) 

Análogamente, la ecuación de cantidad de movimiento en la dirección x se 
escribe 

op A au = -A- - T0
- - p-A 8x rh 8x ' ( 3 3 .7) 

donde se ha supuesto que las fuerzas másicas derivan del potencial U y se 
ha utilizado el esfuerzo de fricción medio ( 3 3 .3 ). Para obtener el término de 
fuerzas de presión se ha tenido en cuenta también la fuerza de presión que en 
la dirección x las paredes ejercen sobre el fluido, la cual, despreciando términos 
de orden ( dx) 2 , es igual a p( 8 A/ 8x) dx. V tilizando la ecuación de continuidad 
y ( 3 3 . 4), la ecuación anterior se escribe como 

8v 8v2 /2 1 8p au ,\v2 

- + -- + - - + - = --8t 8x p 8x 8x 8rh ' 
donde el factor de fricción 

(33 .8) 

( 3 3 .9) 

viene dado por la figura 3 2. 4. Se observa que la única diferencia entre esta 
ecuación y la correspondiente a un fluido ideal es el término de fricción ( di­
ferencia formal; conceptualmente son muy distintas puesto que en un fluido 

2Corno consecuencia de que p y T sólo dependen de x y t, p = p(x, t ) ,  de acuerdo con la 
ecuación de estado. 
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X 

Figura 33. 1 :  Volumen diferencial de control. 

ideal el primer miembro es igual a cero a lo largo de cada línea de corriente 
y, puesto que todas las líneas de corriente parten de la misma región unifor­
me, se cumple para toda la sección; aquí es un promedio aproximado en cada 
sección). Si comparamos el término de fricción con el convectivo, el primero 
será importante si >..L/rh 2'. 0(1). Para >..L/r1,. « 1, el término de fricción 
desaparece y se tiene la misma ecuación que para un fluido ideal. 

La ecuación de la energía total aplicada al volumen de control de la figura 
33.1, dividiendo por dx, se escribe 

:t 
[pA (e + ·�

2

) ]  + :x [pvA (e + v; ) ]  = -
o(

�:
A) - p�� vA + qs � + qr , 

(33.10) 
donde Qs es el calor intercambiado entre el fluido y la pared por unidad de área 
y Qr es el calor liberado por las reacciones químicas o absorbido por radiación, 
por unidad de longitud del conducto (por supuesto, son valores promedios).3 
Esta ecuación se puede escribir en términos de la entalpía, desapareciendo así 
el término de trabajo de las fuerzas de presión, pero apareciendo un nuevo 
término de variación de p con el tiempo: 

(33 . 1 1) 
Teniendo en cuenta la ecuación de continuidad y dividiendo por A, estas dos 

ecuaciones se escriben 

:1Obsérvese que las fuerzas de fricción que la pared ejerce sobre el fluido no realizan trabajo 
alguno ya que la velocidad es cero en la pared. 
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8 
( 

v2

) 
8 

( 
v2

) 
1 8(pvA) 8U q8 qr p- e + - + pv- e + - = - - --- - pv- + - + -8t 2 8x 2 A 8x 8x rh A 

, (33.12) 

P� (h +  
v2

) + pv!_ (h +  
v2 

+ u) = 8p + qs + qr . 
8t 2 8x 2 8t rh A 

(33.13) 

Desde un punto de vista práctico la última ecuación es mucho más útil. De 
hecho, en el caso bastante frecuente de un flujo estacionario y adiabático, la 
cantidad h + v2 /2 + U, que en el flujo de un gas es aproximadamente igual a 
la entalpía de remanso, h + v2 /2, se conserva. 

En algunas ocasiones es interesante utilizar la ecuación de la entropía. 
Restándole a la ecuación (33.13) la energía mecánica, que se obtiene multi­
plicando la ecuación de cantidad de movimiento (33.7) por v ,  y teniendo en 
cuenta que dh = Tds + dp/ p, se llega a: 

T
Ds = AV3 + qs + _!!!__ ( n

D

t = �t + v tx ) . 
Dt 8rh prh pA u u (33.14) 

Obviamente, la entropía aumenta solamente como consecuencia de la fricción 
(disipación viscosa) y de la adición de calor. Normalmente, el efecto de la 
disipación viscosa es muy pequeño. Comparando este término con el de con­
vección de entropía, para un líquido (T �s '.:::: c�T), se tiene que el parámetro 
que mide su importancia relativa es 

(33.15 ) 

Dado que la capacidad calorífica e de los líquidos suele ser muy alta, sólo en 
condiciones muy extremas de velocidades muy altas la disipación viscosa ten­
dría alguna importancia para los líquidos. En cuanto a los gases, la importancia 
relativa de la disipación viscosa viene dada por 

.XL M2I__ (33.16) 
rh �T

. 

Así, la disipación viscosa será despreciable si el número de Mach satisface la 
condicióq 

2 �T 
(

.XL
)

- 1 
M « - -

T Th 
(33.17) 

Por tanto, puede ocurrir ( como de hecho ocurre en muchas ocasiones) que la 
fricción sea importante en la ecuación de cantidad de movimiento [.XL/rh > 
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0(1)] ,  pero su efecto en la ecuación de la energía (disipación viscosa) sea 
despreciable al no ser el número de Mach suficientemente alto. 

Para evaluar el flujo de calor entre la pared del conducto y el fluido se 
utilizará la analogía de Reynolds: 

Sta = q8 C¡ _ l T0 A ( ) - pv (hp - h - v2/2) 2 = 2 pv2/2 8 
33•18 

En la expresión anterior se ha tenido en cuenta el efecto de la compresibilidad 
y de la disipación viscosa mediante la redefinición del número de Stanton en 
términos de la entalpía de remanso ( en realidad, de la temperatura adiabática 
de la pared; ver sección 28.4), con un factor de recuperación igual a la unidad 
(puesto que el número de Prandtl turbulento es aproximadamente igual a uno). 
Para un líquido, estos efectos son prácticamente despreciables: 

q = 
..\pvc [r. _ T _ v2

] :::: ..\pvc
(T,, 

_ T) s 8 P 2c 8 P 
(33.19) 

ya que v2 / cT suele ser muy pequeño, como se comentó anteriormente. Para 
un gas ideal se tiene: 

(33.20) 

es decir , los efectos de la disipación viscosa y la compresibilidad son despre­
ciables si M2 « 1. De lo anterior se desprende que existirá un flujo neto de 
calor desde la pared al fluido si Tp > T + (, - 1 )M2T /2; y viceversa , habrá un 
flujo de calor desde el fluido a la pared si Tp < T + ( 1 - 1 )M2T /2. Esto quiere 
decir que, debido a los efectos de compresibilidad y de disipación viscosa, el 
gas se calienta cerca de la pared y el flujo de calor puede ser desde el fluido a 
la pared incluso si Tp > T [siempre que Tp < T + ,(, - l)M2T/2]. 

En cualquiera de las situaciones anteriores, la analogía de Reynolds permite 
calcular q8 en función del número de Reynolds y de la rugosidad relativa a 
partir del coeficiente ele fricción. Como se comentó en la sección 31.4.2, esta 
analogía es más fiable a medida que la pared del conducto es más rugosa, 
debido a que la subcapa laminar falsea la analogía , siendo más precisa cuando 
.,\ sólo depende de la rugosidad relativa. 

33.1 .2 .  Condiciones iniciales y de contorno 

De acuerdo con las ecuaciones anteriores [por ejemplo (33.6), (33.8) y 
(33.13)] , en general se necesitan tres condiciones iniciales y tres condiciones 
de contorno para su resolución. Por ejemplo, 
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v(x, O) , 

v(O, t) , 

p(x, O) , 

p(O, t) , 

T(x, O) ; 

T(O, t) . 
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(33.21) 

(33.22) 

Sin embargo, la forma de dar estas condiciones varían mucho de unas situa­
ciones a otras. 

Así, para un líquido (p = constante), desaparece una condición inicial , ya 
que la ecuación de continuidad (33.6) se escribe 

pvA = G(t) , 

donde el gasto G no depende de x. Como 

G(t) v(x, t) = 
pA(x) 

(33.23) 

(33.24) 

dado A(x) y el valor de v en un punto para cada instante, por ejemplo v(O, t) , 
automáticamente se conoce v(x, t) para todo x y t . Por tanto, tampoco hace 
falta condición inicial para la velocidad, y sólo hace falta una condición inicial 
para la temperatura, T(x, O) , que permitirá integrar la ecuación de la energía. 
En cuanto a las condiciones de contorno,  no se suele especificar v(O, t) , sino dos 
condiciones de contorno para la presión, además de una para la temperatura: 
p(O, t ) , p(L, t) y T(O, t) . 

Para los gases, en general hacen falta tres condiciones iniciales y tres con­
diciones de contorno. En la situación bastante habitual en la que el flujo en el 
conducto es consecuencia de la descarga de un depósito, p(O, t) y T(O, t )  son 
en principio desconocidas y se deben relacionar con las magnitudes de reman­
so en el depósito. Por otro lado, en vez de v(O, t) , que tampoco se conoce en 
principio, se especifica p(L, t) , que es igual a la presión de descarga si el flujo 
es subsónico. Este problema se coñsiderará con detalle más adelante. 

33.2 .  Flujo casi estacionario de líquidos 
Este es el caso en que las ecuaciones anteriores son más sencillas. Para que 

el movimiento sea casi estacionario se debe verificar que el número de Strouhal 
sea muy pequeño: 

L 
St = - « 1 , (33.25) 

vt0 

lo cual asegura que los efectos no estacionarios son pequeños frente a los con­
vectivos. Si la fricción es muy importante, mucho más que la convección de 
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cantidad de movimiento, es decir, si AL/rh » 1, la condición anterior se relaja 
a 

(33.26) 

ya que es suficiente con que el término no estacionario sea despreciable frente 
al término de fricción. 

Las ecuaciones serían [(33.6), (33.8) y (33.14)] : 

G vA = - = Q , 
p 

(33.27) 

(33.28) 

(33.29) 

donde se ha tenido en cuenta que p = constante, que Tds = cdT, se ha utilizado 
la analogía de Reynolds y se ha despreciado la disipación viscosa. Sustituyendo 
(33.27) en (33.28) e integrando, teniendo en cuenta que Q es constante (a lo 
sumo depende paramétricamente del tiempo a través de las condiciones de 
contorno) se tiene que 

Q2 

( 
1 1 

) 
P - p(O) Q2 {x A 

2 A2 - A2 (0) + p + U - U(O) = -8 }0 rhA2 dx (33.30) 

Para un conducto de sección y rugosidad constantes, la ecuación anterior se 
reduce a 

(33.31) 

de forma que el caudal para un conducto de longitud L viene dado por 

2 8r,iA2 
Q = pAL [p(O) + pU(O) - p(L) - pU(L)] . (33.32) 

Como A depende del número de Reynolds y, por tanto, de Q (para un rh y 
un A dados), la ecuación anterior se suele resolver iterativamente utilizando 
el diagrama de la figura 32.4: dadas la diferencia de presión reducida entre la 
entrada y la salida del conducto y la geometría del mismo, se supone un caudal 
y se calcula A; mediante la ecuación anterior se obtiene un nuevo caudal que 
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se utiliza para recalcular .X, y así sucesivamente hasta que el proceso converja. 
En el límite en el que la pared del conducto sea completamente rugosa, .X 
es sólo función de la rugosidad relativa, y la ecuación anterior proporciona 
explícitamente el caudal. 

En cuanto a la temperatura, suponiendo el caso más simple en el que 
Qr = O, y que tanto Tp como .X son constantes, viene dada por 

(33.33) 

que nos dice que la temperatura del líquido se aproxima a la de la pared 
exponencialmente en una longitud del orden de rh/ .X. 

33.3. Movimiento casi estacionario de un gas en un 
conducto aislado térmicamente 

Los flujos de gases en conductos son mucho más complicados de resolver 
que los de líquidos. Incluso en el límite casi estacionario, las ecuaciones son lo 
suficientemente complejas como para que no se puedan resolver analíticamente. 
Por ello, se considerarán los efectos de la fricción y de la adición de calor por 
separado en un conducto de sección constante ( el efecto de la variación de la 
sección del conducto ya se consideró en la lección 23 para un gas ideal) .  

En el supuesto en que el flujo sea casi estacionario y adiabático ( q8 = Qr = 
O) , y la sección del conducto sea constante, las ecuaciones (33.6) ,  (33.8) y 
(33. 13) se escriben 

8pvA = O 
8x 

8v2 /2 1 8p 8U .Xv2 

-- + -- + - - --8x p 8x 8x - 8rh ' 

- h + - + U  = 0  
8 

( 
v2 

) 
8x 2 

(33.34) 

(33.35) 

(33.36) 

Normalmente, las fuerzas másicas son despreciables en el flujo de gases, por 
lo que estas ecuaciones, integrando la primera y última, se reducen a 

pv = G / A = constante , 

8v2 /2 1 8p .Xv2 

-- + -- - --8x p 8x - 8rh ' 

(33.37) 

(33.38) 
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v

2 

h + - = h0 = constante ; (33.39) 
2 

es decir, tanto el gasto como la entalpía de remanso se conservan a lo largo 
del conducto. 

La ecuación (33.38) también es posible integrarla analíticamente. Para ello 
suponemos que el gas es ideal. Teniendo en cuenta que h = ,p/ (, - l )p, 
derivando (33.39) se tiene 

(33.40) 

Eliminando ap/ ax mediante la ecuación de continuidad, sustituyendo en (33.38) 
y utilizando la definición del número de Mach, se llega a 

!_ (l - _1_) av2/2 = _ >.v2
. 

, M2 ax 8rh 

Por otro lado, de (33.39) , M2 es sólo función de v2 : 

Así, se tiene que 

Esta ecuación se integra fácilmente: 

ln � + 2(, - l)ho [2- - _1_] = - ' {
x 

�dx 
v(0)2 (, + 1 )  v2 v(0)2 2(, + 1 )  Ío rh 

' 

(33.41) 

(33.42) 

(33.43) 

(33.44) 

siendo el segundo miembro lineal con x cuando ,\ es independiente del número 
de Reynolds. Esta ecuación, junto con pv = G /A y h + v2 /2 = ,p/(, - l)p + 
v2 /2 = h0 , determinan v(x) , p(x) y p(x) en función de v(O), h0 y G y de las 
condiciones p(O) y p(O) .  La ecuación de estado proporcionará T(x) .  

La ecuación (33.41) ,  junto con la ecuación de la entropía, 

(33.45) 

permiten describir cualitativamente el movimiento en función del número de 
Mach. Para ello se utiliza (33.41 ) y el cociente entre (33.45) y (33.41 ) ,  
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(33.46) 

que expresa la variación de la entropía con la energía cinética (por unidad de masa). De acuerdo con (33.41) ,  para un flujo subsónico, es decir, un flujo con M(O) < 1, la velocidad aumenta a lo largo del conducto y, de acuerdo con (33.42) ,  también lo hace el número de Mach. La ecuación (33.46) dice que, obviamente, la entropía aumenta. A medida que la longitud del conducto aumenta, así lo hace el número de Mach a la salida, hasta que M ( L) = 1, el cual no puede ser superado ya que un número de Mach mayor que la unidad implicaría, de acuerdo con (33.46) , una disminución de la entropía. A partir de aquí el flujo en el conducto se bloquea y un aumento de su longitud no cambiaría la condición M ( L) = 1 ,  con lo que las condiciones en x = O ten­drían que cambiar para adaptarse a la nueva longitud, lo cual generalmente impide que la condición de contorno de la presión a la salida del conducto se satisfaga, habiendo una expansión posterior fuera del conducto ( expansión Prandtl-Meyer) donde la presión se adapta a la ambiente. Por el contrario, si el flujo es supersónico [M(O) > 1 ] ,  tanto la velocidad como el número de Mach disminuyen a lo largo del conducto, y la entropía aumenta. Pero al igual que antes, el número de Mach no puede atravesar el límite sónico, al menos de una forma contínua, ya que ello implicaría, de acuerdo con (33.46) ,  una disminución de la entropía. La diferencia con el caso subsónico es que ahora existe la posibilidad de una onda de choque. Así, antes de que se llegue a M(L) = 1, se produce una onda de choque en el interior del conducto en la posición apropiada para que el movimiento subsónico posterior se adapte a las condiciones ambientales a la salida del conducto. La forma más conveniente de obtener la evolución de las distintas magni­tudes fluidas a lo largo del conducto es en función del número de Mach: 
dM2 1 + :r=..!.M2 >. 
--2 = ,M2 2

M2 
-4 dx , M 1 - rh 

dp p dv V 
dp 2 1 + �M2 >. 
p = -,M 2(1 - M2) 4rh dx , 

dT _ _ ,(, - l)M4 >. dx T - 2(1 - M2 ) 4rh ' 

(33.47) 

(33.48) 

(33.49) 

(33 .50) 
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dpº = dpº = _ !,M2 �dx (33.51) 
Po Po 2 4rh ' 

donde para la última expresión se ha hecho también uso de (19.26)-(19.29). 
En todas las relaciones anteriores ( excepto para las magnitudes de remanso) 
aparece el factor 1-M2 en el denominador, de modo que las magnitudes fluidas 
tienen evoluciones opuestas a lo largo del conducto dependiendo de que el flujo 
sea subsónico o supersónico (las magnitudes de remanso siempre disminuyen, 
del mismo modo que la entropía siempre aumenta, al ser la fricción un proceso 
disipativo). Estas evoluciones, a la vista de las ecuaciones anteriores, se pueden 
resumir en la tabla siguiente: 

Propiedad Subsónico Supersónico 
M aumenta disminuye 
p disminuye aumenta 
V aumenta disminuye 
p disminuye aumenta 
T disminuye aumenta 

Po,Po disminuye disminuye 
s aumenta aumenta 

De acuerdo con lo dicho anteriormente, la fricción siempre hace tender el 
número de Mach hacia la unidad, acelerando los flujos subsónicos y decelerando 
los supersónicos. En la figura 33.2 se representa la evolución del número de 
Mach en función de >..x/4rh, resultado de la integración de (33.47) (suponiendo 
que ,\ es constante), 

'Y + 1 
In ( 

1 + y M2 M2 (O)
) + 

1 _ _ 1_ = >..x 
2, 1 + 12

1 M2(0) M2 ,M2 (0) ,M2 4rh ' 
(33.52) 

para un flujo subsónico que parte de M(O) = 0,1 [figura 33.2(a)] y un flujo 
supersónico que parte de M(O) = 10 [figura 33.2(b)].4 Se observa que, com­
parativamente, hace falta un conducto mucho más corto para decelerar un 
flujo supersónico que para acelerar un flujo subsónico [excepto si .M(0) es muy 
próximo a la unidad]. Como se comentó antes, para cada número de Mach a la 
entrada del conducto existe una longitud crítica , L* (.1\,1(0) ), correspondiente 

'1 Estas figuras proporcionan también M = M(>..:1:/4rh ) para M(O) > 0,1  y M(O) < 10, 
respectivamente, sin má.s que trasladar el origen de las abcisas. 
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::¡; 

10 20 30 40 50 60 70 
i. x /  4 rh 

::¡; 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
i. x /  4 rh 
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Figura 33.2: Número de Mach en función de >.x/4rh (ecuación (33.52)] para un flujo subsónico con M(O) = 0,1 (a) y un flujo supersónico con M(O) = 10 (b) . 'Y =  1,4. 

a J\lf(L* ) = 1 [en la figura 33.2, .\L* (0,1)/4rh :::::: 67 y .\L* (10)/4rh :::::: 0,78]. 
Para un flujo subsónico, si L > L*, el flujo se ajusta para que M(L) = 1, 
disminuyendo el número de Mach a la entrada y, por tanto, el gasto que cir­
cula por el conducto. Normalmente esto implica que la presión a la salida 
del conducto no es igual a la existente en el exterior del conducto (ver más 
adelante), y se produce una expansión de Prandtl-Meyer en la descarga. Para 
un flujo supersónico, si L > L *, la curva dada por la figura 33.2(b) es válida 
hasta una cierta longitud Le , donde se produce una onda de choque normal, 
de tal forma que la intensidad de la onda de choque correspondiente a M(Lc) 
es la apropiada para que la evolución subsónica posterior [dada por la figura 
33.2(a)] ajuste la presión de salida a la existente en la descarga. 

Usualmente, es conveniente integrar las relaciones anteriores expresando el 
resultado en función de las condiciones de remanso en vez de las condiciones a 
la entrada del conducto. Esto es particularmente útil cuando se desea estudiar 
la descarga de un depósito a través de un conducto, ya que las condiciones de 
remanso, p0 , p0 y T0 , coinciden con las existentes en el depósito. A este pro­
blema se dedicará lo que resta de esta sección. De la ecuación de continuidad,  
p(O)v(O) = p(L )v(L) y ele a2 = ,p/ p ,  eliminando la densidad, se tiene 
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p(O) _ a2 (0) v(L) _ M(L) a(O) _ M(L) ✓ T(O) . p(L) - a2 (L) v(O) - M(O) a(L) - M(O) T(L) ' 

como la entalpía de remanso se conserva en el conducto, 

T(O) T(O)/T0 1 + '.y-M2 (L) T(L) = T(L)/T0 
= 1 + y-M2 (0) 

donde se ha hecho uso de (19.26) ; por tanto, 

(33.53) 

(33.5 4) 

(33.55)  

Por otra parte, como p(L) = Pa , donde Pa es la presión exterior a la que 
descarga el conducto, usando (19.29), 

(33.5 6) 

se llega a 

Po = .P..!!_ p(O) = M(L) 
(1 + 1 - 1 M2(o)) -y/(--y-l ) 

[
1 + '.y-M2 (L) l 112 Pa p(O) p(L) M(O) 2 1 + y-M2 (0) 

(33.5 7) 
Otra relación entre M(O) y M(L) se obtiene de (33.52): 

donde se ha supuesto que >. es constante. Así, dada la relación entre la presión 
del depósito y la de descarga, p0/pp, , y dado >.L/4rh , mediante (33.5 7 )  y (33.58) 
se obtiene M(O) y M(L) , los cuales están representados en la figura 33.3. 
[Para >.L/4rh ---t O la relación entre M(O) y p0/pa viene dada, obviamente, 
por {33.5 6).] Con M(O) y las condiciones de remanso se obtiene el gasto que 
circula por el conducto: 

G = p(O)v(O)A = p0a0A p(O) a(O) M(O) 
Po ªº 

{33.59) 
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: Q.8 : . 0.05 

10º '--'-�-'-----'--����....__-�����....._-�����......_-�����u..., 
1 0� 1 �  1 �  1 ¿  1 �  

A. L /  4 rh Figura 33.3: Descarga de un depósito a través de un conducto aislado térmicamente. 1 = 1 ,4. 
Si se define G* como el gasto correspondiente a M(0) = 1 (por supuesto, este gasto no se alcanza nunca, pues si el flujo llega a ser sónico lo es a la salida del conducto), 

. * _ (
' + 1 ) h+l)/2(1--y) G = p0a0A -2-la cantidad adimensional G/G* sólo depende de M(0), 

S!_ _ (' + 1 ) (-y+l)/2(-y- l )  
[ ')' _ 1 2 ] 

("Y+l)/2(1-1) 
G* - 2 

M(O) 1 + 2 M (O) , 

la cual se representa en la figura 33. 4 para , = 1, 4. 

(33.60) 

(33.61 )  
Con M(0) queda también definida la evolución de todas las magnitudes fluidas a lo largo del conducto sin más que integrar las ecuaciones (33.47)­(33.5 1 ) .  En el caso en que la longitud del conducto exceda la longitud crítica, 
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0.8 

-� 0.5 
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0.1 0.2 0.3 0.4 0.5 0.6 O. 7 0.8 0.9 
M(O) 

Figura 33.4: Gasto adimensional (33.61) en función de M(O) para 1 = 1 ,4. 

la expresión (33.58) sigue siendo válida con M(L) = 1, proporcionando M(O) , 
el gasto (que será menor al ser M(O) más pequeño) y la evolución de todas las 
magnitudes fluidas a lo largo del conducto. Sin embargo, la presión a la salida, p(L) ,  no coincide con Pa · Su valor se obtiene de (33.5 7)  haciendo M(L) = 1 
[que es la condición de contorno que sustituye a p(L) = p0 ; por supuesto, p(L) 
será mayor que Pa al ser menor el valor de M(O) que el correspondiente a p(L) = Pal •  Detrás del conducto se producirá una expansión del tipo Prandtl­
Meyer desde p( L) hasta Pa . 
33.3. 1 .  Límite de fricción dominante 

Un caso particular interesante en el cual el flujo estacionario, adiabático y 
con fricción de un gas en un conducto, no necesariamente de sección constante, 
se simplifica enormemente, es el correspondiente a >..L/rh » 1 (fricción muy 
importante). 

De la ecuación (33.38) se tiene que las variaciones de presión a lo largo del 
conducto son del orden de 

(33.62) 

Es decir, 
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(33.63) 

Si >..L/rh » 1, b.p/p ~ M2 >..L/rh. Si, además, b.p/p es, a lo sumo, de orden 
unidad, se tiene que M2 « l. Más concretamente, si >..L/rh » 1 y 

b.p 
(

>..L
)

-1 
1 - - « ' p rh 

(33.64) 

la relación (33.63) implica que M2 « l. Por ejemplo, en el caso de la descarga 
de un depósito a través de un conducto, se tiene que M2 « 1 si, además de 
>..L/rh » 1, se verifica [(Po - Pa )/p0] [>..L/rh]-1 « l. 

Como la entalpía de remanso se conserva, M2 « 1 implica que la entalpía 
y, por tanto, la temperatura, también se conserva. Es decir, fricción dominante 
y (33.64) implican que el flujo a través del conducto es isotermo. La condición 
>..L/rh » 1 implica, además, que el primer término de (33.38) es despreciable 
frente al tercero, teniéndose 

1 op >..v2 
= 

p ox 8rh (33.65) 

Sustituyendo p = p/ R9T con T = constante y la ecuación de continuidad 
pvA = G = constante (A no necesariamente constante) se tiene 

dp2 
dx (33.66) 

ecuación que se puede integrar directamente proporcionando p en función del 
gasto (y de T y la geometría del conducto). La constante de integración que­
daría fijada por la condición de contorno a la entrada, p(O) '.::::'. p0 , puesto de 
M2 (0) « l .  La condición de contorno a la salida, p(L) = Pa ,  fija el gasto. 
La distribución de densidad, p(x),  vendría dada por la ecuación de estado, 
mientras que la ecuación de continuidad fijaría v(x) , quedando resuelto el pro­
blema. Una vez resuelto, se debe comprobar que M2 (L) « 1, es decir, que la 
condición (33.64) realmente se satisface. Hay que observar que, a pesar de que 
M2 « 1, el flujo no se puede considerar incompresible, pues 

b.p ~ b.p ~ M2 >..L 
p p rh 

(33.67) 

que no necesariamente es pequeño (la primera parte de la relación anterior pro­
viene de b.p ~ a2 b.p, al ser el flujo prácticamente isentrópico por ser adiabático 
y no contar la disipación viscosa debido a que M2 « 1). 
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33.4. Movimiento casi estacionario de un gas sin 

fricción y con adición de calor 

Suponiendo que la fricción es despreciable, es decir, >..L/rh « 1, las ecua­
ciones que describen el movimiento estacionario de un gas en un conducto de 
sección constante son: 

pv = G / A = constante , 

pv av + ap = O  ax ax 
� (h + v2

) = Qs A + Qr 
ax 2 Th Ú Ú 

(33.68) 

(33.69) 

(33.70) 

Si Q(x) es el calor total añadido al fluido por unidad de masa desde la entrada 
del conducto hasta la sección x , 

A fx 1 fx 
Q(x) = Grh lo Qsdx + e lo 

qrdx 

las ecuaciones anteriores se escriben 

pv = p(0)v(0) = G/A , 

pv2 + p = p(0)v2 (0) + p(0) ,  

v2 v2 (0) 
h + 2 = h(0) + -2

- + Q(x) . 

(33.7 1) 

(33. 72) 

(33. 73) 

(33.7 4) 

Estas expresiones proporcionan las magnitudes fluidas en cada sección del 
conducto y el gasto en función de las condiciones a la entrada y Q(x). 

Como se hizo en la sección, es conveniente expresar estas relaciones en 
función del número de Mach. Teniendo en cuenta que a2 = -yp/ p y h = 
-yp/('Y - l)p = a2 /('Y - 1), se obtiene 

h 
h(0) 

p v(0) 
p(0) v 

p 1 + -yM2 (0) 
p(0) - 1 + -yM2 ' 

T 
T(0) 

1 + yM2 (0) + Q(x)/h(0) 
1 + :r.=.!M2 

2 

.M2 (0) p(0) M2 (0) 1 + -yM2 

M2 p M2 1 + -yM2 (ü) . 

(33.75)  

(33. 7 6) 

(33.7 7) 
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4 

Así, conocidas las condiciones en x = O, Q(x) y el número de Mach en cada 
sección, se obtienen las distintas magnitudes fluidas en cada sección. Como, 
por otra parte, se tiene que verificar la ecuación de estado, p/ pT = constante, 
se puede obtener una relación adicional que proporciona el número de Mach 
en cada sección en función de las condiciones a la entrada y Q(x) , quedando 
así cerrado el problema: 

F2 (M) = l + Q(x)/h(O) F2 (M(O) )  1 + :s-1M2 (0) ' 
donde, por comodidad, se ha definido la función 

F(M) = 
M 

(1 + 'Y - 1 M2) 
1/2 1 + ,M2 2 

que se representa en la figura 33.5. 

(33.78) 

(33.79) 

El comportamiento cualitativo del flujo a lo largo del conducto se pue­
de obtener considerando las expresiones anteriores con la ayuda de la figura 
33.5. En esta figura se observa que F(M) alcanza un máximo para M = l. 
Por tanto, dependiendo de si el flujo es subsónico o supersónico, la adición 
de calor tiene un efecto opuesto en el mismo, análogamente a como ocurría 
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en el movimiento considerado en la sección anterior. Si el flujo es subsóni­
co, [M(0) < l] , una adición de calor incrementa la función F(M) [ecuación 
( 3 3 .  78)] y, por consiguiente , el número de Mach aumenta de acuerdo con la 
figura 3 3 .5. Por el contrario, si el flujo es supersónico [M(0) > l] , una adición 
de calor disminuye el número de Mach ya que F(M) también debe aumen­
tar. Lo contrario ocurriría si se elimina calor del fluido. De acuerdo con las 
expresiones ( 3 3 . 7 5 )-( 3 3 .7 7) y con 

Po p Po p(0) 1 + --yM2 (0) [ 1 + �M2 l -y/{'y- l)  

Po (0) = p(0) p p0 (0) = 1 + --yM2 1 + �M2 (0) 
( 3 3 .80) 

To ( 1  + --yM2 (0) ) 2 M2 1 + �M2 
T0 (0) = 1 + --yM2 M2 (0) 1 -t 22

1 Af2 (ü) 

la evolución de las diferentes magnitudes fluidas es la siguiente: 

Propiedad Calentamiento Calentamiento Enfriamiento 
subsónico supersónico subsónico 

M crece decrece decrece 
p decrece crece crece 
p decrece crece crece 
V crece decrece decrece 
T crece 
To crece crece decrece 
Po decrece decrece crece 
s crece crece decrece 

( 3 3 .81) 

Enfriamiento 
supersónico 

crece 
decrece 
decrece 

crece 
decrece 
decrece 
crece 

decrece 

Se observa que la temperatura de remanso crece cuando se calienta el gas y 
decrece cuando se enfría, independientemente de que sea subsónico o supersóni­
co, ya que la adición de calor aumenta la entalpía de remanso, mientras que 
la sustración la disminuye. En cuanto a la temperatura, en un calentamiento 
subsónico crece hasta M = ,,,- 1 /2 y decrece desde M = -y- 1/2 hasta M = l ,  
mientras que en enfriamiento subsónico decrece cuando M < ,,,-

1 /2 y crece si 
1-1 /2 < M < l . 

La adición de calor siempre hace tender el número de Mach hacia la uni­
dad, análogamente al efecto de la fricción considerado anteriormente. Por el 
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contrario, el enfriamiento del gas siempre aleja el número de Mach de la uni­
dad. Si el flujo es inicialmente subsónico, dadas unas condiciones de entrada 
en el conducto, no se le puede añadir al gas una cantidad de calor por encima 
del valor máximo correspondiente a M(L) = 1 [ecuación (33. 78)] : 

[1 - M2 (0)]2 
Q(L)max = h(O) 

2 (-y + l)M2 (0) 
(33.82) 

Si el calor añadido es mayor, las condiciones a la entrada deben modificarse, 
disminuyendo M(O) y, por tanto, el gasto que circula por el conducto. Esto 
implicaría que la presión a la salida del conducto, p(L) ,  no coincide con la 
presión externa a la cual descarga ( ver más adelante para un ejemplo concreto). 

Si el flujo es supersónico, la expresión (33.82) proporciona también el calor 
máximo que se le puede añadir al gas para unas condiciones de entrada fijas, 
correspondiente a M(L) = 1, si el flujo permanece supersónico en todo el 
conducto. Sin embargo, en este caso se puede añadir más calor al gas sin 
modificar las condiciones de entrada, ya que existe la posibilidad de que se 
produzca una onda de choque en el conducto, que se situará en la posición 
apropiada para que el flujo subsónico posterior se adapte a las condiciones de 
descarga, sin necesidad de que se modifique M (O) . 

En el caso frecuente en que el conducto sirve de descarga de un depósito 
desde la presión Po (entalpía de remanso h0) hasta la presión exterior Pa , es 
posible, análogamente al caso considerado en la sección anterior , escribir un 
par de relaciones que proporcionen M(O) y M(L) en función de la relación 
de presiones p0/p0 y el calor añadido Q(L)/h0 . Estas relaciones se obtienen 
directamente de (33.75)  y (33.7 6) teniendo en cuenta que p(L) = Pa y las 
relaciones p0/p(O) y h0/h(O) = T0/T(O) dadas por (19.29) y (19.26) en función 
de M(O) : 

Pa . l + ,M2 (0) 
Po 

= 
[1 + ,M2 (L)] [l + 1i1M2(ü)],,/b-1 ) 

Q(L) M2 (L) [1 + ,M2 (0)]2 1 + 1i1M2 (L) 
-- = --'- -'---�--'- --�-- - 1 

h0 M2 (0) [1 + ,M2 (L)]2 1 + yM2 (ü) 

(33.83) 

(33.84) 

En la figura 33. 6 se representan estas relaciones. El gasto adimensional, G / G* , 
es función sólo de M(O) y viene dado por (33.61), representado en la figura 
33.4. Si Q(L)/h0 supera el valor máximo, 

(33.85) 
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Figura 33.6: Descarga de un depósito a través de un conducto sin fricción y con adición de calor (, = 1 ,4). 

la condición de contorno a la salida deja de ser p(L) = Pa , para ser M(L) = 1 ,  
disminuyendo M(O) y, por tanto, el gasto. Detrás de la salida se producirá una 
expansión desde p( L) hasta Pa . 

33.5 .  Pérdidas localizadas en tuberías 

Los sitemas de tuberías suelen tener cambios bruscos en la sección de los 
conductos (válvulas, ensanchamientos y contracciones, etc . )  así como cambios 
repentinos de la dirección de los mismos (codos, tes, etc . ) .  La caída de presión 
de remanso en estas regiones suele ser relativamente importante, a pesar de 
lo reducido de las dimensiones espaciales de estos accesorios en comparación 
con la longitud de los conductos, y a veces puede superar con creces la caída 
de presión originada por la fricción en las paredes de los conductos. Por ello 
la importancia de su cuantificación. Estas pérdidas localizadas de la presión 
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de remanso se deben, fundamentalmente, a la formación de torbellinos como 
consecuencia de la separación de la corriente y a la producción de corrientes 
secundarias en relación a la corriente pricipal en los conductos. Estos movi­
mientos suelen ser muy complicados, por lo que la cuantificación teórica de 
estas pérdidas es, salvo excepciones, practicamente imposible. Por ello se re­
curre a la experimentación (guiada, por supuesto, por el análisis dimensional 
y la semejanza física). En esta sección se comentarán muy brevemente algunas 
de las pérdidas localizadas más significativas. 

En el caso de flujos turbulentos incompresibles, que serán los únicos que 
se considerarán aquí, es práctica habitual expresar la pérdida de la presión de 
remanso en términos de un coeficiente adimensional ( que relaciona la caída de 
la presión de remanso con la energía cinética del flujo por unidad de volumen: 

( ) 1 2 l::,,.p loe = ( 2 pv (33.86) 

Para cada tipo de accesorio en donde se produce la caída localizada de pre­
sión, ( depende de los diferentes parámetros geométricos adimensionalizados 
y, si la fricción es también importante, del número de Reynolds. En ocasiones 
también se suelen expresar las pérdidas localizadas en términos de la longitud 
equivalente de tubería que por fricción originaría la misma caída en la presión 
de remanso, pero es menos usual. 

A continuación se considerarán brevemente los tipos más básicos de situa­
ciones donde se producen pérdidas localizadas, comenzando con el ensancha­
miento brusco, que es el único caso para el que es posible obtener ( teórica­
mente. Información exhaustiva sobre pérdidas localizadas puede encontrarse, 
por ejemplo, en la monografía de Idelchik (1986). 

33.5 . 1 .  Ensanchamiento brusco 

Considérese un cambio brusco en la sección de una tubería como el es­
quematizado en la figura 33. 7 .  La caída de presión de remanso es debida a 
la separación de la corriente y la consequente formación de torbellinos, y se 
puede obtener sin más que aplicar las ecuaciones de conservación de masa y 
cantidad de movimiento aplicadas al volumen de control de la figura: 

(33.8 7) 

(33.88) 

Dividiendo esta última ecuación por pA2 y utilizando la primera, se obtiene 
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Así, 

V ¡  

Figura 33.7: Ensanchamiento brusco. 

�;:.;:======---
Figura 33.8: Difusor cónico. 

( 
A1 )

2 

(ens. = 1 - A2 

(33.89) 

(33.90) 

En el límite A2 » Ai , (ens . '.::::'. 1, perdiéndose, como es lógico, toda la 
energía cinética del fluido que entra en el ensanchamiento, (Ap)ens . '.::::'. pv?/2. 
Como en este límite v2 « v1 , la ecuación (33.89) se reduce a PI = p2. Esta 
situación ocurre, por ejemplo, cuando un conducto descarga en un depósito, 
siendo la presión del líquido en la descarga del conducto prácticamente igual 
a la del líquido en el depósito en el punto de descarga. 

33.5.2.  Ensanchamiento gradual. Difusor 

Sea el ensanchamiento gradual desde una seccción A1 a otra A2 > A1 
mediante un tramo cónico de semiángulo 0 de la figura 33.8. Las pérdidas en 
este caso son debidas tanto a la separación de la corriente como a la fricción 
en la pared cónica: 

(Ap)dif. = (Ap)¡ + (AP)ens . . (33.91) 
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r 2 

r 1 

Figura 33.9: Pérdidas de fricción en un difusor cónico. 

Las pérdidas por fricción se pueden estimar mediante el coeficiente de 
fricción >. para conductos circulares: 

( dp) = >.p 
dl v2 

= >.p 
d� ( 

r1 ) 
4 vf . f 2r 2 2r sm 0 r 2 

Suponiendo >. constante, 

>.p vf 4 ¡r2 dr >.p 
[ (

A1 )
2
] 

vf (b..p)
¡ 

= 2 sin 0 2
r1 Ír1 r5 = 8 sin 0 l -

A2 2 

(33.92) 

(33.93) 

Las pérdidas por separación de la corriente se suelen expresar como una 
fracción de las correspondientes a un ensanchamiento brusco: 

2 2 
) ( 

A1 ) 
V1 (b..p)ens. = K(0 l - A2 

P2 ' (33.94) 

siendo K ( 0) una constante empírica. Para 0 < 20° , se tiene, aproximadamente, 

K(0) '.::'. 3,2(tan 0)514 . 

Sumando las dos pérdidas, 

vf (b..p)dif. = (diJ.P2 

(dif. = -�- [1 - ( A1
)

2

] + K(0) (1 - A1 )
2 

8 sm 0  A2 A2 

(33.95) 

(33.96) 

(33.97) 

Es decir, (dif. depende del número de Reynolds y de la rugosidad relativa ( a 
través de >.) , del ángulo 0 y de la relación de áreas n = A2 / A 1 . Información 
detallada sobre (dif. en función de todos estos parámetros (y no sólo para en­
sanchamientos cónicos) puede encontrarse en la referencia antes citada. Como 
comentario general se puede decir que a medida que 0 aumenta (para n y 
>. constantes) ,  las pérdidas por rozamiento disminuyen puesto que el difusor 
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8 opt. 

Figura 33. 10: Difusor escalonado. 
es más corto, pero aumentan las pérdidas por separación, y al contrario si () 
disminuye. Por tanto, para cada n y .X., (di/. tiene un mínimo correspondiente 
a un ángulo () óptimo, que aproximadamente vale 

(33.98) 

Como .X. suele estar entre 0,015 y 0,025, y n no suele superar 3 ó 4, el ángulo 
óptimo suele ser muy pequeño, lo cual obliga a que el difusor tenga que ser muy 
largo, con el consecuente mayor coste de tubería . Por ello se suele utilizar una 
solución intermedia como la esquematizada en le figura 33.10. El ensancha­
miento brusco posterior al difusor cónico no introduce pérdidas importantes 
ya que la velocidad es ya bastante menor que a la entrada. La elección de 
la longitud del difusor es por tanto una cuestión de optimización pérdidas de 
presión-coste. Otra solución que se suele tomar es el uso de difusores no cóni­
cos que minimizan las pérdidas por separación buscando que el gradiente de 
presión en la pared sea lo menos adverso posible. 

33.5.3.  Contracción brusca 
En una contracción brusca como la de la figura 33.11, la corriente se separa 

antes y después de la misma, produciéndose un estrechamiento de la vena 
líquida despues de la contracción. A pesar de ello, las pérdidas suelen ser 
bastante menores que en un ensanchamiento brusco de la misma relación de 
áreas. Definiendo 

(33.99) 

el coeficiente (con . no se puede determinar teóricamente como en el caso de un 
ensanchamiento brusco puesto que Amin es desconocida, y hay que recurrir a 
la experimentación. Aproximadamente se tiene 
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Figura 33. 1 1 :  Contracción brusca. 

L L L - - -
1 1 1 1 Reentrante Bordes vivos Ligeramente Muy redondeados K = 0.78 K = 0.4 - 0.5 redondeados K= 0.05 K =  0.2 - 0.25 

Figura 33. 12: Coeficiente de pérdida de presión de remanso a la entrada de un conducto 
(tomada de White, 1983) .  

K = 0,4 - 0,5 (33.100) 

Si A2/A1 « 1 ,  lo cual correspondería, por ejemplo, a la descarga de un depósi­
to a través de un conducto, (con. � K. Como se observa en la figura 33.12, 
el coeficiente K puede reducirse apreciablemente redondeando los bordes de 
la entrada del conducto . Así, cuando los bordes están suficientemente redon­
deados, las pérdidas son despreciables y puede suponerse que la presión de 
remanso se conserva a la entrada del conducto. 

33.5.4. Contracción gradual 

En una contracción gradual cónica sólo se produce separación de la corrien­
te a la salida de la misma, ya que el gradiente de presión es favorable en la 
contracción. Esta separación puede a su vez evitarse redondeando los bordes, 
de forma que las pérdidas son exclusivamente debidas a la fricción. Suponiendo 
,X constante, estas pérdidas vienen dadas por (ver sección 33.5.3.): 
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� 
_ _.;_-=:;:;::;:::;;;;;......,;.A 2 

Figura 33. 13: Contracción gradual. 
A-A A-A 

Figura 33. 14: Esquema de la corriente en un codo. 

>.p 
( 

A2
) 

v2 
(�P)cg = 8 sin 0 l - A? ; • 

(33. 101) 

(cg depende, por tanto, de A2/ A1 , de 0, del Reynolds y de la rugosidad relativa. 

33.5.5 .  Codos 

En los cambios bruscos de la dirección del flujo en un conducto, la pérdida 
de presión de remanso se produce por tres mecanismos: por separación de la 
corriente, por fricción en la pared y por la formación de flujos secundarios ( ver 
figura 33.14) . Estos últimos son debidos a la acción de las fuerzas centrífugas, 
y se superponen a la corriente principal. 

El coeficiente de perdidas depende , para un conducto circular, del ángulo 
del codo ( ó) , de la relación entre el radio de curvatura y el diámetro del con­
ducto (Rc/D) , de la rugosidad relativa y del número de Reynolds (estos dos 
últimos a través del coeficiente de fricción >..). Si la sección no es circular, hay 
que añadir además algún parámetro geométrico adimensional que caracterice 
a la sección. Por ejemplo, para un conducto de sección rectangular, depende 
además la relación entre los lados del rectángulo. Para un conducto de sección 
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Figura 33. 15: Coeficiente de pérdida de presión en un codo de sección circular, según la 
expresión (33.102) ,  en función de Re/ D (datos tomados de Idelchik, 1986) . .. 
circular, se puede utilizar la expresión (válida para Re/ D > 3 ,  aproximada­
mente) 

( 3 3 .102) 

donde el ángulo 8 viene dado en grados y Ae = Ae(Re/ D,  Re). Valores experi­
mentales de Ae en función de Re/ D para dos números de Reynolds se muestran 
en la figura 3 3 .15. Los resultados se pueden extrapolar a secciones no circulares 
si uno usa 4rh en vez de D. 

Figura 33. 16: Codo con aletas. 
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Se debe observar que, aunque las pérdidas por separación de la corriente 

disminuyen a medida que aumenta Re/ D, las pérdidas por fricción aumentan, 
pues el codo es más largo. Por ello (codo tiene un mínimo para un valor óptimo 
de Re/ D que depende del número de Reynolds, de delta y de la forma de 
la sección. Las pérdidas debidas al flujo secundario apenas se ven afectadas 
por Re/ D, pero dependen mucho de la forma de la sección. Son mínimas en 
conductos de sección rectangular con un lado aproximadamente el doble que 
el otro, pues los gradientes de velocidad transversal a la corriente correspon­
dientes al flujo secundario son menores (véase figura 33. 14) .  Sin embargo, las 
pérdidas por fricción y por separación son mayores en los conductos rectan­
gulares pues la superficie de contacto sólido - fluido es mayor para una misma 
sección. Por ello, en flujo de gases, donde la fricción es relativamente menos 
importante que en flujo de líquidos, se suelen usar, si las pérdidas son críticas, 
conducciónes rectangulares, para que así las pérdidas originadas por los flu­
jos secundarios en los codos sean las menores posibles. Cuando la sección es 
grande se añaden además aletas que guían a la corriente, disminuyendo así las 
pérdidas por separación y por formación de flujos secundarios (figura 33. 16) . 
Para líquidos se suelen utilizar conducciones circulares pues las pérdidas por 
fricción son relativamente más importantes. 
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Este libro es una introducción a la Mecánica de Fluidos, principalmente enfo­
cada a los estudiantes de Ingeniería. El contenido está pensado para que sea 
cubierto durante dos cursos: uno más básico, donde se introducen los funda­
mentos y se estudian las principales aplicaciones ingenieriles de la Mecánica de 
Fluidos ( con la importante excepción de las Máquinas Hidráulicas, que no se 
consideran aquí porque suele constituir un curso aparte en algunas ramas de 
la Ingeniería, existiendo muy buenos textos en español) ,  y otro más avanzado 
donde, el alumno interesado, puede atisbar otros aspectos interesantes de la 
Mecánica de Fluidos. 
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