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Este libro es una introduccién a la Mecénica de Fluidos, principalmente enfo-
cada a los estudiantes de Ingenieria. El contenido esta pensado para que sea
cubierto durante dos cursos: uno mas basico, donde se introducen los funda-
mentos y se estudian las principales aplicaciones ingenieriles de la Mecanica
de Fluidos (con la importante excepcion de las Maquinas Hidrdulicas, que no
se consideran aqui porque suele constituir un curso aparte en algunas ramas
de la Ingenieria, existiendo muy buenos textos en espaiiol), y otro mas avan-
zado donde, el alumno interesado, puede atisbar otros aspectos interesantes
de la Mecanica de Fluidos. La bibliografia utilizada se encuentra especificada
al final de cada leccién y, toda reunida, en la lista bibliografica final. Aunque
se han utilizado muchas referencias originales, sdlo se citan recopilaciones y
libros de texto donde el material es mucho mas accesible a aquellos alumnos
que quieran profundizar sobre los temas tratados. Ademads de estas referencias,
para algunos temas se han tomado como base de partida los excelentes apun-
tes de Mecédnica de Fluidos de A. Barrero (E.T.S.I. Industriales, Universidad
de Sevilla, 1991) y, para algunos otros, los no menos excelentes de B.-T. Chu
(Departamento de Ingenieria Mecénica, Universidad de Yale, 1986). A ambos
les estoy profundamente agradecido por el conocimiento que me han transmi-
tido. Tambien quiero expresar mi gratitud y carifio a mi esposa, Aurora, que
con paciencia y eficacia paso al ordenador gran parte de la primera version de
estos apuntes, que vieron la luz en 1993. Mi agradecimiento también a todos
los alumnos que desde entonces han pasado por mis clases, que no sélo han
corregido muchas erratas, sino que con sus comentarios han contribuido a que
el texto haya ido mejorando con los anos. Por iltimo, mi gratitud a Joaquin
Ortega Casanova, que también me ha ayudado en la edicién del libro.
Malaga, 2001.

En la presente reimpresiéon se han corregido algunas erratas y se han actuali-
zado unas pocas referencias. Mi agradecimiento a Carlos del Pino, Luis Parras
y Patricio Bohérquez por haber contribuido a estas correcciones.

Mailaga, 2005.
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Parte 1

INTRODUCCION






Capitulo 1

Algunas nociones
matematicas preliminares

Esta primera leccién estd dedicada a resumir brevemente algunas herra-
mientas matematicas generales que seran ampliamente usadas en lo que sigue
(en especial, nociones bdasicas de calculo vectorial y los teoremas integrales).
Otros conceptos matematicos muy especificos de la Mecanica de Fluidos (en
general de la Fisica de los Medios Continuos) seran introducidos a lo largo de
la asignatura.

1.1. Coordenadas curvilineas ortogonales

Sean «, By v un conjunto de coordenadas curvilineas ortogonales, y €,, €3
y € los vectores unitarios paralelos a las lineas coordenadas en las direcciones
de incremento de «, 3 y <, respectivamente; es decir,

0% /0a
&y = et etc. | 1.1
* 7 |0%/0al (1.1)
donde & = T(«,,7) es el vector posicién de un punto genérico con respecto
al origen de coordenadas. Para que las coordenadas (a, 3, y) sean ortogonales,
la funcién & = Z(a, B8,) debe verificar

€a€g=€3 €y =€y Ey=0 , (1.2)
€x =€gNE, , etc (1.3)

Se definen las funciones de escala
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or oxr oz
=|=— hg=|— == , 14
ra=|gE| . ma=|| o =] (14
de forma que
. 1 0%
ea:Fa—% , etc. (1.5)
y el elemento diferencial de longitud viene dado por
) 1.6)

dZ = hodafy + hpdBEs + hydrE,

(dl)? = dz - dF = hZ(da)? + h(dB)® + h2(dv)? (1.7)

Si ¢ es un campo escalar, su gradiente se define

1 6(1)_, 1 6(}5_, (1.8)

)

1 8¢ s 1 6¢ g
V¢ = — = g+ = mmCg e
h; 8 = ho O hg aB hy 6
donde j = a, 3,7, y se ha utilizado la notacién usual de indicar suma mediante
la repeticién de subindices. Por otra parte, si ¥ es un campo vectorial, ¥ =
Va€a + Vg€ + V€, = v;€j, su divergencia viene dada por

0 0 0
— (hahyvg) + 5’; (hahg’l)-y)

1 0v 1
V-ir=¢;, —— hgh
V=% h;8] " hahghy |0 B (ohva) + 55
(1.9)
mientras que el rotacional de 7 es
ha€a hpég h,€,
2 o : (1.10)

<L

& A 18 1 a
Ay g = % B
O hahghy | 4 o hgvg  hyv,

VA

El operador Laplaciano sobre un campo escalar ¢ se define como

Vipg=N0p=V-Vo

_ 1 0 (hghy0¢ hah 6¢ hahg 0¢
= hahghn [6a< he O >+6ﬂ< hy 98) Ty \hy ay) | (MY
Otras dos operaciones frecuentemente usadas en la Mecénica de Fluidos

son la Laplaciana de un vector, V24, y la divergencia de un tensor, V - T
donde T = T;;€;€j, i,j = o, 3,7. Estas dos operaciones se realizan utilizando

las definiciones anteriores, es decir
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V3% =V - V(v€) (1.12)
= , 10 L.
V-T:ej-h—ja—j(Tikeiek) s (1.13)
teniendo en cuenta las relaciones
0€; 1 Oh; .
—_—= — ¢ i=a, 0 1.1
5 —hooi 0 0 b a, 3,7, (1.14)

que resultan de la ortogonalidad de los vectores €; (en la ultima expresion
los subindices repetidos no estan sumados). Sin embargo, la operacién V2% se
realiza mas facilmente utilizando la igualdad V25 = V(V - @) — VA (V A %)
[ecuacién (1.43) de la seccién siguiente] y haciendo uso de (1.8)-(1.10). Por
ultimo, otra operacién frecuente en la Mecanica de Fluidos es (5 - V)d, donde
@y b son dos campos vectoriales [en particular, aparecera (7 - V)7]. Al igual
que V27 y V- T, esta operacién, que es inmediata en coordenadas cartesianas
(en ellas es simplemente el producto escalar del vector b y el tensor Va),
presenta ciertas dificultades en coordenadas curvilineas debido a la variacién
de los vectores unitarios €;. Normalmente se realiza haciendo uso de la igualdad
(b-V)a=(Va)-b—bA(VAQ) [ecuacién (1.41) de la seccién siguiente]. La
componente « es:

[(b-V)d]e =b- Vas +

bo (920ha | 8 Oha | 8yOhs
ha \ hoa Oa ~ hg 03 ' h, Oy

; (1.15)

B aobo Ohe  agbg Ohg  a4b, Bh.,\
h2 O0a  hohg 0 hoh, O }

con expresiones similares para las componentes (3 y .

1.1.1. Coordenadas cilindricas y esféricas

El sistema coordenado ortogonal mas simple es el cartesiano, en el que
ha = hg = hy = 1. Los dos sistemas coordenados curvilineos mas cominmente
usados son el cilindrico y el esférico.

Las coordenadas cilindricas (r, 6, z) estdn relacionadas con las cartesia-
nas (z,y, 2) mediante las relaciones [ver figura 1.1(a)]:

x=rcosf , y=rsinf , z=2z , (1.16)

con lo que h, =1,hg =1, h,; = 1. Por tanto se tiene:
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(a) (b)

Figura 1.1: (a) Coordenadas cilindricas. (b) Coordenadas esféricas.

6¢_, 18(15_, 20 _,
Vo =— ot 506 o+ 5.5 (1.17)
10 16vg ov, (1.18)

V=15t I T e o

1 0v, %)_. (%_sz)_,_*_(la(rv) 18v7>_‘
9z or)® " \r"or r00)%
(1.19)
(

1.20)

2 _1_(_9_(6_¢) 10% 0%
Vo=t \"or) 2o T o
261}, Vg

2 60 7'2) 9+v vzez 3

<V2’Ua +
(1.21)

= [l0 10Te,  OT,r Too) .
v T—[ra (rTer) + 7 r 60 + 0z 7‘]

1975, aT"} e (1.22)

Oa, by Oa, Oa, bgag\
.

aag bg 8(19 6a0 boar .
+(b,- or r 80'+bz 0z r )60
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Oa, by Oa, day\
+(br~a~;+7—a'?+bz52—) € . (1.23)

Las coordenadas esféricas (r,0, p) satisfacen las siguientes relaciones
[figura 1.1(b)]:

z=rsinfcosy , y=rsinfsiny , z=rcosh |, (1.24)
h.=1 , hg=r , hy,=rsinfd |, (1.25)
Vo = %é‘r + %g.—?é’o ﬁg—i@, , (1.26)
V-u= 7'%567:( ur) rsi1n06(Si<;96v0) rsian?;:: ’ (1.27)
VAT= (rsilnea(SingW) - rsian(?;::) &
(-5
(I %) o
V25 — (Vzvr _ Ea_vo B % _ 2cotfug B 2 6_1)@) 2
r2 00 712 T2 r2sinf dp ) T
(AT %%r " rzzz)j?ee%) K
+ (vzvp + :ingaa—l; -3 svii?o Tz:sjzogg—% € (1.30)
vV.T= [:—2%(7'27’,.,.) + Ts'iln()%(sin 0Ts,) + Tsiln oag;, D t T“""] &
+ [%%(#m) D (sin 0T0) + —— ng’ i = e

1 9,. 1 0T Tor + cotfT 9
2 P or b | o
T, — (sin 67, )
r Br(r 2 rsin06‘0(sm o) + rsinf Op + r ] Co

(1.31)



24 MECANICA DE FLUIDOS

(5 Vi = <br Oa, by Oa, by oa, B boag + b%’aw) .

E+789 +7‘sin9 Op r o

Oag by Oag by dag  bga, cot9b¢a¢) .
+<br or + r 00 +rsin9 Op + ¥ r 0
da, b Oay, b, Oa, byar coth‘pag) .
+(brﬁ+ r 00 + rsinf Jy + r + r Ce (1:32)

1.2. Operaciones con el operador V

En coordenadas cartesianas es facil realizar las operaciones que involucran
al operador V (es decir, gradientes, divergencias, rotacionales) mediante el
uso de subindices. Cuando las coordenadas son curvilineas, la técnica de usar
subindices es mucho mas complicada. Por ello conviene, siempre que sea posi-
ble, realizar las operaciones con V en notacién vectorial compacta, ya que de
esta forma el resultado serd valido en cualquier sistema coordenado. A conti-
nuacion se dan una serie de identidades que involucran al operador V. Para
su obtencién se hace uso de la regla de derivacién de un producto [téngase
en cuenta que, cuando los factores son vectores, el orden es importante; asi,
(V)i # (5V)¢, (Va) -b # b - Va, etc.). También se utilizan las identidades

VAVe=0 , V- (VAT =0 , (1.33)

validas para todo campo escalar ¢ y todo campo vectorial U, y las relaciones
vectoriales

—

GANBAE)=(G-Ob—(@-b)c=(FAb)AG (1.34)

a-(bAG) =(@Ab)-C=b-(ENE) . (1.35)

En algunas de las siguientes expresiones se incluyen pasos intermedios para

facilitar su seguimiento. Un punto encima de una letra indica el factor sobre
el cual actia el operador V en los casos en que haya alguna ambigiiedad.

V(pyp) = oV + HpV e (1.36)

V(gV) = pVi + (V)T (1.37)

V.- (¢7) =9V -0+7-V¢ | (1.38)

(

VA@T) =dVAT+VSAT= VAT —TA Ve 1.39)
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V-(@Ab)=V-(@AD)+ V- (@Ab)=(VAE)-b—ad-(VAb) , (1.40)
AA(VAb)=(Vb)-Gd—(@-V)b , (1.41)
/\(v/\m:v%zﬁ—(a-vw , (1.42)

VA(VAD) =V(V-7)=V3 | (1.43)

A@AD) = VA@EAE)=VA(BAG) = (5-V)a—(V-@)b—(@V)b+d(V-5) , (1.44)

VA(@A
V(@-b) = (Va)-b+(Vb)-@ = GA(VAB)+bA(VAG)+(E@-V)b+(b-V)d . (1.45)

Otras identidades que involucran al vector posicién & son:

V=1 , (1.46)
V.£=3 , (1.47)
VAZ=0 , (1.48)
Vr=2&/r , (1.49)
V(&/r)=d-Z)/r , (1.50)

donde T es el tensor unidad y 7 = || es la distancia al origen de coordenadas.

Por ltimo, se incluyen algunas operaciones que involucran a un tensor de
segundo orden T. Ya definimos anteriormente [ecuacién (1.13)] el vector V- T.
De forma andloga se puede definir el tensor de segunda orden

= 1 0 0
T=e¢e = Tr1€; ; .
VA h 5 = (Tjk€j€x) ( G’J’“aa:, 1€ Pz) . (1.51)
y el tensor de tercer orden
OTjk . .
W= (T]kejek) <= = ik g6 k) , (1.52)
Z;

donde entre paréntesis se ha incluido la correspondiente expresion en coorde-
nadas cartesianas, siendo €;;x el tensor de Levi-Civita (e;jx = 0 si alguno de
los tres subindices se repite, €;x = +1 si la permutacién ijk es par en relacién
a 123 y €;;x = —1 si es impar). Operaciones en donde interviene el producto
escalar de un vector y un tensor son, por ejemplo,

V-@-T)=Ve:T+(V.-T)-7 , (1.53)

p—i ,=T
VA@-T)=VIAT +7-(VAT)T | (1.54)
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— — :T
V@ T)=Ve-T+VT -7 , (1.55)

donde los dos puntos denotan el doble producto escalar de dos tensores (A :
B = AijB;j), AAB significa que el primer componente de ambos tensores se
multiplica escalarmente y el segundo vectorialmente (en coordenadas carte-
sianas, el componente i de este vector seria €;;xAijBix), y el superindice T
significa tensor transpuesto.

1.3. Teoremas integrales

Sea S una superficie cerrada que contiene un volumen V' y ¢ un campo
vectorial definido en él. El Teorema de Gauss (o de la divergencia) nos dice
que

/dé’-z‘;‘:/ vv.g | (1.56)
S %

donde d§ = ds7i, siendo 7 el vector unitario normal a la superficie (hacia fuera)
y ds es el elemento diferencial de superficie. Este teorema nos proporciona una
segunda definicién de la divergencia de un vector:

V.-v= lim = ! ds-v (1.57)
v—oV S(V)
donde el volumen V esta definido en el entorno del punto en que se calcula V-7
Esta definicién sera muy util cuando interpretemos fisicamente la divergencia
de ciertos campos vectoriales.
Del teorema de Gauss se pueden deducir las siguientes relaciones:

/dé‘qﬁz/,dVVgﬁ , (1.58)
/dsv— dVvi | (1.59)
/ &sT = [ avvT (1.60)
/ds/\v— VY AT (1.61)

etc. En general, estas expresiones se pueden resumir en:

/déﬂ..: vy.. . (1.62)
S %
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Un caso particular bastante importante es el denominado (primer) Teorema
de Green:

[ avievie - 692l = [ avy-wve—ovy
|4 | 74

= [ a5 wve-ovul = [Las w3t - o] (1.63)

donde 9/0n es la derivada en la direccién normal a la superficie.

Un segundo grupo de teoremas integrales de uso comin en la Mecanica
de Fluidos estd encabezado por el Teorema de Stokes, que nos dice que la
circulacién de un vector ¥ a lo largo de una linea cerrada I' es igual a la
integral del rotacional de ¥’ sobre una superficie S que se apoya en I

/df~z7:/d.§‘-(V/\U) , (1.64)
r S

donde di es el diferencial de longitud siguiendo la direccién de la curva. Con-
secuencia de este teorema son:

/df¢=/d§A Vo | (1.65)

r S
/dfﬁ‘z/dé‘/\ v | (1.66)

T S
/dﬁ:/dé‘/\ vT (1.67)

r S
/deﬁ:/(dé‘/\ VAT (1.68)

r S

etc. En general,

/dl / d5AV) .. (1.69)

Observese que d5-V Av = (dSA V) -7, por lo que el teorema original de Stokes
(1.64) se puede escribir también en la notacién general (1.69).

Por ultimo, un tercer grupo de teoremas integrales, los Teoremas de Trans-
porte de Reynolds, que constituyen una generalizacion al espacio tridimensio-
nal de la formula de Leibnitz

d 2= _[rof o da
d_t/:z:=a(t) f(z,t)dz = i (')td + f(a: bt)—af(z—a,t) (1.70)
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sera considerado con mas detalles en el capitulo 5.
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Capitulo 2

El fluido como medio continuo

2.1. Sdlidos, liquidos, gases

La propiedad mecanica que distingue a los fluidos (gases y liquidos) de
los sdlidos es la facilidad que tienen para deformarse. Un sélido mantiene una
forma determinada mientras no se le aplique una fuerza externa. Un fluido no
tiene una forma determinada, sino que adopta aquella del recipiente que lo
contiene. Cuando se le aplica una pequefia fuerza a un trozo de sélido elastico,
éste se deforma proporcionalmente a la fuerza aplicada. Por el contrario, si a
un fluido se le aplica una fuerza, por pequena que ésta sea, se deforma indefi-
nidamente. En otras palabras, un sélido presenta resistencia a la deformacién,
existiendo, si el sdlido es elastico, una relacion lineal entre fuerza y deformacién
(Ley de Hooke), cuando ésta ltima es pequena. Un liquido o un gas presentan
resistencia a la velocidad de deformacion. Se vera mas adelante que la mayoria
de los fluidos, entre los que se encuentran los méas comunes, como son el aire
y el agua, en las condiciones que normalmente se presentan en la practica,
obedecen a una ley lineal entre el esfuerzo cortante (o tangencial) aplicado y
la velocidad de deformacién (estos conceptos se precisaran en lecciones poste-
riores). Los fluidos que obedecen a este tipo de ley lineal se denominan fluidos
Newtonianos, en honor a Isaac Newton quien fue el primero en formular una
ley de este tipo en el Libro II de sus Principia para un movimiento simple
de un liquido, aunque la formulacion precisa de esta ley no fue hecha hasta
mucho maés tarde (ver capitulo 7).

La frontera entre fluidos y sélidos no estda tan definida como se podria
pensar en un principio. Existen sustancias, como algunas pinturas, que se
comportan como solidos eldsticos si permanecen en reposo durante un cierto
tiempo, pero que vuelven a comportarse como liquidos si se las agita fuer-
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temente. Otras sustancias, como la brea, se comportan normalmente como
sélidos, pero si se les aplica una fuerza durante un periodo de tiempo suficien-
temente largo, la deformacion crece indefinidamente como si fuese un liquido.
Afortunadamente, la mayoria de los fluidos, en las condiciones que normal-
mente se encuentran en la préctica, se comportan como Newtonianos y, por
ello, el presente curso introductorio a la Mecanica de Fluidos se dedicara ex-
clusivamente al estudio de fluidos Newtonianos, estando fuera del programa
del presente curso los fluidos no-Newtonianos.!

Desde un punto de vista mecédnico, la distincién entre liquidos y gases no
es tan fundamental como entre éstos (los fluidos) y los sélidos. En lineas ge-
nerales, la propiedad mds importante que distingue a los liquidos de los gases
es la compresibilidad: los liquidos son practicamente incompresibles, por lo
que su densidad permanece casi constante aunque sobre ellos actien presiones
muy distintas. Esta propiedad, en el limite ideal de suponer la densidad de un
liquido constante a una temperatura dada, hara que el estudio mecanico de los
liquidos sea mucho mas simple que el de los gases. Por el contrario, los gases
son mucho mas compresibles y cualquier movimiento que introduzca variacio-
nes apreciables en la presién producira también variaciones apreciables en la
densidad del gas. Sin embargo, algunos movimientos de los que estudiaremos
no iran acompanados de variaciones importantes de la presién, por lo que, a
efectos mecanicos, los gases se comportan en esas situaciones como si fuesen
liquidos.

Para comprender mejor la distincién entre gases, liquidos y sélidos es inte-
resante hacer unas breves consideraciones sobre la naturaleza y la intensidad
de las fuerzas intermoleculares en funcién de la distancia intermolecular. Dos
moléculas neutras que no reaccionan quimicamente interaccionan, en el su-
puesto de que estén aisladas del resto, de acuerdo con el llamado potencial
de Lennard-Jones: cuando la distancia entre ellas es menor que una cierta
distancia d, (d, ~ 3 x 1071%m) existe una fuerte repulsién entre las molécu-
las debida a la repulsién electrostatica entre las nubes electrénicas, que varia
con la distancia d entre las moléculas elevada a la potencia —11 (~ d~!1);
para distancias mayores que d,, las moléculas se atraen débilmente debido a
la formacién de dipolos eléctricos, variando la fuerza de atraccién, a grandes
distancias, como d~°. Es decir, la fuerza viene dada por:

F(d) = F, (%ﬂ)s-(%’)u , (2.1)

'El alumno interesado en esta rama de la Mecénica de Fluidos (que normalmente se
incluye en la ciencia llamada Reologia ) puede consultar, por ejemplo, la monografia de G.
Bohme, Non-Newtonian Fluid Mechanics (North-Holland, Amsterdam, 1987).
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Figura 2.1: Fuerza intermolecular de Lennard-Jones entre dos moléculas neutras en funcién
de la distancia intermolecular.

donde F, es una constante (F, y d, dependen de las caracteristicas de las
moléculas) y se ha tomado positiva la fuerza de atraccién. Si las moléculas
reaccionasen quimicamente, a distancias muy cortas apareceria, una vez ven-
cida cierta repulsion electrostatica, una fuerza atractiva mucho mas intensa
(de origen cudntico ) que tenderia a enlazar quimicamente las moléculas, y
que, por supuesto, no estd contenida en la descripcién anterior.

La distancia tipica entre dos moléculas de una sustancia se puede estimar
del conocimiento de su masa molecular y de su densidad. Asi, por ejemplo, un
gas tipico (oxigeno) en condiciones normales (20°C, 1 atm) tiene una densi-
dad de 1,33kg/m3. Como la masa molecular del oxigeno es 32kg/kmol, en un
metro cibico de este gas hay 0,0416kmoles; teniendo en cuenta el nimero de
Avogadro (N4 = 6,022 x 10%® moléculas/kmol), hay n = 2,5 x 102> moléculas
de O, por metro cibico. La distancia media entre moléculas de Oz es, pues,
n~/3 ~ 41 x 107 m, que es unas diez veces la distancia d,. Es decir, las
moléculas de un gas tipico estdan lo suficientemente separadas como para que
se puedan juntar mdas por accién de fuerzas externas, sin llegar a la barre-
ra que supone la repulsién electrostdtica cuando la distancia intermolecular
es menor que d,. En los liquidos, la distancia intermolecular tipica es mucho
menor, del orden de d, (en el caso del agua a temperatura ambiente, la den-
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sidad es 103kg/m3 y como su masa molecular es 18, la distancia media es de
n~1/3 ~ 3,1 x 107'9 m), con lo que habria que someter al liquido a presiones
gigantescas para vencer la repulsién electrostatica (jque varia como d~!!!) y
asi comprimirlo; de aqui la aparente incompresibilidad de los liquidos. Cuan-
do un liquido se enfria por debajo de su punto de fusién solidificindose, la
densidad generalmente varia muy poco (por lo general la densidad aumenta
ligeramente, salvo casos excepcionales como el agua); es, pues, sorprendente
que un ligero cambio en la densidad cambie tan drasticamente las propiedades
mecdnicas de la sustancia. Basicamente, las moléculas en un liquido y en un
s6lido estdn aproximadamente a la misma distancia (alrededor de d,), estri-
bando la diferencia en que las moléculas de un sélido estan ancladas en torno
a unas posiciones de equilibrio en una cierta estructura (cristalina o no), per-
diendo la movilidad que disfrutaban en el estado liquido. En ambos casos las
moléculas estan tan cerca unas de otras que solo la accién de fuerzas de com-
presibilidad extremadamente grandes pueden variar la densidad; sin embargo,
la movilidad de las moléculas en el liquido hace que la aplicacion de esfuerzos
tangenciales provoque una deformacién continua, que no se produce en el séli-
do. Al calentar un liquido por encima de su punto de ebullicién, las moléculas
se separan unas de otras (adquiriendo una energia cinética que como veremos
es proporcional a la temperatura) de forma que en el nuevo estado (gas) la
sustancia es facilmente compresible, asi como deformable.

2.2. La hipoétesis de medio continuo

Desde un punto de vista molecular, el estudio de los fluidos es extrema-
damente complejo debido al gigantesco nimero de moléculas: en 1mm3 de un
gas en condiciones normales existen alrededor de 10'® moléculas, mientras que
en el mismo volimen de un liquido tipico hay del orden de 102°. El estudiar
las interacciones de cada una de las moléculas con el resto no sélo seria un
esfuerzo practicamente imposible, sino también valdio, ya que seria muy dificil
extraer informacién macroscépica util a partir de la informacién molecular.
Por ello, en la Mecéanica de Fluidos se utiliza la hipdtesis de medio continuo,
de forma similar a la Teoria de la Elasticidad en la mecanica de sélidos. Bajo
esta hipdtesis, el fluido se considera como un campo continuo en el que cada
punto representa un volumen 6V de fluido (llamado punto material o particula
fluida) lo suficientemente pequefio como para que pueda ser tratado como un
diferencial matematico, y lo suficientemente grande como para que contenga
un gran nimero de moléculas y el caracter discreto (molecular) de la materia
no se manifieste en él. Asi, por ejemplo, el volumen 6V deberd ser lo suficien-
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Escala molecular ! Particula flulda Tamaiio macroscopico

L an I ! » I
n (6 V) L Ind

Figura 2.2: Variacién de una propiedad tipica (masa de moleculas por unidad de volumen o
densidad) en funcién de la distancia sobre la cual se promedia.

temente grande como para que la masa de las moléculas contenidas en él, M,
no fluctie de una manera caética debido al caracter molecular del fluido, y lo
suficientemente pequefio como para que esta masa d M no varie sensiblemente
al pasar de un punto 6V (&) a otro vecino 6V (& + 6%). Obviamente, la hipétesis
de medio continuo limita el rango de validez de la Mecanica de Fluidos a sis-
temas fluidos cuyas condiciones sean tales que exista ese intervalo intermedio
de tamainos 0V, grande para que contenga un gran nimero de moléculas y
se pueda hablar de valores medios, y pequefio para que (6V)/3 sea pequeiio
comparado con la longitud caracteristica L de variacién de esos valores medios
y se puedan considerar como variables continuas; es decir, n~1/3 « L, donde
n es la densidad numérica o nimero de moléculas por unidad de volumen, de
forma que exista un 8V tal que n~1/3 <« (8V)1/3 « L (ver figura 2.2). Afor-
tunadamente, la restriccién n™1/3 « L se cumplen practicamente en todos los
fluidos en las condiciones que generalmente se dan en la naturaleza y en la
industria (vimos antes que n~/3, es decir, la distancia media entre moléculas,
era del orden de 4 x 107% mm para los gases tipicos, y del orden de 3 x 10~7
mm para los liquidos tipicos, por lo que tendrian que existir condiciones muy
extremas en las cuales las propiedades macroscdpicas variasen en distancias
extremadamente pequenas para que la hipdtesis de medio continuo no fuese
valida). No obstante, existen situaciones, como por ejemplo el gas intereste-
lar, en que las moléculas estan tan separadas unas de otras que la hipdtesis
de medio continuo falla y hay que estudiar el gas como si fuese un conjunto
discreto de particulas (que, por otra parte, rara vez interaccionan unas con
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otras). Veremos mas adelante (leccién 8) que la Mecédnica de Fluidos hace
uso de otra hipétesis (la hipétesis de equilibrio termodindmico local) que es
mas restrictiva que la hipétesis de medio continuo, aunque también se suele
satisfacer en la mayoria de las situaciones practicas.

En la mecénica de medios continuos, en vez de hablar de la posicién Z;(t)
y de la velocidad v;(t) de cada molécula, se habla de magnitudes medias en
cada punto Z (particula fluida de volumen 8V centrada en &) en cada instante
t. Asi, se define la densidad,

N
— lim =L 22
p(3,t) = lim =9— (22)

donde dN(Z,t) es el nimero de moléculas en el elemento de volumen §V si-
tuado en el punto & en el instante ¢, m; es la masa de la molécula i y el limite
6V — 0 se toma en el sentido descrito anteriormente, es decir, (6V)1/ S« L,
pero (8V)1/3 > n=1/3, La velocidad media del fluido ¥ en el punto Z en el
instante t se define como

- . N T )
= = 2.3
(8) = Jim =507 02

<y

donde M = ng 1 mi. Por ultimo, la energia interna por unidad de masa, e,
se define

2 v2
v XN miv}/2
— = li ; 24
R S ) VA (24)
donde v = [#] siendo v?/2 la energia cinética macroscépica por unidad de

masa. Observese que no toda la energia cinética de las moléculas se traduce
en una energia cinética media o macroscépica del fluido, sino que parte de ella
queda oculta en forma de energia interna (ver leccién 9). Si las moléculas del
fluido tuviesen grados de libertad internos, la energia asociada a ellos deberia
anadirse en el segundo miembro de (2.4), contribuyendo asi a la energia interna
macroscopica.

Con el uso de magnitudes medias que varian con la posicién y el tiempo
(campos), las ecuaciones que gobiernan el movimiento y el estado de un fluido
no seran, como veremos, ecuaciones diferenciales ordinarias como ocurre en la
mecanica de particulas, sino ecuaciones en derivadas parciales similares a las
que se encuentran en otras teorias de campo como, por ejemplo, las ecuaciones
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de Maxwell en Electromagnetismo, o las ecuaciones de la Elasticidad.
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CINEMATICA






Capitulo 3

Descripcion del campo fluido

3.1. Descripcion Lagrangiana y Euleriana

Esta leccién y la siguiente estan dedicadas a definir una serie de conceptos
y enunciar algunos teoremas necesarios para la descripciéon del movimiento, o
cinemadtica, de los fluidos.

Hay dos formas de describir el movimiento de un fluido. La primera, llama-
da descripcién Lagrangiana (o de Lagrange), se basa en seguir la evolucién
de cada particula fluida individual a lo largo del tiempo. Asi, dada una particu-
la fluida que en un cierto instante to (= 0) estaba en un punto o, se define
la trayectoria como la posicion de esa particula fluida en instantes posteriores
t > to:

7 = (%o, t) . (3.1)

La velocidad y aceleracion de esa particula fluida en cualquier instante t se
definen mediante

oz o 0%z
=% a(Zo,t) = vy

El movimiento del fluido queda especificado si se conocen todas las trayec-
torias, es decir, &(Zo, t) para todo Zo. Como se ve, la descripcién Lagrangiana
utiliza conceptos propios de la mecanica de particulas para describrir un medio
continuo, por lo que no es aconsejable en la mayoria de las situaciones debido
a la complejidad de las ecuaciones a que da lugar.

La otra descripcién, mas acorde con una teoria de medios continuos, es
decir, una teoria de campos, es la descripcién Euleriana (o de Euler), en
la cual la magnitud fundamental es el campo vectorial de la velocidad local

(3.2)
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del fluido (&, t). Esta descripcién de Euler es la que normalmente se utiliza
en la Mecanica de Fluidos y es la que se utilizard a lo largo del curso. A
partir del campo de velocidades definiremos a continuacién algunos conceptos
cinemadticos como aceleracion, trayectorias, etc.

3.2. Trayectorias

Una trayectoria es la linea descrita por una particula fluida en su mo-
vimiento. Matematicamente, en funcién del campo de velocidades ¥/(Z,t), se
define

s
Z =@, o) =3 , (33)

que proporciona la trayectoria

T = Z(t; Lo, t0) . (3.4)

Eliminando el tiempo ¢ en la expresién anterior, se obtiene una curva fija en el
espacio que se suele denominar senda de la particula fluida que inicialmente
(t = to) estaba en Ty (normalmente se toma ¢ty = 0 ya que no anade nada a la
definicién anterior).

Las particulas fluidas que inicialmente estaban en una cierta linea Zo(\),
donde A es un parametro, seguiran formando una linea en un instante cualquie-
ra t [si el campo U(Z,t) es continuo] que se denomina linea fluida. De forma
andloga, las particulas que inicialmente estaban en una superficie Z(a, 3), for-
maran una superficie fluida. Para obtener matematicamente la ecuacion de
esta superficie en el tiempo no hay més que eliminar los pardmetros a y /3
en la ecuacién ¥ = E[t; Tp(a, 8)]. Si la superficie inicial es cerrada, la super-
ficie fluida permanecera cerrada, y el volumen contenido en ella se denomina
volumen fluido.

3.3. Lineas de corriente

La linea de corriente que pasa por un determinado punto £y en un instante
t se define como la linea que en ese instante es paralela a ¥(Z,t) en todos sus
puntos. Es decir,

Q.l IS
> 8
I
=
R
-
N—

. FA=0)=7F . (3.5)
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El pardmetro A en & = Z(\; Zo,t) define la linea de corriente deseada. Ob-
viamente, si el movimiento es estacionario, ¥ = ¢(Z), la linea de corriente que
pasa por un punto Iy coincide con la senda de todas las particulas fluidas que
pasan por ese punto. Si el movimiento es no estacionario, diferentes particulas
fluidas que en tiempos distintos pasan por Zy describen distintas trayectorias;
como 7 varia, en general, en todos los puntos con el tiempo, ninguna de las
sendas tiene por qué coincidir con la linea de corriente que pasa por ese punto
(que por supuesto, también depende del tiempo).

Otra forma de describir matematicamente las lineas de corriente es [en
coordenadas cartesianas (z1, T2, Z3)]:

dry  dzp  dxg (3.6)
1)1(.7—,",t) N ’Ug(f, t) h -v;;(i‘.',t) ' '

en la cual no aparece el parametro A. Estas dos ecuaciones diferenciales pro-
porcionan dos superficies cuya interseccién es la linea de corriente.

Una superficie de corriente es aquella formada por las lineas de corriente
que se apoyan en una cierta curva Zo(<y). Si la curva Zy(~y) es cerrada, tenemos
lo que se llama un tubo de corriente, el cual no puede ser atravesado por el
fluido (ya que ello implicaria que un mismo punto tiene al menos dos veloci-
dades distintas). Las lineas de corriente no pueden intersectar unas con otras,
salvo en los puntos donde la velocidad es nula. Por ello la localizacién de los
puntos de velocidad cero, llamados puntos de remanso, ¢s tan importante
para describrir el movimiento de un fluido.

3.4. Traza

Es la linea formada por todas las particulas fluidas que en un instante
cualquiera pasaron por un punto Zo. Matematicamente:

=3(Zt) , Ft=1)=dp : (3.7)

eliminando 7 en ¥ = £(7;Z,t) se obtiene la traza que pasa por Zp, que, ob-
viamente, depende del tiempo. Si el movimiento es estacionario, senda, linea
de corriente y traza por un punto dado coinciden. Fisicamente la traza por
un cierto punto se puede visualizar inyectando tinta u otro colorante en dicho
punto: las distintas particulas fluidas que van pasando por ese punto se im-
pregnan de tinta y van describiendo una linea (que en general dependerd del
tiempo) que es la traza.
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3.5. Derivada sustancial. Aceleracion

Una magnitud fluida en un punto Z fijo en el espacio (en un sistema de
referencia dado) varia con el tiempo no sélo porque el movimiento del flui-
do sea no estacionario, ¥ = ¥(Z,t), sino también porque distintas particulas
fluidas pasan por el punto & en diferentes tiempos. Por ello, cuando se desea
calcular la variacién con respecto al tiempo de una magnitud fluida (escrita
segun la descripcién Euleriana) en un punto £ y en un instante ¢, pero para
un observador que se mueve con el fluido (observador Lagrangiano), lo que
obtenemos no es simplemente 9/t, sino algo méas complejo que se denomina
derivada sustancial. Este es el precio que hay que pagar por utilizar la descrip-
cién Euleriana y hacer uso de ecuaciones de conservacion (de masa, cantidad
de movimiento y energia; ver lecciones 6-8) que, como veremos, se cumplen
siguiendo las particulas fluidas.

Sea ¢(Z, t) una magnitud fluida cualquiera (por ejemplo, la densidad, la
temperatura, etc.). La variacién de ¢ para un observador que se mueve con
una, particula fluida es

04

8¢ = ¢(& + 0%t + 6t) — ¢(T,t) = 6F - Vo + -5t + O(|67)%,6t%) . (3.8)
Cuando 6t — 0, se tiene
dp 0p OF
Et——'a—t+5t Vo . (3.9)
Asi, pues, la derivada sustancial, también llamada material, de ¢, se define:
D¢ _ 0¢ . , D o

El primer término representa la derivada local y tiene en cuenta la no esta-
cionariedad del campo fluido; el segundo término es la derivada convectiva y
representa la variacion de ¢ debido al movimiento del fluido en el entorno del
punto considerado.

Una derivada convectiva que se utilizarda muy a menudo es la de la veloci-
dad, la cual representa la aceleracidn siguiendo la particula fluida (es decir la
aceleracion en la descripcién Euleriana pero para un observador Lagrangiano):

Dv _ 0v
Dt~ ot
El primer término es la aceleracién local y el segundo la aceleracién convectiva,
que también se puede escribir como (7-V)7 = V(v?/2)—A(VAD) [ver ecuacién

-
a

+(7- V)7 . (3.11)
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(1.42)]. Obervese que, en general, (7 V) # ¢ - (V) [ver ecuacién (1.15)]; en
coordenadas cartesianas esos dos vectores si son iguales.

3.6. Circulacion. Vorticidad. Flujos irrotacionales y
solenoidales

La circulacién a lo largo de una linea L se define

I‘s/f;‘-df . (3.12)
L

Si la curva L es cerrada, el teorema de Stokes nos dice que la circulacién es
igual al flujo de V A ¥ sobre cualquier superficie S que se apoye en L:

r:fﬁ-dlé/dsﬂ(vw) . (3.13)
L S

El vector

G=VAT (3.14)

se denomina vorticidad. Como se vera en la préxima leccién, & es una medida
de la rotacién local del flujo. Un flujo se denomina irrotacional ( més estric-
tamente, un campo de velocidad v es irrotacional) si & es cero. Claramente,
si un flujo deriva de un potencial, es decir, si existe una funcién escalar ¢ tal
que

7=V, (3.15)

el flujo es irrotacional ya que V A V¢ = 0 para cualquier funcién escalar ¢.
La funcién ¢ en (3.15) se suele denominar potencial de velocidades, y un
flujo definido de acuerdo con esa ecuacién se denomina potencial. El inverso
también es cierto: si un flujo es irrotacional, es también potencial. Esto sigue
directamente del teorema de Stokes: si V A ¥ = 0 en todo el campo fluido,

fﬁ-dt‘:O (3.16)
L

para cualquier curva cerrada L; esto implica que la integral de ¢ entre dos
puntos cualesquiera del espacio no depende del camino que elijamos para llegar
de un punto a otro, por lo que podemos definir la funcién

P -
#(Z) = /0 i di (3.17)
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donde P es un punto genérico de vector posicién &, siendo la integral indepen-
diente del camino elegido para llegar desde el origen de coordenadas al punto
P. Por otra parte,

P, . P, o P, -
aﬁy¢@g=4 ﬁd—A am:/ g.dl . (3.18)

P

En particular, si elegimos un elemento diferencial a lo largo del eje z,

T+dzx
d(x+dzx,y,2)—d(zx,y, 2) :/ vz(§,y, 2)d§ = dz vz (z+6dz,y, 2), (3.19)

T
siendo 0 € § < 1. En el limite dz — 0,

@ =v(x,y,2) . (3.20)
or

Analogamente se demostraria para los componentes y, z. Observese que el
potencial ¢ queda fijado salvo una constante aditiva, que es irrelevante para
el campo de velocidad.

En definitiva tenemos que un flujo irrotacional se puede caracterizar por
cualquiera de las tres propiedades equivalentes siguientes: (a) V A7 = 0;
(b) ¢ v- dl = 0 para cualquier curva cerrada L, y (¢) # = V¢. Téngase
en cuenta que la equivalencia entre (a) y (b) estd sujeta a las premisas del
teorema de Stokes. Asi, en el supuesto de que el campo ¥ sea continuo y con
derivadas continuas, (b) siempre implica (a), pero para que (a) implique (b) la
curva cerrada L tiene que ser simplemente conexa. Mas adelante veremos un
importante teorema relacionado con los movimientos irrotacionales (Teorema
de la Circulacién de Kelvin, leccién 20) que dice, a gresso modo, que si un
flujo ideal (no viscoso) es inicialmente irrotacional, permanece indefinidamente
irrotacional.

Otro tipo de flujos son los llamados solenoidales (estrictamente, campo
de velocidad @ solenoidal), que verifican:

V.g=0 . (3.21)

Si 7' se puede escribir como

T=VAY , (3.22)

donde ¥ es un campo vectorial (que se suele denominar potencial vector),

estd claro que v es solenoidal, de acuerdo con la identidad V - (V A ¢) =
0. Andlogamente a los flujos irrotacionales, el inverso también es cierto: si
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V - ¥ = 0, existe un vector 117 tal que v = V A 1,[7, cumpliéndose, ademas, que
¥ es también solenoidal, V - ) = 0 (la demostracién no se dard aqui para
no desviar mas la atencién sobre aspectos puramente matematicos; el alumno
interesado puede consultar, por ejemplo, Aris, 1989, seccién 3.43).

Por el Teorema de Gauss, un movimiento solenoidal también verifica que
el flujo a través de cualquier superficie cerrada es nulo,

/a-ds?:/ V.5dV =0 . (3.23)
S |

Asi, tenemos las tres siguientes propiedades para caracterizar un campo de
velocidades solenoidal: (a) V-7 = 0; (b) 7 = VAY, V-9 =0,y (c) Jg7-d5 =0,
para cualquier superficie cerrada S.

El potencial vector (en contraste con el potencial de velocidades) no se
suele emplear en la Mecédnica de Fluidos, y ello a pesar de que los liquidos (en
el supuesto ideal de que se considere su densidad constante) verifican V-# = 0
(ver leccidnes 6 y 10). Sélo en los flujos solenoidales bidimensionales se utiliza el
potencial vector, que en ese caso toma la forma z/; = ymn, donde 71 es el vector
unitario normal a la superficie del movimiento y ¥ es la llamada funcién
de corriente (leccién 6). Si ocurre, ademas, que el flujo bidimensional del
liquido es ideal, se tiene un flujo solenoidal e irrotacional, y la descripciéon del
movimiento toma una forma muy simple en términos del denominado potencial
complejo, definido como f = 1) + i@, donde ¥ es la funcién de corriente y ¢ el
potencial de velocidades (capitulo 21).

Para terminar esta seccién conviene recordar que todo campo vectorial v
se puede descomponer en la forma (representacién de Helmholtz):

T=Vé¢+VAY , V-p=0, (3.24)

es decir, una parte irrotacional y otra solenoidal (para su demostracién ver,
por ejemplo, Sommerfeld, 1950, seccién 20). Sin embargo, esta representacion,
tan usada en Electromagnetismo, es poco comin en la Mecénica de Fluidos.

Referencias.
= R. ARIS, 1989. Capitulo 3.
G.K. BATCHELOR, 1967. Capitulo 2.
S.M. RICHARDSON, 1989. Capitulo 2.
A. SOMMERFELD, 1950. Capitulos 1 y 4.






Capitulo 4

Analisis del movimiento en el
entorno de un punto

4.1. Significado del tensor gradiente de velocidades
A3

Se apunté en el capitulo 2 que los fluidos no presentan resistencia a la
deformacion (como ocurre en los sélidos eldsticos), sino a la velocidad de de-
formacién. Es por ello esencial describir con precisién la velocidad de un punto
en relacion con la velocidad de un punto cercano. En esta descripcién juega un
papel primordial el tensor gradiente de velocidad, V¥, que pasamos a analizar.

Sea ¥y U+ 69 las velocidades en dos puntos cercanos uno de otro, Py Q,
con vectores de posicién £ y T + dZ. La diferencia de velocidades entre los dos
puntos es:

67 = 6% - Vi + O(|6%)?), (4.1)
donde V7 esté evaluado en el punto P(Z). Si 6% = 4lé;, donde € es el vector
unitario en la direccién PQ, en el limite 6] — 0 se tiene

T _g.Vi (4.2)

de donde el cambio de ¥ por unidad de longitud en P en la direccién de P_Q es
la proyeccién del tensor V4 en la direccién PQ. En particular, 8v/0z, 0v/dy,
0v/0z son los cambios de ¥ por unidad de longitud en el punto Z en las di-
recciones coordenadas (cartesianas) €, €y, y €, respectivamente. Como, en
coordenadas cartesianas, V@ = 0v;/Jt;€;€;, conocido el gradiente de veloci-
dades en tres direcciones mutuamente perpendiculares, es decir, conocido el
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v+dv
oV

Figura 4.1: Movimiento en el entorno de un punto.

tensor Vv, la variacién de la velocidad por unidad de longitud en cualquier
direccién €; viene dada por la proyeccién de Vi en esa direccidn.

4.2. Movimiento relativo de un elemento de volu-
men de forma arbitraria

Sea P un punto (particula fluida) con vector posicién Z en el interior de un
cierto volumen 4§V pequeno y ) un punto cercano, también dentro de 6V, de
coordenadas ¥ + 4Z; por simplicidad escribiremos 7 = %, siendo |r] pequerio.
Si la velocidad de P en el instante ¢ es ¥, la del punto @ serd ¥ + 6v, donde

67 =7 Vi + O(|?) (4.3)

es la velocidad relativa de ) respecto a P en el instante ¢. Por consiguiente,
si 8V es pequeno, es suficiente con evaluar V¥ para conocer, con errores del
orden de (6V)?/3 (es decir, del orden de r2), la velocidad relativa de cualquier
punto del volumen JV en relacién a la velocidad de P. La expresién anterior
se suele escribir en la forma

(2}
S
I
=
Faatll
+
R
=2

(4.4)
donde
E=5(Vo-(V0)] F=1Vi+ (VD] (4.5)

son las partes antisimétricas y simétricas del tensor V#, respectivamente [(V#)T
denota el tensor transpuesto de V#]. De hecho la descomposicién anterior es
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dS

Figura 4.2: Cambio unitario de volumen.

equivalente a la representaciéon de Helmholtz de ¢ [ecuacién (3.24)):

Vi=V(VAY+Ve) , (4.6)

siendo el primer término un tensor antisimétrico (de traza nula, V- VAY = 0)
y €l segundo un tensor simétrico. Sin embargo, el usar ¢ y 1[_; en vez de ¥ no
introduce ninguna ventaja.

El tensor antisimétrico £ tiene, por supuesto, traza nula (&; = 0) y verifica

§ij = —&ji. El término 7 - € se puede escribir como
= 1o 1o 11,
r-§=§r-[Vv—(Vv) ]=§[(T-V)v—(Vv)-F]=E(VAU)/\T———Ew/\r, (4.7)

donde & es la vorticidad. Por tanto, 7 - € representa una rotacién de P_Q
alrededor de P con velocidad angular &/2 = (V A%)/2. Como el punto @ se ha
elegido arbitrariamente en §V/, el primer término de (4.4), 7- €, representa una
rotacién como sélido rigido del volumen 6V alrededor de P con velocidad
angular /2.

Examinemos ahora el significado del segundo término de (4.4), 7 5. En
primer lugar vamos a demostrar que la traza de V@, que coincide con la traza
de ¥ al ser nula la traza de ¢ [traza(V¥) = traza () = V - 9], representa un
cambio unitario de volumen. En efecto, el cambio unitario de 6V debido al
momento del fluido se puede escribir como

1doV 1 SV 8V

5V dt oV a0 ot (4.8)
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donde 8V’ es el volumen en que se transforma 8V después de un tiempo &t.
Ahora bien,

SV — 8V = /6 RGO (4.9)

donde v +dves la velocidad de los puntos (particulas fluidas) que se encuentran
en la superficie 4S que engloba a §V. Como 7 es la velocidad del punto P(Z),
constante pues sobre 4.5, el primer término de la integral es cero al ser 45
una superficie cerrada. Por otra parte, sustituyendo 64 = 7 - V4, donde Vv
estd evaluado en Z (y por tanto constante en la integral), y aplicando el teorema
de Gauss, se tiene

SV — 8V = /‘S VA, [ V@6t (4.10)

donde la primera divergencia es con respecto a la variable 7, cuyo origen es
el punto P, estando extendida la integral a todos los puntos 7 de §V. Como
V., [F- Vo] =1: V&= V-4, donde T es el tensor unidad, y como V - 7 es
constante en 8V, se llega a

SV =8V =6VEtV - T, (4.11)
de donde
1 déV
e =V .3 4.
5V dt v 22

Asi, pues, la traza de § (y por tanto de V7, o lo que es lo mismo, la divergencia
del vector velocidad) representa la velocidad de cambio de volumen por
unidad de volumen en el entorno del punto & cuya velocidad es ¥ en un
instante dado. Por esta razén se suele descomponer el tensor 5 en dos, uno
con traza nula y otro diagonal:

%;‘7"+$”sﬁ—%(v-aﬁué(v-ﬁ)f . (4.13)
La componente de 8% proveniente de ¥, es decir, 75 ' = (V-7 )7/ 3, representa
un alargamiento (o contraccién) del segmento 7 = PQ a un ritmo (V-7)/3 por
unidad de longitud, que se traduce en una velocidad de dilatacién volumétrica
unitaria V - ¥, como acabamos de ver. Por ultimo, el significado de la parte sin
traza y simétrica del tensor de velocidades, 7, es mas facil visualizarlo en un
sistema de coordenadas en el que este tensor tenga la forma



CAPITULO 4. ANALISIS DEL MOVIMIENTO EN EL ENTORNO DE UN PUNTO 51

=0

(4.14)

Il
-~ 8 o
o o9
oo o

donde a,b y ¢ son constantes. Observese que el hecho de que 7/ no tenga
traza no significa que los elementos de su diagonal sean nulos, sino que la
suma es cero (recuérdese que la traza de un tensor permanece invariable al
cambiar de sistema de coordenadas). Por otra parte, siempre existe un sistema
coordenado en el que ¥ tiene la forma (4.14). (Para demostrarlo basta tomar
los ejes principales de 5 y comprobar que en estos ejes la ecuacién 75 -7 = 0
proporciona un cono sobre el que es posible construir tres vectores ortogonales
al ser la traza de 5 nula.) Si tomamos un cubo unitario en este nuevo sistema
coordenado con uno de sus vértices en el origen, es decir, un cubo definido por
lo tres vectores coordenados (€7, €2, €3), al cabo de un diferencial de tiempo 4t
este cubo se transforma, por accién del movimiento del fluido asociado a ¥, en
un paralelepipedo definido por (€} - 7 6t, & - 5 6t, €3 -5 6t), que tiene el mismo
volumen inicial al ser la traza de 5 nula. Asi, 74’ produce una distorsién de
8V sin cambiar su volumen. Por ello, 5 se denomina tensor de velocidades
de deformacion.

Resumiendo, el movimiento de un volumen fluido (de forma arbitraria) que
contiene una particula fluida P se puede considerar como la superposicién de
un movimiento de traslacién con P (a velocidad ¥), una rotacién como sélido
rigido alrededor de P con una velocidad angular igual a la mitad de la vortici-
dad & evaluada en P, una expansién uniforme en todas las direcciones a partir
de P con una velocidad media igual a (V - ¥)/3 (evaluada en P), y una distor-
sién que se puede describir como un movimiento puramente de cortadura en
tres direcciones mutuamente perpendiculares. Expresado en forma matemati-
ca, los puntos T + 7 del volumen §V tienen las siguientes cuatro velocidades
superpuestas:

Sy
~li

1
F+7VT = T+ (V/\U)/\F+%(V~6)F+[§(VU+V17T)— V.7, (4.15)

[ A
W~

donde v esta evaluado en el punto .
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4.3. Ejemplo: Deformacion de una superficie esféri-
ca

Para ilustrar lo anterior consideramos el caso en que 6V es el volumen
contenido en una pequeiia esfera de radio € centrada en Z. Inicialmente los
puntos de la superficie esféricas estan definidos, en relacién a su centro, por
7 = eit, donde 71 es la normal a la esfera. Después de un tiempo 4t la esfera se
transforma en una superficie que viene dada, en relacién al punto Z + 96t (es
decir, no tenemos en cuenta el movimiento puramente translacional) por:

7= €l + et - VGOt = it + €l - 56 (4.16)

donde, obviamente, el movimiento rotacional dado por el tensor £ no contri-
buye. Con errores del orden t2, la expresién anterior se puede escribir como

Fen+5: 7ot (4.17)
multiplicando escalarmente por 7,
r2—F.§ . Fot=eii-F=€e+7 -5 7ot + 0(6t%) (4.18)
es decir,
r? — 27 . 5 . 76t = €2 4+ O(6t?) . (4.19)

Luego, si §t es pequenio, la superficie esférica se transforma en un elipsoide
cuyos ejes son, como veremos a continuacién, los autovectores o direcciones
principales del tensor 7. En efecto, en coordenadas cartesianas, el elipsoide
tiene por ecuacion

:1,‘,‘171'.4,']' = 62 , (420)

donde A;; = Aj; = d;; — 2;;6t, siendo 4;; la delta de Kronecker. Los ejes del
elipsoide se pueden obtener imponiendo que el vector normal en un punto de
la superficie, es decir,

0
a—xkAij."Ei.’Ej = Aijxjoik + Aija:,-éjk = 2Akjz; (4.21)

sea paralelo al vector posicién de ese punto:

Az = (0k; — 2kj0t)x5 = M) = Adpjz;
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[(1 — A)ékj - Z’ij(st]ﬂ)j == O ,

[—- —I] F=0, (4.22)

que es la ecuacién de los autovectores de 7. Para hallar el volumen del elipsoide
tomamos los ejes principales, €1, €3, €3, dados por la solucién unitaria de (4.22).
En estos ejes 5 es diagonal con elementos ki, k2, k3, que son los autovalores
de ¥, los cuales son reales al ser ¥ simétrico. Los tres ejes del elipsoide, @;,
t = 1,2,3, vienen dados por

@; = €€; + €&; - 70t + O(6t?) ~ e€;(1 + kidt) , i=1,2,3 . (4.23)

Por tanto, el volumen del elipsoide es:

4 4
V' = §7ra1a2a3 = §7re3(1 + klét)(l + kz&t)(l + k3(5t)
4 3 4 3 2
= gme + 37 (ky + ko + k3)dt + O(6t°). (4.24)

Como la traza de un tensor no varia al cambiar de coordenadas, k; + ko + k3 =
V - #; llamando V = 4me3/3 al volumen de la esfera inicial, se tiene

1Vi-Vv .
como ya demostramos de forma general.

Referencias.
= G.K. BATCHELOR, 1967. Capitulo 2.
= S.M. RICHARDSON, 1989. Capitulo 2.






Capitulo 5

Transporte convectivo

5.1. Flujo convectivo a través de una superficie

Sea S una superficie y ¢ una magnitud fluida por unidad de volumen (es
decir, una densidad, tal como la densidad masica, p, la densidad de cantidad de
movimiento p7, etc.). Para evaluar la cantidad de la magnitud ¢ que atraviesa
S debido al movimiento del fluido, sabemos que en un tiempo ¢ alcanzan el
elemento de superficie §sii de S todas las particulas fluidas contenidas en el
volumen @74t §s (ver figura 5.1), estando la velocidad del fluido 7 evaluada en
ds (primera aproximacién cuando §t — 0). Por tanto, por unidad de tiempo, la
cantidad de la magnitud ¢ que atraviesa la superficie ds debido a la velocidad
del fluido (flujo convectivo) es ¢7-7 §s. A través de toda la superficie S el flujo
convectivo total de ¢ es:

/S¢z7~fidss/s¢z7-d.§‘ . (5.1)

Si ¢ es un escalar (por ejemplo, la densidad madsica p), la densidad ¢ se suele
denominar vector de flujo de ¢ (p¥ seria el flujo mésico). Si ¢ es un vector
(por ejemplo, la densidad de cantidad de movimiento p¥), ¢v es un tensor de
flujo (pU7 es el tensor flujo de cantidad de movimiento).

Cuando la superficie S es cerrada y ¢v es continua, podemos aplicar el
teorema de Gauss y obtener

_L¢ﬁ.d§=/‘/v.(¢a)dv : (5.2)

Asi, V - (¢¥) representa el flujo convectivo de la cantidad ¢ por unidad de
volumen. En particular, ya vimos que V - ¥ es la velocidad de dilatacion cubi-
ca unitaria, es decir, el flujo convectivo de volumen por unidad de volumen.



56 MECANICA DE FLUIDOS

Figura 5.1: Flujo convectivo a través de una superficie.

Analogamente, V - pi' seria el flujo convectivo de masa por unidad de volumen,
V - pt7 el flujo convectivo de cantidad de movimiento por unidad de volumen,
etc.

5.2. Teorema de Transporte de Reynolds

Veremos en las lecciones siguientes (lecciones 6-8) que las ecuaciones de
la Mecénica de Fluidos provienen de aplicar los principios de conservacién de
la masa, cantidad de movimiento y energia a volimenes fluidos. Como estos
volimenes se mueven con el fluido, es conveniente expresar de forma adecuada
la variacién de las magnitudes fluidas en el interior de un volumen fluido a
lo largo de su movimiento. Esto es lo que nos proporciona el Teorema de
Transporte de Reynolds, que se puede considerar como una extension a tres
dimensiones de la férmula de Leibnitz (1.70).

Sea Vf(t) un volumen fluido, y ¢ una magnitud por unidad de volumen
como las consideradas en la seccién anterior. La cantidad total de ¢ en V varia
en el tiempo por dos razones: porque varia ¢ dentro de V; si el movimiento
no es estacionario, y porque puede haber flujo convectivo de ¢ a través de la
superficie fluida Sy(t) que encierra al volumen fluido. Matematicamente, se
tiene:
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Vf(t+8t)

Figura 5.2: Teorema de Transporte de Reynolds.

i/ #dV = lim (P11 + Prin)ersr — (1 + Prr)e
dt Jvs(t) 5t—0 ot

_ i (81 Prn)erst — (P + Qi1)e 4+ lfm (@r11)evot — (Pr)esot ’
6t—0 ot 6t—0 ot
donde ® representa la cantidad total de ¢ (® = [#dV) en alguno de los
volimenes I, I1 6 I11 (ver figura 5.2). El primer término de la iltima expresién
es la variaciéon de ¢ en V; suponiendo que V; estd anclado en el tiempo ¢,
mientras que el segundo término se puede expresar como el flujo de ¢ a través
de S¢ en el instante t; es decir,

(5.3)

d 0¢ 1 Lo .
7 [/;(t) ¢dV = 0 s—dV + SltanO 5 [ ¢U - idsdt + A ¢ - ndsét]
9 4v + o7 - fids (5.4)
v, Ot Sg

donde 51 + 5, = Sy. Este es el Teorema de Transporte de Reynolds aplicado a
un volumen fluido, y nos dice que la velocidad de variacién de ¢ en un volumen
fluido V(t) es igual a la velocidad de variacién de ¢ dentro de V; evaluado en
el instante t, mas el flujo convectivo de ¢ a través de la superficie Sy, evaluado
también en el tiempo t.
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Este teorema es también muy 1til cuando se aplica a volimenes que no son
volimenes fluidos. Si V,(t) es un volumen de control arbitrario cuya super-
ficie S.(t) se mueve con una velocidad v,(Z,t), que no tiene por qué coincidir
con la del fluido (muchas veces nos interesa que ¥, sea nula, es decir, utilizar un
volumen de control fijo en el espacio), aplicando el teorema anterior tenemos:

dt/ pdV = / dV+/ o, - ids (5.5)

ya que en la deduccién anterior lo que cuenta es la velocidad de la superficie,
coincida o no con la del fluido. Si en el instante ¢ el volumen de control coincide
con un cierto volumen fluido, V,(t) = V;(t) [por supuesto, V¢(t + dt) no tiene
por qué coincidir con Vy(t + dt)], se tiene:

i $dV = / dV+/ ¢ﬁ-ﬁds=i/ ¢dV+/ T — T.) - Aids .
S. dt Jv,(¢) Se

dt

(5.6)
Esta tltima forma del teorema nos permitird aplicar las leyes de conservacién
[tomando ¢ igual a p, pv 0 p(e + v?/2)] a voliimenes de control arbitrarios,
ya que expresa las variaciones de ¢ en volimenes fluidos que en cada instan-
te coincide con el volumen de control elegido. Asi, podremos utilizar formas
integrales de las ecuaciones de conservacién aplicadas a volimenes arbi-
trarios. Si U, = ¥, se recupera, por supuesto, la ecuacién (5.4). Por otra parte,
si el volumen de control es fijo, U, = 0, se tiene

d d
— dV = — av U-nds . 5.7
3l dt/vc¢ +/sc¢” fids (5.7)



Parte 111

ECUACIONES GENERALES
DE LOS FLUIDOS






Capitulo 6

Ecuacion de continuidad

En esta leccion y en las dos siguientes se aplicaran los principios genera-
les de conservacion de masa, cantidad de movimiento y energia a un volumen
fluido para obtener las ecuaciones que gobiernan el movimiento de los flui-
dos. La aplicacién del Teorema de Transporte de Reynolds nos permitira, por
una parte, obtener ecuaciones en forma integral validas en cualquier volumen
de control, las cuales seran muy utiles cuando se desee informacién global de
un determinado proceso; por otra parte, dicho teorema junto con el Teorema
de Gauss nos proporcionard formas diferenciales de las ecuaciones, que son
necesarias para el conocimiento detallado de los campos de densidades, veloci-
dades, temperaturas, etc. del fluido. Para que estas ecuaciones constituyan un
problema cerrado, habra que hacer uso de algunos conocimientos cinematicos
considerados en las lecciones anteriores, de ecuaciones constitutivas, es de-
cir, leyes de transporte molecular, y de ecuaciones de estado del fluido. Estas
ultimas ecuaciones se iran introduciendo a lo largo de estas tres lecciones.

6.1. Principio de conservacion de la masa

La masa total contenida en un volumen fluido cualquiera, V(t), se conser-
va:

L
dt

donde p(Z,t) es la densidad del fluido.
Esta ecuacién puede ser referida a cualquier volumen de control V,(¢) me-

diante la aplicacién del Teorema de Transporte de Reynolds [haciendo ¢ = p
en (5.6)]:

] pdV =0 | (6.1)
Vs(®
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a dV+/ G 7.) fids=0 . 6.2
dt Vc(t)p 5u(6) P(U C) ( )

Fisicamente esta ecuacion expresa que la variacion total de la masa contenida
en V,(t), mas el flujo convectivo neto de masa a través de la superficie S.(t) es
igual a cero. Por otra parte, aplicando dicho teorema al volumen fluido Vj(t)
y haciendo uso del Teorema de Gauss se tiene

/ @dv+/ V- (pi)dV = 0. (6.3)
v, Ot Vs

Como V; es un volumen arbitrario, el integrando tiene que ser nulo, propor-
cionando la ecuacion diferencial
dp

E+V-pv=0, (6.4)

que se suele denominar ecuacién de continuidad o ecuacién (diferencial) de
conservacion de la masa. El primer término representa la variacion temporal de
la masa por unidad de volumen, mientras que el segundo es el flujo convectivo
de masa por unidad de volumen.

Los liquidos son, como ya sabemos, practicamente incompresibles, es de-
cir, su densidad es, a efectos practicos, constante. Por tanto, la ecuacién de
continuidad de un liquido toma la forma simple

V-7=0, (6.5)

o, en forma integral,

(U—9,)-nids = 0; (6.6)
Se
es decir, el flujo neto de masa a través de cualquier superficie cerrada es nulo.
La ecuacién (6.5) también nos dice que el campo de velocidades de un liquido
es solenoidal, existiendo una funcién % tal que

T=VAY , V=0 . (6.7)

Sin embargo, usar la funcién 1/_). en lugar del campo de velocidades ¢ no tiene
ninguna ventaja, salvo que v tenga una sola componente (movimientos bidi-
mensionales; ver seccién siguiente). Una particularidad importante de los flujos
solenoidales es que dado un tubo de corriente, el caudal que circula por su in-
terior es el mismo en todas las secciones transversales; es decir, Q = [ Sp v-nds,
donde St es cualquier seccién transversal del tubo de corriente, es invariante
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a lo largo del mismo. Esto es consecuencia de (6.6) y de que el fluido no puede
atravesar la superficie lateral del tubo de corriente.

La ecuacién de continuidad también se simplifica para los gases (p #
constante) cuando el movimiento es estacionario:

V.p7=0. (6.8)

En forma integral,

/ o(T— ) fds=0, (6.9)
Se

también expresa que el flujo neto de masa a través de cualquier superficie
cerrada es cero. En el flujo estacionario de un gas, la densidad de cantidad de
movimiento, pv, es solenoidal:

pi=VAY. (6.10)

Consecuencia de (6.9) es que el gasto que circula por el interior de un tubo
de corriente, G = | Sy pvU - ids, permanece constante a lo largo de él.

6.2. Funcion de corriente

Cuando el flujo de un fluido incompresible [ecuacién (6.5)] o el flujo es-
tacionario de un gas [ecuacién (6.8)] es bidimensional (plano, con simetria
axial, etc.), el potencial vector ¥ tiene una sola componente. En estos casos
la especificacién del flujo se simplifica enormemente puesto que el campo de
velocidades queda completamente determinado con sélo una funcién escalar
1), que por razones que ahora veremos se denomina funcién de corriente.

Consideremos, por ejemplo, el flujo bidimensional plano de un liquido cuyo
campo de velocidades es perpendicular al eje z. En coordenadas cartesianas
tendriamos:

U=V Aye, , (6.11)
es decir,
_ oY L
Uy = oy W=g o (6.12)

que cumple identicamente la ecuacion de continuidad

Quz | Ouy

2t =0 (6.13)
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Figura 6.1: Caudal entre dos lineas de corriente.

en virtud de la igualdad de las derivadas cruzadas. En este caso, las curvas
1) = constante representan lineas de corriente:

_o o
dy = %da: + By dy = —vydz + vedy,
dp=0 |, ?:?, (6.14)
z y

de aqui su nombre. Otra propiedad interesante de la funcién ¥ es que el caudal
(bidimensional) entre dos lineas de corriente viene dado por la diferencia entre
los valores de v en esas lineas de corriente. En efecto, si dos lineas de corriente
A y B vienen dadas por ¥ = ¥4 y ¥ = 9g, el caudal entre ellas es (ver figura
6.1):

B B B
Q=/A ﬁ-ﬁds=A(1fzdy—vydm)=A db=gg—1a x  (6.15)

En el caso de un flujo bidimensional (plano) y estacionario de un gas, todo
lo anterior es también valido sin mas que sustituir ¢ por pv.

Otros flujos incompresibles y bidimensionales no planos también admiten
funcién de corriente, ya que lo Unico que se necesita es que el potencial vector
tenga una sola componente en algin sistema ortogonal de coordenadas. Sin
embargo, lo mas conveniente para hallar la funcién de corriente es escribir
la ecuacion de continuidad V - ¥ = 0 en las coordenadas correspondientes
y construir la funcién de corriente que satisfaga idénticamente esa ecuacion
teniendo en cuenta la igualdad de las derivadas cruzadas. Por ejemplo, el flujo
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incompresible y axilsimétrico con s6lo dos componentes de la velocidad, v, y
vg, tiene por ecuacién de continuidad en coordenadas cilindricas (r, 8, z)

1 Orv, l%_o

ror Tron (6.16)
Claramente, si definimos ) mediante
10y oY
Vpr = ;% y Vg = —6_7‘ s (617)

la ecuacién (6.16) se satisface idénticamente. La eleccién de la funcién de
corriente en este caso no es unica. Otros ejemplos en coordenadas cilindricas
y esféricas se veran en los capitulos 17 y 21.

6.3. Conservacion de las especies quimicas

Un fluido, por lo general, no esta constituido por una sola especie quimi-
ca. Asi, por ejemplo, el aire contiene mayoritariamente nitréogeno y oxigeno,
ademas de otras muchas especies quimicas en concentraciones pequenas. Sin
embargo, en muchas situaciones, como ocurre en el aire en las condiciones ha-
bituales, los procesos de reaccion quimica y de difusion entre las especies no
existen o son poco importantes, por lo que no es necesario considerar la ecua-
cioén de conservacion de cada especie quimica por separado, siendo suficiente la
ecuacién de conservacion de la masa total considerada anteriormente. Existen
otros procesos fluidos (en particular, la mayoria de los que ocurren en la in-
dustria quimica) en los que las concentraciones de las distintas especies varian
temporal y espacialmente debido a las reacciones quimicas de unas especies
con otras y debido a la difusién molecular de unas especies en el seno de otras.
Para estudiar estos procesos no basta tener en cuenta la conservacién de la
masa total, sino que es necesario considerar por separado la conservacién de
la masa de cada especie quimica presente en el fluido.

Consideremos un fluido constituido por N especies quimicas distintas. La
ecuacién de conservacién de la masa de una especie ¢ genérica aplicada a un
volumen fluido Vj(t) seria:

4 / pidV = [ widv; (6.18)
dt Jvy(t) Vi(t)

es decir, la velocidad de variacién (aumento) de la masa de la especie ¢ conte-
nida en V; (p; es la densidad volumétrica de la especie i) es igual a la velocidad
de produccién de la especie @ por reacciones quimicas entre las distintas espe-
cies presentes en el fluido (w; es la velocidad de produccién de la especie ¢ por
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unidad de volumen). En lugar de la densidad de la especie ¢ se suele utilizar
su fraccién masica o su fracciéon molar. Es tradicion en la Mecéanica de Fluidos
utilizar la fracciéon masica Y;, definida como la masa de la especie i dividida
por la masa total:

=2 (6.19)
p
Claramente se verifica
N
3 FKe=1. (6.20)

Utilizando Y; en vez de p; en (6.18) y aplicando el Teorema de Transporte de
Reynolds, se tiene:

opY;

9% iy + / D e / widV | (6.21)

y Ot St Vs

En la expresion anterior, U; es la velocidad de la especie i (por supuesto ma-
croscépica, en el sentido dado en la seccién 2.2), que no coincide, en general,
con la velocidad media del fluido ¥. La diferencia entre estas dos velocidades
se suele denominar velocidad de difusién de la especie i:

Ty = — 0. (6.22)

Asi, el movimiento de una determinada especie i en el seno de una mezcla se
puede descomponer en dos partes: un movimiento medio comin a todas las
especies con velocidad ¥, y un movimiento de difusion de la especie ¢ en el
seno de las demas especies con velocidad vg;. En otras palabras, la especie i
no sélo es arrastrada por el movimiento medio del fluido, sino que, ademas, se
difunde debido, principalmente, a las diferencias de concentracion de la especie
i existente en el medio. El proceso de difusién es de origen molecular, a diferen-
cia del movimiento de arrastre o convectivo debido al movimiento global del
fluido. Este proceso molecular, junto con otros procesos difusivos moleculares
de transporte de cantidad de movimiento y de energia seran considerados
globalmente en la lecciéon 9. De momento enunciaremos, en esta leccién y en
las dos siguientes, las leyes fenomenolégicas que los describe.
Introduciendo (6.22) en (6.21) y aplicando el Teorema de Gauss se tiene:

OpY; - " y
2Phigv + V- (pY;v)dV + / V - (pYiv4;)dV = / widV , (6.23)
v, Ot Vs Vs Vs
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o, puesto que Vy es arbitrario,

OpY;
ot

+ V- (pYi®) + V - (pYiiz) = w; . (6.24)

Por definicién,

)

il

N
> Y (6.25)
i=1

de forma que, evidentemente, la suma ponderada con las fracciones médsicas
de todas las velocidades de difusion es nula:

N
Y Yitg =0. (6.26)
=1

Como, por otra parte, la conservacién total de la masa exige

N
dwi=0 , (6.27)
i=1

la suma extendida a todas las especies i de las ecuaciones (6.24) proporciona,
como era de esperar, la ecuacién de continuidad (6.4). Por lo general, dado un
fluido con N especies quimicas, se suele utilizar la ecuacién de continuidad y
N —1 ecuaciones para N — 1 de las especies, constituyendo asi un conjunto de
N ecuaciones para la densidad global p y N — 1 fracciones madsicas Y; [la N-
ésima fraccién mésica se obtendria de (6.20)]. Sin embargo, en estas ecuaciones
tampoco conocemos la velocidad media del fluido ¥, las N velocidades de
difusion @g; y las velocidades de reaccién quimica w;. De la velocidad media
no nos preocupamos por ahora ya que en la leccién siguiente escribiremos una
ecuacién adicional para ella. De las velocidades de reacciéon quimica w; no nos
ocupamos en esta asignatura: la Cinética Quimica proporciona expresiones de
w; en funcion de las concentraciones Y; y de la temperatura, que tomaremos
como datos. Observese que w; es la velocidad de produccién de la especie i (por
unidad de volumen), por lo que tendra en cuenta todas las reacciones quimicas
en que participe la especie i. Por ultimo, de las velocidades de difusién nos
ocupamos a continuacion.

6.4. Ley de Fick

Desde un punto de vista experimental (o fenomenolégico), Fick estable-
cié en 1855 que la difusién madsica de una especie i en el seno de un fluido
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isotermo es proporcional al gradiente de concentracién de la especie i, siendo
el sentido el de las concentraciones decrecientes:

Vit = ~DiVY, . (6.28)

D; es el llamado coeficiente de difusién (o difusividad mésica) de la especie
i en la mezcla, que, en general, es una funcién de las concentraciones Y; y de la
temperatura, teniendo unidades de longitud al cuadrado dividido por tiempo.

Estrictamente, la ley de Fick tal y como estd expresada en (6.28) es s6lo
valida para mezclas binarias y cuando no hay gradientes de temperatura en el
medio. Los gradientes de temperatura producen una difusién mésica adicional
denominada difusién térmica (o efecto Soret, quien descubrié este fenémeno)
proporcional al gradiente de temperatura. Sin embargo, esta difusién térmica
es poco importante salvo en condiciones muy especiales tales como gradientes
térmicos muy acusados en combinacion con disparidad en los pesos moleculares
de las especies quimicas, por lo que no sera considerada aqui. Por otra parte,
la existencia de mas de dos especies quimicas en la mezcla fluida introduce
difusiones adicionales de la especie i proporcionales a los gradientes de las
concentraciones de las otras especies. En una mezcla binaria (especies A y B)
se tiene exactamente (en ausencia de difusién térmica):

Yavya = —DaVY,s

Ygiyp = —DpaVYs = DAgVYy4 (6.29)

donde se ha hecho uso de Y4 + Yg = 1 en la dltima igualdad [téngase en
cuenta que la relacién (6.26) exige Dag = Dpa). Si la mezcla no es binaria,
la relacién (6.28) es aproximadamente valida si la especie ¢ constituye una
traza en la mezcla, o si son dos los componentes mayoritarios de la misma y
el componente i es uno de ellos, siendo en ambos casos D; un coeficiente de
difusién efectivo de la especie i en el seno de los restantes constituyentes de
la mezcla. Si esto no es asi, la expresién para la velocidad de difusién de la
especie i se complica enormemente al entrar en consideracién los gradientes
de concentracién de otras especies.! En lo que sigue, supondremos que la
expresion (6.28) es vilida.
Sustituyendo la ley de Fick (6.28) en la ecuacién (6.24) se obtiene:

0pY;
ot

+ V- (pYit) = V- (pDiVY;) = wi. (6.30)

!Ver, por ejemplo, Bird et al., 1960, donde también se tiene en cuenta la difusién térmica.
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El significado fisico de los distintos términos de esta ecuacidn es, de izquierda
a derecha: variacién local de la masa de la especie i por unidad de volumen;
flujo masico convectivo de la especie ¢ por unidad de volumen; flujo masico
difusivo (o molecular) de la especie i por unidad de volumen, y velocidad
de produccion de la especie ¢ por reaccion quimica por unidad de volumen.
Esta ecuacion se puede escribir de forma mas compacta teniendo en cuenta la
ecuacion de continuidad (6.4) y usando el operador derivada sustancial (seccién
3.3):

DY;
Dt

P =w; + V- (pD;VY;). (6.31)
En algunas situaciones de interés practico ocurre que la velocidad media del
fluido 7' es nula, que no hay reaccién quimica y que el producto pD; es apro-
ximadamente constante, con lo que el proceso (que es puramente difusivo)
esta gobernado por la ecuacion clasica de la difusion:

oY,
ot

también llamada ecuacion del calor, ya que se obtiene una ecuacion similar pa-
ra la evolucién de la temperatura bajo ciertas condiciones (ver seccién 10.1.1).

= D;V?Y;, (6.32)

Para calcular el coeficiente de difusién D; hay que hacer uso, en gases, de la
Teoria Cinética y de las propiedades moleculares de la sustancia ya que, como
dijimos, la difusién es un proceso de indole molecular. En la leccién 9 daremos
algunas nociones de Teoria Cinética y de corno se obtiene D; y otros coeficien-
tes asociados al transporte difusivo (molecular) de cantidad de movimiento y
energia. Sin embargo, una teoria cinética rigurosa sélo existe para los gases
monoatomicos y, con cierta aproximacién, para los gases no monoatdmicos,
por lo que la mayoria de las veces se utilizan expresiones semiempiricas para
D; y otros coeficientes de transporte. En la leccion 9 veremos también que la
ley de Fick y otras leyes lineales que asocian flujos difusivos con gradientes de
ciertas magnitudes fluidas son vélidas si se cumple la hipétesis de equilibrio
termodinamico local, hip6tesis que se formulard en la leccion 8.
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Capitulo 7

Ecuacion de cantidad de
movimiento

El principio de conservacion de cantidad de movimiento (o Segunda Ley
de Newton) aplicada a un volumen fluido Vj(t) nos dice que la variacién de la
cantidad de movimiento total contenida en el volumen fluido es igual a la suma
de todas las fuerzas que actian sobre él. Antes de expresar matematicamente
este principio es conveniente describir los tipos de fuerzas que actian sobre un
fluido.

7.1. Fuerzas de volumen y fuerzas de superficie

Las fuerzas que actian sobre un cierto volumen de fluido se clasifican en
dos tipos: fuerzas de volumen y fuerzas de superficie. Las fuerzas de volumen
son aquellas de largo alcance que actian sobre cada elemento de volumen del
fluido. Por ejemplo, las asociadas a campos de fuerza externos al fluido como
el campo gravitatorio terrestre. Si designamos por ﬁ, la fuerza por unidad de
volumen, la correspondiente al campo gravitatorio seria:

fo=03 , (7.1)

donde p es la densidad del fluido y g es la aceleracién de la gravedad, que se
suele suponer constante para todas las particulas fluidas si las dimensiones de
la masa fluida en cuestién es muy pequena comparada con el tamano de la
tierra. Asi, la fuerza gravitatoria total sobre un cierto volumen V de fluido
seria:
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ﬁvz/ pg']'dV:g'f/ pdV . (7.2)
s \s

La fuerza gravitatoria es en realidad una fuerza masica, siendo § la corres-
pondiente fuerza por unidad de masa, que en general designaremos por fm, El
producto de f;n por la densidad del fluido proporciona la fuerza por unidad de
volumen correspondiente. Otra fuerza maésica que aparecerd en muchos pro-
blemas practicos es la asociada al sistema de referencia, si éste no es inercial:

fmz—i‘o—%/\f—ﬁ/\(ﬁ/\f)—M/\ﬁ, (7.3)
donde @, y Q) son la aceleracién y la velocidad angular del sistema de coor-
denadas, respectivamente, en relacién a algin sistema de referencia inercial.
Por ultimo, otras fuerzas volumétricas son las electromagnéticas que aparecen
cuando el fluido estd cargado eléctricamente o por €l circula alguna corriente
eléctrica; la correspondiente fuerza por unidad de volumen es:

fo=pE+JNB, (7.4)

donde p. es la densidad de carga, E esel campo eléctrico, J la densidad de
corriente y B el campo magnético. Esta fuerza (denominada de Lorentz) no se
considerara en este curso ya que el estudio de la dindmica de los fluidos donde
esta fuerza es importante corresponde a ramas especializadas de la Fisica de los
Fluidos como la Fisica de Plasmas (gases ionizados), la Electrohidrodinamica,
etc., que no se estudiaran aqui.’

Las fuerzas de volumen (médsicas y electromagnéticas) son el tipo habitual
de fuerzas puntuales que aparecen en la dindmica clasica de particulas, pero
promediadas sobre un gran nimero de moléculas de acuerdo con la hipdtesis
de medio continuo. En la Mecénica de Fluidos (y en general en la Mecédnica
de Medios Continuos) aparecen otro tipo adicional de fuerzas asociadas a la
interaccion de unas moléculas con otras. Estas fuerzas son de origen molecular
y se deben al intercambio de cantidad de movimiento por colisiones de las
moléculas de una particula fluida con las moléculas de las particulas fluidas
vecinas. Son, por tanto, fuerzas de muy corto alcance, apreciables sélo en
distancias del orden de la longitud media que recorre una molécula tipica

! Ademés de la fuerza de Lorentz (7.4), en medios dieléctricos no uniformes aparecen
otras como la fuerza dieléctrica y la fuerza de electrostriccion. El alumno interesado en los
fenémenos electromagnéticos en la dinamica de los fluidos puede consultar, por ejemplo, el
texto clasico de Landau y Lifshitz Electrodynamics of Continuous Media (Pergamon, Nueva
York, 1984), del que existe traduccién castellana en la editorial Reverté.
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entre colisiones (camino libre medio), y por ello se denominan fuerzas de
superficie. Asi, dada una superficie S en el interior de un fluido, por accién de
las colisiones moleculares el fluido circundante ejercerd una fuerza sobre cada
punto de la superficie que, por unidad de superficie (esfuerzo), denotaremos
por f_;L(a?:', t), siendo esta fuerza funcién, ademdas de la posicién del punto y
del tiempo, de la orientaciéon 7 de la superficie en ese punto. Para describir
por tanto el estado de fuerzas superficiales de un determinado fluido hay que
especificar una doble infinitud de esfuerzos: para los infinitos puntos del fluido
hay que dar el esfuerzo en las infinitas orientaciones de todas las superficies
que pasan por ese punto. Sin embargo, veremos a continuacién que, en virtud
de los teoremas de conservacion de la cantidad de movimiento y del momento
cinético, en realidad s6lo es necesario conocer seis cantidades escalares (un
tensor simétrico) por cada punto del fluido para especificar todas las fuerzas
de superficie.

7.2. Tensor de esfuerzos

Sea f;l(a'c' ,t)ds la fuerza ejercida en el instante ¢ por accién de la interaccién
molecular sobre el elemento de superficie dsii que pasa por el punto ; es
decir, f,(Z,t) es el esfuerzo (fuerza por unidad de superficie) ejercido sobre
una superficie de orientaciéon 7, en ¥ y t. Vamos a demostrar que el esfuerzo
f_,;(x*, t) estd completamente determinado si se conocen en el punto £ y en el
instante t los esfuerzos en tres planos mutuamente perpendiculares. Para ello
consideramos un elemento de volumen tetraédrico formado por los tres planos
coordenados que pasan por I y un plano inclinado orientado segun la normal
hacia fuera 7 (ver figura 7.1). Si consideramos este elemento de volumen como
un volumen fluido y aplicamos la segunda ley de Newton, obtenemos:

oY) vy = FodA - fidAy - fodAg — fodAs + fodV 7.5

& = fa 1dA; — f2adAz — f3dAz + fudV, (7.5)
donde dV es el volumen del elemento; dA,dA;,dAs y dA3 son las areas de las
caras del tetraedro, y fl, f; y f;; son los esfuerzos sobre €1d A1, €2dAs y €3dAs,
respectivamente (observese que 7 estd dirigido hacia fuera del tetraedro, mien-
tras que €1,€9 y €3 apuntan hacia el interior en cada una de sus respectivas
caras, por ello la diferencia de signos en los distintos términos de la expresion
anterior). Si dividimos por dA y hacemos dA — 0, los términos correspon-
dientes a las fuerzas volumétricas y a la aceleracion desaparecen, puesto que
dV/dA — 0 si dA — 0. Teniendo en cuenta que

dA; =dAR-¢ , =123 , (7.6)
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2
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Figura 7.1: Fuerzas sobre un elemento de volumen.
la expresién (7.5) queda
fa=n1fi +n2fo+n3fs, (7.7)

donde n; = 1 - é; (¢ = 1,2,3) es la componente ¢ de 7 en el sistema coor-
denado (€}, €2, €3). Queda, pues, demostrado que f,‘l(a'r‘, t) estd determinado si
fi(Z,t), fa(Z:1) y f3(Z,t) son conocidos.

Para escribir la expresién anterior en notacién tensorial se suele definir

F=efit+éf+efs (7.8)

de forma que la ecuacién (7.7) queda

fo=1i-7. (7.9)

El tensor (&, t) se denomina tensor de esfuerzos. Si los componentes de los
vectores f1, f2 y f3 se designan por (711,712, T13), (721, T22, T23) ¥ (731, T32, 733),
es decir,

Tir 712 713
F = Tijeiej == T21 T22 T23 y (7.10)
731 T32 733
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T;; representa la componente j del esfuerzo que actia sobre la direccién coor-
denada €&; en el punto T en el instante t. Observese que el desarrollo anterior es
valido para cualquier sistema coordenado ortogonal, no necesariamente carte-
siano.

Resumiendo, para conocer el esfuerzo ejercido sobre una superficie de orien-
tacién 7 cualquiera que pasa por un punto &, basta conocer el tensor de es-
fuerzos en ese punto. Son por tanto nueve el nimero de cantidades que se
necesitan conocer por cada punto para definir su estado de esfuerzos (jen vez
de infinito!). Como demostraremos a continuacién, esta cantidad se reduce a
seis debido a que el tensor de esfuerzos T es simétrico.

7.2.1. Simetria del tensor de esfuerzos

Considerese un elemento de volumen cualquiera §V en el entorno del punto
Z. En el limite 6V — 0, la conservacion del momento cinético proporciona
(teniendo en cuenta que 6V/4S — 0, siendo 45 la superficie que engloba a
SV):

/ds(ﬁAF)zO , (7.11)
S

donde f, es el esfuerzo ejercido sobre el punto T + 7 sobre la superficie de
orientacién 7, y se ha tomado & como origen de momentos (ver figura 7.2).
Sustituyendo f, = 71 - 7, la ecuacién anterior se puede escribir como

ds(M-F)AT=— | ds(AMAT =0 , (7.12)
éS éS

donde, salvo errores que tienden a cero cuando 6V — 0, se puede tomar el
valor de T evaluado en & en vez de en Z + 7. La operacién AAB de la segunda
igualdad significa que el primer componente de ambos tensores se multiplican
escalarmente mientras que el segundo se multiplica vectorialmente, siendo el
resultado un vector; por ejemplo, en coordenadas cartesianas la componente ¢
seria €;;xA;; Bijx. Aplicando el Teorema de Gauss y teniendo en cuenta que 6V
es un volumen fluido cualquiera, se tiene:

V,FAT=0 o IAF=0 , (7.13)

donde T es el tensor unidad. La tltima relacién implica que el tensor T es
. . = =T A .

simétrico, T = 7, como se puede comprobar ficilmente utilizando coordena-

das cartesianas:

€ijkOLj Tik = €ijkTik = 0 ; (7.14)
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Figura 7.2: Conservacién del momento cinético.

particularizando para ¢ = 1, 2, 3 se tienen las tres relaciones

T3 —T2=0 , T —-7m3=0 , Ti2—-T=0 . (7.15)

7.3. Ecuacidon de cantidad de movimiento

Ya podemos expresar de forma adecuada el principio de cantidad de mo-
vimiento aplicado a un volumen fluido Vj(t) enunciado al comienzo de esta
leccién:

“ / pidV = [ #-Fds+ [ pfadV, (7.16)
dt Jv;(¢) S() 710)
donde fm son las fuerzas masicas por unidad de masa (aceleraciéon de la grave-
dad y aceleracién del sistema de referencia; suponemos que no existen fuerzas
electromagnéticas). Aplicando el Teorema de Transporte de Reynolds, se tiene

Ja

o _ -

9 (p)dV + / N / N / pFndV | (7.17)
v, Ot Sy Sy Vs

que expresa que la variacion de la cantidad de movimiento contenida en Vy mds
el flujo convectivo a través de la superficie que lo engloba es igual a las fuerzas

de superficie mas las fuerzas masicas que actuan sobre el volumen fluido.
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La ecuacién anterior se ha escrito de forma que sea patente un segundo
significado fisico del tensor de esfuerzos. Por una parte, acabamos de ver que
el tensor de esfuerzos representa la accion de las fuerzas de superficie por
unidad de superficie. Pero, por otra, también se puede interpretar como el
flujo molecular de cantidad de movimiento que, como sabemos, constituye
el origen microscépico de las fuerzas de superficie. Asi, el flujo de cantidad
de movimiento a través de una supreficie Sy consta de dos términos, un flujo
convectivo asociado a la velocidad media del fluido, y un flujo molecular debido
al intercambio de cantidad de movimiento por colisiones de las moléculas a un
lado y otro de Sy. El flujo total de cantidad de movimiento por unidad de
superficie es pues el tensor

piT—F . (7.18)

Por tanto, la ecuacién (7.17) se puede interpretar de un modo mdas natural
como: la variacién de la cantidad de movimiento contenida en Vy mas el flujo
total de cantidad de movimiento a través de la superficie que lo contiene es
igual a la accion de las fuerzas masicas que actian sobre él.

Otra ecuacién que, sobre todo, se usa en forma integral es la ecuacién de
conservacion del momento cinético o momento de la cantidad de movi-
miento:

i/ pUNZAV = (A7) /\fds+/ pfm N EdV (7.19)
dt Jvy S7(t) Vi)
o
o, . . e L=\ A= P o=
—(pUAZ)dV + p(v/\:z:)v-nds=/ (n-T)/\:l:ds+/ pfm ANTdV
v, Ot Sy S5(t) 710

(7.20)
Aplicadas a un volumen de control arbitrario V,(t) cuya superficie se mueve
a una velocidad ., las ecuaciones integrales de cantidad de movimiento y de
momento cinético, (7.16) y (7.19), se escriben:

&l poav + [ piw— ) -itds = / e / pfndV | (7.21)
dt Jv.) Se Se Ve

d _ .
-—/ pﬁ'/\:?:‘dV-&—/ p(z‘;’/\a‘c‘)(ﬁ—{fc)-ﬁdsz/ (ﬁ-?)/\fds-k/ T AEAV
(7.22)
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La forma diferencial de la ecuacion de cantidad de movimiento se
obtiene, analogamente a como se hizo con la ecuacién de continuidad, aplican-
do el Teorema de Gauss al segundo término de (7.17) e igualando el integrando
a cero, puesto que V; es arbitrario:

0pv

5 V(o) =V T+ pfm - (7.23)

El significado fisico de los distintos términos es, respectivamente: variacion
local de cantidad de movimiento por unidad de volumen; flujo convectivo de
cantidad de movimiento por unidad de volumen; fuerzas de superficie por uni-
dad de volumen o, cambiado de signo, flujo molecular (o difusivo) de cantidad
de movimiento por unidad de volumen, y fuerzas masicas por unidad de vo-
lumen. Esta ecuacién fue originalmente derivada por Cauchy en 1822, usando
ideas previas de Euler sobre la mecanica de los medios continuos. Cauchy intro-
dujo el concepto de tensor de esfuerzos y demostré su simetria, llegando a una
ecuacion similar a (7.23). Asi escrita, esta ecuacién es general para cualquier
medio continuo.

Para que la ecuacién (7.23) pueda ser utilizada es necesario obtener algu-
na expresiéon del tensor de esfuerzos T en términos de magnitudes conocidas
e incognitas del problema (p, @, etc.), es decir, una relacién constitutiva para
7, analoga a la Ley de Fick para la velocidad de difusién mésica. La rela-
cién constitutiva que damos a continuacién caracteriza a los llamados fluidos
Newtonianos, y fue formulada por Stokes a mediados del siglo pasado.

7.4. Fluidos Newtonianos. Ley de Stokes

Independientemente de la ley constitutiva para 7, es conveniente primero
separar la parte del tensor de esfuerzos correspondiente a un fluido en reposo de
la parte dindmica del tensor. Si un fluido esta en reposo, la fuerza de superficie
en cualquier punto Z y en cualquier superficie orientada segiin 7, f,(Z,t), tiene
que ser normal a la superficie, puesto que en caso contrario la componente
tangencial a la superficie de fn crearia un movimiento de cortadura. Es decir,
en un fluido en reposo se tiene

fa(&,t) = —p(&, t)7, (7.24)

donde p es la presion del fluido en el punto Z en el instante ¢, o fuerza por
unidad de superficie normal a la superficie y dirigida en sentido opuesto a
7i (contra la superficie). Esta presién, llamada hidrostética, coincide con la
presion definida en la Termodindmica si el fluido estd en reposo (ver seccién
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L =/ %

Figura 7.3: Movimiento entre dos placas originado por un esfuerzo tangencial.

9.2). Cuando el fluido estd en movimiento ambas presiones coinciden si se
cumple la hipétesis de equilibrio termodindamico local (como se demostrara en
la leccién 9). Como la Mecanica de Fluidos hace uso de esta hipdtesis (ver
seccién 8.1), a partir de ahora no se hard distincién entre ambas presiones,
hidrostatica y termodindmica, y se utilizara por tanto la misma presién en
las ecuaciones de estado del fluido (termodindmica) y en las ecuaciones del
movimiento.
De acuerdo con (7.24) y (7.9), en un fluido en reposo se tiene

T —])7 0 Ty = —p(sij . (725)

Para un fluido que no est4 en reposo se suele descomponer T en dos partes,

]

?

—pl + , (7.26)
donde, por definicién, T es la desviacién del tensor de esfuerzos con respecto
a la presién, también llamado, por razones que ahora veremos, tensor de
esfuerzos viscosos.

Experimentalmente se ha observado que muchos fluidos obedecen a una
ley lineal entre ¥ y el tensor de velocidades de deformacién. Originalmente,
Newton postuld que, para un determinado tipo de flujo que él considerd, existe
una ley lineal entre el esfuerzo tangencial aplicado a una superficie de un fluido
y el gradiente de velocidades normal a la superficie. Por ejemplo, si sobre el
fluido contenido entre dos placas planas paralelas se aplica un esfuerzo 7(= a’cy)
a través de una de las placas (ver figura 7.3), se produce un movimiento cuyo
gradiente de velocidades normal a la placa viene dado por

Tz”%Z , (7.27)
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donde p es una propiedad del fluido (que depende principalmente de la tempe-
ratura) denominada viscosidad. Esta ley lineal entre esfuerzos y gradientes
de velocidades se puede generalizar desde un punto de vista fenomenolégico
en la forma:

=/
T

Rl

= A5 Vi, (7.28)
siendo A un tensor de cuarto orden que, en general, depende de la posicién y
el tiempo, pero no de la velocidad. La expresién anterior constituye la relacion
lineal més general entre los dos tensores de segundo orden ¥ y V4#. Esta
relacién debe ser una propiedad constitutiva del fluido y, por tanto, no debe
depender del sistema de coordenadas elegido. Como la parte antisimétrica de
V1, es decir el tensor &, representa un giro como sélido rigido alrededor de cada
punto con velocidad angular &/2, si se elige un sistema coordenado que en cada
punto gire con esa velocidad, € es nulo, por lo que 7 no puede depender de él
[si no hay movimiento, el tinico esfuerzo que puede haber es el asociado a la
presion, ecuacién (7.25)]. Por tanto, 7 depende sélo del tensor de velocidades
de deformacién ¥, siendo la relacién lineal més general

=
F

il
=2l

(7.29)

o, en coordenadas cartesianas,

74 = Aijki Tkt = Aijkl% (Z—Z’; + 8871)2) : (7.30)
Otra forma de llegar a (7.29) de (7.28) es simplemente apelando a la simetria
de 7: como T es un tensor simétrico, sélo puede depender linealmente de la
parte simétrica de Vv, es decir, de .

La ley anterior fue deducida (aunque en una forma mas simplificada que
veremos mas adelante) por Stokes en 1845, generalizando la idea que New-
ton formulé 150 anos antes. Los fluidos que satisfacen esa ley constitutiva se
denominan Newtonianos. Experimentalmente se encuentra que una gran ma-
yoria de los fluidos, tanto liquidos como gases, en casi todas las condiciones de
interés, obedecen una ley de ese tipo, aunque sélo sea aproximadamente. Tedri-
camente se demuestra (a través de la Teoria Cinética de Gases, ver leccién 9)
que bajo la hipétesis de equilibrio termodindmico local (ver leccién siguiente)
los gases satisfacen la Ley de Stokes. Existen, sin embargo, fluidos, especial-
mente liquidos constituidos por grandes moléculas, en los que 7 no depende
linealmente de ¥, o depende ademds de otras magnitudes fluidas. Estos fluidos
no-Newtonianos tiene bastante interés en algunas aplicaciones, sobre todo en
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la industria quimica (plésticos, pinturas, etc.), pero no seran considerados en
este curso introductorio a la Mecanica de Fluidos.

La ley de Stokes (7.29) se puede simplificar considerablemente si el fluido
es isotrépico, como ocurre en la mayoria de las situaciones de interés. De
hecho, en su derivacién original, Stokes hizo tres hipétesis, dos de las cuales
ya han sido utilizadas en la derivacién de (7.29): relacion lineal entre 7y
5, e hipétesis de que si no hay movimiento 7 es nulo (es decir, si no hay
movimiento 7 = —pT). La tercera hipétesis de Stokes fue que la relacién entre
7 y ¥ es isotrpica en cualquier sistema coordenado. Esta condicién, junto con
las anteriores, simplifica enormemente la relacién (7.29). Para empezar, como
(7.29) es lineal, los tensores 7 y 7 pueden ser diagonalizados simultaneamente
con la misma transformacién. Esto hace que esa relacién se pueda escribir como
7 = B -7, donde 7 = (71,75, 7) y ¥ = (71,72,73), siendo 7/ y v;, i = 1,2,3,

los autovalores de 7 y 7, respectivamente. Es decir, las 81 constantes de A
se han reducido a las nueve de B. Por otro lado, si el sistema es isotrépico,
un giro de coordenadas no debe cambiar la relacién entre 7 y 4. Como un
giro permite permutar los autovalores de ambos tensores, cada autovalor 7/
s6lo puede depender del correspondiente v; y de la traza v; + 2 + 73, Que es
invariante frente a las rotaciones:

=2+ M+ +7), i=123, (7.31)

donde 1 y A son constantes. En forma tensorial, se tiene

F =2+ AV -4l . (7.32)

Asi, las 81 constantes del tensor original A;jix se han reducido a sélo dos.
Esta relacién se suele escribir utilizando la descomposicién del tensor 5 dada
.« s = =/ =/ . =/ . = .
en la seccion 4.2, ¥ =75 + 7, siendo ¥ la parte sin traza y 5 diagonal, de
forma que 5" contiene todo el movimiento asociado al cambio de volumen y

7’ esta asociado a la deformacion pura, sin cambio de volumen:

T =25 + p,V -1 =24 5(VI+ vil) — 3V UIJ +p,V -5, (7.33)
donde, por comparacién con (7.32),

2
o = A+ 3h - (7.34)

El coeficiente p se suele denominar coeficiente de viscosidad o sim-
plemente viscosidad, y esta asociado a la capacidad de deformacién pura del
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fluido bajo la accién de un esfuerzo cortante. El coeficiente p,, denominado
coeficiente volumétrico de viscosidad, estd asociado a la deformacién vo-
lumétrica provocada por esfuerzos normales. Asi, el esfuerzo normal medio de
un fluido Newtoniano es

%traza(?) = %traza(—p? +7) = —p+ V- 7; (7.35)

es decir, no todo el esfuerzo normal esta asociado con la presién, sino que parte
de él estd asociado al movimientg del fluido tendente a cambiar su volumen.
La Teoria Cinética de Gases demuestra que para gases monoatémicos, es decir,
gases cuyas moléculas no tienen estructura interna, u, es identicamente nulo,
siendo distinto de cero para gases cuyas moléculas pueden almacenar algin
tipo de energia distinta de la cinética o translacional. En otras palabras, u,
estd relacionado con la capacidad de almacenar energia no cinética por las
moléculas de un fluido bajo la accién de esfuerzos normales, mientras que la
presion esta relacionada con la energia cinética de las moléculas (ver leccién 9).
En los liquidos el coeficiente u,, es irrelevante, puesto que al ser incompresibles
V -4 =0. Es decir, para los liquidos se tiene

T o= =pu(Vi+ Vi) | (7.36)

que es la relacion originariamente debida a Stokes.

Los coeficientes pt y 1, dependen del estado termodindmico del fluido, muy
especialmente de la temperatura (para los gases se demuestra a partir de la
Teoria Cinética que son independientes de la presién). En general, la viscosidad
de los liquidos disminuye al aumentar la temperatura, ocurriendo lo contrario
para los gases.

7.5. Ecuacion de Navier-Stokes

La ecuacién resultante de introducir la ley de Stokes en la ecuacién de
conservacion de la cantidad de movimiento (7.23) se suele denominar ecuacién
de Navier-Stokes:?

0pv

2 .
5 + V- (pt7) = —Vp+v-[;L(VU-{-VI_."T)]-{-V[(NU—g;t)V"l_)]“Fme . (7.37)

2Navier obtuvo la misma ecuacién por un procedimiento distinto algo antes que Stokes,
pero haciendo algunas hipdtesis sobre las bases moleculares de los efectos viscosos que no
son del todo correctas.
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Utilizando la ecuacién de continuidad (6.4), esta ecuacién se puede escribir
como

Dv

2 .
o SV U+ pfm. (7.38)

==Vp+ V[V + V)] + V(g - 3
El término de fuerzas de superficie V - 7 de la ecuacién (7.23) ahora se ha
desglosado en tres: uno que representa las fuerzas de presién por unidad de
volumen, y otros dos que representan las fuerzas de viscosidad (relacionadas
con iy p,) por unidad de volumen. En el caso de los liquidos esta ecuacién
se reduce considerablemente debido a que al ser p = constante, V - ¥ = 0. Si,
ademads, las variaciones de temperatura no son muy importantes y se puede
suponer que el coeficiente de viscosidad es constante, la ecuacién queda:

—

p5r = —Vp+ uVi T+ pfm (7:39)
Dt

donde se ha hecho uso de V - (V#)T = V(V - &) = 0. En el caso en que las

fuerzas masicas deriven de un potencial U, f,, = —VU, la ecuacién anterior

se puede escribir en la forma simple

Dv P
—=-V(= Vi, 4
Di <p+U>+u 1 (7.40)
donde
v=upu/p (7.41)

es el coeficiente de viscosidad cinematica.Una particularidad importante
de esta ecuacién es que forma, junto con la ecuacién de continuidad V -4 = 0,
un sistema cerrado para las variables v y p. En el caso de los gases, aparte de
que i y i, puedan depender de la temperatura, la densidad p no es constante,
con lo que hay que completar el sistema de ecuaciones anterior [continuidad
(6.4) y cantidad de movimiento (7.38)] con la ecuacién de conservacién de
la energia y las ecuaciones de estado, que se veran en la préxima leccion
(aparte de las ecuaciones constitutivas para p, u,, etc.). Asi, para un liquido
con viscosidad constante el problema mecanico esta desacoplado del térmico
(aunque para resolver el problema térmico veremos que es necesario haber
resuelto previamente el problema mecédnico), mientras que para los gases los
problemas mecanico y térmico estan, en general, intimamente ligados.
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7.6. Ecuacion de la vorticidad.
Condicién de barotropia

En muchas ocasiones, especialmente cuando se estudien los flujos ideales y
la turbulencia, es conveniente utilizar el vector vorticidad & = V AU en vez de,
o junto con, el vector velocidad v para describir el movimiento de un fluido.
También tiene ventajas el uso de la vorticidad en la simulacién numérica de los
flujos incompresibles, pues se evita el tener que poner condiciones de contorno
en la presién. Por todo ello, se deriva a continuacién una ecuacién para la
vorticidad, que en este curso se utilizara, principalmente, en la leccién 20.

Suponiendo que las fuerzas mésicas derivan de un potencial U y haciendo
uso de la relacién vectorial (1.42), la ecuacién de cantidad de movimiento
(7.38) se puede escribir en la forma

o L_vav-ﬁ—VU , (7.42)

O GGV = —lvp+u[v26+vv-6]+’ -
ot 2 P

donde se ha supuesto, por simplicidad, que los coeficientes de viscosidad son
constantes (si esto no fuese asi, todo lo que viene a continuacién seguiria
siendo vélido, cambiando sélo el término viscoso, que seria algo mas complejo).
Tomando el rotacional de esta ecuacion y teniendo en cuenta que el rotacional
de un gradiente es identicamente nulo y que V A V2% = V24 en virtud de
(143) y V- &=V - (VAD) =0, se llega a:

O 1
a—(:—V/\(ﬁ'/\d})=—V (;)/\Vp+ AvEn s (7.43)
Desarrollando el segundo término y sabiendo V - & = 0, se obtiene
%+JV-1’)’—&)’-V1’)‘=%Vp/\Vp+VV2&5 : (7.44)

Por 1ltimo, esta ecuacién se puede escribir de una forma maés compacta en
términos de &/p haciendo uso de la ecuacién de continuidad (6.4) para rees-
cribir V - 7

L 10p 1,
V-v——;a—;U-Vp , (745)
llegandose a
D (& @ 1 v
—(Z) =2 -Vi+ =VpAVp+ -V 7.46
Dt(p) p AP (749
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El primer miembro de esta ecuacion representa la variacién de la vorticidad
(extrictamente del vector &/p) para un observador que se mueve con el fluido,
es decir, la variacién local mas la variacién convectiva. Esta variacién (genera-
ci6én o destruccién local de vorticidad) se debe a los tres factores que aparecen
en el segundo miembro. El primer término representa la conveccién de la velo-
cidad del fluido debido a su vorticidad. Las importantes implicaciones fisicas
de este término las veremos mds adelante (leccién 20) cuando estudiemos los
flujos ideales (v = 0) que ademads son bar6tropos (Vp A Vp = 0, ver mas
abajo), en los que los términos segundo y tercero del segundo miembro de la
ecuacién (7.46) no aparecen, quedando simplemente D(&/p)/Dt = (&/p) - V7,
una ecuacién muy importante para la comprensién de los flujos ideales y de los
mecanismos generadores de la turbulencia. El tercer término representa la di-
fusion viscosa de la vorticidad, analoga a la difusién maésica de Fick [comparen
(7.46) con (6.31)]. Por ultimo, para descifrar el significado fisico del segundo
término (denominado término de Bjerkness ), consideremos una pequena
esfera fluida de radio € (— 0) que se mueve con el fluido. La masa de la esfera
es

o / pdV, (7.47)

estando la integral extendida a todo el volumen de la esfera. Teniendo en
cuenta que p = p, + 7 - Vp, + O(€?), donde el subindice o significa que las
cantidades correspondientes estan evaluadas en el centro de la esfera y 7 es el
vector posicién con respecto al centro, y sabiendo que [7dV = 0 por ser una
esfera, se tiene

m=pV+0() , V= %7!‘63 : (7.48)

El centro de masa de la esfera es

o=l /deV = /FF VpodV + O(2) = ~T - Vpo + O() (7.49)
m m m

donde
J= /FFdV =JI , J= l/r%iv _ A e ley (7.50)
Por tanto,
= J Vp, 2
= ———[1 . 7.51
Tem V o, [ +O(f )] , ( 5)
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que muestra que el centro de masa de una esfera se desplaza en la direccion
del gradiente de densidad una cantidad dada por la ecuacién anterior.

Por otra parte, la resultante de las fuerzas de presién que actian sobre la
superficie de la esfera pasa necesariamente por el centro de la misma, debido
a que la presién actua radialmente. Esta fuerza estd dada por

B=- / piids = — / Vpdv | (7.52)

donde 7 es el vector unitario normal a la esfera dirigido hacia fuera, estando
la primera integral extendida a toda la superficie de la esfera, y se ha aplicado
el Teorema de Gauss. De nuevo, escribiendo Vp = Vp, + 7 VVp, + O(€?), se
obtiene

E,=—Vp,V +0(e?) . (7.53)

El par (momento) ejercido por Fj, en relacién al centro de masa es, de acuerdo
con los resultados anteriores y despreciando términos O(€?),

Vo

Po

Mem = —Tom A P-’;, =J AVp, = ée2m (% A Vp) ; (7.54)

o
Asi, aparte del factor €2m/5, el término de Bjerkness —V(1/p) A Vp es una
medida del par neto ejercido por todas las fuerzas que actian sobre la esfera
en relacion al centro de masa de la misma (observese que las fuerzas masicas
no proporcionan par alguno ya que actian sobre el centro de masa). Este par,
en ausencia de fuerzas viscosas, debe ser igual a la variaciéon del momento
cinético (momento de la cantidad de movimiento) de la esfera con respecto al
centro de masa. De hecho, si uno calcula el momento cinético de la esfera con
respecto al centro de masa, e iguala su derivada sustancial a (7.54), obtiene la
ecuacién (7.47) con todas las magnitudes evaluadas en el centro de la esfera
y sin el término viscoso, que no se ha considerado (esta demostracién se deja
como ejercicio para el alumno).

El resultado anterior muestra claramente que cuando Vp no es paralelo a
Vp en un punto (Vp A Vp # 0), la resultante de las fuerzas de presién sobre
la particula fluida (considerada como esférica) centrada en ese punto no pasa
por el centro de masa de la misma, produciendo un par que es responsable de
la variaciéon del momento angular y, por tanto, de la vorticidad, en el punto
considerado. Un flujo de un fluido se denomina barétropo si la resultante de
las fuerzas de presion en cada particula fluida tiene la direccién del centro de
masa de la particula fluida, es decir, Vp es paralelo a Vp en todos sus puntos,
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cumpliendose que Vp A Vp = 0. Los flujos de liquidos son siempre barétropos
puesto que su densidad es uniforme, coincidiendo siempre el centro geométrico
y el centro de masa en todas sus particulas fluidas; en otras palabras, al ser
Vp = 0, el término de Bjerkness es identicamente nulo al ser 7¢n, = 0. Los
flujos de gases no son, en general, barétropos. Sin embargo, veremos mas ade-
lante que casos muy relevantes como son los flujos isentrépicos de gases y los
gases en reposo cumplen la condiciéon de barotropia.

En los movimientos barétropos es algunas veces conveniente utilizar la
denominada funcién de barotropia en vez de la presion:

w= / Pdp (7.55)
p

que es posible definir debido a que en los flujos barétropos la densidad depende

de la posicién a través de la presién, p = p(p,t), al ser paralelos los vectores

Vp y Vp. En otras palabras, Vp/p es, en los movimientos barétropos, una

diferencial exacta, definiendose Vw = Vp/p.
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APENDICE A: Componentes del tensor de es-

7.7.
fuerzos para fluidos newtonianos

Coordenadas cartesianas (z,y, 2):

6'Uy (# 2 ) \va1 Tzz 81’ (ll, _ glt) V.7

Ovg 2
=2u—7 =2
= %% +( 3)V” Tw =2 34 =
S = vz 6vy oo = Ovy | Ov;
Ty — yz—ﬂ c)y vz = Tzy = K 9z ay
P Ovz Ov; . Ovg va v,
Tez = Tzeg = K [6Z+ ] V"U—am’f'a"‘az
Coordenadas cilindricas (7,0, z):
/. Ovp 2 10ve v 2 ov. 2 )
T —2;15-1—(;1,,— 3ﬂ)V’U Too ——2u(r 50 + — )+(uu 3u)Vv TL, = 2u—= 52 (;A.. 3;1
' = = ['ri (2) 1 6v, v [61}0 lavz
Tro = Tor = K ar \ 7 r 00 Toz: = Tz = H D2 " r o0
ro_ Ov, Ov; = 1 dvo ov,
T"‘T’*_"[E“Lar] Vo= "_(“’) r o0 Bz

Coordenadas esféricas (r,0,9):

;. Ovr 2 L 10vg = vy 2 -
o (=3 () (e )

1 9 - to 2 L ; 0 1 Ovr
- < rRb R >+("“"§“)V'” T*FT*;”[%—T(%)*;%]

’
Tee = rsinf dp | T T
TI — me 0 ( ) _l_% T’ _ T/ _ 1 81)'_ + 'ri (E‘ﬁ)
o0 = Tet =117 59 \sind rsin@ Oy e = Ter =R in6 Dy or \r
L ov,

. 18 1 0. .
vV 7= =3 (r v,,) +mae(s'“9“")+rsmo 3o
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7.8. APENDICE B: Ecuacién de cantidad de movi-
miento en diferentes coordenadas

Coordenadas cartesianas (z, y, 2):

vz dvs vz .\ _ o [0, 8, 0]
(8t v - +v v, Vs 6Z)_ 8z+-8szz+6yTy$+az‘rnJ+pfmz
uy | Bvy By, O\ _ dp [0, 8., 0 ]
4 (T?t_ tUagy U y T | = Ay T _817-” T By v T 6sz”_ + pfmy
du. | Bu. . du\_ 9p [0, o, 9, ]
( ot + Vg —— oz + vy a + v, —/— 92 ) = 92 + -5;7'12 <+ 6_y'ryz + ’a—Z‘Tzz- +pfmz

Coordenadas cilindricas (7,0, 2):

(dvr 0vr v_o-gv_r - vg Q&) - _@+ -1 a (TT"7‘)+ L a A + ET;"‘ - Iég:I +pf'mr

ot tUar T e T e )T Tartrar ro6" " bz
Ovg Ove Ve 61)9 Vrg Ove\ 16p 10 10 , 5]
(E’L“ 5 T8 T« *”‘E) ="7o [rz o (T )+ S ggT0 + 5, T"’]*”f'""

v v vedu: | Ou.\ _ Op [12» DL, 6f]
((’ﬂ U or i - o9 TV 82)_—62+ r@r(rTrrZ)+ré)GTez+c§Tzz +pfms

Coordenadas esféricas (r, 6, ¢):

Ovr Ovr  veOur v, ur  vituvs\ _ [12 1 ]
( +or * o - " )+rsm9 60(19' sinf)

ot or + r 00 ' rsinf dy r r2 Or

1 8, Too + Top op
+ [r sinf Oy Ter T or ¥ pfmr

ot T or +TW+rsm9 Oy r r r3 Or rsinf 06

1 8 , Thpcotd ‘ 18p
+ [rsinO&pT"’o T B ;%'f'ﬂfma

2
(81)9 4q , Ove  ve Ove v, Ovg 4 Yo vocote) _ [1 0 D (Pat)+ 1 (Tao smg)]

Ov, ,  Ouv,  wg Ov, Vo Ovp  U,Ur  UgUuCOtO
< ot ey 20 " Tsin® dp et T
18 1 1 8§ ,  Thecotf 1 dp
B [_3 3_(r Tro) + rsin 96 (TW sin 0)] [r sin 0 %TW’ B "~ rsinf 9y + phme
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ECUACIONES PARA UN FLUJO INCOMPRESIBLE CON VISCOSIDAD
CONSTANTE
Coordenadas cartesianas (z, ¥, 2):

Ov, v, v, .\ Op [6%v,  0%v, O%v. ]
(at +’Uza +'Uya +Uzaz>—_am+ll-ax2+ay2+822~+pfm.t

-

vy Ovy Ovy Ovy\ _ Op [0%v, 8%, 8%u,
(6t e Ty T )T oy T H | Yo T o | TP

5t TV s +vy8_y “a; TH | 9z~ 0y? 92 + pfm:

(sz Ov, v, . %&) p [9%v,  0%v, i 8%v, |

Coordenadas cilindricas (r,8, 2):

(6vr Ov, vgOvr Vi 6vr)

Ur

e tree T T e:

__o o (10 1 0%, 0%, 2 vy
=~ Tor [E (?5?(”")) Y T2 e | TP

Ovg Ove v Ovg = Urvp e
(8t+1 or TW-’_ r +v28z)

_ 10p o (10 1 0%vg  0%vp 2 Ovr
~Trae tH [61‘( W)t e R ao]“’fmo

v, v,  vg Ovu, ov.\ _ Op 10 ( E&) if)zvz 8%v,
(5w ets+ L retl] =20 [731» "or )t Eoe t o | T AIme

Coordenadas esféricas (7,0, ¢):

v, dv vg Ov v, Ov,. vZ + 02 F)
,,<_'+,,,_'+_9_'+ e "r_ 0 e ¢)=__8”+pf,,.,
=

ot ar r 00 rsinf d¢ r
8 (1 0 12 8 1 8% 2 O(vp sin 0 2 8
|2 (L 2000) 4 o 2 (ame2n ) 4 2Ty 2 _Seshd) 2 Dw
ar \ r2 or r23in 0 89 a6 r28in2 9 9p? r?sin 6 o6 r2sin 0 By
dvg dvg vg Bvg v, Oug ver, vgcoto 18p
—_—ttrtr—t ——t———_—t — - ——— | = ———
p( ot ur or r 86 rsin@ By r r r 800 +efme

iu| L8 (20v) 1@ 1 ( 8) 1 3%y 4 2 0u  2cot8 b,
—-—[rF— —_ — vg 8in —_— = - —_—
# r2 or or +2 80 \ sin 6 80 o r2 sin2 0 9p? r2 86 r2sin 9y

ov dv vg Ov v, v U Uy vgucotd 1 dp
T e e D07 S AL A A 8% =
or r 06 r8in® Jyp r r

+
rsiné 6\9 ofme

1 8 [ 4508v, 1 8 1 0 1 9%, 2 dv,  2c0t8 duy
—_— —_— _—— ind —_ —_—+ B —
e [ : (r ) + r2 80 (smo a6 (vp s )) r2sin2 0 9¢p? r28inf Ay r2gin § Ay



Capitulo 8

Ecuacion de la energia

8.1. Algunos conceptos termodinamicos previos

8.1.1. Hipétesis de equilibrio termodinamico local

La Termodinamica Clasica es una ciencia que trata de los estados de equili-
brio de una sustancia, es decir, de estados en los que las magnitudes mecanicas
y térmicas son independientes de la posicién y del tiempo. Incluso cuando en
Termodindmica Clésica se habla de la evolucién de las magnitudes de una de-
terminada sustancia, como por ejemplo la primera ley de la termodindamica,
que establece la equivalencia del trabajo mecanico y del calor y de sus transfor-
maciones mutuas, esta evolucion es entre estados de equilibrio (transformacio-
nes reversibles) y, por tanto, irreales por lo infinitamente lentas. Los resultados
termodinamicos son pues globalmente aplicables #nicamente a fluidos en re-
poso cuando sus propiedades son uniformes e independientes del tiempo. La
pregunta que inmediatamente surge es si es posible aplicar los resultados de
la Termodinamica Clasica a fluidos que no sélo no son uniformes, sino que se
mueven, cambiando sus propiedades de punto a punto y en el tiempo, incluso
drasticamente. Veremos a continuacion que, aunque no se puedan aplicar, en
general, los resultados termodindmicos clasicos globalmente a un determinado
sistema fluido, si se pueden aplicar localmente, es decir, a cada particula fluida
individual, ya que éstas, en la mayoria de los fluidos y en las condiciones que
usualmente se encuentran en la practica, se hallan en equilibrio termodinamico
local (o puntual).

Considérese el caso de un gas. Si en el gas existen inhomogeneidades, por
ejemplo, si inicialmente hay un gradiente de temperatura o un gradiente de
velocidad, y no existe ningin factor externo que los mantenga, al cabo de un
cierto tiempo mads o menos largo el gas se equilibra (se uniformiza su tempe-
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ratura y su velocidad) por colisiones moleculares que intercambian energia y
cantidad de movimiento entre las moléculas, igualando las temperaturas y las
velocidades entre las distintas particulas fluidas. Es decir, las colisiones pro-
ducen unos flujos macroscopicos de calor (energia) y cantidad de movimiento
que tienden a disipar los gradientes que los provocan. Estos procesos hacia
un estado de equilibrio termodinamico global son esencialmente irreversibles,
y leyes como el Primer Principio de la Termodinamica sélo nos relaciona en-
tre si los dos estados de equilibrio inicial y final, sin decir nada del proceso
intermedio (sélo el Segundo Principio de la Termodindmica nos proporciona
ciertas desigualdades que deben verificarse durante el proceso). Ahora bien,
un sistema puede no estar en equilibrio termodinamico global (puede existir,
por ejemplo, un gradiente térmico), pero si en equilibrio termodindmico local
si las particulas fluidas que definen cada punto contienen un nimero suficiente
de moléculas como para que las colisiones entre ellas las equilibren, dentro de
cada particula fluida, mucho mas rapidamente que los cambios que se puedan
producir en las magnitudes macroscépicas (por ejemplo, la temperatura). La
condicién para que esto ocurra es que la longitud caracteristica de variacién
macroscopica (en nuestro ejemplo, la longitud tipica en la cual la tempera-
tura cambie apreciablemente, es decir, L ~ |VInT|™!) sea mucho mayor que
el camino libre medio entre colisiones, A, para que de esta forma exista un
tamaiio intermedio, (§V)!/3, que permita definir la particula fluida en equi-
librio termodindmico: A < (6V)/® < L. En otras palabras, si A < L, una
molécula experimenta un gran nimero de colisiones con sus vecinas antes de
alcanzar regiones donde las magnitudes macroscépicas (temperatura en nues-
tro caso) cambien, de modo que gradualmente adapta su movimiento y energia
al que existe localmente (se equilibra localmente), perdiendo memoria en las
sucesivas colisiones de su situacién primitiva.

En el caso de un gas, el orden de magnitud del camino libre medio A se pue-
de estimar suponiendo que las moléculas son esferas rigidas de tamano efectivo
d, (tipicamente, d, ~ 5 x 10719m); si el nmimero de moléculas por unidad de
volumen es n (n ~ 2 x 102m ™3 en condiciones normales), la distancia media
que tiene que recorrer una molécula para chocar con otra es

A~ (d2n) P ~2x107"m =0,2um. (8.1)

La condicién A < L es pues mas restrictiva que la correspondiente a la hipote-
sis de medio continuo, n~'/3 <« L, dada en la seccién 2.2 (n"1/3 ~ 4 x 10~9m
en condiciones normales). Sin embargo, salvo en casos muy extremos en que
los gradientes son muy acusados (la longitud caracteristica L muy pequeia,
como por ejemplo en el movimiento de cuerpos a velocidades gigantescamen-
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te altas), o en el caso de que el gas esté muy enrarecido (n muy bajo, como
por ejemplo en la parte alta de la atmodsfera donde las moléculas estan muy
separadas unas de otras y las colisiones entre ellas son poco frecuentes), la
condicién de equilibrio termodinamico local, A < L, se suele cumplir en los
gases.

Se suele definir el llamado niimero de Knudsen,

A
T’
como la relacién entre el camino libre medio molecular y el tamano macroscépi-
co caracteristico. En términos de este nimero adimensional la condicién de
equilibrio termodindmico en gases se expresa Kn < 1. El argumento que
acabamos de expresar utilizando longitudes caracteristicas se puede también
expresar en funcion de tiempos caracteristicos: Si las magnitudes fluidas ma-
croscopicas (por ejemplo la temperatura) fluctian en el tiempo con una fre-
cuencia caracteristica cuyo orden de magnitud es w = tJ!, donde t. es un
tiempo caracteristico de variacién macroscépica (t. = |0InT/0t|~1), para que
exista equilibrio termodindamico local la frecuencia entre colisiones molecula-
res, w, = 7, !, tiene que ser mucho mayor que w, para que asi se den un gran
numero de colisiones antes de que las magnitudes macroscopicas cambien en el
tiempo apreciablemente (en cada particula fluida). Se tiene pues la condicién
adicional

Kn = (8.2)

Te<Lte O Knt5%<<1, (8.3)

[+
que se debe verificar simultdneamente con (8.2) para que exista equilibrio
termodindamico local. Por supuesto, 7. y A estdn relacionados entre si a través
de la velocidad media molecular, cT, que como se vera en la leccion siguiente,
es funcién de la temperatura:

A~erte , cr~\/kT/m, (8.4)

donde k es la constante de Boltzmann y m la masa de la molécula (ver seccién
9.2).

En los liquidos la interaccién molecular es mucho mas compleja que la
simple colisién, por lo que la definicién de camino libre medio o frecuencia de
colisién no tiene mucho sentido. De todas formas, la hipdtesis de equilibrio
termodinamico local se suele verificar, siendo aun mas escasas las situaciones
en que no se cumple que en los gases.

La hipétesis de equilibrio termodindamico local redefine, como acabamos de
ver, el tamasio (6V)!/3 de las particulas fluidas. Pero si existe ese tamafo, las
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magnitudes fluidas, p(Z,t), ¥(Z,t), e(Z,t), etc., definidas en cada punto fluido
satisfacen, localmente, las relaciones de la Termodinamica Cléasica. En lo que
sigue supondremos que existe equilibrio termodinamico local y utilizaremos
los importantes resultados de la Termodinamica para escribir la ecuacién de
la energia y las ecuaciones de estado, siendo todas las relaciones locales (o
puntuales). La hipétesis de equilibrio termodindmico local se utilizard también
en la leccién siguiente para justificar, a partir de la Teoria Cinética de Gases,
las leyes constitutivas ya enunciadas como la ley de Fick (seccién 6.4) y la de
Stokes (seccién 7.3), asi como la ley de Fourier de transmisién de calor que
veremos mds adelante (seccién 8.2.2).

8.1.2. Variables termodinamicas

La Termodinamica Cldsica nos ensena que el estado de un fluido de compo-
sicién homogenea en equilibrio termodinamico esta definido si se conocen dos
variables termodindamicas cualesquiera, por ejemplo, la presién y la densidad,
(p, p), de forma que cualquier otra magnitud termodindmica es funcién de esas
dos variables: T = T(p, p), e = e(p, p), etc. Estas relaciones, que son las ecua-
ciones de estado del fluido en cuestion, se cumplen localmente si se verifica la
hipé6tesis de equilibrio termodinamico local. Si el fluido esta constituido por N
especies quimicas distintas, el estado termodinamico se encuentra definido si se
conocen, ademas, N — 1 fracciones masicas: T = T(p,p,Y1,Y2,...,YN_1), e =
e(p,p,Y1,Y2, ..., YN_1), etc., siendo SN, V; = 1.

Se suelen distinguir dos tipos basicos de variables termodinamicas: las in-
tensivas y las extensivas. Las magnitudes extensivas se pueden definir en
un volumen finito y, generalmente, se expresan en funcién de su densidad,
es decir, en funcién de la correspondiente magnitud por unidad de volumen.
Magnitudes extensivas son la energia, la masa, etc. Por ejemplo, la energia
interna de un volumen V de fluido seria:

E= [ pedV (8.5)
v

donde e es la energia interna por unidad de masa, siendo pe la energia interna
por unidad de volumen. Las magnitudes intensivas no se pueden referir a
un volumen finito, salvo que sea un fluido uniforme. Ejemplos son la tempe-
ratura, la presion, etc.; también, las magnitudes intensivas cuando se refieren
a la unidad de volumen: p, pe, etc. Como las ecuaciones de estado se refieren
siempre a magnitudes intensivas (son relaciones de equilibrio local), no exis-
ten ecuaciones de estado para volimenes finitos, salvo cuando las magnitudes
fluidas sean uniformes en él.
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Ademas de las variables termodinamicas que se han ido definiendo hasta
ahora (p,p, T, e, ¥), existen otras de interés que se utilizardn en lo que sigue.
Entre ellas, las mds importantes son la entropia, s, y la entalpia, h. La en-
tropia la podemos definir en forma diferencial a partir del primer principio
de la termodinamica,

Tds = de + pd(1/p), (8.6)

donde s es la entropia por unidad de masa (todas las magnitudes energéticas
que utilizaremos, e, s, h, etc., seran por unidad de masa o especificas). La
ecuacion anterior expresa que el calor por unidad de masa transferido a una
particula fluida, que en virtud del equilibrio termodinamico local es igual al
producto de la temperatura por el incremento de entropia, dg = T'ds (si no
hubiera equilibrio, el segundo principio de la termodindmica nos dice que dq <
Tds, donde 6q ya no es una diferencial exacta), se transforma en incrementar la
energia interna por unidad de masa, de, y en producir un trabajo de expansion,
pd(1/p) (por unidad de masa). Si la composicién del fluido no fuese homogenea,
habria que anadir en el lado derecho de (8.6) términos correspondientes a los
potenciales quimicos de cada especie multiplicados por las variaciones de las
respectivas fracciones masicas, que no consideraremos aqui (ver, por ejemplo,
De Groot y Mazur, 1984, capitulo III).
La entalpia se define como

h=e+p/p, (8.7)

de forma que, utilizando (8.6), se tiene

dh = Tds + %dp. (8.8)

Por 1ltimo, otras dos magnitudes termodinamicas que utilizaremos a me-
nudo son los calores especificos a presién y volumen constantes, definidos,
respectivamente, como

Js Oh
szT(ﬁ)p— (ﬁ)p s (89)
Os Oe
= — ) == . 8.1
“ T(aT),, (a:r)p (8.10)
El cociente entre ellos se suele designar por ~:
N=2 (8.11)
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8.2. Ecuacion de conservacion de la energia

El principio de conservacion de la energia aplicado a un volumen fluido
Vi (t) se puede enunciar de la siguiente forma: la velocidad de incremento de
la energia total (cinética mds interna) contenida en un volumen fluido es igual
al trabajo por unidad de tiempo de las fuerzas (mésicas y de superficie) que
actian sobre él, mas el calor por unidad de tiempo transferidos a través de
las paredes y el calor por unidad de tiempo generado (por reaccién quimica,
radiacién, etc.) en el interior del volumen. Matematicamente,

d

1
—/ ple + v2)dV / —[p(e + vz)]dV +/ ple + —v®)v - ids
dt Jvy(t) Sf 2

=/ ofo - 94V + 6-%.ﬁds+/ qnds+/ Q,dV, (8.12)
v; o8 vy

Sy
donde e y v? /2 son las energias interna y cinética, respectivamente, por unidad
de masa, @, es el calor aportado por unidad de tiempo y unidad de volumen
al fluido (por radiacién, reaccién quimica, etc.), y ¢n es el calor transferido al
volumen fluido por unidad de tiempo y area a través del elemento de super-
ficie ds7i de orientacién 7i. Por supuesto, todas las magnitudes en (8.12) son
funciones de la posiciéon £ y del tiempo t, siendo g,, ademas, funcién de la
orientacién del elemento dsii en (Z,t). En la expresién anterior se ha aplicado
el Teorema de Transporte de Reynolds, desglosandose el primer miembro en
dos: la velocidad de incremento de las energias interna y cinética en el volumen
Vi en el instante t y la velocidad a la que estas energias son transportadas
fuera del volumen V; a través de la superficie Sy por el movimiento del fluido
(conveccién de energia). El principio de conservacién de la energia se puede
aplicar a un volumen de control arbitrario V(t) sin més que sustituir el primer
miembro de (8.12) por

d \ 1
d—t/%(t)p(e+ v)dV+/ e+ H0)(T ) - iids (8.13)

y cambiando Vy y Sy por V. y S, respectivamente, en los restantes términos.

8.2.1. Vector flujo de calor

Anélogamente al transporte de masa y de cantidad de movimiento (leccio-
nes 6 y 7), la energia (calor) puede ser transportada mediante dos mecanismos:
convectivamente por el movimiento del fluido y difusivamente por transporte
molecular. El transporte convectivo viene dado por el segundo término en la
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Figura 8.1: Vector flujo de calor.

ecuacion (8.12), mientras que el molecular viene caracterizado en esa ecuacién
por ¢, que de momento es desconocido, pero que sabemos depende, ademas
de la posicién y el tiempo, de la orientacién de la superficie. Estamos, pues,
ante una situacién andloga a la de las fuerzas de superficie (seccién 7.1.2),
en la que para caracterizar estas fuerzas (asimilables a un flujo molecular de
cantidad de movimiento) en cada instante era necesario definir una doble infi-
nitud de magnitudes vectoriales: para cada punto y para cada orientacion de
la superficie; la Unica diferencia es que ahora las magnitudes g, son escalares.
Similarmente a la definicién del tensor de esfuerzos 7, veremos a continuacién
que el flujo de calor ¢,, para cada orientaciéon del elemento de superficie dA7i en
(Z,t), viene completamente especificado si se conoce un cierto vector §(Z, t), es
decir, sélo tres cantidades escalares en cada punto. En efecto, sea un elemento
de volumen tetraédrico que tiene como vértice el punto £ y sus caras estan
formadas por tres planos ortogonales dirigidos segin (€}, €3,€3), y el elemento
de superficie dA7i (ver figura 8.1). Aplicando el principio de conservacién de la
energia en un sistema de referencia donde ¥ es localmente cero y despreciando
términos volumétricos de orden (dA)3/2 frente a dA, se tiene

O(dA)*? = q1d Ay + qad Az + q3dAs + gndA (8.14)

donde ¢n,q1,92 ¥ q3 son los valores medios del flujo de calor a través de las
cuatro caras del tetraedro que, salvo errores de orden mayor, se pueden apro-
ximar por los valores en el punto . Usando dA; = dAfi-€; = dAn;, i = 1,2, 3,
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dividiendo por dA y haciendo dA — 0, se obtiene

—Qn = N1q1 + N2qz + N3q3 - (8.15)
Definiendo el vector ¢(Z, t),

§=q€1 + g2€2 + q3€3 (8.16)

llamado vector flujo de calor, la ecuacién (8.15) se escribe simplemente

o = —73- 4. (8.17)

Los componentes q;,q2 y g3 de ¢ son pues los flujos de calor en (Z,t) a través
de la unidad de superficie orientadas en las direcciones coordenadas €, €3 y
€3, respectivamente, y son tomados positivos cuando el flujo de calor tiene el
sentido de esas direcciones. La ecuacién (8.17) muestra que el flujo de calor
a través de la unidad de area orientada hacia cualquier direcciéon 7 queda
completamente determinado cuando el vector flujo de calor ¢ se conoce en el
punto considerado (o, de forma alternativa, cuando se conoce a través de tres
direcciones mutuamente perpendiculares que pasan por dicho punto).

8.2.2. Ley de Fourier

Fenomenoldgicamente se encuentra que en un fluido de composicién homo-
genea existe una relacién lineal entre el vector flujo de calor y el gradiente de
temperatura:

g=K VT, (8.18)
siendo E el tensor de conductividad térmica. Para un medio isotrépico el
tensor K se reduce a una sola constante, K=-K 7,

donde K esla conductividad térmica que es una propiedad termodinamica
(constitutiva) del fluido, funcién de la temperatura, y en menor grado de la
presion. El signo menos se ha introducido para que K sea positivo, ya que el
calor fluye hacia las temperaturas decrecientes. La relacién anterior se llama
Ley de Fourier, quien la formulé hacia 1822 en su fammoso tratado Théorie
analytique de la chaleur (en el cual también introdujo las famosas series tri-
gonomeétricas que llevan su nombre, y que fueron el gérmen de la teoria de
funciones ortogonales y su aplicaciéon a la resolucién de problemas de con-
torno). Esta ley se puede formular de una forma tedrica rigurosa para los
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gases a través de la Teoria Cinética (ver leccién siguiente) si se cumple, co-
mo estamos suponiendo, la hipdtesis de equilibrio termodinamico local. Para
los liquidos se justifica experimentalmente para la gran mayoria de ellos y en
practicamente todas las condiciones. Cuando el fluido no tiene composicién
homogénea, ademas del flujo de calor asociado al gradiente de temperatura
(es decir, ademas del efecto Fourier), existe un flujo de calor asociado a los
gradientes de concentraciones (denominado efecto Dufour, anédlogo al efecto
Soret o difusividad térmica mencionado en la seccién 6.4), que también se
justifica teéricamente por la Teoria Cinética de Gases, pero que no considera-
remos aqui; es decir, supondremos que la composicién es homogenea o, si no
lo es, que el efecto Dufour es mucho menos importante que el efecto Fourier
(el alumno interesado en el efecto Dufour puede consultar, por ejemplo, Bird
et al. 1960, capitulo 18, o de Groot y Mazur, 1984, capitulo XI).

8.3. [Ecuacién diferencial de las energias interna y
mecanica
Aplicando el Teorema de Gauss a las integrales de superficie de la ecua-

cién (8.12), e igualando el integrando a cero se obtiene la siguiente ecuacién
diferencial para la energia total:

0 1, 1y, D 1,

5 (e+§v )+V-[p(e+§v )9 —pE(e+ 5V )

= pfn T+V (PO + V- (F-9) -V -G+ Q,, (8.20)
donde se ha utilizado el vector flujo de calor ¢y se ha desglosado 7 = —p?+?’;

gy T vienen dados por las leyes de Fourier (8.19) y Stokes (7.33), respecti-
vamente. En la primera igualdad de la ecuacién anterior se ha reescrito el
primer miembro en forma compacta haciendo uso de la ecuacién de continui-
dad (6.4). El significado fisico de los distintos términos de esta ecuacién son,
respectivamente: variacion local de la energia total por unidad de volumen;
flujo convectivo de la energia total por unidad de volumen; trabajo de las
fuerzas masicas por unidad de volumen y tiempo; trabajo de las fuerzas de
presion por unidad de volumen y tiempo; trabajo de las fuerzas de viscosi-
dad por unidad de volumen y tiempo; flujo difusivo o molecular de calor por
unidad de volumen, y generacién de calor por unidad de volumen debido a la
radiacién y a las reacciones quimicas.

La ecuacion anterior para la energia total se suele separar en dos partes,
una para la evolucion de la energia interna y otra para la energia mecanica.
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La forma mas directa de realizar este desglosamiento es obtener por separado
la ecuacién de la energia mecanica multiplicando la ecuacién de cantidad de
movimiento (7.38) escalarmente por v:

2
p2<v—>=—17~Vp+17-(V-?’)+U-pf:n. (8.21)
Dt \ 2
El primer miembro de esta ecuacion es la suma de la variacion local y flujo
convectivo de la energia mecdnica (o cinética) por unidad de volumen, mientras
que el segundo representa el trabajo mecdnico asociado a las fuerzas de presion,
a las fuerzas viscosas y a las fuerzas masicas, respectivamente, por unidad
de volumen y tiempo. Observese que todo el trabajo de las fuerzas masicas
es mecanico, es decir, se transforma en energia mecanica, mientras que los
trabajos de las fuerzas de presion y viscosidad sélo en parte se transforman en
energia mecanica, contribuyendo el resto a la energia interna, como veremos
a continuacion. Por otra parte los términos asociados al flujo de calor y a la
generacion de calor en (8.20) no contribuyen, como era de esperar, a la energia
mecanica. La ecuacion de la energia interna se obtiene sin mds que restar (8.21)
de (8.20):
De I . .

p-E:—pV-’U—i-T:V’U—V'q-FQT, (8.22)
donde se ha hecho uso de V-p@ = pV-3+4-Vpy V(¥ -9) = 7-(V.F)+7 : V©.
Los dos primeros términos del segundo miembro representan, respectivamente,
el trabajo de compresion de las fuerzas de presiéon por unidad de volumen y
tiempo (que es nulo para los liquidos ideales al ser éstos incompresibles), y el
trabajo de disipacion de las fuerzas viscosas, o simplemente disipacién viscosa,
por unidad de volumen y tiempo. Este ultimo término se suele designar por
® (funcién de disipacién viscosa de Rayleigh) y es siempre igual o mayor que
cero. Para un fluido Newtoniano se tiene:

S

2 =
VT = (VT + V) + (py — =)V - 51) : VT

o
3

= g[vm vl — gv 7] : [Vi+ Vil — %v T + (V- 5)2 > 0, (8.23)

debido a que 1 > 0 y a que para cualquier tensor simétrico de segundo orden
Averifica A: A= A; jAij > 0 [en (8.23) se ha hecho también uso de la simetria
de ?’] La funcién ® representa la velocidad a la cual se genera calor (que se
transforma en energia interna del fluido) debido a la disipacién viscosa del
flujo, por unidad de volumen.
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8.4. Ecuaciones de la entalpia y de la entropia

En muchas situaciones conviene hacer uso de una ecuacion para la entalpia
h, o bien una ecuacién para la entropia s, en lugar de la ecuacién (8.22) para
la energia interna e.

Sustituyendo (8.7) en (8.20), se obtiene la siguiente ecuacién para la en-
talpia total h + v?/2 (también llamada entalpia de remanso, ver leccién 19):

D 1 - . 0 - o
pﬁ(h+§1r2)=pfm-v+£+V-(?'-v)—v-q+Qr, (8.24)
0, si las fuerzas masicas derivan de un potencial, f;n =-VU,
D 1 oUu 6p — -
Dt(h+ —v¥4+U) = Wt+a—t+V~(T-v)—V~q+Qr : (8.25)

Esta ecuacion nos proporciona una primera integral del movimiento en algu-
nos tipos de flujos bastante comunes: aquellos que son estacionarios, en los
que no hay aporte alguno de calor y el trabajo de las fuerzas viscosas puede
despreciarse. Si se cumplen estos requisitos (ademés de que las fuerzas masi-
cas deriven de un potencial), la ecuacién anterior nos dice que la derivada
sustancial de

02

h+%+U (8.26)

es nula, es decir, esa magnitud permanece constante a lo largo del movimiento.
Esta particularidad del uso de la entalpia serd ampliamente utilizada cuando
estudiemos los flujos ideales estacionarios (leccién 19 y siguientes, donde se
cumplen los requisitos anteriores), y proviene del hecho de que la entalpia
incorpora a la energia interna el trabajo de las fuerzas de presién en forma de
un flujo convectivo, por lo que si los tinicos trabajos son los asociados a las
fuerzas de presion y a las masicas, y éstas son estacionarias, la cantidad (8.26)
se conserva.

Para obtener la ecuacién que gobierna la evolucién de la entropia en el
movimiento de un fluido hacemos uso del primer principio de la termodindmica
expresado en (8.6) y la ecuacién de la energia interna (8.22), llegandose a:

D
D

Esta ecuaciéon nos dice que la entropia varia, como era de esperar, solamente
por la accién de los efectos disipativos o moleculares, como son la disipacién

:_Q Voq+Q,. (8.27)
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viscosa y los aportes de calor. Ademas, satisface el segundo principio de la
termodindmica ya que, de acuerdo con (8.27), el incremento de entropia a lo
largo del movimiento es mayor o igual que cero (recuérdese que ¢ > 0) siempre
que, por supuesto, aportemos calor al sistema: —V-g = V-(KVT) > 0, y Q, sea
positivo. De acuerdo con la ecuaciéon anterior, la entropia es otra integral del
movimiento para los flujos ideales (efectos viscosos despreciables), adibdaticos
(¢ = 0) y sin ningtin otro aporte de calor.

8.5. Ecuaciones de estado

Para que el conjunto de ecuaciones de continuidad, cantidad de movimien-
to y energia [ecuaciones (6.4), (7.38) y, por ejemplo, (8.22)] sea un conjunto
cerrado, es necesario hacer uso de ecuaciones de estado que nos relacione la
temperatura con la presién y la densidad, T = T(p, p), y la energia interna
con, por ejemplo, la temperatura y la presién, e = e(T,p) (aparte estan las
ecuaciones constitutivas para ¥ y ¢ que ya han sido definidas). De esta forma
tendremos un conjunto cerrado de ecuaciones para p,7y p (6 p,vy T).

Para un liquido perfecto, estas dos ecuaciones de estado son:

p = constante, (8.28)

¢y = Cp = ¢ = constante, (8.29)

es decir, la densidad y el calor especifico son constantes (los calores especificos
a presién y volumen constante son iguales al ser constante la densidad, v =
¢p/cy = 1). La ecuacién (8.10) nos proporciona

de=cdl' , e=cT+e, |, (8.30)

siendo e, la energia interna de referencia a T = 0, que se suele tomar cero; de
esta ecuacién y de (8.6), al ser constante la densidad, se tiene ademas

Tds=cdT , s=cln(T/T,)+s, , (8.31)

donde s, es la entropia a la temperatura de referencia 7.
Los gases perfectos se definen como aquellos que satisfacen la ecuacion
de gas ideal,

% =R,T, (8.32)

donde
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R
R, = — 8.33
E (8.33)
es la constante especifica del gas en cuestion, cociente entre la constante uni-
versal de los gases, R = 8,314JK "'mol~! y la masa molecular M del gas, y

verifican ademas que los calores especificos son constantes:

cp = constante, ¢, = constante. (8.34)

Estas relacidones nos proporcionan

e=cyT+e , (8.35)
h=e+p/p=cT+RT+e =cT+e, , (8.36)
p—cw=Ry; , (8.37)

siendo esta ultima expresién la llamada relacion de Meyer. Veremos en la
leccién siguiente que la Teoria Cinética de Gases demuestra que v = cp/cy
es igual a 5/3 para los gases monoatémicos y 7/5 para los gases biatémicos,
lo cual coincide extraordinariamente bien con los resultados experimentales
a temperaturas no muy altas. Finalmente, haciendo uso de (8.6) y (8.32), la
entropia de un gas perfecto viene dada por

8— 8 =¢cyln (%) =, ln((f//io);> ; (8.38)

Es decir, la relacion isentrépica que satisfacen los gases perfectos es:

p/p” = constante. (8.39)
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Capitulo 9

Fundamentos microscopicos
de las ecuaciones de los
fluidos: gas monoatémico

Un conocimiento mas profundo de la validez de las ecuaciones que gobier-
nan el movimiento de los fluidos, ademés del significado de algunas de las
cantidades macroscépicas que entran en ellas y de las implicaciones de varias
de las suposiciones hechas, se puede adquirir examinando el origen de estas
ecuaciones desde un punto de vista microscépico en un caso especial: el flujo
de un gas monoatémico con densidad no muy alta.

9.1. Funcién de distribucién de un gas monoatémi-
co

Las moléculas dentro del elemento de volumen d2 x (particula fluida centra-
da en Z) pueden clasificarse de acuerdo con su velocidad. Para ello definimos
la funcién de distribucién f, de forma que

f&et)ydzddc (9.1)

es el mimero de moléculas en d> z centrado en Z y en el instante ¢ que tienen
una velocidad molecular entre ¢ y ¢ + dc, es decir, velocidades dentro del
pequeno volumen en el espacio de velocidades d2 ¢ centrado en la velocidad €.
Las propiedades de un gas monoatémico (es decir, con moléculas sin grados
de libertad internos) estan completamente determinadas una vez que f(Z,c,t)



106 MECANICA DE FLUIDOS

es conocida. Por ejemplo, la densidad numérica n y la densidad maésica p en &
y en el instante ¢ se definen:

o = /d%f(f,a, t 9.2)

o) = [ demf(at) (9.3)

donde m es la masa de la molécula (suponemos que todas las moléculas son
idénticas) y la integracién se efectia en todo el campo de velocidades ([ d3c =
fj’o‘f dec; fj’o‘f dcy ff;f’ dc3). De forma similar, la densidad de cantidad de
movimiento en (T, t) es:

= /d%maf(f,a,t) . (9.4)

Esta ecuacion, junto con la anterior, definen la velocidad macroscépica del
fluido (&, t) en el punto T y en el instante ¢, o velocidad del centro de masa
de las moléculas contenidas en el volumen d3 z en el instante t. La densidad
de energia en (Z,t) se puede expresar como:

1
e(£,t) = / @ esme f(7,E 1) | (9.5)
Si definimos la velocidad ¢’ como

c=v+c (9.6)

siendo v la velocidad media molecular definida en (9.4), ¢’ puede considerarse
como la velocidad de fluctuacién de la molécula en torno a la velocidad media
o macroscopica. Esta velocidad de fluctuacion tiene la propiedad evidente

/d%mc"f(f,at) —0 . (9.7)
Sustituyendo (9.6) en la ecuacién (9.5), se obtiene

E=p (-;-vz - e) \ (9.8)

donde el primer término es la densidad de energia cinética y e es la energia
interna,

ol 1) = % / d3c—;—mc'2 F@E et . (9.9)
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Esta ecuacién muestra que la energia interna de un gas monoatémico es una
medida de la energia translacional de sus moléculas asociada a la velocidad
de fluctuaciéon. En contraste con la energia cinética visible, o macroscépica,
asociada con el movimiento del fluido (%pv2), la energia interna es la energia
cinética oculta asociada con el movimiento caético molecular alrededor de su
velocidad media o velocidad del centro de masas.

El significado de la funcién de distribucién molecular f(Z, ¢, t) es claro a
partir de su definicién: Es la densidad numérica de moléculas en el espacio
de seis dimensiones posicién-velocidad o espacio de las fases. Nos referiremos
a este espacio como p — espacio. Sin embargo, existe una interpretacién es-
tadistica alternativa de f(Z,c,t) si se ignora la identidad de cada molécula y
nos preguntamos por la fraccién de moléculas que estan en el volumen d>
alrededor de Z con velocidades en el rango d° ¢ alrededor de ¢. La respuesta
claramente es:

f(zét)yd3zd3c |

[BcfE ct)dBs ~fEc t)d3c .

Por tanto, f(&, ¢, t)d3 c¢/n se puede interpretar como la probabilidad de encon-
trar una molécula con velocidad en el rango d° ¢ alrededor de ¢. Con este punto
de vista, f(Z,c,t)/n es la densidad de probabilidad de encontrar en (Z,t) una
molécula con velocidad €.

De lo anterior se puede observar que la descripcién de un gas (monoatémico
en este caso) a partir de la funcién de distribucién f(Z, ¢, t) es intermedia en-
tre la descripcién macroscépica en términos de p(Z,t), (T, t), e(Z, t), etc. que
hemos visto hasta ahora, y la descripcién puramente microscépica en funcién
de la velocidad y posicion de cada molécula individual. De hecho, la funcién de
distribucién se puede definir a partir de la descripcién microscépica, es decir,
si se conoce la posicion y la velocidad de todas las moléculas del gas, sin més
que obtener a partir de esta informacién el nimero de moléculas que en el
instante ¢ tienen velocidades comprendidas entre € y ¢+ dc en el elemento de
volumen d3z centrado en Z. El uso de la funcién de distribucién presupone la
hipétesis de medio continuo, ya que se promedia en elementos de volumen d3z,
pero, a diferencia con la descripcién macroscépica, se introduce un grado de
libertad mas que es el rango de velocidad molecular en el que se encuentran
las moléculas promediadas. Las magnitudes macroscépicas se pueden definir a
partir de la descripcién microscépica, como se hizo en la seccién 2.2, o a partir
de f como se acaba de hacer. La ventaja de utilizar f frente a la descripcién
puramente microscopica es obvia, ya que esta ultima es en la practica imposi-
ble de aplicar como se apunt6 en 2.2. A pesar de que la funcién de distribucién
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parece que anade poco a la descripcién macroscopica, veremos a continuacion
que una teoria basada en ella (denominada Teoria Cinética de Gases ) no
solo proporciona de una forma inmediata las ecuaciones de conservacion y de
estado descritas en las lecciones anteriores, sino que ademas permite obtener
rigurosamente las ecuaciones constitutivas (que han sido introducidas ad hoc
en las lecciones anteriores), asi como calcular los coeficientes de transporte
(D, i, K) a partir de propiedades puramente moleculares. Como desventaja,
sOlo existe una teoria cinética para los gases y, en particular, lo que vamos
a ver a continuacion es para gases monoatémicos; es decir, para gases cuyas
moléculas sélo tienen tres grados de libertad translacionales asociados a las
tres componentes del vector €. Si hubieran mas grados de libertad molecu-
lar, como rotacion, vibracién, etc., que aparecen cuando las moléculas del gas
no son monoatomicas, habria que anadir estos grados de libertad como argu-
mentos de la funcién de distribucién. Para los liquidos la Teoria Cinética es
tan complicada que es preferible hacer uso de resultados experimentales para
obtener las ecuaciones constitutivas y de estado y asi cerrar las ecuaciones
de conservacién (para derivar las ecuaciones de conservacién no es necesario
utilizar argumentos microscopicos, sino que es suficiente apelar a los princi-
pios fisicos de conservacién de la masa, cantidad de movimiento y energia,
como se ha hecho en lecciones precedentes; sin embargo, la derivacién de es-
tas ecuaciones a partir de argumentos microscopicos €s, como veremos mas
adelante, mucho mas elegante). Por supuesto, no se pretende en esta leccién
ni tan siquiera dar un repaso a la Teoria Cinética de Gases (lo cual ocuparia
un curso entero), sino sélo obtener algunos resultados elementales y describir
brevemente algunos conceptos que ayudaran a afianzar la comprensién de las
ecuaciones de los fluidos dadas en lecciones anteriores.

9.2. Ecuacion de estado de un gas monoatémico

Cuando un gas estd en equilibrio termodindmico, la densidad numérica
n(Z,t) es independiente de & y t. Por tanto, f(Z,c,t) debe ser también inde-
pendiente de £ y t, y se puede escribir simplemente como f(¢). En ausencia
de campos de fuerza, no hay direcciones privilegiadas para el movimiento de
las moléculas y f(¢) depende de & sélo a través de su magnitud c. Esto es, en
equilibrio, f(&,¢ t) = f(€) = f(c).

Sea (5/_1‘(= 71d A) un elemento de superficie centrado en el punto P en la
pared de un recipiente que contiene un gas monoatémico en equilibrio termo-
dindmico, y sea 7@ el vector unitario normal apuntando hacia el interior del gas
(ver figura 9.1). Tomemos un sistema coordenado en el que el eje T apunta en
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Figura 9.1: Flujo molecular hacia una superficie.

la direccién de —7i(é] = —7). El nimero de moléculas con velocidad entre ¢y
C + dc que inciden en el elemento de superficie § A en un intervalo de tiempo
ot es

(@6t €16 A)f(@)d®c

Si suponemos que las colisiones de las moléculas con la pared son elasticas,
cada molécula en el rango de velocidades considerado experimentara un cambio
de cantidad de movimiento de magnitud 2mc - €] en la direccién de 7. Por
tanto, estas moléculas comunicaran a la superficie una fuerza igual a

2m(¢- )26 Af(@d3c (9.10)

en la direccién de —7i. La fuerza total ejercida por todas las moléculas sobre
4 A se obtiene integrando la expresién anterior sobre ¢; > 0 y todos los valores
de ¢y y c3. Es decir, la presion p en el punto P de la superficie es

—2m/ dc1/ dCQ/ descf(6) = m/ dcl/ dcz/ de3c £()

(9.11)

debido a que f(¢) = f( \/cl + cZ + c3) es una funcién par en c;. Por la misma
razén, es también correcto decir que p viene dada por la expresién anterior
reemplazando ¢; por ¢y o por cg3, es decir,
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= %/d3cc2f(é‘) . (9.12)

Haciendo uso de la ecuacién (9.9) y teniendo en cuenta que en equilibrio ter-
modinamico ¥ = 0 (es decir, ¢ = &), se tiene:

2
p=gpe. (9.13)

Esta es la ecuacién de estado que satisface un gas monoatémico. Experi-
mentalmente se tiene que [ecuacién (8.32))

p=pR,T , (9.14)

donde Ry es la constante del gas en cuestién, igual a una constante universal
(la constante de Boltzmann k = 1,38 x 10~22 J/ K) dividida por la masa de la
molécula:

Ry=k/m . (9.15)

Comparando la ecuacién de estado experimental (9.14) con la tedrica (9.13),
uno encuentra que son equivalentes si
3

e=ZR,T | (9.16)

de donde los calores especificos a volumen y a presion constantes definidos en
(89) y (810) [cy, = (0e/0T)y y ¢p = (OR/OT)p) y su relacién (v = cp/ey)
para un gas monoatdémico son:

5

3
Cv:iRg ) cpzzRg y Y=

5

§ )
que concuerdan bastante bien con los resultados experimentales.! En términos
de la constante de Boltzmann, tenemos

(9.17)

p=nkT |, (9.18)
donde n = p/m. Por otra parte, la energia media por molécula, e,, = me, es

3

em = 5kT . (9.19)
'Por ejemplo, para el Argon, m = 6,6 x 10"%kg, la expresién (9.17b) da
¢ = 527,7Jkg”'K~!, mientras que a 250°K se encuentra experimentalmente cp =

520,3 Jkg~ ' K~!. Por otra parte, el valor teérico 7 = 5/3 sdlo difiere del experimental a
partir de la quinta cifra decimal a esa temperatura.



CAPITULO 9. FUNDAMENTOS MICROSCOPICOS DE LAS ECUACIONES DE LOS
FLUIDOS: GAS MONOATOMICO 111

Esta ecuacion muestra que la temperatura macroscépica es una medida
de la energia translacional media de una molécula. Obsérvese que las
moléculas de un gas monoatémico tiene tres grados de libertad translacionales,
con lo que, utilizando el principio de equiparticion de la energia, la enegia por
grado de libertad es %kT. Este resultado se puede extrapolar para obtener,
aproximadamente, la energia interna de un gas cuyas moléculas tengan otros
grados de libertad ademas de los translacionales. Asi, una molécula diatémica
tiene, ademas de los tres grados de libertad translacionales, uno vibracional
(variacién de la distancia que separa a los dos dtomos de la molécula), y dos
mas rotacionales (correspondientes a los dos dngulos que hay que especificar
para situar a la molécula con respecto a unos ejes que se muevan con el centro
de masa de la molécula). Sin embargo, el estado vibracional est4 normalmente
congelado a temperaturas cercanas a la ambiente,? por lo que sélo 5 grados
de libertad son efectivos a temperaturas normales. De esta forma, la energia
interna de un gas diatémico es, a temperaturas no excesivamente altas, e =
%RQT; es decir, ¢, = %Rg‘ cp= %Rg y 7 = 7/5, que concuerdan muy bien con
los resultados experimentales.?

La expresién (9.16) también proporciona la velocidad media de fluc-
tuacion, cy, de un gas en funcién de la temperatura:

1
e=;% , er= V3R, T = \/3KT/m. (9.20)

Esta expresion es valida independientemente de que el gas sea monoatomico o
no, puesto que la ecuacién (9.16) corresponde a la contribucién de la energia
translacional a la energia interna. Para O, a 15°C se tiene cr ~ 472m/s. Esta
velocidad esta relacionada, como veremos en las lecciones 10 y 25, a la veloci-
dad de propagacién del sonido en el seno de un gas [cuyo valor en un gas ideal,
es decir, que verifica (9.14), es a = \/YR,T)]. El valor relativamente alto de la
velocidad de agitacién molecular hace que, salvo cuando la velocidad media
del gas se aproxima a la del sonido, el nimero de moléculas que atraviesan
una superficie cualquiera en un sentido es aproximadamente el mismo de las
que la atraviesan en sentido opuesto, siendo la diferencia una pequena fraccion
que da cuenta del flujo medio o convectivo.

Finalmente, aunque las relaciones anteriores estan deducidas suponiendo
que el gas esta en equilibrio termodinamico, por supuesto son validas localmen-

2Para el Oy, el primer estado vibracional tiene una energia equivalente a €/k = 2230°K,
con lo que sélo a muy altas temperaturas empieza a activarse este estado.

3A temperaturas entre 0°C' y 200°C, los valores experimentales medios de ¢, y 7 para el
02 (m = 5,3523 x 10™?°kg) son ¢,, = 648,5Jkg K ~' y v = 1,4, mientras que los valores
tedricos, de acuerdo con las expresiones anteriores, son ¢, = 644,6Jkg 'K~y v =1,4.
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te bajo la hipdtesis de equilibrio termodinamico local (seccién 8.1.1), hipdtesis
que se hace ahora alin mas plausible teniendo en cuenta los valores tan altos
de la velocidad de agitaciéon molecular, que hace que las colisiones sean muy
frecuentes en condiciones normales.

9.3. Distribucion de Maxwell

Veamos a continuacion como seria la funcién de distribucién para un gas
monoatomico en equilibrio termodinamico. Para ello consideremos las molécu-
las en el elemento de volumen d®z alrededor de &, y denotemos por F(c;)dc;
la probabilidad de encontrar una molécula en ese volumen con la componen-
te de la velocidad en la direccién €] con valores entre ¢; y ¢; + dc;. Debido
a la isotropia de la distribucién de velocidades en equilibrio termodinami-
co, las probabilidades de encontrar una molécula con las componentes en las
direcciones €3 y €3 en los intervalos (cg,co + dc2) y (c3,c3 + d c3) son, respec-
tivamente, F(cp)dce y F(c3)d cs. Si estas probabilidades son estadisticamente
independientes, es decir, si la probabilidad de encontrar una componente en
un rango de velocidades dado no esta afectada por la de otra componente,
la probabilidad de encontrar una molécula cuyas componentes de la veloci-
dad estan en los intervalos (ci1,¢1 + dep), (c2,co + dcg) y (c3,¢c3 + dc3) es

F(c1) F(cp) F(c3)de; deg des. De acuerdo con lo visto anteriormente, esta can-
tidad debe ser igual a [f(c)/n]d®c, es decir,

19 _ ey e Ples) (0.21)

donde ¢ = \/c“f + r‘é + c%, para todo ¢, ¢z y ¢3. Esto es s6lo posible si f es de
la forma

fle)=nAe B | (9.22)
y, por tanto, F(c;) = AY/3 e‘B"?, i=1,2,3, donde A y B son independientes
de ¢. Para ver lo anterior, diferenciemos la ecuacién (9.21) respecto a ci,
floa _Fly 1§19 _1F(a)
fle) ¢ F(a) c f(c)

(8] F (Cl)
Es decir, 1 ffé% no es funcién de c3 y c3. De forma similar, derivando respecto a
cg, Se demuestra que no es una funcion de c3 y ¢;. Por tanto es una constante,

1 f(e)
c f(c)

(9.23)

= constante = —2B .
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Integrando se obtiene (9.22). Para determinar las dos constantes A y B, ha-
cemos uso de las expresiones de n y p: n = [d3cf(Z,Gt), p = nkT =
(m/3) [ d®cc? f(Z,&t). Utilizando las relaciones

+oo 2 m+1 1
m _—«aT
/ dzxx™e _—I‘< 3 > D2

Fim)=(m-1) , F(%)=\/7_r ,

se obtiene

B\3/? m
== B=— .
A < - > Y KT (9.24)
de donde la distribucién de equilibrio (distribucién Maxwelliana) es

f:n( m )3/2 ezp{_mc

2

27kT 2kT} ' (9:25)

Esta expresion sigue siendo valida localmente (en primera aproximacion, ver
seccién 9.6) bajo la hipétesis de equilibrio termodindmico local, sin més que
utilizar n(Z,t) y T(Z,t), y sustituir ¢? por | — 2.

9.4. Ecuacion que gobierna la funcién de distribu-
cién molecular

Considérese el espacio de seis dimensiones posicién-velocidad, es decir, el
espacio de las fases o u — espacio. En cualquier tiempo t, cada molécula tiene
una velocidad ¢ y una posicién Z y, por tanto, estd en algin punto del p —
espacio. A medida que el tiempo avanza, la molécula cambiara su localizacién
en el yu— espacio, describiendo una trayectoria en este espacio. El movimiento
de la molécula esta, por otra parte, descrito por las leyes de Newton,

dz

e 2
27 = C (9.26)

dé¢ =
= fml@.t) (9.27)
donde fm es la fuerza externa por unidad de masa que actia sobre la molécula

cuando se encuentra en Z en el tiempo ¢t. Si la posicién y la velocidad iniciales de
la molécula son conocidas, la ecuacién anterior muestra que, en cada instante
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t, se conoce la velocidad y la posicion de la molécula en el u — espacio. La
trayectoria trazada por la molécula sera generalmente suave (suponiendo que
fia(Z,t) es una funcién continua), hasta que choca con otra molécula, momento
en el que la velocidad cambiara bruscamente (se esta suponiendo que el alcance
de las fuerzas intermoleculares es mucho menor que la separaciéon media entre
las moléculas, por lo que la interacién se puede considerar como una, colision
puntual, como si las moléculas fuesen bolas de billar; mas abajo se especifica
mas concretamente esta hipétesis).

Consideremos un volumen V'(¢) en el espacio de las fases. En el instante ¢,
el nimero total de moléculas dentro de este volumen es

dBrddcf(zct)
V(t)
Si no hay colisiones, todas las moléculas en V(¢) se moveran hacia un volumen
vecino V(t + 6 t) en un intervalo de tiempo 8t y

d 8 B f(7 t) =
dt/V(t)d ed e [(Z.61)=0 .,

Sin embargo, debido a las colisiones, algunas de las moléculas que estan fuera
de V(t) en el tiempo ¢t pueden evolucionar hacia el volumen V(t+6t) en t+4t
y, de forma similar, algunas que en el instante t se encontraban en V' (¢) pueden

estar fuera de V(¢ +4t) en t+4t. Si denominamos (%{:) 2 la velocidad neta

CO
de incremento de moléculas en el volumen elemental del & — espacio d3 x d° ¢,

se tiene
dzdic (ﬂ>

d 3 3 = = —
dt/v(z)d cd’z f(Z,c,t) = 5t).,

v(t)

Aplicando el Teorema del Transporte de Reynolds y el Teorema de Gauss en
el u — espacio, se obtiene

SV GO+ Ui =(3) (9.29

donde V. denota el gradiente en el espacio de velocidades ¢. Como ¥ y ¢ son
variables independientes, siempre que f;, no sea funcién de ¢ se puede escribir

of - of
- AV V)f=[-—= . .2
S+ @D+ (FueVaf = (1) (9.29

Cuando (6 /6 f)cot es modelado con las hipétesis de que todas las coli-
siones son binarias y ocurren en espacios muy pequenos comparados con el
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camino libre medio que recorren las moléculas entre colisiones y en intervalos
de tiempo muy pequeiios comparados con el tiempo medio entre colisiones (en
otras palabras, cuando el gas esta a densidades relativamente bajas de forma
que ndg << 1, donde dy es el rango de accién de las fuerzas intermoleculares
o tamano efectivo de la molécula) se obtiene un operador integral, cuadratico
en f, llamado operador de Boltzmann. La ecuacién que resulta de introducir
esta expresion para (8 f/dt).o en (9.28) o en (9.29) es la ecuacién cinética
de Boltzmann, cuya derivaciéon cae fuera del alcance de esta pequena in-
troduccién al fundamento microscépico de las ecuaciones de la Mecanica de
Fluidos (véanse, por ejemplo, las referencias sobre Teoria Cinética citadas al
final de esta leccion).

9.5. Ecuaciones de conservacion

Una colisién entre dos moléculas provoca, generalmente, un cambio drasti-
co en las velocidades de las moléculas, pero produce un cambio muy pequeiio
en las posiciones de las moléculas durante el tiempo de colisién. Por tanto, las
colisiones entre moléculas en un pequeiio volumen d2 z alrededor de  produce
una redistribucién de las moléculas en el espacio de velocidades, pero man-
teniendo, aproximadamente, el nimero de moléculas en el volumen d3 z. Por
otra parte, la masa total, la cantidad de movimiento y la energia se conservan
en las colisiones entre moléculas, si estas colisiones son elasticas. De aqui se

deduce que
/d3cm (6—f) =0, (9.30)

/d3cm (%‘t) =0, (9.31)

/daclmc (i—{)wl =0, (9.32)

para cada T y t.
Multipliquemos la ecuacién (9.28) por m e integremos sobre todo el espacio
de velocidades. Utilizando (9.30) se tiene

/d3cm [‘;—{juv.(faquvc.(ffm)] —0

Ahora bien,
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/d3 /d3cmf—§p ,
/d3cmV-(fé')=V~/d3cmé'f=V~pt7,

[demVe (i) = [ demfin=0

- Sc—wo
donde se ha hecho uso de las definiciones (9.3) y (9.4), y la ltima relacién
viene de aplicar el Teorema de Gauss y de suponer que f va a cero cuando
¢ — 0o mas rapido que cualquier potencia positiva de 1/c. Se concluye que

dp
ot
que es la misma ecuacién de continuidad (6.4) derivada mediante considera-
ciones macroscopicas.
De forma similar, si se multiplica la ecuacién (9.28) por m € y se integra
sobre todo el campo de velocidades se obtiene

+V-(p?)=0, (9.33)

apv +V. /dacmccf( Et)—pfin=0 | (9.34)

donde se ha hecho uso de
/dscmé‘vc'(ffr‘n):/dgcvc'(ffmma_/dacnzfﬁn 'VCEZO—pfm :

Teniendo en cuenta que ¢ = ¥ + ¢/, el segundo término de (9.34) se puede
escribir como

/d3cmaaf=/d3cm(ﬁ+€')(5+c")f=/d3cm(aa+ﬁ LT fdde

donde

p= /d3cmc_7 cf (9.35)

es el llamado tensor de presiones. La ecuacién (9.34) queda
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que es idéntica a la ecuacién de cantidad de movimiento (7.23) derivada ma-
croscopicamente si se identifica el tensor de presiones cambiando de signo,

— P, con el tensor de esfuerzos 7.

Finalmente, multiplicando la ecuacién (9.28) por %m c?

e integrando,

88t[ <e+;v )]—{—V /dqc mctef—pfm-T=0, (9.37)

donde se ha hecho uso de las ecuaciones (9.5) y (9.8) y de

1 - y -1
[ egmeVe (1 f) = [ @ (4 fngme) = [ @5 o Ve =
=O—/d3c%ffm‘{2é'~vcé]d3c=—pfm-q')'.
Teniendo en cuenta que
3 1l o 3 Lo, - 5 Lpy-, =
d cgme cf=[dcm v +toel+5e (T+c)f =
1 .
=§p1)217+0+p617+0+v'P+Q ;
donde
o 3 1 12 = =
q:/d cm el f(7,61) (9.38)

se tiene

%[P(e+%v2)}+V~{ (e+;v2) 38 P }—pfm'ﬁ. (9.39)

Esta ecuacion coincide con la ecuacién de conservacién de la energia total
(8.20) derivada macroscépicamente si identificamos (9.38) con el flujo de calor
y tenemos en cuenta que

el
<y

-
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Se concluye, pues, que las leyes de conservacion macroscépicas es un reflejo
de las leyes de conservacion en la escala microscépica; mas concretamente, re-
sultado de la conservacion de la masa, cantidad de movimiento y energia en las
colisiones moleculares. Ademads, para un gas monoatémico, se ha establecido:

7= — p= —/d3cmc_"c—"f(f,5,t) )

(]':/d3c%mc'207f(i:',6,t) :

Estas expresiones muestran que el tensor de esfuerzos macroscépico se puede
atribuir al transporte invisible (en la escala macroscépica) de cantidad de mo-
vimiento debido al movimiento fluctuante de las moléculas, y que el flujo de
calor macroscépico es un reflejo del transporte invisible de energia cinética por
el movimiento aleatorio de las moléculas. Estas expresiones han sido derivadas
con la suposicién de que las moléculas son esferas elasticas que no interaccionan
unas con otras al menos que colisionen. De forma mas precisa, se ha supuesto
que el rango de accién de las fuerzas intermoleculares es muy pequefio, mucho
menor que el recorrido libre medio que las moléculas recorren entre colisiones.
Si esto no fuese asi, es decir, si las interacciones entre moléculas fueran de
largo alcance, o si el gas fuera muy denso de forma que el recorrido libre
medio entre colisiones fuese del mismo orden que el rango de accién de la
interaccién molecular, las expresiones anteriores no serian validas. Por ello se
especificé al comienzo de esta leccién que la Teoria Cinética aqui esbozada
es para un gas monoatémico cuando su densidad no es muy alta (y por ello
tampoco vale para los liquidos). De todas formas, la condicién nd} < 1 no
es muy restrictiva si se tiene en cuenta que dy es, tipicamente, del orden de
5x10~1%n. La condicién n < dg* ~ 8x10?"m=3 equivaldria, por ejemplo para
el Argon (m ~ 6,6 x 10~%6kg), a p <« 534kg/m3, una densidad bastante alta
(para conseguir esa densidad a presién atmosférica haria falta una temperatura
por debajo de un grado Kelvin, con lo cual ya no seria un gas sino un liquido).
Para los liquidos, la distancia intermolecular tipica es del orden de dy (ver
seccién 2.1).

9.6. Efecto de las colisiones sobre la distribucién de
velocidades

Para determinar el efecto que sobre la funcién de distribucién de velo-
cidades f tiene las colisiones moleculares, uno tendria que obtener la forma



CAPITULO 9. FUNDAMENTOS MICROSCOPICOS DE LAS ECUACIONES DE LOS
FLUIDOS: GAS MONOATOMICO 119

exacta de (8 f/dt)col y sustituirla en la ecuacién (9.28). Pero esto nos llevaria
demasiado lejos del asunto principal de esta leccion que es el estudio de los
fundamentos microscépicos de las ecuaciones de la Mecanica de Fluidos en
un caso especial. Sin embargo, si el sistema fluido se puede considerar, en
primera aproximacion, en equilibrio termodinamico local, en cada punto 7 y
en cada instante ¢ f no debe ser muy diferente de la funcién de distribucién
Maxwelliana de equilibrio f, [ecuacién (9.25)]:

~ n(Z,t) _mE-9) - (@-9))
T 2nkT(E,0)/m)?? e"p{ 2kT(Z,t)

folZ,€t) (9.40)
En equilibrio, las colisiones moleculares no alteraran la forma de la distribu-
cion: (6 f/8t)cot =0y f = fo. Cerca del equilibrio, uno espera que (6 f/8 t)o
sea proporcional a la diferencia entre la distribucién Maxwelliana local f, y la
funcion de distribucién real f; es decir,

donde la constante de proporcionalidad 1/7. tiene las dimensiones de una fre-
cuencia. Por tanto, cerca del equilibrio, la ecuacién (9.28) se puede aproximar
por

o S
E+V'(f6)+VC'(ffm)— Te

Para ver el significado de 7. supongamos que perturbamos un medio sin
fuerzas masicas inicialmente en reposo a temperatura T, y densidad n, uni-
formes. En este caso, antes de que se produzca la perturbacion,

(9.42)

N mc?
f= fo(a == (27rk'To/m)3/2 €xp <_2_];:_]_“0_>

Si la perturbacién introducida en el medio es pequena, f diferird de f, sélo
ligeramente. Supongamos que, en t = 0, f(Z,¢,0) = F,(&,¢), siendo F, una
funcién conocida de & y ¢. El comportamiento de f para t > 0 se puede
determinar de la ecuacién (9.42) (con f,, = 0), sujeta a la anterior condicién
inicial. Es facil ver que

F(@,E ) = fo(8) + [Fo(& — €t,8) — fo(@)]e™ ™ . (9.43)

Por tanto, f — f, exponencialmente cuando ¢t — oo a una velocidad 1/7.
Es decir, f alcanza aproximadamente el 60% de su valor asintético f, en
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un tiempo 7.. Como la distribucién de equilibrio se alcanza por medio de
las colisiones, 7! es del orden de la frecuencia de colisiones. Una estimacién
del orden de magnitud de 7. en condiciones atmosféricas se puede obtener
sustituyendo (9.20) y (8.1) en (8.4):

Te ~ Aer ~ [dEno\/3kT,/m]™! . (9.44)

Para Argon en condiciones normales (T' = 20°C,n, ~ 2,5 x 102>m~3) se tiene
7o ~ 3,73x 107105, De esta forma, al menos que estemos interesados en cambios
macroscopicos muy rapidos, el alejamiento de las condiciones de equilibrio
termodindamico local es muy pequeno. Esto es una justificacién alternativa de
la hipétesis de equilibrio termodinamico local que se suma a la realizada en la
seccion 8.1.1: para que la hipétesis sea valida, la frecuencia caracteristica de
variacién de las magnitudes macroscépicas debe ser menor que la frecuencia
de colisién 77! (~ 2,7 x 10°s™! en condiciones normales).

9.7. Ecuaciones constitutivas

Veamos primero la ecuacién constitutiva para el tensor de presiones P.
Para ello es necesario derivar una ecuacion para, 1_3, lo cual es mas sencillo es-
cribiendo la ecuacién cinética (9.42) en notacién indicial (subindices repetidos
estan sumados),

Tc

g_{'f'i(f lc)+ (ffmk:) ( f) o[=_f~é ’ (945)

donde f, viene dada por (9.40) vy Te es, en general, una funcién de £ y ¢. Si
multiplicamos esta ecuacién por m ¢} cJ e integramos sobre todo el espacio de
velocidades, obtenemos
‘)P P, —péd;;
=u +/d3cmc ——(f(‘k) JT—”E , (9.46)
(o]

donde
Biy= /d“cmc  FOE.24)

es el componente 7j del tensor de presiones P, y p es la presién termodinamica
asociada con la distribucién Maxwelliana,

p=nkT ; p6i]~:/d3cmc£c§f0(f,ﬁ’,t) . (9.47)
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Se puede demostrar que

1 1
P = g}’n = g(Pu + P22 + P33) q (948)

Para ello sabemos que, de las relaciones (9.30)-(9.32),

/d3cmc§c§<ﬂ> =0 ;
ot col

/d3cmc ¢, ( i(zfto)> =0,

que es lo mismo que (9.48) si se tiene en cuenta (9.47). Por otra parte, el
término que contiene las fuerzas masicas no aparece en (9.46) debido a que es
nulo:

por tanto,

/d3cmc,cja— (f fmk) /d c———(mc S f fmk) /d3 [——-mc c ] f frk

=0—/¢%mwwé+d%wfﬂm=0,

donde se ha hecho uso de (9.47) y de que ¢* f — 0 cuando ¢ — oo, para
cualquier n. Se debe tener en cuenta que, aunque ¢; es independiente de z; y
t, ¢ = ¢; — v; depende, en general, de £ y t a través de v;. Por esta razén no
se ha desarrollado el segundo término de (9.46). Este término puede escribirse
como

/d3cmc§cgé%(fck)=%/d3cmc c’ckf /d3(:-— mCC)Ckf

ov; ov;
3 v /
8 (P”vk-i-Qz]k +/d cm (al‘kcj+ci_8£l}k)0kf

ov; ov;
~(Pyok + Qi) + 5 @rw) %

dv; ov;
—P; 2 p
al‘k Jk+ Tx ik

I
°’I
]|

0
= a_mk(Pijvk + Qijk) +

donde se ha definido

Qijk = /d3cmc§ ¢; 6 F(@:81) - (9.49)
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Por tanto, la ecuacién (9.46) para F;; queda

OP;; 0 ov dv; P;; — poy;
8tJ 2 e— B (})ka +Q1]k)+-Ptka +})jk8.l'k = e : ) (950)
o
8 Py 0Py O v ov; Ov; 0Qiik P;j — pdi;
1 P % d LA = » v
ot TG, tPugy thkg +Pug Te (9:51)

Esta ecuacién también se puede escribir como

OP;; BP, Ovg ov; 0v; 6Q "

Pij =pdij — c ] ! 7 i Py J Y

=P = Te |y Yo thig TRt hige 5
(9.52)

Si 7. = 0, se tiene P;; = pd,;, como ya sabiamos: cuando 7. = 0 el equilibrio
termodindmico local se establece instantdneamente y f = f,. Normalmente,
Te NO €S Cero, pero es muy pequeno; por tanto, una aproximacion razonable
de la ecuacién (9.52) (con errores del orden de 72) seria aquella obtenida
sustituyendo los valores de F;; y Q;jx que se obtendrian con la distribucién
Maxwelliana en todos los términos de la ecuacion que estén multiplicados por
el pequenio pardmetro 7.: P;; = pdij, [ver ecuacién (9.47)] y Qijx = 0 (la
funcién Maxwelliana es par en ¢’y Q;;x es un tensor impar en ¢), de forma que

dp op Ov, Ov; Ov
P =pb; — d; dij=— + — J
1] D 04j Tlr<6t+ La ) z]+p( ]6$k+6.’[j+a_’l,'1> +0( )
(9.53)
Tomando la traza de esta ecuacion,
op dp avk] 9
P; =3p— 5 .
3p — 7. [ (()t +v kg )+0p3xk +0(7%)
De acuerdo con (9.48), p = 3 Py, con lo que
op Op 5 Ou _
oT +v Lax + 310*6-;; = 0(7¢) = (9.54)
o en notacion vectorial,
1D 5
2P L 2. 5= 0(r) . (9.55)

pDt 3
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Eliminando V - ¥ mediante la ecuacién de continuidad (9.33),

1Dp 51Dp ., |
pDt 3pDt V9
(0]
D p

Cuando 7. — 0 (equilibrio termodindmico instantdneo), se tiene

Ds

Dt = 0, (9.57)
donde s es la entropia por unidad de masa de un gas monoatémico [comparar
con la ecuacién (8.38) haciendo vy = 5/3]:

3 D Po 5/3
§—8o==RgIn (—) (—) . 9.58
o 2 9 Do p ( )
Por tanto, en un flujo isentrépico de un gas monoatémico se tiene
5/3
dAN (ﬁ) . (9.59)
Po Po

Si 7. es pequeno, pero diferente de cero, las ecuaciones (9.57) y (9.59) no
son validas. Sin embargo, si sustituimos (9.54) en (9.53),

ov; Ov; 2_ Owug
Pis = §idyy = 9% [ 9Y% 55 9% 2y
ij = POy T“”[axﬁaxi 3% g, | O
Es decir,
1 = = 2:
T=— P= —pI+Tcp[V17+(V17)T—§IV-17']+O(TC2) . (9.60)

Esta expresion estd de acuerdo con la ley de Stokes (seccién 7.4) si tomamos
el coeficiente de viscosidad

H=DT¢, (9.61)

y si hacemos igual a cero el coeficiente de viscosidad volumétrica p,,. Por tanto,
un gas monoatémico se comporta como un fluido Newtoniano con viscosidad
volumétrica nula si la frecuencia de colisién molecular 7! es grande compa-
rada con la frecuencia macroscépica caracteristica del problema. La ecuacién
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(9.61) permite, ademds, hacer una estimacién mas precisa del valor de 7.
Asi, por ejemplo, el coeficiente de viscosidad ¢ para el Argon a 20°C y 1latm
(1,013x 10° Pa) es 2,217x107° kg/m s. Por tanto, 7. = u/p = 2,18 x10710 571,
que estd en consonancia con la estimacion mas bien basta que se hizo en la
seccion anterior.

Para ver si un gas monoatdmico satisface la Ley de Fourier de conduccién
de calor, obtendremos una ecuacién para el tensor de tercer orden Q;;x en el
limite de 7. pequeno. Para ello, multipliquemos la ecuacién (9.45) por m ¢; ('3 c
e integremos sobre el espacio de velocidades. Teniendo en cuenta que ¢! =
¢ — U(&,t), los diferentes términos de la ecuacion serian:

/d3Cmc'»c'~ Iﬂ=injk+aviP'k+%Pki+%Pij ;

% T ot ot T e ot
0 0 0v;
/d3 cmc cﬂca—xl(fcl) = — [Qijkvl + Rijni i vi Q]kl +
0v; O vy (')v, ov; ka
7 Qrit + —Qyj —Pjx + =Py bl
+3lek1+ 3le11+vz 92, ik + alek 9z PJ ;
/ddcm(‘, (’_7 Cka (ffml [fmz ik =+ fm] sz = fmk PI_]]

donde
Rijm = /d emd;c; e f(Z,6,t) .

Por tanto, la ecuacion seria

0 Qijk O v; sz v 0 vj
Ot +[6t+ fmz] ]k+[6t +Ula fm] Py +
dvk duk ov; 0 v;
+ [W UG meJ P t3 qu t 352 Qku +
ka

Quz + o [Quk v+ Riju = % . (9.62)
donde se ha hecho uso de [ d3 cc, c’ ¢, fo = 0. Utilizando la ecuacién de con-

tinuidad (9.33), la ecuacién de cantldad de movimiento (9.36) queda

0{;-4-17
ot

V= —%v- P+fm . (9.63)
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de donde (9.62) se simplifica a la siguiente expresion:

D Q;; ov; ov; ov av,
gtjk - ijl + - Qkil + thJl + leJk =+
0 aplz 8Pl] aPlk ] Qz]k
R; P; P+ ——P;;| = — . 9.64
+al‘[ gkt = [61‘1 ik + dxy (9 ) Te ( )
Cuando 7. — 0, Q;jx = 0(7), P;j = pd;j + 0(7c) y, por tanto,
pOp 9 1) 2
Qijk = Te ;0_1:1((511'5]% + 010ki + O1kdij) — 7 = Riji| +O(15) ,  (9.65)
donde
qukl Ukl + O(Tc) s
U“ / Bemdcicic fo . (9.66)
Como R, ’ ,)d es un tensor totalmente simétrico con respecto a todos los subindi-

ces, necesariamente

Rf;l)cl = A(6ij0r + Gik0ji + 0udj)

donde
_ 1 3 4 _ nk*T?
A= 15/d emet fy(e) = (9.67)
Ahora bien,p=nkT y p=mn, con loque A=p?/p y
0 _ P
R = ;(5f1'5kl + bikbje + 0itdjk) - (9.68)

Sustituyendo esta expresién en (9.65) y haciendo uso de la ecuacién de estado
p = Ry pT, se obtiene

0
Qijk = —TeP a—x;(Rg T)(6ij0ki + dikdj1 + 0udjk) - (9.69)

El flujo de calor ¢ esta relacionado con el tensor Q;jx mediante (véanse las
ecuaciones (9.38) y (9.49))
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. 1 1
Q= /d"cim ' . f= §Qn'k : (9.70)
que, utilizando la ecuacién (9.69), queda
5 oT
=S S0 71
qk ZT,pRga:L_k (9.7 )
Por tanto,
g=—-KVT |, (9.72)
donde el coeficiente de conductividad térmica es
5
K=§Rg*rcp=ucp , (9.73)

y se ha hecho uso de las expresiones (9.61) y (9.17). Es decir, un gas mo-
noatomico satisface la Ley de Fourier de conduccién de calor con conductivi-
dad térmica dada por la ecuacién (9.73).

El niimero de Prandtl se define como

Pr (9.74)

e
K

I
RIv

siendo K
a=— (9.75)
PCp
la difusividad térmica. Por tanto, el nimero adimensional de Prandtl es
una medida de la importancia relativa de la difusidn por transporte molecular
de cantidad de movimiento en relacién a la difusion de energia o calor (se
volveréa sobre este parametro adimensional en la leccién 11). Para los gases
monoatémicos, de acuerdo con (9.61) y (9.73), se tiene Pr = 1. La teoria
exacta [es decir, si en vez de (6 f/4,t)cot = (fo — f)/7c se hubiera utilizado la
expresion exacta del operador de colisién] da un mimero de Prandtl para un
gas monoatémico igual a 2/3, que concuerda bastante bien con los resultados
experimentales.

Resumiendo, un gas monoatémico satisface las dos relaciones constitutivas
de Stokes y de Fourier que se postularon en las lecciones precedentes (se ha
considerado una sola especie quimica, por lo que la ley de Fick, légicamente,
no aparece). De la discusién anterior, las ecuaciones fluidas macroscépicas son
validas si

(a) la menor escala macroscépica de longitud es mucho mayor que la distan-
cia media sobre la cual las moléculas interaccionan,
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(b) la menor escala macroscépica de tiempo es mucho mayor que el tiempo
requerido para que la distribucién de velocidades moleculares adquiera
la forma de equilibrio termodindmico local f,, es decir, mucho mayor
que el tiempo medio entre colisiones.

La primera condicién es, basicamente, la hipStesis de medio continuo (sec-
cién 2.2), y hace posible que se pueda hablar de magnitudes medias como
n(Z, t), U(,t), etc. La segunda condicién significa que el sistema se aleja muy
poco del estado de equilibrio termodinamico local, lo cual hace posible que
sean validas las leyes constitutivas de Stokes y de Fourier, y que podamos
utilizar las relaciones termodindmicas de equilibrio (ecuaciones de estado) en
cada punto del sistema.

El procedimiento anterior para obtener las relaciones constitutivas se pue-
de hacer de una forma mas rigurosa utilizando la expresién exacta de Boltz-
mann para el operador de colisién (8 f/dt). [en vez de la forma aproximada
(fo— f)/7c utilizada anteriormente] en el limite de 7. muy pequefio (Kn < 1).
Este procedimiento se denomina método de Chapman-Enskog de resolu-
cién de la ecuacién cinética (véase, por ejemplo, Chapman y Cowling, 1970).
Los resultados obtenidos aqui mediante la aproximacién de (8 f/§t)co son
cualitativamente correctos, proporcionando las leyes constitutivas de Stokes
y de Fourier; pero los valores obtenidos para los coeficientes ¢ y K no son
exactos (en particular no es exacta la relacion entre ellos, K = pcp), aunque
se pueden aproximar bastante a los resultados experimentales mediante una
eleccién apropiada de 7.. En cambio, el método riguroso de Chapman-Enskog
si proporciona valores de iz y K que concuerdan asombrosamente bien con los
resultados experimentales.

Para finalizar, es conveniente indicar que la hipédtesis de equilibrio termo-
dindmico local no es necesaria en la Teoria Cinética de Gases, sino que so-
lamente permite obtener ecuaciones constitutivas y de estado que cierran las
ecuaciones de conservacién. Cuando esta hipétesis no se satisface (gases muy
enrarecidos o gradientes muy acusados de las magnitudes fluidas), las ecuacio-
nes macroscopicas de conservacién de cantidad de movimiento y energia en la
forma presentada en las lecciones precedentes no son validas [las ecuaciones
de conservacion dadas por las expresiones (9.36) y (9.39) si que son vélidas,
pero no conocemos el tensor de presiones ni el vector flujo de calor, por lo
que no sirven de mucho]. La ecuacién cinética (o de Boltzmann) (9.28) sigue
siendo vélida aunque no se verifique la hipétesis de equilibrio termodinamico
local, y permite obtener la funcién de distribucién en estos casos extremos.
Una vez hallada f(Z, ¢, t) mediante la resolucion de la ecuacién cinética, se ob-
tienen las variables macroscépicas (p, ¥, p, e, T ,q) a partir de las definiciones
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dadas en esta leccién. El #nico problema es que la ecuacion de Boltzmann es
una ecuacién integrodiferencial, no lineal, que sélo ha sido posible resolver en
situaciones especialmente simples, o en limites muy particulares. Uno de estos
limites es el contemplado aqui, en el que se verifica la hipdtesis de equilibrio
termodinamico local (es decir, Kn < 1); el método de Chapman-Enskog, o la
basta aproximacién hecha en esta seccién para un gas monoatdmico, propor-
ciona las ecuaciones constitutivas que cierra el problema expresado en variables
macroscopicas.
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Capitulo 10

Algunos comentarios
generales sobre
las ecuaciones fluidomecanicas

10.1. Resumen de las ecuaciones de Navier-Stokes

Como se ha visto en las lecciones precedentes, las ecuaciones que gobiernan
el movimiento de un fluido Newtoniano son:

continuidad P
p .
el 0= 10.1
Dt +pV-0=0, (10.1)
cantidad de movimiento
Dv _ -
p28 — _p Tk of, (102)
Dt
- 2 =
T =p[VT+ VT + (o — §u)v -l (10.3)
energia
D
pb—i:—pv-ﬁ'+<1>+v-(KVT)+Qr, (10.4)

_ . — 2_ =
=7 :Vi= g[vmwf’ —%V-ﬁf] : [V6+V6T—§V-17I]+uv(v-17 2. (10.5)

Este sistema de ecuaciones se suele denominar Ecuaciones de Navier-Stokes
(tomando el nombre de la ecuacién de cantidad de movimiento) y tiene por
incégnitas la densidad p, las tres componentes de la velocidad ¢, la presion
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D, la energia interna e y la temperatura 7. Para completarlo se necesitan dos
ecuaciones de estado; por ejemplo,

p=ppT) , e=e(T,p), (10.6)

ademas de la especificacién de los coeficientes de transporte,

p=pnTp) , p=wm(T,p) , K=K(T,p), (10.7)

que normalmente sélo dependen de la temperatura. Si el fluido fuese de com-
posicién no homogénea con N especies quimicas presentes en €él, habria que
completar estas ecuaciones con N —1 ecuaciones de conservacion de la masa de
cada especie quimica (seccién 6.3), ademads de tener en cuenta la dependencia
de las ecuaciones de estado y de las relaciones constitutivas con la composi-
cién, pero que no consideraremos aqui (véase, por ejemplo, Bird et al., 1960,
capitulo 18, para un resumen de ellas).

Como complemento, o algunos casos alternativa, a la ecuacién de cantidad
de movimiento a veces se usa la ecuacién (7.46) para la vorticidad, mientras
que la ecuacién de la energia interna (10.4) puede ser sustituida por la ecua-
cién de la entropia (8.27), o por la ecuaciéon de la entalpia (8.24), o cualquier
combinacion de ellas.

10.1.1. Fluidos incompresibles con propiedades constantes

Las ecuaciones anteriores se simplifican notoriamente si el fluido es incom-
presible, como ocurre casi siempre con los liquidos, o en algunos flujos de gases
a velocidades no demasiado altas y sometidos a variaciones de temperatura po-
co importantes (ver seccién siguiente para una especificacion mdas precisa). En
particular, como se apunté en la seccién 7.5, las ecuaciones de continuidad
y cantidad de movimiento quedan desacopladas de la ecuacién de la energia
si el coeficiente de viscosidad se puede considerar constante (variaciones de
temperatura no muy importantes). Suponiendo que la conductividad térmica
es también constante, las ecuaciones quedan:

V.-7=0, (10.8)
D." 1 P -
F: = —[—)vp+ I/Vzﬁ’+' frn ) (10'9)
De .
C— 0+ KVT+Q, . (10.10)

’Dt
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D= g[vm vil] : [Vi+ Vi), (10.11)

que se completan con las ecuaciones de estado p = constante (que es un dato
del problema al igual que p y K), y de = ¢(T)dT. Las dos primeras ecuaciones
tienen,como tnicas incégnitas p y ¥, siendo v solenoidal en virtud de la ecua-
cién de continuidad. La ecuacion de la energia junto con la ecuacién de estado
para e permiten obtener la temperatura T una vez conocido ¢. Suponiendo
que el calor especifico c es constante, y que no existen aportes volumétricos de
calor (Q, =0), la ecuacidn de la energia se puede escribir como

DT 9

— = —+aVT, (10.12)

Dt  pc
donde a = K/pc es la difusividad térmica, que tiene las mismas unidades que
el coeficiente de difusién D y que la viscosidad cinematica v. De hecho, si la
velocidad del fluido fuese nula, la ecuacién anterior se escribiria

%—7; = aViT, (10.13)

que es idéntica a la ecuacién (6.32) para la difusién maésica en ausencia de
reaccién quimica (que hace las veces de Q,) y con ¥ = 0, sin més que sustituir
T por la fraccién mésica Y y a por D. Incluso si ¥ no fuese nula, las ecuaciones
de difusién maésica y energia serian aproximadamente iguales (en ausencia de
reaccién quimica y aportes volumétricos de calor) debido a que el término de
disipacién viscosa (®) es generalmente pequeiio comparado con el término de
conduccién en (10.12) (ver leccién siguiente). Esta es la base de importantes
analogias entre el flujo maésico y el flujo de calor en muchos flujos solenoidales,
puesto que D y « suelen tener también valores parecidos.

10.2. Condiciones para que el campo de velocidades
sea aproximadamente solenoidal

Cuando en el movimiento de un fluido la densidad permanece constante, la
ecuacion de conservacion de la masa nos dice que el campo de velocidades es
solenoidal, lo cual, como acabamos de ver, implica importantes simplificaciones
en las ecuaciones. De aqui la relevancia de conocer con precisién las condiciones
para que el campo de velocidades de un movimiento fluido pueda considerarse
como solenoidal.

Estas condiciones se obtienen comparando los términos (Dp/Dt)/p y V-4
que aparecen en la ecuacion de continuidad. Para ello suponemos que el orden
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de magnitud de las variaciones de ¥, tanto espacial como temporalmente, es
V, que puede ser una velocidad caracteristica del problema en cuestion si,
como ocurre normalmente, las variaciones en la velocidad son del orden de
ella misma. Por otro lado, designamos por L la longitud caracteristica en la
cual varian las magnitudes fluidas, entre ellas la velocidad. Asi, para que ¥ sea
aproximadamente solenoidal se debe verificar:

%
e -0 ~ —. 10.14
]p 1<<|v i~ (10.14)

Si tomamos la densidad p y la entropia s como las dos variables indepen-
dientes que caracterizan el estado termodindmico de cada particula fluida (de
composicién homogenea), se puede escribir

&7_,.2Dp ' /Gp\ Ds

Dt~ " Dt \os/,Dt’ (10.15)
donde la propiedad termodindmica a? se define como
op
2 _
=(=) . 10.1
¢ <8p>s (10.16)

Se verd en la leccién 25 que a es la velocidad del sonido, o velocidad de
propagacién de las pequenas perturbaciones en un fluido. Para un gas ideal,

de (8.39) resulta a = /vp/p = \/7R,T. Sustituyendo (10.15) en (10.14) se
tiene la condicién de solenoidalidad

1%
< =. (10.17)

1 Dp 1 (6p> Ds
L

pa Dt~ pa? \3s), Di

Para que esta condicion se satisfaga, ambos términos del lado izquierdo deben
de ser mucho menores que V/L, por lo que se considerardn por separado.
Si la condicién

1 Dp \%4
a? Dt‘ < I (10.18)
se satisface, tenemos que las variaciones en la densidad producidas por las
variaciones de presion en el flujo son despreciables, lo cual es lo que normal-
mente se entiende por un movimiento incompresible. Es decir, la condicién
de solenoidalidad es mas general que la de incompresibilidad, aunque normal-
mente se confunden por ser esta ltima, como veremos en lo que sigue, la mas
importante de las dos condiciones de solenoidalidad expresadas en la ecuacién
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(10.17).! Para expresar (10.18) en una forma mds conveniente, utilizamos la
ecuacién de cantidad de movimiento (10.2):
1 Dp 108p @ Di 1_ _, =

— =t = |-—=+-V.7 . 10.19

pa? Dt pa? ot a2 Dt  p + fm ( )
En primera aproximacién se puede suponer, para la evaluacién de la influen-
cia de las variaciones de presion, que el flujo es isentrépico, de forma que se
puede despreciar término viscoso en (10.19), el cual afecta a la distribucién de
presiones mas que a la magnitud de su variacién (por otra parte, la influencia
de las variaciones de entropia las consideraremos después). Asi, la condicién
(10.18) se escribe:

10 1 Dv? §-f.| V
L. z +t—a2£- <z (10.20)

pa?dt 242 Dt

El primer término tiene en cuenta la no estacionariedad del flujo. Supongamos
que el flujo es oscilatorio, siendo w la frecuencia caracteristica de las oscilacio-
nes. Si V es la velocidad tipica del movimiento asociada a estas oscilaciones,
las variaciones de la presion en distancias de orden L son del orden de las
variaciones temporales de la cantidad de movimiento por unidad de volumen
multiplicadas por L, pVwL. Asi, la condicién asociada a este primer término
es pVw?L/pa®? < V/L, es decir,

w?L?
P <1. (10.21)

En cuanto al segundo término de (10.20), el orden de magnitud de Dv?/ Dt
puede venir dado por 8v? /8t o por 7-Vv?, dependiendo de cual sea mayor. En el
primer caso tendriamos wLV/a? < 1, mientras que en el segundo V?/a? < 1.
La primera de estas condiciones no es relevante como lo demuestra el siguiente
razonamiento. Si el movimiento es no estacionario y w es la frecuencia carac-
teristica, puede ocurrir que w sea mucho mayor, mucho menor, o del mismo
orden que V/L. Si w ~ V/L tenemos la condicién V?/a? < 1, que es la corres-
pondiente al término ¥+ Vv2. Si w > V/L, la condicién resultante es mas débil
que (10.21), mientras que si w < V/L la condicién V?/a? es mas fuerte. Por
tanto, la condicién wLV/a? < 1 es redundante si imponemos (10.21) junto
con

Via? <1, (10.22)

1Salvo en esta seccién, siempre que se hable de incompresibilidad se hara en el sentido
amplio de solenoidalidad, es decir, V- v = 0.
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que, por otra parte, coincide con (10.21) si w ~ V/L. Esta condicién se suele
expresar como

Mgl o, (10.23)
donde
M= % (10.24)

es el nimero de Mach, que relaciona la velocidad del fluido con la del sonido.
La condicién V2/a? < 1 se podria haber obtenido de una forma m4s intuitiva
si se tiene en cuenta que, para un movimiento isentrépico, las variaciones de
densidad 8p son, de acuerdo con la definicién de a2, del orden de a26p. Por
otra parte, en un movimiento isentrépico en el que las variaciones temporales
no sean importantes, la ecuacién de cantidad de movimiento nos dice que dp ~
pV2, es decir, un cambio en la velocidad del fluido desde 0 hasta V requiere
una variacién de presién del orden de pV2. La condicién de incompresibilidad
dp/p < 1 daria pues V%/a? < 1.

El tercer término de (10.20), que representa las variaciones de presién
producidas por las fuerzas masicas, suponiendo que éstas sean exclusivamente
gravitatorias con aceleracién g, proporciona la condicién

gL

—6?2— <1 . (10.25)
En conclusiéon, para que el movimiento de un fluido se pueda considerar

como incompresible se deben verificar las tres condiciones siguientes:

wiL?

a?

L
<1, M <1 y :'(’1—2<<1. (10.26)

La primera de ella nos dice, por ejemplo, que los efectos de compresibilidad
no se pueden despreciar cuando se estudie el flujo originado por ondas so-
noras, ya que una onda sonora de frecuencia w tiene por longitud de onda
L = a/w, por lo que w?L?/a® = 1 (ver leccién 25). La segunda condicién,
que es la mas importante de las tres desde un punto de vista préctico, nos
obliga a considerar los efectos de la compresibilidad siempre que la velocidad
del fluido se aproxime a la del sonido. Para el aire a 15°C y latm se tiene
que a = 340,6 m/s, mientras que para el agua a 15°C, a = 1470m/s, de mo-
do que los movimientos en el seno del aire (por ejemplo los originados por
un cuerpo en movimiento) a menos de, pongamos, 400 km/h (M? = 0,106),
se pueden considerar como incompresibles (con errores menores del 10 por
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ciento), mientras que practicamente todos los movimientos en agua, o cual-
quier otro liquido, se pueden considerar incompresibles. La tercera condicién
nos dice que sdlo cuando el movimiento del fluido involucra longitudes carac-
teristicas gigantescamente grandes, del orden de a?/g, los efectos gravitatorios
en la compresibilidad son importantes. Tomando g = 9,8m/32, para el aire
tenemos a?/g ~ 12km, y para el agua a?/g ~ 220km, por lo que este efecto
es importante en la meteorologia o dindmica de la atmdsfera, pero no en la
dindmica de los océanos, ya que la profundidad del mar es, como mucho, del
orden de la decena de kilémetros. Fuera de los problemas terrestres este efecto
seria importante en el estudio de la dindamica del plasma estelar.

Pasemos ahora a considerar el efecto de las variaciones de entropia en
(10.17). El coeficiente que multiplica a Ds/Dt se puede escribir, teniendo en
cuenta que la relacion entre p, p y s es inica, como

donde se ha hecho uso de (8.9) y (10.16), y se ha definido

__1/06p
p=- (a_T'),, , (10.28)
que es el coeficiente de expansién térmica del fluido (3 = 1/T para
los gases ideales, y es muy pequefio para los liquidos; para el agua a 15°C
B =1,5x10"*K~!). Sustituyendo la ecuacién (8.27) para Ds/Dt en (10.17),
se tiene la siguiente condicién (suponiendo que no hay aportes volumétricos
de calor):

3 1%
—[®+ V. - (KVT -, 10.29
e+ V- (KVD)) < 7 (10.29

que expresa que las variaciones en la densidad debidas al calentamiento por
disipacién viscosa y a la conduccién molecular de calor deben ser pequenias [si
el fluido fuese no homogéneo en composicién, apareceria un término adicional
asociado a la difusiéon masica que se obtendria sin mas que considerar la ecua-
cién (6.30) en vez de la (6.4) que estamos considerando]. Teniendo en cuenta
la definicién (10.5) para ®, tenemos las siguientes dos condiciones:

BrV 0
o1 a— K 1 10.30
oL <l fagy <1, (10.30)
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donde a y v son las difusividades térmicas y de cantidad de movimiento (o
viscosidad cinemaética), y 6 es el orden de magnitud de las variaciones de
temperatura (por ejemplo, en el caso de un fluido calentado por una pared
a temperatura T, 6 = T, — T,, donde T, es una temperatura caracteristica
del fluido lejos de la pared). Estas dos condiciones se satisfacen en la mayoria
de las condiciones practicas, dejando sélo de valer cuando la diferencia de
temperatura o la velocidad son extremadamente altas, y ocurren en longitudes
muy pequenas. Por ejemplo, para el aire en condiciones normales (20°C y
latm) se tiene Bu/c, ~ 3,8 x 107!1s y Ba ~ 7 x 1078m?/sK; para que la
primera condicién no se cumpla, V/L tiene que ser del orden de 10'!s, es
decir, si L es del orden del centimetro, V tiene que ser del orden de 10°m/s;
en cuanto a la segunda condicién, si suponemos un caso favorable en que
V =0,1m/s y L = lcm, para que no se cumpla la diferencia de temperatura
tendria que ser del orden de 10*K, siendo este mimero mayor cuanto mayor
es V o L. Por otra parte, para el agua a 20°C se tiene Bv//c, ~ 3,6 x 107145 y
Ba ~ 2,1 x 1071'm?/sK, por lo que las condiciones para que no se verifiquen
las desigualdades anteriores deben de ser aiin mas extremas.

Se concluye, por tanto, que los efectos disipativos no producen, a efectos
practicos, variaciones en la densidad, por lo que la condicién de incompresibi-
lidad (es decir, la constancia de la densidad frente a variaciones en la presi6n)
puede ser equiparada a la de solenoidalidad. De las tres condiciones de incom-
presibilidad (10.26), la segunda, M? = V?2/a? < 1, es la mas importante en
la practica.

Por 1ltimo hay que decir que en los liquidos (donde las condiciones ante-
riores se satisfacen practicamente siempre, al menos en flujos estacionarios),
se debe tener en cuenta una circunstancia adicional que es la posibilidad de
cavitaciéon o formaciéon de burbujas de vapor en el seno del liquido como
consecuencia de que la presién baje por debajo de la presién de vapor, p,(T),
en algun punto del flujo. Asi, la condicién de solenoidalidad en flujos estacio-
narios de liquidos es, simplemente, p > p, en todos los puntos. Se suele definir
un nimero de cavitacién,

_ Po—Dv

Ca = Vi (10.31)
donde p, es una presiéon de referencia (generalmente, p, > p,, por lo que
Ca ~ p,/ %pV2). Este nimero adimensional es una medida de la posibilidad
de que el flujo de un liquido cavite, puesto que si un flujo se acelera desde
v = 0 hasta v = V, su presién disminuye una cantidad del orden de %sz
(cantidad que se suele denominar presién dinamica ), siendo, por tanto,
mayor la posibilidad de cavitacién cuanto menor es Ca. En particular, si Ca
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es menor que un cierto valor critico Ca*, que depende del tipo de flujo y del
liquido en cuestion, el flujo cavita en algin punto, dejando de ser solenoidal el
campo de velocidades.

10.3. Condiciones iniciales y de contorno

Para resolver las ecuaciones (10.1)-(10.7) en un problema concreto se ne-
cesitan condiciones iniciales y de contorno. Como condiciones iniciales hay
que especificar tres magnitudes, por ejemplo, p,v y T, en el instante t = 0,
para todo el campo fluido; es decir,

Po(T) = p(Z,0) , U(Z) =0(Z,0) , To(Z)

T(,0) .  (10.32)

En el caso de un fluido incompresible [ecuaciones (10.8)-(10.11)], al ser p =
constante, hay que especificar p,(Z) = p(Z,0) en vez de p,, y la condicién
inicial para ¥ debe ser solenoidal, V - 7, = 0. A veces se buscan soluciones
periddicas de las ecuaciones (lo cual es sélo posible si las condiciones de con-
torno son también periédicas en el tiempo, o estacionarias), en cuyo caso no
se imponen condiciones iniciales, sino que se presupone una determinada de-
pendencia temporal (periddica) en la solucién. Si lo que se busca es la solucién
estacionaria de las ecuaciones (compatible s6lo con condiciones de contorno
estacionarias), los términos con derivadas temporales son identicamente nulos
y sblo son necesarias condiciones de contorno.

El tipo de condiciones de contorno depende del problema particular
considerado. En términos generales, se necesitan dos condiciones de contorno
para la velocidad (debido a que el término V - 7 contiene derivadas segundas
de la velocidad), dos condiciones de contorno para la temperatura [término
de segundo orden V - (K'VT)|, y una condicién de contorno més que puede
especificarse en términos de la presién o de la densidad (evidentemente, en
flujos incompresibles la condicién de contorno no puede ser en terminos de
la densidad). En el caso de que hubiera varias especies quimicas habria que
considerar, ademas, dos condiciones de contorno para las fracciones masicas de
todas las especies presentes (salvo una) ya que el término de difusién maésica
en (6.30) es de segundo orden en Y; (en lo que sigue supondremos que el fluido
es de composicién homogénea).

Para concretar un poco mas las condiciones de contorno se considerara un
ejemplo tipico: el flujo alrededor de un cuerpo sélido definido por la superficie
S(Z) = 0, que suponemos fijo en el sistema de referencia considerado. Este
problema quedara definido con las siguientes condiciones de contorno:
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T =Tx(Z,t) en |T|— oo.

Es decir, sobre la superficie del cuerpo la velocidad y la temperatura del flui-
do son iguales a la velocidad y temperatura de la superficie sélida (¥ = 0
y T = T, respectivamente; si la velocidad del cuerpo en relacién a nuestro
sistema de referencia fuese Up(Z,t), la condicién de contorno seria ¥ = vp(Z, t)
sobre S(Z,t) = 0, que incluye la posibilidad de que los distintos puntos de
la superficie del cuerpo se muevan con velocidades diferentes y varien con el
tiempo). Esta igualdad se debe a que la hipétesis de equilibrio termodindmico
local (Kn < 1) exige que las particulas fluidas en contacto con la superficie
deben de estar en equilibrio termodindmico con ella. Si Kn no fuese pequeio,
podrian existir diferencias entre ¥ y T en S(f) = 0 y los correspondientes
valores de la superficie sélida, pero que no consideraremos aqui.? Las otras
dos condiciones de contorno son los valores de v, p y T lejos del cuerpo. Estas
ultimas condiciones pueden sustituirse por otras equivalentes como, por ejem-
plo, poo €n vez de ps, 0 cualquier otra combinacion entre Poo, oo ¥ Too, Ya
que dadas dos de ellas, la ecuacién de estado nos proporciona la tercera.
A veces, la condicién de contorno (10.36) es sustituida por

KVT(Z,1) -7 = gp(&,t) en S(&)=0, (10.38)

donde 7 es el vector unitario normal a S, equivalente a especificar el flujo
de calor a través de la superficie [una combinacién entre (10.36) en parte de
la superficie y (10.38) en el resto es también posible]. En el supuesto que la

2La condicién de contorno para la velocidad sobre una superficie sélida fue objeto de
polémica durante gran parte del siglo XIX, después de que se establecieran las ecuaciones de
Navier-Stokes y se empezaran a resolver problemas concretos, los cuales exigian una nueva
condicién de contorno en relacién a las ecuaciones de Euler (leccién 19) que fueron estable-
cidas mucho antes. Esta polémica se zanj6 con la introduccién por Stokes de la condicién
de contorno de adherencia a la superficie, ¥ = 7. En cuanto a las condiciones de contorno
con deslizamiento o diferencia de velocidad (y temperatura) entre el fluido y la superficie,
las cuales son necesarias cuando la hipdtesis de equilibrio termodindamico local no se cum-
ple, ver, por ejemplo, T.I. Gombosi, 1994, Gaskinetic theory (Cambridge University Press,
Cambridge), capitulo X.
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condicién de contorno sea de la forma (10.38), el equilibrio termodindmico
local implicito en (10.38) (ley de Fourier) y en las ecuaciones asegurarian que
la temperatura del fluido sobre la superficie fuese igual a la temperatura del
sélido, pero esta serfa desconocida en principio.3

Otras condiciones de contorno que aparecen en muchos problemas y que no
estan contempladas en el ejemplo anterior son las que aparecen cuando existe
una superficie libre que separa dos fluidos inmiscibles, como por ejemplo un gas
y un liquido. En estas situaciones hay que tener en cuenta la tension superficial
de la interfaz, que se considerara en la leccion 13. Prescindiendo de ella por el
momento (es decir, suponiendo que la tension superficial es despreciable), las
condiciones de contorno asociadas a la superficie libre son las siguientes. (a) En
primer lugar, la interfaz es, en la mayoria de los problemas reales, desconocida
a priori, por lo que las condiciones de contorno se especifican en una superficie
S(&,t) = 0 desconocida, pero que debe verificar la ecuacién

DS(Z,t)
—— 1 -

- 0, (10.39)
es decir, la interfaz es una superficie fluida. (b) Igualdad de las velocidades y

de los esfuerzos normales y tangenciales a ambos lados de la interfaz,

—

11— (7

0, = Uy, NT1'N=MNTon, 1) =Ton—(A-Ton)A en S(Z,t)
(10.40)
donde los subindices 1 y 2 hacen referencia a los dos fluidos inmiscibles. (c)

Igualdad de las temperaturas y flujos de calor a ambos lados de la interfaz,

Sl
Sl

Th=T,, K)VT\-i=KVTy-i en S(Z,t)=0. (10.41)

Si la tensién superficial no fuese nula, la inica condicién de contorno que cam-
biaria seria la igualdad de esfuerzos (normales y tangenciales) en la superficie,
que deberia tener en cuenta los esfuerzos adicionales asociados a la tension
superficial (ver leccién 13).

3De una forma mads rigurosa, habria que resolver las ecuaciones del fluido y la ecuacién
térmica correspondiente al sélido conjuntamente, imponiendo las dos condiciones de contorno
de igualdad de temperaturas e igualdad de flujos de calor en S. Las condiciones (10.36) o
(10.38) son simplificaciones que se hacen en muchos problemas debido a que, o bien la
temperatura del sélido es conocida (impuesta externamente), o bien se quiere imponer un
cierto flujo de calor. Por otra parte, estas condiciones de contorno no tienen en cuenta el
posible aporte (o eliminacién) de calor debido a la radiacién sobre (o emitida por) la interfaz
fluido-sélido (véase, por ejemplo, Bird et al., 1960, capitulo 14).
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10.4. Existencia, unicidad y estabilidad de las solu-
ciones

El problema matematico de establecer la existencia y la unicidad del pro-
blema constituido por las ecuaciones (10.1)-(10.7) y las correspondientes con-
diciones iniciales y de contorno es muy complejo debido, sobre todo, a la no
linealidad de las ecuaciones (términos convectivos de las ecuaciones). Pocos
resultados generales han sido posible establecer en este sentido, casi todos
ellos referidos a flujos incompresibles (el alumno interesado en estos temas
matematicos formales de las ecuaciones de Navier-Stokes puede consultar, por
ejemplo, el libro de R. Téman, Navier-Stokes Equations, Elsevier, Amsterdam,
1984).

Prueba de la complejidad de las ecuaciones de Navier-Stokes es el escaso
numero de soluciones ezactas que se conocen, que no llegan al centenar, casi
todas ellas correspondientes a flujos incompresibles y a movimientos en los
cuales los términos convectivos (no lineales) de las ecuaciones son identica-
mente nulos (algunas de ellas se considerardn en las lecciones siguientes; un
repertorio mas amplio de estas soluciones exactas puede verse, por ejemplo,
en Schlichting y Gersten, 2000, capitulo V, en Rosenhead, 1988, capitulo III,
y en Landau y Lifshitz, 1987, capitulo II).

Un problema que presentan las soluciones de las ecuaciones de Navier-
Stokes asociado a la no linealidad es el de la estabilidad. Dadas unas determi-
nadas condiciones de contorno estacionarias, cabria pensar que, independien-
temente de las condiciones iniciales, pasado un cierto tiempo se llegaria a un
flujo estacionario correspondiente a la solucién estacionaria de las ecuaciones
y condiciones de contorno. Pero esto no siempre es asi. En la practica se en-
cuentra que cuando los parametros que gobiernan el problema estan dentro de
ciertos rangos, no se llega nunca a una solucién estacionaria. Matematicamen-
te lo que sucede es que la solucion estacionaria en esos rangos paramétricos es
inestable, es decir, cualquier perturbacién de la solucién, por pequena que sea,
crece indefinidamente en el tiempo. Como en todo flujo real siempre existen
pequenas perturbaciones, aunque la solucién estacionaria del problema existe
y estd bien definida, al ser inestable no se da en la practica. En otras pala-
bras, para que una solucion tenga significacion real no basta que satisfaga las
ecuaciones del movimiento y cumpla las condiciones iniciales y de contorno, es
preciso, ademas, que dicha solucién sea estable, para que las pequenas pertur-
baciones que puedan producirse en las diversas magnitudes del movimiento,
las cuales existen siempre en la realidad por multitud de causas, tiendan a
amortiguarse al avanzar el tiempo. Las inestabilidades conducen casi siempre
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a movimientos que se denominan turbulentos , a los cuales esta dedicada la
ultima parte del curso.

Algunos ejemplos de inestabilidades hidrodindmicas se veran en el capitulo
30. A continuacién se comentara muy brevemente un ejemplo significativo
para fijar algunas ideas esenciales. El ejemplo consiste en el flujo de un fluido
incompresible (por ejemplo agua) en un conducto de seccién circular. Este
problema fue considerado por Reynolds en 1883 en su trabajo pionero sobre la
inestabilidad y la turbulencia (el nombre de Reynolds aparecerd varias veces
a lo largo de este curso ligado a un parametro adimensional, cierto conjunto
de ecuaciones y algunas analogias). Para un conducto infinito alineado segin
el eje £ y de didmetro D, veremos en la leccion 15 que el campo de velocidad,
solucién estacionaria de la ecuacién de Navier-Stokes para este problema, se
puede escribir como

F=u(r)d , ur)=2V [1 - (%)2] , (10.42)

donde r es la coordenada radial y V es la velocidad media (igual al caudal @
que circula por el conducto dividido por la seccién, V = 4Q/m D?). Es decir, el
movimiento es unidireccional (con sélo una componente del vector velocidad
segun el eje z), siendo el perfil de la velocidad un paraboloide: la velocidad es
ma&xima en el centro e igual a dos veces la velocidad media, y nula en la pared
del conducto r = D /2. Reynolds observ6 experimentalmente que esta solucién
laminar se presenta en la practica siempre que el parametro adimensional

:VpD
__# 3

llamado nimero de Reynolds en su honor, es menor que un cierto va-
lor critico (alrededor de 2300). Para valores mayores que el critico, Reynolds
observé (inyectando tinta en el flujo) que el movimiento dejaba de ser unidi-
reccional para volverse tridimensional y cadtico (turbulento), y ello a pesar
de que la solucién anterior es véalida independientemente del valor del mimero
de Reynolds. Esto se debe a que el flujo se hace inestable por encima de un
valor critico Re*, de manera que si Re > Re*, cualquier perturbacién presente
en el flujo se amplifica exponencialmente hasta invalidar la solucién estacio-
naria (10.42). Esto no quiere decir necesariamente que para Re > Re* no
se encuentren soluciones laminares en la practica, pero son altamente impro-
bables, ya que siempre existen perturbaciones originadas, por ejemplo, en la
entrada del conducto. Si uno es extremadamente cuidadoso en el diseno de la
entrada del conducto, se puede retrasar la aparicion del flujo turbulento, pero

Re (10.43)
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la inestabilidad esta presente por encima de Re*, y mas tarde o mas tempra-
no el flujo se hard turbulento si el conducto es suficientemente largo. Por el
contrario, si Re < Re*, el flujo es siempre estable (laminar), ya que todas las
perturbaciones que se puedan producir son amortiguadas.

Existen muchos tipos diferentes de inestabilidades hidrodinamicas, algunos
de los mas representativos seran discutidos en la leccién 30. El ejemplo ante-
rior es un caso tipico de inestabilidad relacionada con la viscosidad del fluido,
cuya aparicién estd caracterizada por un mimero de Reynolds critico. Otras
inestabilidades estan asociadas a fuerzas centrifugas, gravitatorias, magnéti-
cas, etc., y su aparicion viene caracterizada por nimeros adimensionales que
cuantifican esas fuerzas.

Como se apunté anteriormente, la inestabilidad de las soluciones de las
ecuaciones de Navier-Stokes y la consecuente formacién de movimientos cadti-
cos e irregulares, en una palabra, turbulentos, es una consecuencia del carac-
ter no lineal de las ecuaciones, es decir, de los términos convectivos v - VU
y U VT. Las soluciones turbulentas que aparecen cuando dejan de ser esta-
bles las laminares son, por supuesto, también soluciones de las ecuaciones de
Navier-Stokes, pero su caracter cadtico e impredecible las hacen poco ttiles en
la prética. Por ello, cuando se estudian los flujos turbulentos desde un punto de
vista ingenieril, se recurre a un tratamiento estadistico de las soluciones, que
se complementa con informaciones empiricas (Parte IX). Podria pensarse que
estas soluciones cadticas son el resultado de la complejidad del problema, es
decir, del enorme nimero de grados de libertad presentes en un flujo real, que
hace imposible obtener una informacién cuantitativa precisa del movimiento,
recurriendose por ello al tratamiento estadistico. Esta era una creencia que
se tenia hasta hace relativamente poco tiempo, basada en que casi todos los
comportamientos cadticos aparecian en sistemas con muchos grados de liber-
tad (un gas o un liquido estd constituido por muchisimas moléculas y por ello
se recurre a teorias que de una manera u otra introducen hipotesis estadisti-
cas, como la Teoria Cinética de Gases esbozada en la leccién 9, o la Teoria de
Medios Continuos que estamos utilizando para describir a los fluidos). Pero se
sabe que sistemas mecanicos simples, con la condicién de que sean no lineales y
tengan tres o mas grados de libertad, pueden tener comportamientos caéticos e
impredecibles en algunos rangos paramétricos. Un ejemplo tipico es el péndulo
esférico forzado que, con sélo tres grados de libertad, tiene soluciones cadticas
para ciertos valores del parametro forzador. En definitiva, sistemas no lineales
simples no necesariamente poseen comportamientos dinamicos simples.
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10.5. Meétodos de estudio de los problemas
fluidomecanicos

Ante la enorme complejidad de obtener soluciones exactas de las ecuaciones
de Navier-Stokes, a la hora de obtener resultados précticos se han seguido
varias alternativas, que se resumen a continuacion.

10.5.1. Métodos experimentales

Una de las técnicas mas comunmente usadas para resolver problemas flui-
domecanicos ha sido, y sigue siendo, la experimentacién guiada por el analisis
dimensional y la semejanza fisica, que ha proporcionado resultados muy fructi-
feros. Ejemplo pionero en este campo fue el experimento de Reynolds descrito
anteriormente: Reynolds obtuvo el parametro adimensional (10.43), que carac-
teriza la transicion de flujo laminar a turbulento en un conducto, mediante un
analisis puramente dimensional del problema. La leccion siguiente se dedica a
este tema tan importante del andlisis dimensional y la semejanza fisica, que
no es exclusivo, ni mucho menos, de la Mecéanica de Fluidos.

Las técnicas experimentales en la Mecdnica de Fluidos han experimentado
una extraordinaria expansion en los iltimos aiios. Por ejemplo, a los métodos
clasicos de medicién de la velocidad mediante medidas de la presién (tubos de
Pitot y similares) y por anemometria de hilo caliente, se han sumado métodos
Opticos, no intrusivos, como la anemometria Laser-Doppler, o la anemometria
Fase-Doppler que, aparte de no interferir en el flujo, permite obtener mucha
mas informacion sobre el campo de velocidades y otras magnitudes fluidas.
También se han introducido nuevas técnicas de visualizacién de flujos, muy
utiles para obtener una informacion cualitativa del movimiento, y que en mu-
chos casos es imprescindible previamente a la experimentacion cuantitativa,
o a la busqueda de soluciones matematicas del problema. Con la llegada de
ordenadores potentes, han sido posible técnicas de visualizacidén cuantitativas
de flujos mediante el seguimiento con una cdmara de particulas dispersas en
el fluido y el tratamiento digital de las imdgenes sucesivas (técnica llamada
PIV, del inglés Particle Image Velocimetry). Esta técnica permite tener ins-
tantdneamente el campo de velocidad de un flujo. Con el uso del ordenador
también es posible aprovechar ahora datos que hubieran sido inservibles hace
algunos anos, y realizar tratamientos estadisticos que no eran posible hace
poco tiempo. Ademas, se pueden formar bancos de datos de resultados expe-
rimentales y, por tanto, su utilizacion sin la necesidad de realizar uno mismo
los experimentos.

A pesar de la importancia que los métodos experimentales han tenido y
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siguen teniendo en la Mecanica de Fluidos, por razones de tiempo es dificil
incluirlos en un curso introductorio a esta ciencia sin menoscabo de temas
mas basicos y fundamentales. Por ésta y otras razones, no se trataran los
métodos experimentales en este curso. El alumno interesado puede consultar,
por ejemplo, los siguientes textos basicos: R.J. Goldstein (editor), Fluid Me-
chanics Measurements, Hemisphere, 1983; Y. Nakayama (editor), Visualized
Flows, Pergamon, 1988; L. Rosenhead (editor), citado en la leccién 8, capitulo
X; F. Durst y otros, Principle and Practice of Laser-Doppler Anemometry,
Academic, 1981; W. Merzkirch, Flow visualization, Academic, 1987; F.T.M.
Nieuwstadt (ed.), Flow visualization and image analysis, Kluwer, 1993.

10.5.2. Modelos simplificados

Otro de los métodos mas empleados en la resolucién de problemas fluido-
mecanicos ha sido la utilizacién de modelos simplificados, tanto de las pro-
piedades del fluido como del tipo de movimiento. Son pocos los campos de la
fisica en donde el empleo de modelos simplificados ha sido tan fecundo como
en la Mecanica de Fluidos. Uno de los modelos mas espectaculares ha sido el de
suponer el campo de velocidades solenoidal (o fluido incompresible),
considerado en detalle en la seccién 10.2. Como se recordara, esta aproxima-
cion se cumple practicamente siempre en los flujos de liquidos, y en bastantes
flujos de gases caracterizados por la pequenez de ciertos parametros adimen-
sionales, entre los cuales el mas importante es el nimero de Mach. Esta es una
constante de los modelos simplificados: su validez estd caracterizada porque
ciertos parametros adimensionales que gobiernan el problema son muy gran-
des, o muy pequenos, por lo que se pueden despreciar ciertos términos de las
ecuaciones, simplificindolas. De aqui la importancia de analizar dimensional-
mente las ecuaciones previamente a la resolucién de cualquier problema (ver
leccién siguiente). '

Otro modelo simplificado muy importante en la Mecanica de Fluidos es el
modelo de fluido ideal, consistente en suponer nulos los efectos disipativos
(basicamente, suponer que la viscosidad y la conductividad térmica son nu-
las) en las ecuaciones del movimiento. A este modelo se dedica la parte VI de
la asignatura. La relevancia historica de esta hipdtesis queda patente no sélo
en el hecho de que las ecuaciones del movimiento para el fluido ideal fueran
establecidas por Euler casi un siglo antes de la formulacién de las ecuaciones
de Navier-Stokes, sino, también, en la gran fecundidad de ideas que ha origi-
nado, especialmente con la Teoria de Capa Limite a principios de este siglo.
La hipétesis de fluido ideal se aplica en muchos problemas debido a que una
fraccion importante de los fluidos que se presentan en la naturaleza, asi co-
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mo muchos de interés tecnolégico, entre los que se incluyen el aire y el agua,
tienen viscosidades y conductividades térmicas muy pequenas, con lo que los
efectos disipativos son despreciables, salvo en problemas muy especiales o en
regiones muy limitadas del flujo (ondas de choque, capas limites, estelas, etc.);
lo cual no quiere decir que estas regiones donde los efectos disipativos son im-
portantes sean irrelevantes, ya que muchas veces condicionan la totalidad del
movimiento. El empleo del modelo de fluido ideal introduce una simplificacién
fundamental en las ecuaciones de Navier-Stokes: desaparecen los términos que
contienen las derivadas de mayor orden (V FyV. @)- Por tanto, no se puede
imponer, entre otras, la condicidn fisica esencial del fluido viscoso de no desliza-
miento en una superficie sélida. Esto hace que la solucién de un problema con
el modelo ideal sea esencialmente distinta que la solucién del mismo problema
con fluido viscoso, al menos en la inmediata proximidad del contorno, incluso
cuando se hace tender a cero el coeficiente de viscosidad en la solucién wvisco-
sa, cuyo limite cabria esperar que proporcionase la solucién correspondiente
al fluido ideal. Esta dificultad, que produjo una gran controversia y algunas
paradojas a finales del siglo XIX y principios del XX, la solventé Prandtl con
la introducién del concepto de capa limite en 1904. Matematicamente, esta
solucion corresponde a lo que mas tarde se ha denominado un problema de
perturbaciones singulares, consistente en acoplar dos soluciones asintéticas,
una correspondiente al fluido ideal exterior lejos de la superficie sélida, y otra
al fluido viscoso confinado en una capa delgada alrededor de la superficie sélida
(en donde se simplifican las ecuaciones debido a la delgadez ). De esta forma,
un problema que originalmente era muy complicado de resolver, se reduce a la
resolucién de dos problemas simplificados y acoplar las soluciones (un ejemplo
concreto de la utilizacién de esta técnica se considerarédn en la leccién 14). Este
concepto de capa limite viscosa fue extendido subsiguientemente a los andlogos
de capa limite térmica y capa limite de difusién masica, constituyendo una de
las ramas m&s importantes de la Mecanica de Fluidos, la Teoria de Capa
Limite, a la cual se dedica la parte VIII de estos apuntes.

Estrictamente, la hipétesis de fluido ideal esta caracterizada, como vere-
mos en la leccion siguiente, por el limite en el cual el nimero de Reynolds
[ecuacién (10.43)] y el producto del mimero de Reynolds por el nimero de
Prandtl [ecuacién (9.74)] son ambos muy grandes (en el caso de que existan
varias especies quimicas, tiene que ser también grande el producto del nime-
ro de Reynolds por los correspondientes nimeros de Schmidt, este ltimo se
definird en la leccién siguiente). Como en muchos fluidos de interés el nimero
de Prandtl (y el de Schmidt) son de orden unidad (ver leccién siguiente), es
practica habitual identificar el modelo de fluido ideal con la hipétesis de niime-
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ro de Reynolds muy grande. El limite opuesto, consistente en suponer que el
numero de Reynolds es muy pequeno, caracteriza a los flujos en los que los
efectos disipativos son dominantes en las ecuaciones. Estos flujos constituyen
también un capitulo importante de la Mecanica de Fluidos, siendo algunas de
las aplicaciones mas relevantes la lubricacién fluidomecanica, ciertos flujos en
conductos y la sedimentacién de particulas sélidas pequenas. Estos flujos en
los que los efectos disipativos son dominantes (nimero de Reynolds pequeno)
se estudiaran en la parte IV. La razén de considerar los flujos con viscosidad
dominante previamente a los flujos ideales, contrariamente a como histérica-
mente han sido introducidos, se debe, principalmente, a que en el limite de
viscosidad dominante las ecuaciones son lineales al desaparecer los términos
convectivos, con lo que su resolucién es mucho mas simple.

10.5.3. Métodos numéricos

Por 1ltimo, otro de los métodos de ataque de las ecuaciones de Navier-
Stokes es la integracién numérica directa, que en la actualidad esta en plena ex-
pansion debido al desarrollo espectacular de las calculadoras electrénicas. Para
la resolucién de las ecuaciones de Navier-Stokes se utilizan métodos numéricos
muy diversos, algunos de ellos desarrollados especificamente para resolver pro-
blemas fluidomecéanicos. Entre ellos estan los métodos de diferencias finitas, de
elementos finitos, de elementos de contorno, el método de las caracteristicas,
los métodos espectrales, etc. La mayor dificultad con los métodos puramente
numéricos es el de la estabilidad dinamica de las ecuaciones, que da lugar a
fenémenos de turbulencia, la cual viene a sumarse a la dificultad intrinseca de
las ecuaciones. A pesar de ello, la capacidad y rapidez de los ordenadores ha
crecido tanto en los ultimos tiempos que ya es posible resolver numéricamente
las ecuaciones de Navier-Stokes en situaciones no triviales. En particular, es
ya posible resolver sin dificultad cualquier problema fluido bidimensional no
estacionario y muchos problemas tridimensionales, salvo problemas que invo-
lucran escalas muy pequenias como la de la turbulencia, o problemas con zonas
muy delgadas a altos mimeros de Reynolds. De todas formas, se estan reali-
zando avances muy importantes en estas areas en los ltimos tiempos, tanto
en técnicas computacionales como en capacidad de los ordenadores, y no es
improbable que muchos de los problemas que actualmente son inaccesibles
puedan ser resueltos en un futuro inmediato.

Uno de los aspectos mas importantes de la introduccién del ordenador en
la resolucién de problemas fluidomecénicos (como ocurre también en otras ra-
mas de la fisica) ha sido la aparicién de la experimentacién numérica, con
dos consecuencias muy importantes. En primer lugar, una vez que se consi-
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gue simular un flujo, es posible medir todo sobre él, incluyendo magnitudes
basicas, como la vorticidad, muy dificiles de medir por experimentacion fisica.
Estas magnitudes forman parte intrinseca de la simulacién numérica y estan
disponibles sin esfuerzo adicional a la vez que otras magnitudes de las que si
se podria obtener informacién experimental. Por otra parte, es posible reali-
zar experimentos numéricos en situaciones esencialmente imposibles para los
experimentos fisicos. Por supuesto, hay muchos flujos cuya complicacion ex-
cede todavia la capacidad de los ordenadores mas potentes, y en algunos de
ellos el experimento fisico sigue siendo aun imprescindible para esclarecer el
problema.

Como ocurria con los métodos experimentales, a pesar de que los métodos
numéricos constituyen cada vez mas una de las herramientas mas ttiles para
resolver problemas fluidomecanicos, es dificil incluirlos en un apretado progra-
ma de un curso introductorio a la Mecanica de Fluidos, en el que debe tener
cabida aspectos mas basicos de esta ciencia. Por ello estos métodos se suelen
dejar para un curso mas avanzado de Mecdnica de Fluidos Computacional.
De todas formas, unos pocos aspectos numéricos basicos seran introducidos
en algunas de las lecciones que siguen. Informacion basica y avanzada pue-
de obtenerse, por ejemplo, en los siguientes textos: R. Peyret y T.D. Taylor,
Computational Methods for Fluid Flow, Springer, 1983; C. Canuto, Spectral
Methods in Fluid Dynamics, Springer, 1988; M.B. Abbot y D. Basco, Com-
putational Fluid Mechanics, Wiley, 1989; J.F. Wendt (ed.), Computational
Fluid Dynamics, Springer, 1992; P.J. Roache, Computational Fluid Dynamics,
Hermosa, 1998; J.D. Anderson, Computational Fluid Dynamics, McGraw-Hill,
1995; R. Peyret (ed.), Handbook of Computational Fluid Dynamics, Academic,
1999. También, en los apuntes de la asignatura Mecdnica de Fluidos Compu-
tacional, de la E.T.S.I. Industriales de Malaga, por J. Ortega Casanova y R.
Fernandez Feria, 2000.
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Capitulo 11

Analisis dimensional y
semejanza fisica

11.1. Introduccion

El andlisis dimensional es importante por dos motivos principales. Por un
lado permite conocer el minimo nimero de variables que gobierna un determi-
nado problema, reduciendo las variables fisicas originales a un conjunto menor
de parametros adimensionales. De esta forma racionaliza la experimentacion,
ya que establece cudles son los parametros realmente relevantes en un determi-
nado proceso. Por ejemplo, en el experimento de Reynolds que se describié en
la seccién 10.4, aunque la transiciéon de flujo laminar a turbulento viene en
principio gobernada por las propiedades del liquido, p y u, por el didmetro del
conducto, D, y por el caudal (o velocidad media U), el andlisis dimensional
nos dice que el proceso no estd gobernado por cada una de estas variables por
separado, sino por una combinacién adimensional de ellas, pDU/pu (el nimero
de Reynolds), y que es, por tanto, el paramertro que debemos controlar expe-
rimentalmente. Esta minimizacién de las variables también permite establecer
de una forma precisa cuales son las condiciones que se deben cumplir para que
exista semejanza fisica entre dos problemas: no hay mas que exigir que las va-
riables adimensionales sean iguales. En el ejemplo anterior, para que dos flujos
sean fisicamente semejantes no hace falta que sean iguales todos los parame-
tros fisicos, p, u, D y U (lo cual exigiria que los flujos fuesen idénticos), sino
que es suficiente con que el mimero de Reynolds sea el mismo. El otro motivo
por el cual el analisis dimensional es importante es que permite conocer con
precision cuando una determinada variable es relevante o no en un problema,
ya que las nuevas variables son puros nimeros adimensionales; basta averiguar
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si alguno de esos nimeros es siempre muy pequeno, o muy grande, o aproxi-
madamente constante, para que esa wvariable no influya, practicamente, en el
Pproceso.

El anélisis dimensional estd basado simplemente en que las leyes fisicas,
que relacionan magnitudes cuyos valores dependen del sistema de unidades
utilizado, son independientes de las dimensiones usadas. Si estas leyes son co-
nocidas explicitamente, como ocurre con las ecuaciones de Navier-Stokes en
la Mecéanica de Fluidos, una forma de aplicar el andlisis dimensional consis-
te en adimensionalizar las ecuaciones, es decir, en escribirlas en términos de
variables sin dimensiones, lo cual proporciona el conjunto de parametros adi-
mensionales que gobierna el proceso, cuyo mimero es siempre menor que el de
los parametros dimensionales originales. Pero el andlisis dimensional se puede
aplicar incluso si no se conocen las leyes explicitamente (por ejemplo, cuando
lo que queremos es, precisamente, hallar esas leyes experimentalmente), si se
conocen las magnitudes fisicas que pueden influir en el proceso considerado.
Antes de pasar a formular la teoria general del andlisis dimensional basada
en el Teorema IT de Buckingham (seccién 11.4), vamos a adimensionalizar las
ecuaciones de Navier-Stokes para conocer cuales son los parametros adimen-
sionales mas importantes que aparecen en la Mecédnica de Fluidos, algunos de
los cuales ya han sido introducidos en las lecciones anteriores.

11.2. Parametros adimensionales de la Mecanica de
Fluidos

Para adimensionalizar las ecuaciones de Navier-Stokes (10.1)-(10.5) defini-
mos las siguientes variables:

t"=t/to, T =&/Lo, U =7/V,, D" =0/DPoy P =P/Po, K = p/po,s

ﬂ: =ﬂv/ll0a f:u = fm/gm T* =T/T01 K* =K/K07 C: :Cv/cvo-

(11.1)
Las variables con asterisco son adimensionales y las magnitudes con subindi-
ce cero son valores caracteristicos, o tipicos, de las respectivas magnitudes en
el problema que estemos considerando, de forma que las variables adimen-
sionales son de orden unidad (para las fuerzas madsicas suponemos que éstas
son sélo gravitatorias, y g, es la aceleracion de la gravedad a nivel del mar).
Introduciendo estas nuevas variables en las ecuaciones (10.1)-(10.5), se obtiene

pO ap* + pOVO ‘7* (p*’l—)-u)

o =0 , (11.2)
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V, 00" poV2 Vo = .
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= 22V .o 2 p* v* - (K*V*T 114
TV T+ SRR+ LV ) . (114

donde V* es el operador nabla en la variable £* y se ha supuesto, por simplici-
dad, que no hay aportes volumétricos de calor. Para que todos los términos que
aparecen en las ecuaciones sean adimensionales, hay que dividirlas por algu-
no de los factores dimensionales que multiplican a las variables con asterisco.
Para que aparezcan los parametros adimensionales que normalmente se utili-
zan, dividimos por los factores que multiplican al segundo término (término
convectivo) de cada una de las ecuaciones, resultando:

L, O0p*

AT +V* (p*v*) =0, (11.5)
Lo ov* Do Ho =/* Lo o 4
* . *—-t‘vix—-t:_ v* * *‘ * *, 116
vitl o TPUVY o2 P YT Ay (11.6)
LO *ae* * —nk * ok
Vit o TPV Ve
Do El wi .4 uOV; * KO * * 7k k
= — v it —Mo ——V* (K*V*T). 11.7
pvaoTop PoCvoToLo PoCuvoVoLo ( ) ( )

Los parametros adimensionales que aparecen en cada término da una idea de
la importancia de ese término en relacién a los términos convectivos, que estan
multiplicados por la unidad. A continuacién se enumeran dichos parametros
adimensionales y se comenta su significado fisico.

Numero de Strouhal,

L,
Voto '’
que aparece multiplicando a los términos que en cada ecuacién representa las

variaciones temporales. Este mimero es el cociente entre el tiempo de residen-
cia, L,/V,, y el tiempo caracteristico t,, siendo una medida de la importancia

St =

(11.8)
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de la variacién local frente a la variacién por el movimiento del fluido. Si
St < 1, los términos de variacién local son despreciables frente a los tériminos
convectivos, y el movimiento se denomina casi estacionario. Fisicamente, si
St < 1, el fluido recorre, con velocidad caracteristica V,, la longitud carac-
teristica del problema L, en un tiempo (L,/V,) mucho menor que el tiempo
caracteristico t, de variacion de las magnitudes fluidas con el tiempo, por lo
que el fluido no se entera de la variacién temporal y el flujo se puede conside-
rar estacionario. Por el contrario, si St > 1, la variacién temporal es mucho
mads importante (més rapida) que la asociada al movimiento del fluido, y se
pueden despreciar los términos convectivos de las ecuaciones.
Niumero de Euler,

_ Do

Eu= ooVZ (11.9)
que representa la importancia relativa de las fuerzas de presion frente a la con-
veccién de cantidad de movimiento o fuerzas de inercia. Este niimero est4 re-
lacionado con dos que ya hemos definido con anterioridad, dependiendo que
el fluido sea un gas (ideal) o un liquido (incompresible). En el caso en que el
fluido sea un gas ideal, se tiene
Do 1 a?, 1
Eu= oV ;W =E (11.10)
donde a, es la velocidad del sonido del gas, «y es la relacion de calores especificos
y M es el nimero de Mach o cociente entre la velocidad del gas y la velocidad
del sonido (ver seccién 10.2), todo ello en las condiciones p,, p,. Asi, para un
gas ideal, el nimero de Euler estd relacionado con el inverso del cuadrado
del nimero de Mach y, por tanto, nos da una idea de la compresibilidad del
gas en el flujo considerado. Si Fu > 1, al ser v siempre de orden unidad,
M? <« 1y, como se discutié en la seccién 10.2, el flujo se puede considerar
como incompresible o solenoidal.

Para un liquido ideal (p = constante), el nimero de Euler est4 relacionado
con el nimero de cavitaciéon Ca, definido también en la seccién 10.2, puesto
que si po > py, Eu ~ Ca/2. Por tanto, esta relacionado con la posibilidad de
cavitaciéon del liquido: cuanto mas pequeino sea Fu, mayor es la posibilidad
de cavitacién, ya que la depresion dinamica originada por el movimiento, del
orden de p,V,2, es mayor para una p, dada. Asi, pues, el nimero de Euler
estd relacionado, tanto para gases como para liquidos, con la compresibilidad
del fluido (recuerdese que, en la mayoria de las situaciones, la tinica posibilidad
para que un liquido pueda ser compresible es que cavite; véase seccién 10.2).

Nimero de Reynolds,
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__ poVoLo _ VoLo

Ho Vo -
Es una medida de la importancia relativa de las fuerzas de inercia frente a
las fuerzas viscosas. Si Re < 1, el término convectivo puede despreciarse
frente al viscoso en la ecuaciéon de cantidad de movimiento, y al contrario,
si Re > 1, el término viscoso es despreciable frente al de inercia, teniéndose
lo que se denomina un flujo ideal (en el limite formal Re — oo). El nimero
de Reynolds es el parametro adimensional mas importante de la Mecéanica de
Fluidos por dos razones fundamentales: porque la divisiéon de los movimientos
fluidos en flujos a altos y bajos nimeros de Reynolds, es decir, movimientos
ideales y movimientos con viscosidad dominante, ha sido histéricamente la
division fundamental de la Mecanica de Fluidos, y es la que utilizaremos en lo
que sigue (véase seccién 10.5.2); por otra parte, en ausencia de otras fuerzas
que no sean las de viscosidad, el mimero de Reynolds es el parametro que
caracteriza la formacion de inestabilidades y la transicién a la turbulencia,
cuando su valor es mayor que un cierto valor critico que depende del tipo de
flujo.

Nimero de Froude,

R

(11.11)

2
Fr= Vo
goLo
que mide la importancia relativa de las fuerzas de inercia frente a las gravitato-
rias. Si F'r > 1, las fuerzas gravitatorias pueden despreciarse en el movimiento
del fluido y, por el contrario, si F'r < 1, son dominantes frente a la conveccién
de cantidad de movimiento.
El pardmetro p,/p,cyoT, representa la relacion entre el trabajo de compre-
sién y la conveccion de energia interna teniendo sentido, por tanto, inicamente
en fluidos compresibles. Para un gas ideal se puede escribir:

, (11.12)

P _ R _ (11.13)
PoCvoly  Cuo
por lo que es una propiedad del gas y no del tipo de movimiento.

El pardmetro p,V,/pocvoTo L, €s una medida de la importancia de la energia
disipada por viscosidad frente a la convecciéon de energia interna. Para los
liquidos este parametro suele ser muy pequeno, por lo que la disipacion vis-
cosa es generalmente despreciable. Por ejemplo, para el agua a T, = 20°C
(Vo =~ 107%m?2/s, cyo ~ 4,18 x 103J/kgK) se tiene p,Vo/poCyoToLo =~ 8 x
10785 1x v, /Lo, por lo que sélo cuando las velocidades son extremadamente
altas o cuando las magnitudes fluidas varian en longitudes pequeiisimas, la
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disipacidon viscosa cuenta en los movimientos de agua. Para ciertos liquidos
como los aceites o la glicerina, que tienen una viscosidad mucho mayor que
la del agua (el aceite de oliva tiene una viscosidad del orden de 100 veces la
del agua, mientras que la viscosidad de la glicerina a temperatura ambiente
es unas 2000 veces mayor que la del agua), las condiciones para que la disipa-
cién viscosa cuente no son tan extremas. Para los gases ideales, el pardmetro
KoVo/PocvoToL, es idéntico al pardmetro (10.30a) si uno cambia ¢, por ¢, y
estd, por tanto, también relacionado con la influencia de la disipacién viscosa
en la compresibilidad del fluido. Haciendo uso de la ecuacién de estado del gas
ideal y de las definiciones anteriores se puede escribir

HoVo 2
_Ho¥o  _ (o 11.14
pocvoToLo ’Y(’Y ) Re ( )
que suele ser muy pequeno (ver mas adelante).
El nimero de Peclet,
VoL
Pe = PolooCvo (11.15)

K, ’
representa la relacion entre la conveccion de energia interna y el calor transpor-

tado por conduccién. En la practica se suele sustituir ¢, por ¢, en la definicion
del namero de Peclet, teniendose

— poVoLono

Pe K = RePr, (11.16)
donde
= Holpo _ Yo
Pr = o -~ (11.17)

es el nimero de Prandtl, ya introducido anteriormente (seccién 9.7). El
mimero de Prandtl es una propiedad del fluido que representa la importancia
relativa que en ese fluido tienen dos fenémenos de transporte molecular: la
difusion viscosa o de cantidad de movimiento y la difusion de calor o energia.
Para los gases ya vimos en la seccion 9.7 que el nimero de Prandtl es de orden
unidad (en particular, vale exactamente 2/3 para los gases monoatémicos), lo
cual es debido a que en los gases ambos transportes se realizan por colisiones
moleculares, que son practicamente igual de efectivas para intercambiar can-
tidad de movimiento y energia entre las moléculas. Por tanto, el mimero de
Peclet para los gases es del mismo orden que el nimero de Reynolds, y si las
fuerzas viscosas son despreciables en la ecuacién de cantidad de movimiento
(Re > 1), también lo es la conduccién de calor en la ecuacién de la energia (y
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viceversa, si las fuerzas viscosas son dominantes, también lo es la conduccién
de calor). Asi, la condicién Re > 1 implica viscosidad y conduccién de calor
despreciables en el movimiento, lo que normalmente se entiende por un fluido
ideal.

En los liquidos el nimero de Prandtl tiene un rango de variacién muy am-
plio. Liquidos comunes como el agua, el alcohol etilico, etc., tienen un nimero
de Prandtl de orden unidad,! por lo que se puede aplicar lo dicho anteriormen-
te para los gases. Liquidos como los aceites son mas efectivos transportando
cantidad de movimiento que calor, es decir, tienen un numero de Prandtl al-
to (Pr ~ 117 para el aceite de oliva a 15°C), de forma que si el nmimero de
Reynolds es alto, el nimero de Peclet lo es mucho mas, y la condiciéon Re > 1
sigue caracterizando a los flujos ideales. Por el contrario, si Re < 1, pero no
excesivamente pequeno, puede ocurrir que las fuerzas viscosas sean dominan-
tes en la ecuacion de cantidad de movimiento sin que lo sea la conduccién de
calor en la ecuacion de la energia. Lo opuesto a esta situacion ocurre en los
metales liquidos, caracterizados por un nimero de Prandtl muy pequero al
ser mucho mas efectiva la conduccién de calor que el transporte molecular de
cantidad de movimiento. En estos liquidos, la condicién Re > 1 generalmente
no implica que la conduccion de calor sea despreciable.

Si el fluido no tiene composicion homogenea, ademds de las ecuaciones

(11.5)-(11.7) hay que tener en cuenta las ecuaciones de conservacién de la
masa para las distintas especies. Adimensionalizando la ecuacién (6.31) de
forma andloga a como se ha hecho anteriormente, se llega a (téngase en cuenta
que la fraccién maésica es ya adimensional):
‘f;:op*g:f b VY = %v* (P DIVYY) (11.18)
donde D;, es una difusividad maésica caracteristica de la especie i, y no se ha
tenido en cuenta, por simplicidad, el término de reaccién quimica.? El tinico
pardmetro adimensional nuevo es D;,/V,L,, que representa la relacién entre
la difusién molecular de masa de la especie ¢ y la convecciéon de masa de la
especie i. El inverso de este mimero es el equivalente al nimero de Peclet para
el transporte de masa:

'En realidad son mds bien del orden de la decena; asi, a 20°C, Pr ~ 7 para el agua y
Pr ~ 15 para el etanol.

2Las reacciones quimicas introduce tiempos caracteristicos de reaccién que enriguece mu-
cho el problema en cuanto a pardametros adimensionales nuevos, pero que no se trataran aqui.
El alumno interesado puede consultar, por ejemplo, R. Aris, 1975, The Mathematical Theory
of Diffusion and Reaction in Permeable Catalysts (Clarendon Press, Oxford). Volumen I,
capitulo 2.
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VoLo
D 10

donde Sc; es el mimero de Schmidt para la especie 1,

= ReSc; (11.19)

Vo

Sc; = D, (11.20)
que es el analogo al nimero de Prandtl en el transporte de masa, representando
la importancia relativa del transporte molecular de cantidad de movimiento
frente al transporte molecular de masa de la especie i. Lo dicho anteriormente
para el nimero de Prandtl se aplica, en gran medida, al nimero de Schmidst.
Asi, para los gases, Sc = O(1), por las mismas razones que Pr = O(1),
con lo que Re > 1 implica también que la difusién masica es despreciable
frente a la convectiva (otro fenémeno disipativo més cuya ausencia caracteriza
al fluido ideal), y al contrario, Re < 1 implica que la difusién madsica es
dominante frente al transporte convectivo de masa. Para los liquidos el niimero
de Schmidt es siempre mucho mayor que la unidad, es decir, en los liquidos
la difusién madsica es siempre mucho mas lenta que la difusién de cantidad de
movimiento, por lo que la difusién madsica puede ser despreciable incluso en
situaciones en que Re < 1.

En relacién a los fenémenos de transporte, a veces también se utiliza el
denominado niimero de Lewis, que relaciona la difusién masica y la difusién
de calor,

Le; = Doi (11.21)

Qo

Este nimero es de orden unidad para los gases y mucho menor que la unidad
para los liquidos.

Ademas de los numeros adimensionales definidos hasta ahora, que son los
mdas comunes, en algunos problemas aparecen otros asociados a fenémenos
fisicos que no se han incluido en la descripcién anterior como, por ejemplo, la
tension superficial, fuerzas originadas por un sistema de referencia no inercial,
fuerzas masicas aparte de las gravitatorias, fuerzas de flotabilidad asociada a
diferencias de temperaturas, etc. Algunos de estos nuevos parametros adimen-
sionales se introduciran en lecciones posteriores.

Para finalizar esta seccién sobre los parametros adimensionales més comu-
nes, vamos a escribir una importante relacién, debida a von Karman, entre
el nimero de Knudsen, que como se recordard (seccién 8.1) relaciona el
camino libre medio A con la longitud caracteristica L,, siendo una medida de
la aproximacion al equilibrio termodinamico local, y el niimero de Reynolds y
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el nimero de Mach. De las ecuaciones (8.2), (8.4), (9.20), (9.61) y (11.11) se
tiene

T e M
=—~ ~ T,—— = 3y— . 11.22
Kn I /3Ry - " Re ( )

Esta relacion, que estrictamente es valida para un gas monoatdémico, pero que
en orden de magnitud es valida para todo gas ideal, nos dice que la aproxi-
macién de equilibrio termodinamico local para el flujo de un gas se verifica
si

M
= ) 11.2
<1 ( 3)

Si el flujo es no estacionario se debe verificar, ademas, que Kn; = 7./t, < 1,
lo cual implica StM?/Re < 1. Como en los movimientos mas comunes de
gases un aumento del nimero de Mach (e.g., de la velocidad del gas para una
temperatura dada) va normalmente acompafnado de un aumento ain mayor
del nimero de Reynolds, las relaciones anteriores se suelen verificar para la
mayoria de los movimientos de gases.® Esta es la razén por la cual se co-
menté anteriormente que el parametro (11.14), que mide la realacién entre la
energia disipada por viscosidad y la conveccion de energia interna en los flujos
de gases ideales, suele ser muy pequeno (si no lo fuese estaria en juego algo
mas que el simple hecho de que la disipacion viscosa cuente, ya que la hipdtesis
de equilibrio termodinamico local se vendria abajo, y con ella la validez de las
ecuaciones que estamos considerando). S6lo en movimientos en condiciones
muy extremas, como, por ejemplo, en el interior de las ondas de choque de
intensidad fuerte (ver leccién 22), M/ Re no es pequeno (por supuesto, dentro
de las ondas de choque la disipacién viscosa es importante).

11.3. Semejanza fisica

Para que dos problemas fluidomecanicos sean fisicamente semejantes no es
necesario que sean idénticos, sino que es suficiente con que todos los parame-
tros adimensionales que aparecen en las ecuaciones de Navier-Stokes que los
gobiernan, asi como los que aparecen en las condiciones de contorno, sean igua-
les. Esto es debido a que, si se cumple esa igualdad, la solucién adimensional
del problema es la misma en ambos. La solucién fisica para cada problema se

3Por ejemplo, en un flujo de aire a 15°C (v, = 1,45 x 107°m?/s, a, = 340,6m/s) con
L, = lem y V, = 10m/s, se tiene M ~ 0,03, Re ~ 6900, M/Re ~ 44 X 107%; y con
V, = 1000m/s, M ~ 2,93, Re ~ 6,9 x 105, M/Re ~ 4,2 x 107",
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obtiene sin mas que deshacer los cambios de variables utilizando las magnitu-
des caracteristicas de cada problema.

Una de las consecuencias practicas mas importantes de la semejanza fisica
es que permite hacer experimentacion con modelos de una forma rigurosa, ex-
trapolandose sin ambigiiedad los resultados al problema real. Asi, por ejemplo,
para estudiar las corrientes que crearian una nueva instalacién portuaria, no
haria falta hacer la instalacién real y comprobar después, sino que se puede
hacer un modelo a escala (la igualdad de las condiciones de contorno adimen-
sionales exige la semejanza geométrica entre el modelo y el problema real)
y experimentar sobre él teniendo en cuenta que los parametros adimensionales
sean los mismos (no haria falta utilizar el mismo fluido, agua salada, sino so-
lamente exigir que los mimeros de Re, Fr, etc., fuesen los mismos; es mas, la
igualdad de estos nimeros exige casi siempre que el fluido en el modelo tenga
propiedades fisicas distintas que en la realidad).

Uno de los problemas que se suele encontrar al aplicar la semejanza fisica
a la experimentacion con modelos es que, en la mayoria de los casos, no es
posible exigir que todos los parametros adimensionales sean iguales. Pero el
analisis dimensional también nos da informacién sobre qué parametros adi-
mensionales son los mas relevantes en el problema considerado, por los que
podemos descartar algunos de ellos y hacer una semejanza fisica parcial,
es decir, exigir que sélo algunos parametros adimensionales (los mas relevan-
tes en el problema dado) sean iguales en el modelo y en el problema real. El
analisis dimensional también nos da informacion sobre el orden de magnitud
de los errores cometidos con esta aproximacion, puesto que sabemos los va-
lores tipicos de los parametros adimensionales descartados (estos pardmetros
pueden no tenerse en cuenta porque, o bien son muy pequenos, con lo que el
error cometido seria del orden de ellos mismos; o bien son muy grandes, siendo
el error del orden del inverso de su valor, o, finalmente, son aproximadamente
constantes, con lo que el error es del orden de las fluctuaciones alrededor de
esas constantes).

11.4. Teorema II de Buckingham

La reduccién de las variables fisicas de las cuales depende un determinado
proceso fisico mediante el uso de variables adimensionales se puede demostrar
de una forma general, independientemente de las relaciones o leyes que gobier-
nan el proceso, basandose en la homogeneidad o invariancia de dichas leyes en
relacion al sistema dimensional de unidades utilizado. En otras palabras, to-
dos los términos de una determinada ley fisica deben de ser dimensionalmente
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homogeneos, hecho que se ha utilizado para adimensionalizar las ecuaciones
de Navier-Stokes en la seccién 11.2. El siguiente teorema, tradicionalmente
denominado Teorema II, se debe a Buckingham (1914).

Considérese un problema fisico gobernado por n + 1 variables fisicas, a,,
ai, ..., n, y que satisfacen una cierta relacién:

Ao = f(al,ag, ...,an) y (11.24)

la cual puede ser conocida tedricamente, o desconocida en principio, pero que
se quiere determinar mediante una serie de experimentos. El valor numéri-
co de cada cantidad fisica (dimensional) a; depende del sistema de unidades
de medida que se utilice. Supongamos que existen ¥ < n + 1 dimensiones
independientes, es decir, de las n + 1 variables a; hay k que son dimensional-
mente independientes. Por ejemplo, en un problema puramente mecanico hay
tres dimensiones independientes, que pueden ser una masa, una longitud y un
tiempo, o cualquier combinacién entre ellas; si el problema es termodinamico,
hay que anadir una mas, por ejemplo una temperatura, etc. El Teorema II
establece que el nimero de variables de que depende el problema puede re-
ducirse a n + 1 — k si se utilizan variables adimensionales convenientemente
elegidas.

En efecto. Supongamos que las variables dimensionalmente independientes
son ay, ag, ..., ar. Esto quiere decir que las dimensiones de las restantes variables
se pueden expresar como producto de las dimensiones de a,as,...,ar (las

cuales se designan por [a1], [az], ..., [ak]) elevadas a ciertas potencias:
[ao] = [al]b(),l [a2]b02 Ve [ak]bo’k .
[ak41] = [al]bkﬂ'l[ag]bkﬂ'? S5c [ak]bk+l‘k
[an] — [al]bn,l [az]bn,2 5o [ak]b"’k

donde los b; j son nimeros racionales. Si definimos las variables adimensionales

b bo,: b
Ty = ao/(a1°’1a2°‘2 . ako.k)

)

]

b 1 bk by 2
(a1k+1,1a2 +1,2 | N +l,k)

Thyl = Qky1/ k

7rn_ = an/(al;n.laqu . ain.k) ,

la relacién fisica (11 .24) puede escribirse como
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b b, b, b
— flai,az, ..., ak, (7rk+1a';k“‘la2’°“‘2 S ak"“‘k), g { My "lag"'2 s ak""‘)]
.=
all>o.1alz>o,2 o aZO.k
(11.25)
es decir,
g = GlAT, Ay sy Oy Tt 1y 5505 Tm) (11.26)

Como la ecuacién tiene que ser dimensionalmente homogenea, no puede de-
pender de a1, ag, ..., ax,

Ko = G Megdpons M) (11.27)

con lo que queda demostrado el teorema.

Si la relacién (11.24) se quiere obtener experimentalmente, estd claro que
la minimizacién del nimero de variables es esencial, pues reduce considera-
blemente el nimero de experimentos a realizar. En el caso muy particular en
que n = k, s6lo queda un parametro adimensional, por ejemplo w,, que se
determina jcon un tnico experimento! Por otra parte, como se comenté en la
seccion anterior, el uso de parametros adimensionales permite establecer de
una forma rigurosa las condiciones minimas que se deben verificar para que
exista semejanza fisica, total o parcial, entre dos problemas fisicos y, asi, el
uso experimental de modelos.

11.5. Ejemplos

11.5.1. Alcance de un proyectil puntual

Supongamos que queremos averiguar experimentalmente cual es el alcance
X de un proyectil de masa m, supuesto puntual (es decir, despreciamos la
resistencia del aire, que se considera en el ejemplo siguiente). El proyectil es
lanzado con una velocidad V' y un angulo de inclinacién a. Esta claro que X
es una funcién de a, V,m y la aceleracion de la gravedad g:

X =X(a,m,V,g) . (11.28)

Como es un problema mecénico, el nimero de variables se puede reducir a
5—3 = 2. Para ello tomamos como variables dimensionalmente independientes
m,V y g, cuyas dimensiones son:

[(m)=[M] , VI=I[L)iE]" , (9] =[L)[t]% (11.29)
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donde [M], [L] y [t] representan las dimensiones de masa, longitud y tiempo,
respectivamente. Al ser el angulo o adimensional, la unica variable que debe-
mos adimensionalizar es X. Para ello buscamos una combinacién apropiada
dem,Vyg:

(X] = [L] = m]P[V]"[g)° . (11.30)
Claramente, 3 =0,y =2 y § = —1, por lo que el parametro adimensional
asociado a X es:
Xg
T = 3 (11.31)

El teorema I nos dice que

e = f(a) (11.32)

es decir,

x:?ﬂm, (11.33)

donde f es una funcién (desconocida a priori) de a. Asi, el problema se re-
duce a hacer una sola serie de experimentos variando unicamente «, sin tener
siquiera que variar V, m, ni, por supuesto g, ya que la dependencia con estas
variables es conocida (en particular, X no depende de la masa).

Por supuesto, la funcién f(a) en este problema tan sencillo se puede co-
nocer sin hacer ningin experimento, puesto que las ecuaciones que describen
el fenémeno son muy sencillas:

d’x d*z
m—— =0 m—s = —mg , 11.34
di? Mg A (11.34)
t=0 , z=2z=0 , dr/dt=Vcosa , dz/dt=Vsina , (11.35)

cuya solucién es T = Vcosat, z = —gt?/2 + Vsinat; es decir, el proyectil
describe la parabola z = z[tan o — 2gz/(V? cos? )], que proporciona

2
x:%mmaﬁ (11.36)

o f(a) = sin 2a. Pero si no conociésemos este resultado, el andlisis dimensional
nos ha proporcionado la variable, en este caso unica, sobre la que tenemos que
dirigir nuestros esfuerzos experimentales.
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11.5.2. Alcance de un proyectil teniendo en cuenta la resisten-
cia aerodinamica

Si quisiéramos obtener el alcance X tedricamente, habria que resolver las
ecuaciones siguientes:

m—gt =mj+F , §=-g& , (11.37)
t=0 , Zem=0 , dZsn/dt=(Vcosa,0,Vsina) , (11.38)
X=zmt=tr) , 2(tr)=0 , (11.39)

donde Z, es la posicién del centro de masa del proyectil y F_‘; es la fuerza
de resistencia que ejerce el aire sobre el proyectil. Para hallar esta fuerza hay
que resolver las ecuaciones de Navier-Stokes que describen el movimiento del
aire alrededor del proyectil. Suponiendo que el flujo del aire es practicamente
incompresible (M? < 1 y T ~ constante), se tiene

V.-5=0 |, (11.40)
ov . o 2~ =
v +pv-Vu=-Vp+uVO+pg , (11.41)
T=0 sobre S(¥)=0 , p—p, y U= —dZm/dt para |T| — o0 ,
(11.42)

donde S(Z) = 0 es el contorno del proyectil, situado en el origen de coordenadas
y caracterizado, por ejemplo, por dos parametros, longitud L y grosor c. Lejos
del proyectil (|£] — o0), la velocidad del aire es, respecto a unos ejes que
se mueven con el centro de masa del proyectil, —dZ.m/dt, y la presion es la
atmosférica, p,. Una vez que se han obtenido ¥(Z,t) y p(Z,t) alrededor del
proyectil, la fuerza de resistencia se calcula mediante

£ = / (pii — 7 - @)ds = / (p—p)i—7 -flds .  (11.43)
5(£)=0 S(z)=0

Evidentemente, este problema es muy complejo, al menos asi planteado de
forma general. El analisis dimensional nos permite obtener el nimero minimo
de parametros adimensionales que lo gobierna, simplificando la experimen-
tacion. Por otra parte, este andlisis nos permitird establecer con precision
qué condiciones se deben verificar para que los resultados del ejemplo anterior
sean aproximadamente validos, es decir, para que la resistencia del aire no
cuente.
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Para proceder de una forma maés pedagdgica (aunque no mas simple), vamos
a suponer primero que estuviésemos interesados solamente en calcular la fuerza
de resistencia F.. De las ecuaciones (11.40)-(11.43), esta fuerza depende de las
siguientes magnitudes:

F. =F(p,p,9 LU, t,c,B) (11.44)

donde el valor de dZ.,,/dt se ha sustituido por dos pardmetros, su médulo U
y el angulo B que forma con el eje del proyectil. La dependencia de la fuerza
de resistencia con el tiempo proviene de que tanto U como (3 dependen del
tiempo (con condiciones iniciales U(t =0) = =V y 3(t = 0) = a). La presién
atmosférica p, no aparece puesto que es una presiéon uniforme que légicamente
no afecta a F, [si uno hace el cambio p’ = p—p, en (11.40)-(11.43), desaparece
el parametro p, del problema].

Si aplicamos el Teorema II a la expresién anterior, los parametros adi-
mensionales que aparecen (aparte de los que provienen de las condiciones de
contorno) deben de estar relacionados con algunos de los definidos en la seccién
11.2, ya que éstos provenian de adimensionalizar las ecuaciones del movimien-
to. En particular, si elegimos p, U y L como magnitudes dimensionalmente
independientes, se tiene

—

F =z uw gL tU c )
pU2L2 - f(pUL’ U2’ L ,L’ﬁ ) (1145)
es decir,
F. = pU*L?f(Re,Fr,St,c/L,8) . (11.46)

Esta dependencia se puede simplificar bastante mas en la mayoria de las si-
tuaciones. Para empezar, el nimero de Strouhal suele ser muy pequeno, ya
que el tiempo que tarda el aire en pasar por el proyectil, U/ L, suele ser mucho
menor que el tiempo caracteristico de variacion de las condiciones de contorno
[U(t) y B(t)], que es del orden del tiempo de vuelo del proyectil, tg; es decir
St = (L/U)/tr < 1. Por ejemplo, supongamos que la velocidad tipica del
proyectil es 100m/s y su longitud 10cm; el tiempo de residencia seria del or-
den de 10735, que, evidentemente es mucho menor que el tiempo de vuelo del
proyectil, y el problema se puede considerar casi estacionario. Por otro lado,
el nimero de Froude, Fr = U%/gL, suele ser muy grande: con los valores an-
teriores para U y L resulta Fr = 104. Esto quiere decir que la gravedad tiene
muy poca influencia en el movimiento del aire alrededor del proyectil, lo cual
es légico debido a su pequefio tamaiio [por supuesto, la gravedad si influye en
el movimiento del proyectil, pero no a través de F;., sino actuando sobre la
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masa del proyectil segin la ecuacién (11.37)]; para que las fuerzas gravitato-
rias fuesen importantes en el movimiento del aire alrededor del proyectil, el
tamaifio de éste deberia ser del orden de L ~ U?/g (~ 1000m si U = 100m/s).
Por 1ltimo, en cuanto al nimero de Reynolds, su valor suele ser muy alto:
tomando v ~ 1073 (aire a temperatura ambiente), Re = UL/v ~ 108. Por
tanto, en este problema,

E. ~ pU?L*f(c/L,B) (11.47)

puesto que al ser St, Fr y Re o bien muy grandes, o bien muy pequenos, su
influencia en el problema es despreciable [en otras palabras, desarrollamos la
funcién fen potencias de Re~! <« 1, Fr~! « 1y St < 1, y nos quedamos con
el orden més bajo]. La fuerza de resistencia es pues, en estas condiciones, cua-
drética con la velocidad, siendo la constante de proporcionalidad pL? multipli-
cado por una cierta funcién que sélo depende de las caracteristicas geométricas
del problema, que se puede determinar experimentalmente. Obsérvese que la
dependencia temporal ha desaparecido de forma explicita, aunque aparece a
través de U(t) y B(t) (por ello se denomina casi estacionario; en las ecua-
ciones desaparece el término 0U/3t, pero el tiempo sigue apareciendo en las
condiciones de contorno).

Abordemos ahora el problema del alcance del proyectil X. Una vez simpli-
ficada la expresién para F;, este problema se puede resolver analiticamente sin
mas que sustituir la expresién (11.47) (determinando previamente la funcién
f para una forma de proyectil dada mediante una serie de experimentos) en
(11.37)-(11.39). Sin embargo, continuando con nuestro anélisis dimensional,
X depende de las siguientes magnitudes fisicas:

X=X(m,V,g,appLc) . (11.48)

El tiempo no aparece explicitamente porque, aunque F. dependa del tiem-
po, X es una longitud que proviene de la integracién de (11.37) imponiendo la
condicién z = 0, la cual se verifica en un tiempo tg que depende de las mismas
variables que X. Por la misma razén no aparecen U(t) ni 8(t) - U(0) = V
y 8(0) = «a si que influyen en X]. Al aplicar el Teorema II a (11.48), en
buena légica deberian aparecer los parametros que teniamos en el ejemplo an-
terior mas los que aparecieron al adimensionalizar la fuerza de resistencia. Sin
embargo, la eleccién de p, U y L como variables dimensionalmente indepen-
dientes, aunque es apropiada para adimensionalizar E., ya que éstas son las
magnitudes que caracterizan el movimiento del aire alrededor del proyectil, no
es muy afortunada para adimensionalizar (11.48) puesto que los parametros
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adimensionales resultantes serian o muy pequenos o muy grandes (por ejem-
plo, X/L es muy grande), y no serian relevantes en el movimiento global del
proyectil. Por ello utilizamos m, g y V como magnitudes dimensionalmente in-
dependientes, como se hizo en el ejemplo anterior, eleccién que nos permitira,
ademas, averiguar mas facilmente las condiciones para que la aproximacién de
resistencia nula hecha en el ejemplo anterior sea valida. Aplicando el Teorema
IT se tiene:

Xg pV6 uV3 Lg cg

Claramente, Lg/V? y cg/V? son siempre muy pequefios, puesto que X ~ V?2/g
y X > L, X > c. Por otro lado, pV®/mg?, cuyo inverso nos da una idea de
la influencia de la gravedad en la fuerza de resistencia, es siempre muy grande
(por las razones que se discutieron anteriormente): si el proyectil pesa 1kg y
se mueve en aire con V = 100m/s, pV%/mg3 = 10°, que es gigantescamente
grande. Por tanto, la expersion anterior queda

pv?
~ f< g), (11.50)

donde sélo aparece un parametro adicional en relacién a (11.33), uV?3/mg3,
que mide la influencia de la viscosidad en la resistencia del aire sobre el pro-
yectil. Por tanto, para que la resistencia aerodinamica sea despreciable y el
resultado del ejemplo anterior sea (aproximadamente) vélido se debe cumplir
que uV3/mg? < 1. Para los valores numéricos dados anteriormente (junto con
p ~ 107%kg/ms), se tiene uV3/mg? ~ 0,1, que no es excesivamente pequeio
[con estos valores numéricos los errores de (11.33) son pues alrededor del diez
por ciento; si hubiésemos tomado m = 0,1kg, los errores serian del cien por
cien].

Resumiendo, de este par de ejemplos podemos sacar las conclusiones si-
guientes: (a) El andlisis dimensional permite reducir de una manera eficiente
el nimero de magnitudes fisicas de las que depende un problema fisico [com-
pare las ecuaciones (11.48) y (11.50), donde se ha reducido de 9 variables de
las que dependia X a sélo dos de las que realmente depende X g/V?|. Esta
reduccion es particularmente importante a la hora de realizar experimentos.
(b) El anélisis dimensional permite conocer con rigor cudndo una determina-
da magnitud fisica no tiene influencia apreciable en un problema, y estimar el
orden de magnitud del error que se comete al despreciar la influencia de esa
magnitud. (¢) Aunque la aplicacién del Teorema II, o la adimensionalizacién
directa de las ecuaciones, sigue un procedimiento estandar, la buena eleccion
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de las magnitudes con las cuales se adimensionaliza (magnitudes dimensio-
nalmente independientes) es fundamental para obtener resultados 6ptimos, y
aqui es importante algin conocimiento fisico previo del problema por parte
de quien lo resuelve.
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Capitulo 12

Fluidostatica

12.1. Ecuaciones generales

Las soluciones mas sencillas, en principio, de las ecuaciones de Navier-
Stokes (10.1)-(10.7) son aquellas correspondientes a un fluido en reposo (v =
0), o soluciones fluidostaticas. Si en algin sistema de referencia (inercial o no)
v = 0, esas ecuaciones se reducen a:

op
3 =0 (12.1)
~Vp + pfm =0, (12.2)
p% =V -(KVT) +Q,, (12.3)
e=eT,p) . p=ppT) . K=K(T). (12.4)

La ecuacion de continuidad nos dice que, siel fluido estd en reposo, la densidad
sélo puede ser funcion de la posicion. La ecuacion de cantidad de movimiento
es un balance entre las fuerzas de presién y las fuerzas mdsicas. Estas ulti-
mas son, en ausencia de campos eléctricos o magnéticos, suma de las fuerzas
gravitatorias y de las fuerzas de inercia debidas al movimiento del sistema de
referencia en el caso de que éste no sea inercial [ecuacién (7.3)]:
f"m:g—ao—%/\f—ﬁ/\(ﬁ/\f), (12.5)
donde las fuerzas de Coriolis no aparecen debido a que ¢ = 0. La ecuacién
de la energia es un balance entre la conduccién de calor, la variacién local
de la energia interna y el calor por radiacién, siendo similar a la ecuacién de
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la energia interna para un sdlido. Si ¢, y K fuesen constantes y @), = 0, esta
ecuacion seria la ecuacidn del calor (10.13). Por ltimo las condiciones iniciales
y de contorno deben ser compatibles con v = 0.

12.2. Condiciones de equilibrio

La ecuacién (12.2) establece que las fuerzas masicas por unidad de volu-
men, p ﬁn, derivan de un potencial, siendo éste igual a —p. Por tanto, no toda
fuerza masica es compatible con un fluido en reposo. La condicién que deben
verificar estas fuerzas se obtienen sin mas que tomar el rotacional de (12.2):

VA pfim) =pV A fn + VoA fra=0 . (12.6)

Multiplicando escalarmente por fm, se tiene la condicién general para fm:

fm'VAfmzo- (12.7)

Una condicién suficiente para que esta relaciéon se satisfaga es que fm derive
de un potencial.! Ciiéndonos a esta condicién y a las fuerzas masicas (12.5),
se debe verificar que la velocidad angular del sistema de referencia sea inde-
pendiente del tiempo, siendo el potencial de fuerzas masicas

fm=-VU , U=-§-8+ad,-Z—- (QAD)?*/2. (12.8)

Por supuesto, a, y ) son independientes de la posicion y, aunque Q) no puede
depender del tiempo para que fm derive de un potencial, ya que el término
dsd /dt AZ no se puede escribir como un gradiente, @, es, en general, una funcién
del tiempo. La comprobacién del iltimo término de U en la expresion anterior
es inmediata si se hace uso de (1.42).

La ecuacién (12.7) es la condicién general que deben verificar las fuerzas
masicas para que pueda existir equilibrio mecdnico (v = 0) en un flui-
do. Sin embargo, un fluido puede estar en equilibrio mecanico sin que exista
equilibrio térmico, siempre que la distribucién de temperaturas satisfaga la
ecuacién (12.3) y la densidad no varie con el tiempo. Pero esto no es suficiente,
puesto que la solucién de las ecuaciones (12.1)-(12.4) puede ser inestable. Es
decir, aunque las distribuciones de p, p y T satisfagan (12.1)-(12.4) junto con

1Un campo vectorial que verifique la condicién (12.7) se suele denominar complejo lamellar
(ver, por ejemplo, R. Aris, 1989, capitulo 3). En dicha referencia se demuestra que si se cumple
(12.7), existen dos campos escalares 1 y 2 tales que fm = 1 V2. Por tanto, la condicién
que fm derive de un potencial es un caso particular correspondiente a yp; = constante.
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condiciones de contorno e iniciales compatibles, es necesario que estas distri-
buciones cumplan ciertos requisitos adicionales para que sean estables, ya que
si el equilibrio fuese inestable aparecerian corrientes (¥ # 0) que tenderian a
uniformizar la temperatura (a equilibrar térmicamente el fluido). Por tanto, el
estudio de la estabilidad de las soluciones fluidostaticas es esencial cuando el
equilibrio mecanico no esté emparejado con un equilibrio térmico. El problema
de la estabilidad sera abordado en el capitulo 30.

Sustituyendo (12.8) en la ecuacién de cantidad de movimiento (12.2) se
tiene

Vp+ pVU =0. (12.9)

Esta expresién establece que las superficies equipotenciales en un fluido en
reposo son también superficies isobaras. Ademas, estas superficies son también
de densidad constante, puesto que p = —(9p/8U);. Otra consecuencia es que
un fluido en reposo es barétropo: de (12.9) se tiene p = p(U, t), y de la
relacién anterior para la densidad, p = p(U, t) [pero la dependencia U(t) debe
ser tal que p # p(t)]; por tanto, p = p(p, t), es decir, Vp y Vp son paralelos y
su producto vectorial es nulo. Fisicamente, si el fluido no fuese barétropo, las
fuerzas de presion producirian un par distinto de cero que originaria vorticidad
en el fluido, dejando de estar en reposo [término de Bjerkness, ver seccién 7.6).
En términos de la funcién de barotropia (7.55), la ecuacién (12.9) se escribe:

Vw+U)=0, w+U=C(t), (12.10)

donde C(t) es una constante de integracién que en general depende del tiempo
y que viene fijada por las condiciones de contorno.

12.3. Hidrostatica

En el caso de un liquido (p = constante; en general fluido incompresible),
la ecuacién anterior queda

p+pU=C(t). (12.11)

Si la unica fuerza masica presente es la gravitatoria, § = —g¢€;, la distribucién
de presiones hidrostatica es:

P + pgz = constante. (12.12)
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z(r)

Figura 12.1: Equilibrio mecénico de un liquido en un recipiente que gira.

Asi, por ejemplo, la presién en el interior de un depésito con una altura H
de liquido y abierto a la atmdsfera seria p = p, + pg(H — z), donde p, es la
presion atmosférica y z se mide desde el fondo del depésito.

Si el depésito fuese cilindrico (de radio R) y girase con velocidad angular
constante §2 alrededor de su eje de simetria, transcurrido un tiempo suficien-
te para que el liquido adquiera un movimiento solidario con el recipiente, la
distribucién de presién de equilibrio en un sistema de referencia que se mueva
con el recipiente seria, de acuerdo con (12.11) y (12.8):

P+ pgz — pV%r? /2 = constante = p, + pgzs(r) — p4r?/2, (12.13)

donde la constante se ha evaluado en la superficie libre del liquido z4(r) (ver
figura 12.1). Es decir,

P =pa+pgles(r) — z]. (12.14)

Aplicando (12.13) al punto de la superficie libre en el eje (z = h,, 7 = 0), se
tiene

Pa + pgho = Pa + pgzs(r) — pQ%2/2 | (12.15)

que proporciona la ecuacién de la superficie libre en funcién de ho:
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10?2

z5(r) = ho + z —72 (12.16)
2yg

La constante h, se obtiene a partir del volumen V del liquido:
R Q2R? vV Q%R?
~— — 2 = — —
\% -/0 dr2nrzs(r) = mR*h, (1 -+ 4gh0) ho 3 19
(12.17)

12.4. Fuerza sobre un cuerpo sumergido. Principio
de Arquimedes

Consideremos un cuerpo sélido de volumen V' y superficie S sumergido en
un fluido en equilibrio mecanico. La fuerza (de presién) que el liquido ejerce
sobre la superficie del sélido es:

S % 1%

donde se ha aplicado el Teorema de Gauss y se ha hecho uso de (12.2). La
fuerza estd dirigida en sentido opuesto a las fuerzas masicas. Suponiendo que
las fuerzas masicas son exclusivamente gravitatorias, se tiene

F:géz/pdV=gMé; , ME/pdV : (12.19)
14 |4

es decir, un cuerpo sumergido en un fluido en reposo estd sometido a una
fuerza (empuje) que es igual al peso del fluido que desaloja el cuerpo, en
sentido opuesto a la accién de la gravedad (Principio de Arquimedes ). En
el caso de un liquido, M = pV. Para que el cuerpo permanezca en reposo (y,
por tanto, el fluido), esta fuerza debe estar equilibrada con el peso del mismo.
Ademas, el momento de las fuerzas de presion que el fluido ejerce sobre el
cuerpo debe estar también equilibrado. Este momento, en relacién a un punto
fijo ©,, vale

M =_/p7'i/\(:i‘-—a':‘o)ds=—/ V A [p(E — Z,)ldV
S 1%

— —/ VpA (& — £,)dV = —/ pfon A (& = Zo)dV . (12.20)
v v

Sl fm == _g€Z9



174 MECANICA DE FLUIDOS

K = g / oF— )V = gME, A (Bom —Fo) (12.21)
|4

donde Z., es el centro de masa del cuerpo sumergido si su volumen lo ocupase
el fluido que desaloja. Este momento debe estar equilibrado con el momento
del peso del sélido (que estd aplicado en su centro de masa) con respecto a &,
para que el cuerpo permanezca en reposo.

12.5. Equilibrio de gases. Atmoésfera estandar

En el caso de un gas ideal bajo la accién de la gravedad, la ecuacién (12.10)
se puede escribir:

P P d
U+w=gz +/ % =gz + Rg/ T?p = constante. (12.22)

Como p, p y T s6lo dependen de z, es mas facil utilizar la forma original de
las ecuacién de cantidad de movimiento (es decir, derivar con respecto a z la
ecuacién anterior):

g+=2-==0 , (12.23)

que integrada proporciona

P oxp|-8 [F 9%
2 - p[ Rg/O T(Z)l‘ (12.24)

Luego para conocer la distribucion de presion en equilibrio mecéanico se debe
conocer la distribucién de temperatura, la cual debe satisfacer la ecuacion
(12.3) junto con condiciones de contorno apropiadas.

Un ejemplo tipico lo constituye el aire de la atmdsfera supuesto en reposo.
En sus capas mas cercanas al suelo el aire se calienta, principalmente por con-
duccién de calor desde suelo y, en menor medida, por radiacion solar directa,
aunque esta ultima es mas importante en las capas altas de la atmdsfera. Para
los célculos fluidostaticos, sin embargo, no se suele resolver la ecuacion (12.3)
para la temperatura, sino que se supone una distribucién T'(2) obtenida expe-
rimentalmente, siendo la correspondiente a la denominada atmdsfera estindar
la representada en la figura 12.2.

Desde un punto de vista practico, la capa mas importante es la troposfera
o capa mas cercana al suelo, donde se supone que, en primera aproximacion,
el perfil de temperatura es lineal:
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451
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Figura 12.2: Distribucién de temperatura en la atmdsfera estandar.
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Figura 12.3: Distribucién de presién (linea continua) y densidad (linea discontinua) en la
atmosfera estandar.
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T=T,—az , (12.25)

siendo T, = 288K y a = 6,5K /km en la atmdésfera estandar. Sustituyendo en
(12.24), se tiene la distribucién de presiones

p_ (T, —az\9°Rs

» T ; (12.26)
o o
y, de la ecuacion de estado,
T — g/aRg—1
pﬁ _ <°Taz> , (12.27)

siendo p, = latm, po = po/RyT, = 1,25kg/m3. De forma ansloga se hallarian
las distribuciones de presién y densidad en las restantes capas de la atmésfera
estandar utilizando los perfiles de temperatura de la figura 12.2 (ver figura
12.3).

La expresion (12.27) proporciona un criterio estdtico de estabilidad de la
atmosfera: para que sea estable, la densidad debe disminuir con la altura, pues
en caso contrario las fuerzas de flotabilidad originarian un movimiento vertical;
es decir,

I 150 o acx< Eg- ~ 349K /km . (12.28)

Qaltg 9
Este criterio no es una condicién suficiente para que la atmdsfera sea estable,
ya que si fuese asi, la atmodsfera estandar seria siempre estable, lo cual, evi-
dentemente, no es cierto. El estudio de la estabilidad de la atmdsfera requiere
considerar la estabilidad dindmica, o estabilidad frente a pequeiias perturba-
ciones de la distribucién de equilibrio anterior (ver capitulo 30), perturbaciones
que siempre estan presentes en la atmdsfera. De todas formas, el criterio an-
terior nos da una idea del grado de estabilidad de la atmodsfera: cuanto mas
pequena sea la constante «, mdas estable serd. Por ejemplo, en condiciones
de inversidn térmica (a < 0), lo cual ocurre a veces en las proximidades del
suelo en ciertos nucleos urbanos donde los niveles de contaminacién son muy
altos, la atmdsfera se hace muy estable, con lo que los gases contaminantes
permanecen anclados en la ciudad. Otro ejemplo significativo de estabilidad
lo constituye la estratosfera, donde a es marcadamente negativo (ver figura
12.2), siendo, por tanto, extraordinariamente estable, y de ahi su nombre: el
aire de la estratosfera esta estratificado, sin apenas mezcla de unas capas con
otras (ésta se produce casi exclusivamente por difusién, no por conveccién).
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Por ello es tan peligroso que algunos agentes contaminantes lleguen a la estra-
tosfera.
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Capitulo 13

Tension superficial

13.1. Introduccion

En esta lecciéon nos vamos a ocupar de la fluidostéatica de sistemas en los
que existen superficies de separacion entre fluidos inmiscibles.

Realmente, entre dos fluidos inmiscibles, por ejemplo, entre un liquido y un
gas, o entre dos liquidos inmiscibles, existe una capa de transicion de espesor
finito, pero suele ser tan delgada que se puede considerar como una superficie.
El hecho experimental es que esta superficie de separacién tiende a tomar una
forma especial; por ejemplo, un gas en el seno de un liquido tiende a formar,
en equilibrio, burbujas esféricas; andlogamente, un liquido en el seno de un
gas tiende a formar gotas esféricas. Desde un punto de vista termodinamico
se puede postular que existe una energia (libre) asociada a la superficie de
separacion de tal forma que hace falta realizar un trabajo para aumentar dicha
superficie, puesto que, en equilibrio, la superficie de separacion entre dos fluidos
inmiscibles tiende a ser minima. A esta energia libre, por unidad de area, la
designamos por o, que es una funcién de estado del sistema. Asi, la energia
libre total de un sistema en equilibrio constituido por dos fluidos inmiscibles, 1
y 2, seria p1 V1 f1 + p2Vafz + 0 A, donde las f; son las energias libres por unidad
de masa de cada uno de los fluidos con densidades p; y volimenes V;, y A es la
superficie de separacién o interfaz. Por definicién de energia libre, el trabajo
isotermo y reversible necesario para incrementar el drea de la interfaz en una
cantidad d A seria 04 A (de igual modo, el trabajo necesario para aumentar el
volumen del sistema en dV; + 8V, seria p1 f10V] + paf20V5).

De una forma alternativa, la interfaz entre dos fluidos inmiscibles se com-
porta como si fuera una membrana en tensién (tensién que seria uniforme en
toda la superficie para un sistema en equilibrio), siendo esta tensidon superficial
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o (definida como una fuerza por unidad de longitud) una propiedad de los dos
fluidos en contacto y de la temperatura. La equivalencia entre esta tension
superficial y la energia libre definida anteriormente es inmediata, puesto que
para aumentar la interfaz en un area § A = dl,4l,, donde [, e I3 son longitudes
curvilineas definidas sobre la superficie, hay que aplicar una fuerza, por ejem-
plo en la direccién de [y, de valor oél2, con lo que el trabajo necesario seria
odly10l; = 0d A, que es la energia libre asociada a ese aumento de érea.

La tensién superficial tiene su origen en las fuerzas de cohesiéon intermole-
culares. Una molécula en el interior de un fluido se ve afectada por las fuerzas
de cohesién de las moléculas que se encuentran a su alrededor, siendo la energia
libre asociada independiente de la posicién (en equilibrio). Una molécula en
las proximidades de la interfaz, a distancias menores que el rango de accién
de las fuerzas de cohesién intermolecular, no tiene compensadas las fuerzas de
cohesién a un lado y otro de la superficie (decimos superficie porque el rango
de las fuerzas de cohesién es muy pequeiio, del orden de 10~°m), credndose un
estado tensional que, idealmente, se asocia a la interfaz como si tuviese entidad
fisica real.! En equilibrio, esta tensién superficial es uniforme ya que en todos
los elementos de la superficie el desfase en la cohesién molecular es el mismo.
Si uno de los fluidos es un gas y el otro un liquido, las fuerzas de cohesién
molecular por parte del gas son despreciables comparadas con las del liquido,
por lo que las moléculas del liquido cercanas a la interfaz se ven fuertemente
atraidas hacia el interior del liquido y la interfaz tiende a ser la menor posible
(en equilibrio, gotas y burbujas esféricas). En estos casos la tensién superficial
es positiva, ya que se necesita realizar un trabajo para aumentar el area de la
interfaz. En el caso de dos liquidos, la tensién superficial puede ser positiva o
negativa. Si es negativa, los liquidos son miscibles, ya que la interfaz aumenta
espontaneamente.

Como se dijo anteriormente, la tensién superficial depende de la naturaleza
de los fluidos en contacto y del estado termodindmico de la interfaz, funda-
mentalmente de la temperatura, disminuyendo cuando ésta aumenta. También
se ve afectada por los cambios de concentracién, en el caso de soluciones, y
por la presencia de campos electromagnéticos. Hay sustancias (denominadas
sustancias capilar o superficialmente activas) que afiadidas en cantidades muy
pequenas, disminuyen notablemente la tension superficial. Ejemplos son los
alcoholes superiores y los jabones, que anadidos al agua en proporciones muy
pequenas disminuyen drasticamente su tensién superficial. Estas sustancias se

1Es como si existiese una membrana delgadisima en la interfaz de separacién entre dos
fluidos inmiscibles sometida a una tensién superficial 0. De hecho, algunos insectos caminan
sobre la superficie del agua.
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distribuyen en el estrato superficial en concentracién mayor que en el resto
del liquido, y las disoluciones acuosas de estas sustancias forman facilmente
espuma (mayor superficie) y tienen un mayor poder mojante.

La tension superficial se determina mediante diversos procedimientos, sien-
do el mas sencillo el que se basa en la elevacion capilar, consistente en medir
la fuerza necesaria para elevar una placa o un anillo metdlico parcialmente
sumergido, y relacionarla con el aumento de superficie producido. Algunos va-
lores de la tensién superficial de algunos liquidos en contacto con aire, a 20°C),
son los siguientes (en dinas/cm): agua, 72.75; alcohol metilico, 22.61; alcohol
etilico, 22.27; acetona, 23.70; éter, 17.0; glicerina, 63.4; mercurio, 466.0. A 0°C
la tension superficial aire-agua es 75.7, mientras que a 40°C es 69.6.

13.2. Equilibrio en la interfaz

El equilibrio termodindmico de la interfaz de separacién de dos fluidos
inmiscibles requiere equilibrio térmico y mecanico. El equilibrio térmico exige
que a ambos lados de la superficie las temperaturas y los flujos de calor sean
iguales [véase ecuacién (10.41)]:

=Ty |, K1@=K2@, (13.1)
on on
donde los subindices 1 y 2 denotan los fluidos a uno y otro lado de la interfaz,
y 7 es la direccién normal a la misma.

El equilibrio dindmico exige igualdad de las velocidades de los dos fluidos
en la interfaz y, si no existiese tensién superficial, igualdad de esfuerzos [ecua-
cién (10.40)]. La existencia de tensién superficial produce un salto entre los
esfuerzos a ambos lados de la superficie que equilibra la tensién superficial. Pa-
ra obtener esta relacion entre esfuerzos y tension superficial, consideremos un
elemento de interfaz de area §.S que separa dos fluidos inmiscibles, 1 y 2, como
se esquematiza en la figura 13.1. Si dl es el vector de longitud d! tangente al
borde 6L de S y 7i es el vector unitario normal a la superficie dirigido desde el
fluido 1 hacia el 2, la fuerza de tensién superficial en cada punto del borde 6L
tiene una direccion perpendicular tanto a di’como a 71, es decir, estd orientada
segun la direccién di'ATi. Por tanto, la fuerza de tension superficial que actia
sobre el borde de 4S viene dada por

stdl/\fiaz/és(dé‘/\ V)/\(ﬁa):/és ds(@ A V) A (iio) (13.2)
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Figura 13.1: Equilibrio mecénico en la interfaz.

donde la tensién superficial 0 no es constante, en general, y por ello se ha
mantenido dentro de la integral, y se ha hecho uso del teorema de Stokes
(1.69). Desarrollando el doble producto vectorial, (13.2) se escribe

/ ds[V(iic)-n— iV - (fio)] =/ ds[Va—ﬁﬁ-Vo]—/ dsnoV -7, (13.3)
éS S S

donde se ha tenido en cuenta que (VA) -7 = Vn?/2 y n? = 1. Esta fuerza
tiene que ser igual a la diferencia de las fuerzas que cada fluido ejerce sobre la
superficie:

/ds[?z-ﬁ—?l-ﬁ]=/ dsVsa—/ dsiioV - 7. (13.4)
é6S é6S éS

En esta expresion, Vso = Vo — 7ii - Vo es la proyeccion de Vo sobre la
superficie, es decir, el gradiente bidimensional de o sobre la interfaz. Como
esta ecuacién se cumple para cualquier elemento de superficie .5, la igualdad
se verifica también en la forma diferencial de los integrandos. Proyectando en
las direcciones normal y tangente a la superficie, se obtienen las dos ecuaciones
diferenciales para el equilibrio de esfuerzos en la superficie de separacion entre
dos fluidos inmiscibles cuando se tiene en cuenta la tensién superficial, que
sustituyen a las dos tltimas ecuaciones escritas en (10.40):

ii-(To—71) Ai=-0V-i, (13.5)

[Fo i — (7L 7o - )] — [F1 - i — (7 - 7y - A)ii] = V0. (13.6)

Obsérvese que todas las cantidades anteriores son funciones de la posicién
sobre la interfaz y, en general, del tiempo. La magnitud —V - 71 es la cur-
vatura local de la superficie (ver seccién siguiente). Por tanto, la ecuacién
(13.5) nos dice que si la interfaz no es plana, los esfuerzos normales a ambos
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lados son distintos, siendo el coeficiente de proporcionalidad entre curvatura
y diferencia de esfuerzos la tensién superficial. La ecuacién (13.6) nos dice que
si la tensién superficial varia de un punto a otro de la superficie (por ejemplo,
si la temperatura no es uniforme, o existe un gradiente de concentracién, o
la superficie tiene carga eléctrica distribuida no uniformemente), se produce
una diferencia entre los esfuerzos tangenciales a ambos lados de la superficie,
por lo que la interfaz tenderd a moverse (no hay equilibrio mecédnico). Este
conjunto de ecuaciones, junto con ) = ¥ y la condicién que la interfaz es una
superficie fluida [ecuacién (10.39)], constituyen las condiciones de contorno de
las ecuaciones de ambos fluidos inmiscibles sobre la interfaz, cuya posicién se
obtiene de la resolucién del problema. Sin embargo, en esta lecciéon nos vamos
a limitar a situaciones en las que ambos fluidos y, por tanto, la interfaz, estian
en reposo (fluidostatica).

13.3. Ecuacion de Young-Laplace

En el caso en que los fluidos a ambos lados de la superficie estén en equili-
brio mecénico (7; = 0, i = 1,2), se tiene 7; = —pI , por lo que la ecuacién (13.6)
nos dice que la tensién superficial debe ser uniforme en toda la superficie, y la
ecuacién (13.5) se reduce a

p1—p2=—-0V -7, (13.7)

que es la llamada ecuacion de Young-Laplace. Esta es una ecuacién diferencial
que nos proporciona la forma de la interfaz, conocidas las presiones p; y p; y
la tension superficial o. Por ejemplo, si la superficie S(Z) = 0 viene dada, en
coordenadas cartesianas, por z = zs(z,y) [es decir, S(z,y, z) = z — z5(z, )],
el vector unitario 7 seria

i = - : (13.8)
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R; y R; son los radios de curvatura en las direcciones z e y, respectivamente.
De acuerdo con esto, es habitual escribir la ecuacién de Young-Laplace (13.7)
en la forma

1 1
—p2 = —_ — 13.10
p-m=o(z+7), (13.10)

donde R; y Ry son los dos radios de curvatura locales de la interfaz en cualquier
sistema ortogonal de coordenadas que se utilice para definir la superficie, no
necesariamente cartesiano. Esta forma tiene la ventaja de que, en algunas
situaciones en las que se tiene una idea previa de cémo son los radios de
curvatura, es mas directo obtener una solucién aproximada de la ecuacién de
Young-Laplace (véase mas adelante).

Si uno de los radios de curvatura es infinito, por ejemplo, si la superficie
es bidimensional y viene dada por z = z4(z), se tiene que 1/Rs =0y

/
1 / "
- Zs DS/ S— (13.11)
R, V1+ 22 (1 + 212)3/2
donde las primas significan d/dz. La ecuacién de Young-Laplace se convierte
asi en una ecuacion diferencial ordinaria para zs(z). Otro caso de interés es el

de una interfaz axilsimétrica, que en coordenadas cilindricas vendria dada por
z = 2z4(r) 0 S(r,0,2) = z — 25(r) = 0. En este caso, el vector unitario 7 seria

VS  (—z(r),0,1)
VS|~ 1+ 22(r)

y los dos radios de curvatura serian:

(13.12)

n=

1 2\ 2" 2 1,1
V== |r—=__| = S + = =—+——. (13.13
T ( \/1+z;§> (1+22)32  r/1+22 R Ry ( )

Como condiciones de contorno para resolver la ecuacién de Young-Laplace,
se suele imponer la condicion de que los volimenes de los fluidos son conocidos,
condiciones de simetria y la imposicion de ciertos angulos que forma la interfaz
en sus extremos, que suelen ser lineas a lo largo de las cuales tres fases estan
en contacto. Por ejemplo, una gota de liquido sobre una superficie sélida [ver
figura 13.2(a)] forma un cierto dngulo de contacto entre la superficie del
sélido y la interfaz liquido-aire. Este dngulo no puede ser cualquiera ya que el
equilibrio en la linea de contacto proyectado sobre la superficie sélida exige

012 = 031 + 023¢cos6 (13.14)
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(a) (b)
2 Aire @3
3 Liquido 8,
3
(s3 [+3
1 Solido A i

Figura 13.2: (a): Angulo de contacto. (b): Contacto entre tres fluidos inmiscibles.

puesto que es una linea inmaterial (la componente normal a la superficie,
o923 sin @, esta equilibrada con la correspondiente reaccion de la superficie séli-
da). Como o3, y 012 son dificiles de determinar, el 4&ngulo de contacto se suele
evaluar experimentalmente para cada terna liquido-gas-sélido. Si 6 < 7/2, se
dice que el liquido moja la superficie (como ocurre para agua-aire y la mayoria
de los sélidos, como vidrio, metales, etc.); mientras que si § > /2, el liquido
no moja (como ocurre con el mercurio, cuyo angulo de contacto es alrededor
de 150° para muchos sélidos).

En el caso de una linea de contacto entre tres fluidos (por ejemplo, dos
liquidos inmiscibles y aire), el equilibrio viene definido por dos dngulos de
contacto (figura 13.2(b)). Si |o12] > |o23| + |o31|, como por ejemplo ocurre
con algunos aceites minerales en agua en contacto con aire, la condicion de
equilibrio en la linea de contacto no se puede satisfacer, siendo el sistema
inestable.

Cuando no existen campos de fuerzas externos, o el efecto de éstos es
despreciable, las presiones fluidostaticas p; y p2 son constantes y la ecuacién
de Young-Laplace nos dice que la curvatura es constante:

-V-i= é + é = constante. (13.15)
Si, ademas, la superficie es libre (en el sentido de que no estd soportada a lo
largo de ninguna curva de contacto con un sélido), la ecuacién anterior nos
dice que la superficie es una esfera, como ocurre, por ejemplo, para burbujas o
gotas pequenas. En el caso mas general en que los campos de fuerzas sean im-
portantes, la distribucion de presion a cada lado de la superficie viene dada por
la ecuacién fluidostatica (12.9). Por ejemplo, si como ocurre normalmente, las
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unicas fuerzas masicas son las gravitatorias, y las densidades de ambos fluidos
en contacto se pueden considerar constantes (al menos en las proximidades de
la interfaz), se tiene que p; + p;gz = poi, donde py;, ¢ = 1,2 son constantes.
Sustituyendo en la ecuacién de Young-Laplace, se obtiene la siguiente ecuacién
diferencial que debe satisfacer la interfaz:

1 1
— + — — = . 13.16
o4 ( ) + R2) + (p1 — p2)9z = constante ( )

La importancia relativa de cada uno de los términos de esta ecuacién viene
dada por el parametro adimensional

B 1P —plol?
o

donde L es una longitud caracteristica de la superficie, llamado niimero de
Bond. Este nimero nos da una idea de la importancia relativa de las fuerzas
gravitatorias frente a las fuerzas de tensién superficial o capilares. Si el mimero
de Bond es muy pequeno, las fuerzas de tensién superficial son dominantes,
y la ecuacién (13.16) se reduce, en primera aproximacion, a (13.15), siendo
la interfaz aproximadamente esférica. Por el contrario, si el nimero de Bond
es muy grande, las fuerzas gravitatorias son dominantes y la interfaz es apro-
ximadamente plana (z ~ constante). Que el nimero de Bond sea grande o
pequeno viene condicionado, en gran medida, por las dimensiones del sistema
(longitud caracteristica L). Se denomina longitud capilar a la longitud en
la cual las fuerzas de tensién superficial son importantes; es decir, la longitud
para la que el nimero de Bond es de orden unidad:

Lo = | i, (13.18)
lp1 — p2lg

En el caso habitual en que uno de los fluidos (por ejemplo el 1) es aire y el
otro es un liquido, se tiene que p; < p2, y la longitud capilar viene dada por
L. ~ \/o/pg, donde p es la densidad del liquido. Para agua-aire a 20°C L. =
0,272cm. En la seccién siguiente consideraremos algunos ejemplos significativos
con BL1ycon B> 1.

; (13.17)

13.4. Ejemplos

13.4.1. Tubo sumergido en un liquido

Considérese un tubo sumergido en un liquido. Si el liquido moja la super-
ficie del conducto (6 < 7/2), el liquido ascendera por él debido a las fuerzas
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B2
Y

9"

—

Figura 13.3: Ascensién de un liquido por un tubo capilar.

originadas por la tensién superficial (ver figura 13.3), mientras que si § > /2,
el liquido descendera.

Si el conducto tiene de radio interior a, la ecuacién y condiciones de con-
torno que gobiernan la forma de la superficie son [(13.7) junto con (13.13) y
las condiciones de contorno de la figura 13.3]:

1 2, '
= — —8
pgzs =0 (r \/l—i-_z?> , (13.19)
2L(0) =0, 2.(a)=coth, (13.20)

donde se ha supuesto despreciable la densidad del aire frente a la del liquido
p, y se ha considerado que la presion en el aire es p,. Esta ecuacidén, ademas de
la forma de la superficie, proporciona la altura H a la que asciende el liquido
por accién de la tensidn superficial:

H = z,(0). (13.21)

Es conveniente definir las variables adimensionales 1 y &,

2¢=H+an, r=af, (13.22)
de forma que (13.19)-(13.20) queda
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1 7\
B(n+p) = E (6\/1;,Tn’§) - (13.23)

7n(0) =0, 7n'(1)=cotd, (13.24)
donde las primas ahora denotan diferenciacién respecto a &,
2

2
B= % % (13.25)

es el nimero de Bond, y f = H/a.

Este problema tiene solucidon analitica en términos de las funciones de
Bessel. Sin embargo, es mas interesante obtener soluciones mas simples en los
dos limites B < 1y B> 1. En el primer caso, en el que la tension superficial
es dominante, el término Bn se puede despreciar en primera aproximacién
en (13.23) al ser n de orden unidad. Esto quiere decir que la curvatura es
constante y, por tanto, la superficie es esférica. En efecto, sin el término Bp,
la ecuacién (13.23) se puede integrar una vez:

&n' &

N = Bp 5 (13.26)
donde la constante de integracion se ha hecho cero en virtud de la primera
condicién (13.24). Esta expresién, junto con la segunda condicién (13.24),
proporciona 3 = 2 cos§/B. Es decir, la altura a la que asciende un liquido por
accion de las fuerzas de tensién superficial en un tubo capilar (entendiéndose
por tubo capilar aquél que es tan delgado que su radio verificaa < L. 6 B < 1)
es:

= 2ol (13.27)

pga

Para obtener la forma de la superficie hay que integrar otra vez (13.26), que
se puede escribir como

7 §cos b
1= e 13.28
I V1 —€2cos?8 ( )
Integrando esta ecuacion y teniendo en cuenta que 7(0) = [, se tiene
1 1 —£2cos?6
n=p+ Vilese g (13.29)

cos
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Figura 13.4: Conducto con radio mucho mayor que la longitud capilar.

Esta expresion corresponde a una superficie esférica, que en variables dimen-
sionales se puede escribir como

[2s — (H + R)]* + 2 = R?, (13.30)
donde
a
=— (13.31)

es el radio de la esfera. De hecho, la curvatura de la superficie es [sustituyendo
(13.30) en (13.13)]:

VA== (13.32)

Es decir, los dos radios de curvatura son constantes iguales a R.

En el limite opuesto de tensién superficial despreciable (B > 16 a >> L),
la ecuacién (13.23) proporciona, en primera aproximacién, n+ 3 ~ 0. Es decir,
la superficie es plana y de altura nula:

2s=0; H=240)=0. (13.33)

Esta solucién es aproximadamente vélida (con errores del orden de L?/a? < 1)
en todo el conducto, excepto muy cerca de la pared. Concretamente, en una
capa limite de espesor del orden de la longitud capilar, el segundo miembro de
(13.23) es del mismo orden que el primero, y (13.33) deja de ser vélida. Esto
sugiere erpandir las coordenadas en las proximidades de la pared mediante
(ver figura 13.4)
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2e=Ln, z=a—-r=L}E (13.34)

donde las nuevas coordenadas adimensionales (£, 7) son de orden unidad en la
capa limite de espesor L.. Sustituyendo en (13.19) se tiene

i

I Sy
(1 + ,'712)3/2

donde se ha despreciado el segundo sumando de la curvatura [ver (13.13)] por
ser de orden L./a < 1 respecto al primero. Obsérvese que el problema tiene
ahora geometria plana [la curvatura es la misma que en (13.11)], valiedo la
ecuacién tanto para la parte interior como exterior del conducto (en general,
para cualquier superficie sélida plana que se introduzca verticalmente en el
liquido). Esta ecuacién debe resolverse con las condiciones de contorno

—n=0, (13.35)

n'(0) = —cotf, n(§ — c0) = 0. (13.36)

La segunda condicién proviene de la primera condicién de contorno (13.20),
con errores del orden de L./a < 1. Este problema tiene solucién analitica:

(1+V1-7%/9)(1 = V(I +5in6)/2)

(1-V1-9%2/4)1+ /(1 +5sin6)/2)
(13.37)

£=/21 +sin6) — /4 —n2 +1In

13.4.2. Gota que pende de un tubo

Como ultimo ejemplo, considérese el caso de una gota de un liquido que
pende de un conducto vertical de radio interno a (figura 13.5). El problema
es muy similar al anterior, pero, ahora, el dngulo 6 depende sobre todo del
volumen de la gota y, por tanto, de la presion en el interior en el conducto,
que es desconocida. Las ecuaciones y condiciones de contorno serian:

!
1 A
Z | r—=_—| + pgzs = constante, 13.38
o= ( Y ) p9Zzs (13.38)

zi(a) = —cotf, 2.(0)=0, 24(a)=0, (13.39)

donde p es la densidad del liquido.

El angulo de contacto 6 debe ser tal que la fuerza de tensién superficial en
la linea de contacto equilibre el peso de la gota (si el volumen de la gota es
mayor que un valor critico, la gota cae). Utilizando las variables adimensionales
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.....

R z,(r)

Figura 13.5: Gota que pende de un tubo de seccidn circular.

las expresiones (13.38)-(13.39) se escriben

&\
Bén + <—1\/_+=77'2_) = K¢,

n'(1) = —cotf, 7/(0)=0, n(1)=0,
donde

pga®
ag

B =

191

(13.40)

(13.41)

(13.42)

(13.43)

es el mimero de Bond y K es una constante arbitraria. Aqui se considerard sélo
el limite B < 1 (el limite B > 1 y, por supuesto, el caso general, tiene
soluciones bastantes més complejas) . Como en el ejemplo anterior, en primera
aproximacion, con errores del orden de B, la ecuacién (13.41) se puede integrar

una vez,
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_& g€
Ve K7
donde la constante de integracién se ha hecho cero utilizando la condicién

de contorno en £ = 0 y, de la primera condicién de contorno en (13.42),
K = —2cos#. Esta ecuacién se puede escribir como

(13.44)

; cos ¢

7= -\/l—cosﬁ%i’

que integrada otra vez, y después de la aplicacion de la condicién de contorno
restante, proporciona la solucién:

_ \/1 - cosré_{f

o0 —tanf. (13.45)

n

Por supuesto, dado que el nimero de Bond es cero en primera aproximacion,
esta solucién corresponde a una superficie esférica que se apoya en el tubo
formando el dngulo 6 (el cual queda fijado por el peso de la gota).
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FLUJOS VISCOSOS






Capitulo 14

Movimientos unidireccionales
de liquidos

La dificultad fundamental para resolver las ecuaciones de Navier-Stokes
(exacta o aproximadamente) reside en los términos no lineales que introdu-
ce la conveccién. En esta leccién consideraremos algunos flujos en los que el
término convectivo de la ecuacién de cantidad de movimiento es idénticamen-
te nulo. Las soluciones de las ecuaciones lineales resultantes son, por tanto,
las mas simples posibles, aparte de la trivial ¥ = 0 considerada en la leccién
12. Los ejemplos que consideramos a continuaciéon constituyen algunos de los
relativamente pocos casos en los que existen soluciones exactas de las ecua-
ciones de Navier-Stokes (un repertorio mas amplio de soluciones exactas de
las ecuaciones de Navier-Stokes puede consultarse en las referencias citadas al
final de la leccién). No se considerara la estabilidad de estos flujos.

14.1. Flujos con lineas de corriente rectas

14.1.1. Ecuaciones y condiciones iniciales y de contorno

Con las ecuaciones escritas en coordenadas cartesianas, el término convec-
tivo de la ecuacién de cantidad de movimiento desaparece en los movimientos
incompresibles si todas las componentes del vector velocidad, excepto una,
son nulas (movimientos unidireccionales). Tomando ¥ = u€é;, la ecuacién de
continuidad V - ¥ = 0 proporciona

Ou

7 = 0. (14.1)
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con lo que u = u(y, 2, t). Por lo tanto, la ecuacién de cantidad de movimiento
se simplifica a

Bu _dp u  0%u

Por = gy T Pfmath ( 52 T 5.2 ) (14.2)

Op
0=——+pfmy, 14.3
) pf y ( )

Op
=_& e 14.4
0 5, 1 f (14.4)

donde los términos convectivos son identicamente nulos debido a que u no
depende de z y al ser nulas las componentes de la velocidad segin y y z. Se
ha supuesto que la viscosidad es constante para que asi el problema mecanico
esté desacoplado del térmico.

Las proyecciones y y z de la ecuacién de cantidad de movimiento esta-
blecen, simplemente, que existe equilibrio hidrostatico en las direcciones per-
pendiculares al movimiento. Si las fuerzas masicas derivan de un potencial,
fm = —VU, se tiene que p + pU (que se suele denominar presién reducida
) no depende de y y z:

p+pU=f(z,t) . (14.5)
Definiendo
= —~—59—( + pU) (14.6)
b= 9z pTp ) .
la ecuacién (14.2) queda:
Ou Pu  0%u
p8t pl+ﬂ(82+82)' (147)

Como u no depende de z, tampoco p,

p=npflt) . (14.8)

Suponiendo que la capacidad calorifica y la conductividad térmica son
constantes, la correspondiente ecuacién de la energia se escribe:

(3) +(3)

+Qr . (14.9)
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Obsérvese que aunque esta ltima ecuacién no es lineal, al estar desacoplada
de las ecuaciones de continuidad y cantidad de movimiento, la funcién u(y, z, t)
es conocida previamente a su resolucién, y a efectos practicos el problema es
también lineal para la temperatura. En los ejemplos que siguen sdlo resol-
veremos el problema mecanico; se ha escrito la ecuacién de la energia para
completar el problema y para futura referencia.

Como condiciones iniciales se deben imponer

t=0 , u=1uo(y,2) , T =Ty(z,y,2) . (14.10)

Las condiciones de contorno para la velocidad u deben ser, por supuesto, com-
patibles con la unidireccionalidad del movimiento, pudiendo corresponder a
tres tipos de problemas: (a) flujos en conductos de seccién uniforme; (b) flujos
generados por el movimiento de un contorno plano en la direcién z, y (c) flujos
confinados entre dos contornos paralelos e infinitos (por ejemplo dos placas)
producidos por un gradiente de la presién (reducida) independiente de la po-
sicién. [El tercer supuesto se puede tomar como un caso particular de (a).] A
continuacién vamos a considerar varios ejemplos (estacionarios y no estacio-
narios) correspondientes a los casos (b) y (c¢). El caso (a) se estudiard, de una
forma ligeramente ma&s general, en la leccién siguiente. Por ello no escribimos
las condiciones de contorno en forma general, sino en cada caso particular.
En cuanto a la temperatura, se debe especificar o bien su valor o bien el flujo
de calor en los contornos sélidos (ver seccién 10.3; no las especificamos aqui
puesto que no vamos a resolver el problema térmico).

Antes de pasar a ver los ejemplos concretos conviene sefialar que la linea-
lidad del problema permite la superposiciéon de distintas soluciones corres-
pondientes a distintas condiciones de contorno. Por otra parte, aunque pocos
problemas reales son exactamente unidireccionales, las soluciones que veremos
a continuacién se pueden tomar como soluciones aprorimadas de algunos pro-
blemas reales. Ademads, estas soluciones nos van a permitir introducir algunos
conceptos fisicos y matematicos de mucha utilidad para resolver problemas
reales mas complejos.

14.1.2. Corriente de Couette

El movimiento unidireccional mas sencillo posible es el confinado entre dos
placas paralelas e infinitas producido por el movimiento de una de ellas relativo
a la otra. En este caso el movimiento es estacionario y solo depende de una
coordenada transversal (y), siendo, ademads, p; = 0. La ecuacién (14.7) queda,
simplemente,
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u(y) i h

Figura 14.1: Corriente de Couette.

o
dy?

y las condiciones de contorno son (ver figura 14.1):

=0 , (14.11)

wWy=0)=0 , uly=h)=V , (14.12)

donde se ha supuesto que la velocidad de la placa inferior es nula y la de la
superior V. La solucién es un perfil lineal de velocidad (corriente de Couette):

u=Vy/h. (14.13)

El esfuerzo viscoso, T;y = pdu /0y, es constante en todo el flujo eigual a pV/h,
siendo ésta, por tanto, la fuerza por unidad de superficie necesaria para mover
la placa superior con velocidad V' y la que es necesario hacer, pero en sentido
contrario, para que la placa inferior no sea arrastrada por el movimiento del
fluido. (La medicién de esta fuerza constituye un procedimiento simple para
determinar experimentalmente la viscosidad de un liquido.) El caudal que
circula es, por unidad de longitud en la direccién z,

h
/w;,:% . (14.14)

14.1.3. Corriente de Poiseuille

Es el movimiento originado entre dos placas paralelas por un gradiente de
presién (reducida) constante. La ecuacién de cantidad de movimiento en la
direccién z y las condiciones de contorno (ver figura 14.2) quedan

2
O=p + ugy—z , Dy = constante, (14.15)
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= :

Figura 14.2: Corriente de Poiseuille bidimensional.

u(y=0)=(y=h)=0. (14.16)

La solucidn es el perfil parbdlico de velocidad

uw= %y(h —y). (14.17)

El esfuerzo viscoso es nulo en el centro (y = h/2) y maximo en las paredes:

/ 8“_&(}1 h /

l
T, —%) , T=0="-=-n,u=h . (1418

Ty = /J'a_y - 2
El caudal por unidad de longitud es:

h h3
o I

el cual se suele denominar de Poiseuille debido al flujo andlogo en un conducto
de seccién circular (ver leccién siguiente) que fue estudiado experimentalmente
por Poiseuille sobre 1840.

El perfil de velocidad correspondiente al movimiento originado por un gra-
diente de presién constante y por el movimiento de una de las placas (e.g.
la superior) se obtiene sin mds que sumar (14.13) y (14.17) en virtud de la
linealidad del problema:

_ Yy

u=L 4+ Pyh_y) | (14.20)

h 2u
siendo el caudal por unidad de longitud

q=Vh/2+ h3p/124. (14.21)

Este campo de velocidad (Couette + Poiseuille) es la base de la lubricacién
fluidomecédnica que se considerard en la leccion 16, donde se generaliza para
h(z,t) y pi(t), suponiendo que h varia muy lentamente con z, y que las fuerzas
de viscosidad son dominantes.
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14.1.4. Problema de Rayleigh

Como ejemplo de flujo unidireccional no estacionario, consideramos pri-
mero el movimiento originado en un liquido por una placa que en t = 0 pasa
subitamente de estar en reposo a moverse paralelamente a si misma con velo-
cidad V' constante (Rayleigh, 1880). La ecuacién y condiciones iniciales y de
contorno que gobierna el campo de velocidades u(y, t) son:

Ou 0%u

=y > 4.

5 =Vg 0 Y20 . >0, (14.22)
w(0,t) =V, t>0, wu(oco,t)=0; u(y,0)=0. (14.23)

La ecuacién anterior es la tipica ecuacion de difusiéon o ecuacién del calor
[ecuaciones (6.32) y (10.13)], y la solucién que veremos a continuacién [en
general, la solucién con cualquier ley V' = V/(t)] se obtiene por analogia con el
problema de conduccion de calor.

Como el problema es lineal, la constante V' se puede eliminar mediante el
cambio de variable

v=u/V, (14.24)
quedando
Ov 0%
— = > , , 14.
5 uay2 y>0 t>0 (14.25)
v(0,t) =1, t>0, wv(oco,t)=0; wv(y,0)=0. (14.26)

El andlisis dimensional permite reducir la ecuacion anterior a una ecuaciéon
diferencial ordinaria. En efecto, de (14.25)-(14.26),

v=ov(y,t,v) , (14.27)

donde v es ya adimensional. Tomando como magnitudes dimensionalmente
independientes t y v se tiene:!

v=f(y/Vvt). (14.28)

Asi, v no depende de y y t por separado, sino de una combinacion de esas dos
variables dada por

10bsérvese que, tal como esta escrito, este problema es puramente cinemaético, puesto que
la masa ha desaparecido del problema al dividir la ecuacién de cantidad de movimiento por
la densidad; por tanto, sélo hay dos dimensiones independientes, longitud y tiempo.
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n=y/Vut . (14.29)

Basicamente, lo que ocurre es que al no tener el problema ninguna longitud
caracteristica para adimensionalizar la coordenada y (el liquido ocupa el semi-
espacio 0 < y < 00), la adimensionalizacién se tiene que hacer necesariamente
con la otra variable independiente (t), reduciendo asi su nimero. La nue-
va variable independiente 17 se denomina de semejanza, y la solucion con ella
obtenida se llama solucién de semejanza, debido a que los perfiles de veloci-
dad v(y) son semejantes para los diferentes tiempos de acuerdo con la variable
7. Esta variable convierte la ecuacién en derivadas parciales (14.25) en una
ecuacién diferencial ordinaria, que se obtiene sin mdas que sustituir (14.28) en
(14.25), teniendo en cuenta que dv/0t = —(n/2t)f’ y 8%v/0y? = f"/vt, donde
las primas significan derivadas con respecto a 7:

1
"+ 3" f =0, (14.30)
fO)=1 , f(c0)=0. (14.31)
Obsérvese que la condicién inicial v(y,0) = 0 y la condicién de contorno

v(0o,t) = 0 dan lugar a la misma condicién de contorno f(oo) = 0 (si no
se redujese también el numero de condiciones de contorno la solucién no seria
de semejanza).

Una primera integral de (14.30) es

fl=Ce (14.32)
que integrada de nuevo da
n
f=C+C / e~€/4dg (14.33)
o
sustituyendo las condiciones de contorno se obtiene
v = % — erfc(n/2) = erfe(y/2Vvt), (14.34)
donde
erfe(z) =1— —/ ' (14.35)

es la funcion error complementaria. Esta solucién nos dice que la capa de fluido
préxima a la pared que se pone en movimiento tiene un espesor que crece con
el tiempo proporcionalmente a /vt. Para t — oo, u — V| es decir, todo el
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fluido se mueve rigidamente con la placa. El esfuerzo de friccién que el liquido
ejerce sobre la placa es:

Oou v
——— = —pV,[=. 4.
T u(6y>y=0 PV — (14.36)

El problema anterior se complica notoriamente si se incluye una placa fija
paralela a la movil a una cierta distancia h de ella, puesto que introduce
una longitud caracteristica (h) que no permite la existencia de soluciones de
semejanza. Definiendo las variables adimensionales

u y t
UZV y 7}:— ) T = — (1437)
donde t, es un tiempo caracteristico que se eligird convenientemente a conti-
nuacioén, el problema viene gobernado por

v vty 0%
v(0,7)=1, 7>0, v(1,7)=0; v(n0)=0. (14.39)

La ecuacién se simplifica tomando t, = h%/v, que es el tiempo caracteristico
en el que el movimiento de la placa inferior se transmite a todo el fluido (como
se vera mas claramente en lo que sigue).

Este problema no tiene una solucién analitica tan simple como (14.34,2
pero si es posible encontrar soluciones aproximadas sencillas para tiempos
grandes y pequeiios comparados con h?/v, es decir, en los limites 7 > 1y
TL 1

Para 7 > 1 (t > h?/v), el primer termino de (14.38) es despreciable con
errores del orden de 77! y el problema queda

0%

—~0

on?

(Por supuesto, no se puede imponer condicién inicial.) La solucién es:

v(0,7)=1 , wv(l,7)=0 . (14.40)

v=u/V=1-n=1-y/h, (14.41)

2Por separacién de variables, utilizando series de Fourier, o mediante el método dela trans-
formada de Laplace, se encuentra que v(n,7) =1—1n — Zf=1(2/mr) exp(—n2n?7) sin(nwn)
(ver, por ejemplo, G.K. Batchelor, 1967; ver también seccion 15.4 para una solucién similar
en coordenadas cilindricas).
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que es un flujo de Couette. Es decir, cuando ha transcurrido un tiempo mucho
mayor que h?/v, todo el liquido entre las placas se ha puesto en movimiento,
llegandose a un movimiento estacionario de Couette.

Para 7 < 1 (t < h?/v), en primera aproximacion se tiene

= ~0 (14.42)

que proporciona v ~ constante = 0, para que satisfaga la condicién de con-
torno en 7 = 1. Evidentemente, esta soluciéon no puede ser valida en todo el
dominio fluido, puesto que cerca de la pared mévil el fluido tiene que moverse
con ella. Matematicamente, al despreciarse el término que contiene las deri-
vadas espaciales, no se pueden imponer todas las condiciones de contorno; en
particular, la de la placa mévil, y la solucién no puede ser vélida cerca de ella.
Por tanto, existe una capa delgada (capa limite ) en las cercanias de la pared
mévil (n = 0) donde la solucién anterior no es valida. Para hallar el espesor y
la solucién aproximada dentro de esa capa delgada, reescalamos las variables
de acuerdo con

donde las nuevas variables 6 y £ son de orden unidad en el interior de la capa
limite, por lo que @ < 1; § nos da el orden de magnitud del espesor de la capa
limite, que también debe ser muy pequeino como se determinara a continuacion.
Escribiendo la ecuacién (14.38) en estas nuevas variables, se llega a

ov  a 0% )
06 — 629e2
por tanto, § debe ser del orden de y/a < 1 para que el segundo término
cuente en la capa limite. En otras palabras, para 7 < 1, el liquido permanece
en reposo en todo el dominio fluido salvo en una capa delgada cerca de la pared
movil cuyo espesor es de orden /7 (que crece, por tanto, con el tiempo).
Para describir el movimiento en el interior de esta capa delgada, la placa
superior es como si estuviese en el infinito, y tenemos, en primera aproximacion
(errores del orden de 7) el problema anterior de Rayleigh: tomando § = /o,

(14.44)

ov 0%
v(0,0)=1 , wv(c0,0)=0 , v(0)=0 |, (14.46)

que admite la variable de semejanza £/v0 = y /V/vt, y cuya solucién es (14.34).
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Figura 14.3: Movimiento de un liquido entre dos placas, una en reposo y otra sibitamente
puesta en movimiento en ¢ = 0 con velocidad V, para distintos tiempos.

Para tiempos intermedios, del grden de h?/v [es decir, 7 = O(1)], las
soluciones aproximadas anteriores no son validas y no hay mas remedio que
resolver el problema (14.38)-(14.39) completo. En la figura 14.3 se representa
la solucién v = u/V para distintos tiempos, calculada tomando 50 términos
de la serie de Fourier (ver nota de pie de pagina mimero 2). Para 7 < 1 la
solucién es la de Rayleigh (14.34), mientras que para T — oo se tiene el perfil
de Couette (14.41) [en la figura se observa que el perfil lineal de Couette es,
de hecho, aproximadamente vélido incluso para 7 = O(1)].

14.1.5. Corriente de Stokes

Un problema similar al de Rayleigh es el movimiento originado por una
placa que oscila paralelamente a si misma con velocidad V (t) = U coswt (Sto-
kes, en 1850, consideré el caso general en que V(t) es una funcién arbitraria
del tiempo, obteniendo, en particular, una expresién general para la fuerza de
friccién sobre la placa.) La ecuacién y condiciones de contorno que gobiernan
el problema son:

——y" , y>0, .
5% =5 y > (14.47)
u(0,t) = Ucoswt , U(oo,t) =0. (14.48)
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No imponemos condiciones iniciales puesto que buscamos soluciones periddicas
en el tiempo.
Es mucho mas facil resolver el problema equivalente

5u1 _ 82u1
o =V (14.49)
u1(0,t) = Ue™®, wuy(00,t) =0; (14.50)

como la ecuacién es lineal, la solucién de (14.47)-(14.48) es la parte real de la
solucion de (14.49)-(14.50):

u = Real[uy] . (14.51)

La dependencia temporal de u; es de la forma e, por lo que definimos

up = e f(y). (14.52)
Sustituyendo en (14.49)-(14.50) se tiene

iwf=vf" (14.53)
fO)=U | flo)=0 - (14.54)

La solucion de este problema es:
u = Ue—\/w/2uyei(wt—\/u/2uy) , (1455)

con lo que la solucién del problema de Stokes se escribe

u = Real[u;] = Ue™V¥/?Y cos(wt — \/w/21/ Y). (14.56)

Este movimiento constituye una onda, amortiguada por la viscosidad, que
transmite el movimiento de la placa al liquido. La distancia hasta la cual se
deja sentir el movimiento de la placa es del orden de

0y =\V/w (14.57)

que se denomina longitud de influencia o penetraciéon viscosa. La velo-
cidad de fase de la onda (es decir, la velocidad a la que se mueven los frentes
de onda en la direccién y), es w/\/w/2v = v 2vw.

La resistencia viscosa que ejerce el liquido sobre la placa es, por unidad de
area,
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T = p (Q1—L> = —pVvwU cos(wt + w/4) , (14.58)
6y y=0

que se opone al movimiento de la placa, pero con un desfase de m/4 radianes
en relacién a su movimiento.

Similarmente a como se hizo con el problema de Rayleigh, complicamos
ligeramente el problema de Stokes considerando que el liquido no es ilimitado
en la direccién y, sino que existe una placa fija a una distancia h de la mévil.
El problema viene gobernado por:

ou d%u
u(0,¢) = Ucoswt ,u(h,t) =0. (14.60)

Este problema tiene solucién analitica:

u = U coswt exp[—y/w/2v Y] sin[\/w/21/ (h —y)]/sin[\/w/2v k], (14.61)

pero es mas instructivo obtener soluciones analiticas simples en dos limites
diferenciados de los parametros del problema. Definiendo las variables adi-
mensionales

v=% , ’7:% L T=hko (14.62)
la ecuacién y condiciones de contorno (14.59)-(14.60) quedan
v 0%v
— ==, 14.
or ﬂan'z ‘ (14.63)
v(0,7) =cost , wv(l,7)=0, (14.64)
donde
_v/w _ &

es una medida de la longitud de penetracién viscosa en relacién a la separacion
entre placas.

En el limite 3 > 1 (8, > h), el primer miembro de (14.63) es despreciable,
en primera aproximacion, respecto al segundo y el problema es casi estaciona-
rio, obteniendose un flujo de Couette que varia con el tiempo a través de la
condicién de contorno:
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— ~0, v0,7)=cosT, v(1,7)=0, (14.66)

v~ (1-7m)cosT. (14.67)

Fisicamente, cuando la longitud de influencia viscosa es mucho mayor que h,
todo el fluido se pone en movimiento al unisono con la velocidad armonica
de la palca inferior, variando la velocidad linealmente con y para satisfacer la
condicién de contorno en y = h.

La solucién anterior, que tiene errores del orden de 87! < 1, se puede
hacer tan exacta como se quiera sin mas que expandir v en potencias de 3~ 1:

v=v,+ 0o + B 2w+ ..., (14.68)

donde v,,v1,v2, ... son funciones de 1 y 7, que se obtienen sustituyendo la ex-
pansién anterior en (14.63)-(14.64) e igualando términos con potencias iguales
de 5. En el orden mds bajo se obtiene (14.66), por lo que v, viene dado por el
flujo de Couette (14.67). El término de orden §~! satisface

O _ &un
ar ~ on? '

Sustituyendo v, = (1 — 7)) cos T, se obtiene

v1(0,7) =v(1,7)=0 . (14.69)

v = [n*/6 —9*/2+1/3]sinT . (14.70)

La solucién v = v, + 3~ v; tendria errores del orden de 572, y asi sucesiva-
mente. Este método de soluciéon permite obtener una solucién exacta como se
quiera (siempre que (37! < 1) y se denomina método de perturbaciones
regulares .

En el limite § < 1 (8, < h), el primer término de (14.62) es el dominante,
teniéndose,

ov
5 =0 ; (14.71)

la solucién que satisface la condicién de contorno en n =1 es

v~0 . (14.72)

Obviamente, esta solucién no es uniformemente valida en todo el dominio
fluido puesto que no satisface la condicion de contorno en n = 0. Fisicamente,
cuando la longitud de influencia viscosa es mucho menor que h, la mayor
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parte del fluido no se entera de que la placa inferior se estd moviendo y, en
primera aproximacién, se puede considerar que el fluido estd en reposo. Pero
existird una capa delgada de fluido en las proximidades de la placa inferior
(capa limite) en la cual la solucién estacionaria exterior no es vélida. El espesor
de esta capa se determina exigiendo que los dos términos de la ecuacién (14.63)
sean del mismo orden en ella. Definiendo

n=d€ | (14.73)

donde la nueva variable £ se supone de orden unidad en la capa limite, y
sustituyendo en (14.63) se tiene

ov B &%

or 82062
por lo que el espesor § es del orden de 3'/? « 1. Haciendo & = 8'/2 y teniendo
en cuenta que 7 = 1 equivale a

(14.74)

E=1/6>00 , 6=8Y2-50 , (14.75)

el problema dentro de la capa limite se reduce, en primera aproximacion, al
problema Stokes anterior:

2
g; = % , v(0,7)=cosT , wv(oo,T)=0 |, (14.76)

cuya solucién es (14.56), que escrita en las nuevas variables es

v=et/V2 cos(T — £/V2). (14.77)

Esta solucién tiene errores del orden de 8 < 1 . La obtencién de soluciones
de mayor orden (errores de orden menor) es mas complicada que en el caso
anterior puesto que habria que obtener la solucién exterior en las siguientes
aproximaciones (ve = Veo + 8" 20e1 + ..., Veo = 0) y acoplarlas con las sucesivas
aproximaciones de la solucién en la capa limite o solucién interior [v; = v;, +
BY2u; + ..., donde v;, es la solucién de Stokes (14.77)] en el limite  — 0
para ve y £ — o0 para v;. Este esquema de solucién se denomina método
de perturbaciones singulares (o de los desarrollos asintéticos acoplados)
y en general hay que utilizarlo cuando en la aproximacién de orden menor
desaparece el término que contiene las derivadas de mayor orden en la ecuacién,
con lo que no se pueden imponer la totalidad de las condiciones de contorno
(el problema clésico de este tipo es la capa limite de Prandtl, correspondiente
al limite Re — oo, que se considerara en la parte VIII de la asignatura).
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14.2. Flujos con lineas de corriente circulares

Otro tipo de movimiento fluido simple para el que existen algunas solucio-
nes exactas es aquel en el cual las lineas de corriente son circulos centrados en
un eje de simetria comin. En coordenadas cilindricas (, 6, z), tomando el eje
z como eje de simetria, estos movimientos vienen caracterizados por U = uéy,
es decir, son unidireccionales en la direccién circunferencial éy.

14.2.1. Ecuaciones y condiciones iniciales y de contorno

Similarmente al caso cartesiano, la ecuacién de continuidad

10u

rof
nos dice que u no puede depender de . Las ecuaciones de cantidad de movi-
miento segun las coordenadas r, § y z son:

0 (14.78)

u? op
P T T + pfmr (14.79)
ou 10p 10 ( Ou %u  u
o= 726 [:5("5) 9z 2|t P (14.80)
__opr
0= 2+ pfm .- (14.81)

En la direccion z hay balance hidrostatico. En la direccién radial, las fuerzas
masicas (asociadas, por ejemplo, a las fuerzas centrifugas de un sistema de
referencia que gire), estdn equilibradas con las fuerzas de presién y las cen-
trifugas asociadas al movimiento del fluido. En la direccién 6 los términos
convectivos son identicamente nulos.

Para que el movimiento sea puramente circunferencial, las fuerzas masicas
en las direcciones radial y azimutal sélo pueden ser las inerciales asociadas
a un movimiento giratorio con simetria axial del sistema de referencia. Si la
velocidad angular es §} = Q(¢)€,, de acuerdo con (7.3) se tiene:

fr = —%r —2Qu (14.82)

fmo =-Q'r |, Q@ =do/dt . (14.83)
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Por otra parte, las fuerzas gravitatorias (o las asociadas a la aceleracion lineal
del sistema de referencia) deben ser axiales: f,,, = —9 (donde g puede incluir
una aceleracion lineal a,). La ecuacién (14.81) nos dice que la presién debe ser
de la forma

p= P(r,0,t) — pgz , (14.84)

que sustituida en (14.79) implica que u no puede depender de z y P no puede
depender de 6:

u=u(rt) , (14.85)
P = P(r,t) . (14.86)

Fisicamente, una dependencia axial de u originaria, debido a las fuerzas cen-
trifugas y de Coriolis, una dependencia axial de P que produciria un movi-
miento axial, destruyendo el flujo puramente circunferencial. Por tanto, los
movimientos puramente circunferenciales son también bidimensionales.

Las ecuaciones (14.79)-(14.80) quedan pues

u? oP
— 4+ Q% + 200 = — 14.87
p— + P + 20 = o ( )

2
ou 0y 10u 'u)1 (14.88)

, P — — — ——— —
T +pQT_'u(8r2+r0r r2

que son dos ecuaciones diferenciales para u(r,t) y P(r,t). Como condicién
inicial se debe especificar

u(r,0) = uo(r) (14.89)

las condiciones de contorno dependen de como se genere el movimiento y de
la geometria del problema (se consideraran algunos ejemplos a continuacion).
En cuanto a la ecuacién de la energia, que estd desacoplada de (14.87)-(14.88),
se escribe

(8T u 0T
Pee\at T 00

e A ——) = KV2T + 4 [r% (g)r +Qr . (14.90)



CAPITULO 14. MOVIMIENTOS UNIDIRECCIONALES DE LIQUIDOS 211

14.2.2. Movimiento entre dos cilindros que giran coaxialmente

Considérese el movimiento de un liquido contenido entre dos cilindros coa-
xiales e infinitos, de radios R; y Ry (R; < R3), que giran alrededor de su eje
con velocidades angulares §2; y €5 constantes. Para describrir el movimiento,
que es estacionario, podemos tomar un sistema de referencia que gira con al-
guno de los cilindros, pero es quizd mas facil tomar uno fijo (por supuesto, el
resultado seria el mismo). La ecuacién (14.88) queda:

v 1du wu
| Il e <r<R 14.91
L dr2+rd’r r2 Rl‘r— 25 ( 9)

siendo las condiciones de contorno

u(r = R;) =Ry, u(r = Rg) = Ry (14.92)
La solucién general de (14.91) es

(1) = % + Car, (14.93)
y teniendo en cuenta (14.92) resulta
- \1 (R} -%REY
= - —_—— . 14.94
- () () o

Una vez obtenida la distribucién de velocidad, la presién (reducida) se puede
obtener, salvo una constante arbitraria, mediante (14.87):

e 2C
p"_ =p (g_ +C3r+ ClCQ) _or ’ (14.95)
T or
C2 0121‘2
P-P, = 2 ; 14.96
0 p( 52+ o ) , (14.96)

donde las constantes C; y C; son las dadas en (14.92)-(14.93).
El esfuerzo viscoso viene dado por

u  wu 2C1 1 D —Q \2u
’ _2Y - MR (P Sy S (e sl 14.97
Tro = (—6T T) = ( RZ-R;%) 72 (14.97)

El par por unidad de longitud axial que habria que hacer para mover, por
ejemplo, el cilindro exterior de radio R, seria:
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R{* - R;?

(Obsérvese que el par es independiente de 7, por lo que seria el mismo, pero
cambiado de signo, en r = R;.) La medida experimental de este par es un pro-
cedimiento comunmente usado para determinar la viscosidad de los liquidos.
Normalmente se mantiene fijo el cilindro exterior (22 = 0) y se hace girar el
interior con velocidad angular §2, siendo el par necesario 4mu$2/ (R1_2 - Ry 2).

Casos particulares del movimiento anterior serian, por ejemplo, €l generado
en el interior de un unico cilindro de radio R que gira con velocidad 2. En este
caso, la regularidad en el eje exige C; = 0 en (14.93), y el liquido gira como
un soélido rigido:

> Q-0
Par = —2wR2 7lg(r = Ry) = 4np <#—) . (14.98)

u=Qr. (14.99)

Si en el exterior de este unico cilindro que gira existe una masa ilimitada de
liquido, su distribucién de velocidades viene dada por [C2 = 0 en (14.93) para
que u — 0 cuando r — oo]:

_ RQ

= 14.100
u=" (14.100)

Este movimiento es irrotacional, siendo la circulacién alrededor de cualquier
curva cerrada que rodee al cilindro 27 R?Q2. El par necesario para mover el
cilindro (en el supuesto de que sélo hay fluido en el exterior) seria 47 R2Q).

La combinacién de un movimiento giratorio dado por (14.99) para r < R
y del torbellino potencial (14.100) para r > R se suele denominar torbellino
o vértice de Rankine.

14.2.3. Difusién de un torbellino potencial

Como ejemplo simple de un movimiento no estacionario, consideremos la
disipacién por viscosidad de un torbellino bidimensional cuyo campo de velo-
cidad inicial es

I

u:
omr’

(14.101)

donde ' = constante es la intensidad (circulacién) del torbellino. Este campo
de velocidades puede ser generado, por ejemplo, por un cilindro de radio R
que gire en el seno del liquido con velocidad angular © [ecuacién (14.100)] en
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el limite formal R — 0, Q — oo, de forma que R?Q — constante = I'/27. En
términos de la vorticidad,

s=vav=1%g o e (14.102)
r Or
w es cero en todo el campo fluido excepto en el eje, que es infinita, pero
con circulacién I' constante alrededor de cualquier curva cerrada que rodee al
eje. Es decir, la vorticidad esta concentrada inicialmente en el eje de simetria
y queremos averiguar como se difunde en el seno del fluido a lo largo del
tiempo. El torbellino bidimensional (14.101) se suele denominar torbellino
potencial, y estd originado por una linea de vorticidad infinita situada en el
eje de simetria.
El problema viene gobernado por

2
i (Vzif)o =v (a W . 10w ﬁ) : (14.103)

a " o2 " ror 12

u(r,0)=0C/2xr , 7>0 ; wu(0,t)#00 , t>0 ; wu(oo,t)=0.
(14.104)
Este problema es mds facil de resolver utilizando la vorticidad (14.102) en lugar
de la velocidad, siendo, ademas, mas directa su interpretacion fisica. Como o
y & son perpendiculares y se trata del movimiento de un liquido, la ecuacién
de la vorticidad (7.43) se reduce a una ecuacién de difusién o conduccién de
calor con simetria cilindrica:

2
%—f =WViw=v (27“2’ + %%‘5) . (14.105)
La razén por la cual la ecuacién anterior para w es (ligeramente) mds sim-
ple que la ecuacién (14.104) para u reside, simplemente, en que & = wé€,
estd dirigida segun el eje cartesiano z, mientras que ¥ = uéy es a lo largo de
circunferencias; asi, mientras V23 = (V2w)e,, V27 = (V2u—u/r?)ép (ver sec-
cién 1.1). La ecuacién anterior hay que resolverla con las condiciones iniciales
y de contorno

w(r,0)=0 , r>0 ; w(0,t)#c00 , t>0 ; w(oo,t)=0 .
(14.106)

Este problema es similar al de Rayleigh (seccién 14.1.4), pero con simetria
cilindrica. Mediante analisis dimensional se demuestra que admite solucién de
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35+

r/i2x=1,
25

05

Figura 14.4: Difusién de un torbellino potencial: velocidad » dada por (14.108) en funcién
de r para distintos tiempos. Las unidades son tales que I'/2r =1y v = 1.

semejanza, de forma que wvt/T (6 ur/T) es funcién sélo de la variable de
semejanza r/v/vt. La solucién es:

r r?

La velocidad viene dada por (véase figura 14.4)

T 2
u(r,t) = %/ wrdr = %; [1 — exp (—4%;)] ; (14.108)
o

Para r pequefio (r < v/4vt), el movimiento es un giro como sélido rigido
con velocidad angular I'/87ut,

u(r,t) ~ L

~ . 14.109
8mut ( )

mientras que para distancias grandes del eje (r > V/4uvt) el movimiento es
irrotacional, tal y como era inicialmente,

r
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Es decir, el movimiento se asemeja a un torbellino de Rankine, excepto para
r = O V/4ut). Para t — 0o, todo el fluido se mueve como un sélido rigido de
acuerdo con (14.109), pero con velocidad angular que tiende a cero. En cuanto
a la vorticidad, ésta se difunde radialmente desde su valor infinito inicial en
el eje.3 A medida que transcurre el tiempo, la vorticidad va impregnando al
fluido, y va transformando el movimiento irrotacional inicial (14.101) en el
movimiento rotacional (14.109) (giro como sdlido rigido; ver figura 14.4).
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infinita de calor situada en 7 = 0 para t = 0, ya que la ecuacién y las condiciones de contorno
de estos dos problemas son las mismas.






Capitulo 15

Movimiento laminar de
liquidos en conductos

15.1. Corriente de Poiseuille en un conducto circu-
lar

Considérese un conducto infinito de seccién circular constante. El flujo
unidireccional y estacionario originado por un gradiente de presién reducida
p = —O0(p + pU)/0z constante, donde z es la coordenada axial a lo largo
del conducto, viene gobernado por la ecuacién (14.15), que en coordenadas
cilindricas (z,r, 0) se escribe

SNy (o
0_pl+7‘87‘(r81‘) ; (15.1)

siendo % = uéy. La solucién general de esta ecuacion es

_pr?

7 +Cilnr+Cy . (15.2)

u =
Como la velocidad no puede ser singular en el eje, C; = 0; por otra parte,

la velocidad debe ser nula en la pared del conducto, 7 = D/2, donde D es el
diametro del conducto, lo cual proporciona el perfil parabdlico de velocidad

2 2 2
= ’% [1 - <BT> } . (15.3)

El esfuerzo de friccién en la pared es
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Ou piD
T = (~Tow)o=pija = —1b (ar) . IT’ (15.4)

mientras que el caudal que circula por el conducto es

2 D/2 D4 nD* d(p + pU)
0 - - . .
Q= / d / drru=Toopi= — oo S (15.5)

Esta es la conocida ley de Hagen-Poiseuille, que estos autores obtuvieron
experimentalmente (Hagen, 1839; Poiseuille, 1840) relacionando el caudal que
circula por un conducto circular con la caida de presion entre sus extremos.
En particular, si en dos secciones (1 y 2) de un conducto separadas por una
longitud L (L > D) se conocen las presiones, p; y p2 (en general la relacién
anterior es valida para la presion reducida P = p+pU, pero Hagen y Poiseuille
consideraron tubos horizontales y sin fuerza masica alguna en la direccién del
movimiento), como p; es constante, se tiene que p; = (p1 —p2)/L, y la ecuacién
anterior queda

Q= mD*(p; — p2) (15.6)
- 128uLl '
que es la expresién obtenida experimentalmente por Hagen y Poiseuille.! Este
resultado confirmé experimentalmente la hipotesis de no deslizamiento del
fluido en la pared hecha por Stokes (la cual se ha utilizado como condicién de
contorno en la pared), ademds de la ley de Stokes para fluidos Newtonianos.
Por otra parte, la comparacién de (15.6) con los resultados experimentales es
un método directo muy simple para determinar la viscosidad de un fluido.
La fuerza total que por friccién el fluido ejerce sobre la pared de un conduc-
to horizontal entre las secciones 1 y 2 se obtiene sustituyendo p; = (p; —p2)/L

n (15.4):

F; = nDLt; = mD*(p1 — p2)/4, (15.7)

'El médico francés Poiseuille, que estudiaba la circulacién de la sangre, expresé esta ley
de la siguiente forma: el tiempo que tarda un determinado volumen de liquido en salir del
conducto es, por unidad de volumen (es decir, @Q'), proporcional a la longitud del conducto,
inversamente proporcional a la diferencia de presiones entre los extremos e inversamente
proporcional a la cuarta potencia del didmetro. Por supuesto, ni Hagen ni Poiseuille se
dieron cuenta que la constante de proporcionalidad estd relacionada con la viscosidad del
liquido, puesto que la primera deduccién tedrica del perfil de velocidades (15.3) no fue hecha
hasta 1859 por Hagenbach y F. Neumann, que la obtuvieron independientemente.
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expresién que se podria haber obtenido aplicando, simplemente, la ecuacién
de conservacién de cantidad de movimiento en forma integral al volumen con-
tenido entre las dos secciones y la pared del conducto.

El perfil de velocidad (15.3) se suele también expresar en términos de la
velocidad media V, definida como

_ 4Q  D?p
ik D2~ 32u ' (15.8)
teniéndose
2r\ 2
=2V |l1—-|— . 15.
V[ ( D) } (15.9)

Es decir, la velocidad méxima (en el eje) es dos veces la media. Por otra parte,
la expresién de Hagen-Poiseuille (15.5) a veces se utiliza en funcién del nimero
de Reynolds

Re = PVTD _ (15.10)
en la forma
(P+pUn—(p+pU) LG4~ _ 47y _ 64 (15.11)
pV2/2 D Re T pV2/2  Re’ '

Como se comenté en la seccién 10.4 (ver leccién 30 para més detalles), la
solucién anterior, aunque en teoria es valida para cualquier nimero de Rey-
nolds, se hace inestable para Re mayor que un cierto valor critico Re* (apro-
ximadamente igual a 2300 en las condiciones més desfavorables), dejando de
tener significado fisico para Re > Re*. El flujo se hace entonces turbulento
y sera considerado en la iltima parte. Ya en 1839, casi 50 anos antes que
Reynolds hiciera sus famosos experimentos, Hagen indicé la existencia de dos
regimenes diferenciados en el flujo de un liquido por un conducto. Hagen ob-
servé que la caida de presién, Ap = p; — p,, era lineal con la velocidad media
cuando ésta era menor que un cierto valor (ley de Hagen - Poiseuille (15.11)],
¥y que por encima de ese valor, pasada una cierta transicién, Ap era propor-
cional a la velocidad media al cuadrado, aproximadamente. Esta tltima ley es
equivalente a decir que la expresién (15.11) es independiente del nimero de
Reynolds, lo cual veremos que ocurre en tubos rugosos para Re mayores que
un cierto valor Re”, que depende de la rugosidad. Para nimeros de Reynolds
intermedios (Re* < Re < Re"), la dependencia de Ap con la velocidad media
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sigue leyes intermedias entre la dependencia lineal y la cuadratica. En particu-
lar, para 2300 < Re < 10%, aproximadamente, se produce la transicidn entre
los regimenes laminar y turbulento, e Ap varia de manera fluctuante con V;
para 10* < Re < Re", Ap tiene una dependencia logaritmica con Re (y por
tanto con V') que se obtendra en la leccion 32.

15.2. Flujo laminar en conductos de seccion arbi-
traria lentamente variable

La solucién anterior, que es exacta para conductos infinitos de seccién
circular constante, es aproximadamente valida para conductos de seccion len-
tamente variable cuando el nimero de Reynolds es pequeiio (fuerzas viscosas
dominantes frente a las inerciales; ver mas abajo para una especificacion mas
precisa).

En efecto. Considérese un conducto cuya seccién (que se supondra de forma
arbitraria) varia lentamente; es decir, si D es un didmetro caracteristico y L la
longitud del conducto, D/L < 1. Por otra parte, el conducto no tiene que ser
necesariamente rectilineo, pero se supone que si es curvo, lo es suavemente;
es decir, D/R, < 1, donde R, es cualquier radio de curvatura del conducto.
En estas condiciones es licito tomar, en primera aproximacion y con errores
del orden de D/R. < 1, ejes cartesianos, siendo el eje r la direccion axial a lo
largo del conducto. La ecuacién de continuidad para el movimiento del liquido,

vy, % ov,

T - 12
ox Oy 0z ' (15.12)
nos dice que
Vv Vr

donde V es el orden de magnitud de la velocidad axial a lo largo del con-
ducto (v;) y Vi es el orden de magnitud de las velocidades en las direcciones
transversales y y 2. Por tanto,

D
Vr ~ IV <V (15.14)

y el movimiento se puede considerar casi unidireccional . Las ecuaciones de
cantidad de movimiento en las direcciones z, ¥, z se escriben:



CAPITULO 15. MOVIMIENTO LAMINAR DE LIQUIDOS EN CONDUCTOS 221

%__'_ (v Ov, Ovg dvz\ _ Olp+pU) {62% N 0%v; N 62%\
P ot Tor Yoy 0z ) or "\ 0z 8y 822 )’
(15.15)

vy p( Iavy L Ovy o Ovy) ___6(p+pU)+u<a2vy B, azvy\

Pt P\ 5z t oy 75z ) " oy a2 oy | 022 )
(15.16)

O (v Ov,  Bv, v\ _ Bp+pU) (8%, v, 8%

Por TP\ o "oy  F0z) T 08z \o«? oy @ 022 )
(15.17)

En los términos correspondientes a las fuerzas viscosas, esta claro que los su-
mandos que involucran 8%/8z? son despreciables frente a los otros con errores
del orden de (D/L)? < 1.

Se supondra, en primer lugar, que los términos de fuerzas viscosas son
dominantes frente a los convectivos. Teniendo en cuenta la ecuacién (15.15),
esta condicién implica

V2

A — 15.18
T <H , (15.18)

y de las ecuacidnes (15.16)-(15.17)
Vi
D

ambas expresiones proporcionan la condicién:

V;
< uﬁg : (15.19)

D
ReT <1, (15.20)

donde Re = V D/v es el mimero de Reynolds basado en el didmetro. Obsérve-
se que la condicién de términos viscosos dominantes frente a los convectivos
no necesariamente implica que Re < 1, puesto que D/L < 1, siendo una
consecuencia, mayormente, de la casi unidireccionalidad del movimiento; por
tanto, esta condicion puede verificarse, incluso, para Re relativamente altos.

Supondremos, ademas, que el movimiento es casi estacionario. Comparan-
do los términos de aceleracién local con los viscosos, esta hipdtesis requiere
que



222 MECANICA DE FLUIDOS

D D?
—ReSt = — 1 15.21
7 e l/to<< , (15.21)

donde ¢, es un tiempo caracteristico de variacién de las magnitudes fluidas.
Con estas hipétesis, las variaciones transversales de p + pU son despreciables
frente a sus variaciones longitudinales: de (15.15) se tiene

Ar(p+pU) ‘
~ 15.
I Fpa (15.22)
donde A; denota variaciones longitudinales a lo largo del conducto, y de

(15.16)-(15.17),

AT(p -+ pU) VT

por lo que
Ar(p + pU) D>2
e e e e e N\ —_— . ]- .
Ar(p+pU) (L <1 (15.24)

Consecuentemente, las dos ecuaciones transversales pueden no tenerse en cuen-
ta en primera aproximacién y suponer que

p+pU # f(y,2) ; (15.25)

es decir, p + pU es constante en cada seccién del conducto (con errores del
orden de D?/L? <« 1).2

Con todas estas aproximaciones, con errores del orden de ReD/L, (D/L)?
y D?/ut,, las ecuaciones de cantidad de movimiento se reducen a

2 2
0:pl+u(-g——yz+%> (15.26)
donde u = v, y py = —9(p+ pU) /O, que depende sélo de x y de t (a través de
las condiciones de contorno, puesto que el movimiento es casi unidireccional
y casi estacionario). Como condiciénes de contorno, u debe ser finita en el
interior de la seccién S(z;y, 2) y u = 0 sobre el contorno ¢(z;y, z) = 0. Por
tanto, el fluido se comporta en cada seccién del conducto como si éste tuviese
longitud infinita y seccién constante (la local); la coordenada z y el tiempo
actian como parametros. Utilizando las variables adimensionales

2Se puede comprobar que esta aproximacién es independiente de la hipGtesis ReD/L £ 1,
siendo una consecuencia de D/L < 1 exclusivamente.
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u Y 2

donde D = D(z) y p; = pi(z, t), la ecuacién anterior y la condicién de contorno
en la pared se transforman en

v 0w .

— +=—==-1 15.28
v=0 en c(,n)=0. (15.29)

El caudal viene dado por

2 D4
Q= udydz = / P p2gedn = P2 (15.30)
S(z;y,2) S¢mn) M Iz
donde
r= / vdédn (15.31)
S

es un nimero que depende del tipo de seccién (obsérvese que en las ecuacio-
nes (15.28)-(15.29) no aparece ningun parametro fisico). La relacién anterior
es una generalizacion de la ley de Hagen-Poiseuille para secciones de forma
arbitraria (lo cual estd reflejado en I') y que pueden variar (lentamente) con x
[contemplado en py(z,t) y D(z); téngase en cuenta que p;(z, t)D*(z) no puede
depender de z, puesto que @ es funcién, a lo sumo, de t].

Para una seccién circular, la ecuacién (15.28) y las condiciones de contorno
se escriben, en coordenadas cilindricas con £ = r/D,

10 [/ 0v
5 <€a_§> -1, (15.32)
v(E=1/2)=0 , v(E=0)#o0 , (15.33)
que proporciona
~1fl
v—4<4 {) (15.34)

r— /027r dé)/om % G —52) gl = (15.35)
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lo cual esta de acuerdo con (15.3) y (15.5). Como otro ejemplo, en el caso de
un flujo a través de una seccién anular , Ry < r < Ry, la ecuacién (15.32)
sigue siendo vdlida, pero cambian las condiciones de contorno:

v(E=a)=v(=1)=0 , (15.36)

donde se ha tomado Ry para adimensionalizar 7, £ = 7/R,y a = R;/Ry < 1.
La solucién es

1 s 1—a?
v-Z[l—g -1 mg] , (15.37)
que proporciona
s (1 — a?)?
Fr==|1-a*+—2]| . :
8[ ot + o — (15.38)

El perfil de velocidades anterior se asemeja a una parabola que recorre la
region anular, cuyo maximo esta en

T 1-a? 1/2

15.3. Tubos de longitud finita. Efecto de entrada

La ley de Hagen-Poiseuille (15.5) [0 (15.30)] es valida para tubos infinitos
(si Re < 2300 para conductos circulares), en los que el perfil de velocidades
viene dado por (15.3). Obviamente, no existen conductos infinitos y en la
region de entrada de los mismos el perfil de velocidades no es el parabdlico
(15.3). Justo en la seccién de entrada la velocidad es practicamente uniforme
e igual a ue (ver figura 15.1). Ya dentro del conducto, el efecto de frenado por
viscosidad del fluido en la pared va modificando el perfil de velocidad de forma
que existe un nucleo central no viscoso de velocidad uniforme, en el cual el
fluido se acelera al ser el caudal constante, y una capa limite cerca de la pared
donde la viscosidad si es importante, cuyo espesor va creciendo hasta que la
viscosidad impregna todo el fluido y se llega al perfil de velocidad desarrollado
de Poiseuille (donde la velocidad en el centro es 2u,). La longitud (de entrada)
Le en la cual el fluido pasa de tener velocidad uniforme hasta llegar al perfil
parabdlico se puede estimar teniendo en cuenta que en esta regioén el término
convectivo de la ecuacién de cantidad de movimiento es tan importante como
el viscoso:
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o7 - V5| ~ pul/Le ~ |uV?5| ~ pue/D* (15.40)
de donde
e e Pl (15.41)
D %

Experimentalmente se encuentra que L./D ~ 0,06Re; por tanto, la longitud
de entrada méaxima, para Re = Re* ~ 2300, es L, ~ 138D. La caida de presién
en esta region de entrada es despreciable frente a la total en todo el conducto
de longitud L si

2
Le Rl 1 | 2elbtel) | pwc pD oy (1542)

L L " ALlp+pU)  mu.L/D? L

lo cual coincide con la hipétesis de validez de la ley de Hagen-Poiseuille.

En el caso en que L, sea del orden de L (tubos cortos), la caida de presién
en la region de entrada es una fraccién importante de la total, siendo necesario
obtener el campo de velocidades y de presiones en dicha region. Para ello hay
que resolver el problema reteniendo los términos convectivos y viscosos en la
ecuacién de cantidad de movimiento. En un conducto circular, si ¥ = uéz +ve;,
tomando las variables adimensionales

2z _ 2r

= u = v = D= 2
- DRG 1 n D u U/'U.e ’ v 'U/'U.e ) p (p + pU)/pue 1

(15.43)
las ecuaciones de continuidad y cantidad de movimiento segin el eje T en
coordenadas cilindricas se escriben

£

ouw 10, .
8_f + 55;7'(7]1)) = 0, (15.44)
_Ou _ou 0p 16<6ﬁ>
U+ Ve =—+—— 15 ) » 15.45
o6 On o¢ " nan "oy ( )
£E=0, =1, v=0, p=p.,; n=1, wu=v=0, (15.46)

donde se ha supuesto que el movimiento es estacionario y que D < L, lo cual
hace innecesaria, en primera aproximacién y con errores del orden D?/L? <« 1,
la ecuacién de cantidad de movimiento segin la direcciéon radial. La ecuacion
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Capas limites Unionl_dchlas Perfil de velocidad
t
! crectnes }!;:clggono ca7 imites /dgmollado
~~o N /

Longitud de entrada ; Region de flujo desarrollado

Presion

Caida de !
presiona |
la entrada :l

--------- : Caida de presion lineal
la zona desarrollada

c

Figura 15.1: Perfil de velocidad y caida de presion en la regién de entrada (adaptada de
White, 1983).

(15.45) es parabdlica, y el sistema de ecuaciones se resuelve numéricamente sin
excesiva dificultad, proporcionando la caida de presién P, —p(£). Sin embargo,
muchas veces se utiliza una estimacién de esta caida de presion obtenida me-
diante la aplicacion de las ecuaciones de conservacion de la masa y de cantidad
de movimiento a un volumen de control constituido por la pared del conducto,
la seccién de entrada £ = 0 donde u = u,, y la seccion de salida £ = z, donde
se supone que se ha alcanzado ya el perfil parabélico u = V. (1 — (2r/D)2)].
La ecuacién de conservacion de la masa proporciona:

D? D/2 27\ 2
—UeT + Vinaz |1 — (5> ] 2rdr =0 (15.47)

o

es decir, Vi0e = 2ue, como ya sabemos. La ecuacién de cantidad de movi-
miento segun el eje £ da (suponiendo que no hay fuerzas masicas, es decir, el
conducto es horizontal ):

D2 D/2 or\ 212 2
—pugﬂ'7+/ 4pu? [1 - (bt) 2nrdr = [pe—p(z)]wDT-l-/ 7¢(x, D/2)7 Dd:

’ (15.48)
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de donde

— T
pepTI;(;) = % - pDLug/; 7f(z,D/2)dz . (15.49)
Obviamente, 7; = p(0u/0r),—p/2 no se conoce puesto que para ello habria
que resolver el problema (15.44)-(15.46). Pero, aproximadamente, podemos
suponer que 7y viene dado por el perfil de velocidades parabélico, obteniéndose
Pe—p(x) 2 64z pueD
%pug =3t RD Re = m : (15.50)
Se observa que el segundo sumando es el mismo que el proporcionado por la
ley de Hagen-Poiseuille [ecuacién (15.11)], siendo dominante frente al primero
(correccién debida al efecto de entrada) cuando ReD/z < 1, como ya sabemos.
Si se resuelve numéricamente el problema (15.44)-(15.46) se encuentra que
(pe — p(z))/ % pu? se aproxima bastante rapidamente a k + 64z/(ReD) cuando
z crece, siendo précticamente coincidente cuando 64z/(ReD) ~ 1, pero con
k ~ 1,16 en vez de 2/3 (esta rapida aproximacién es debida a que 64 > k).

15.4. Flujo laminar no estacionario en un conducto
circular

Para terminar esta leccién se considerara la corriente de Poiseuille no es-
tacionaria en un conducto de seccion circular; en particular, consideraremos
el transitorio desde el reposo hasta que se alcanza el perfil de velocidad de
Poiseuille (15.3) cuando en un conducto de longitud L > D se aplica un gra-
diente de presién constante py = —9(p+ pU)/8z = [(p+ pU)1 — (p+ pU)2]/L.
La ecuacién de cantidad de movimiento axial y las condiciones iniciales y de
contorno son:

ou 10 ou
v =ntig (o) o5

t=0, u=0 (0<r<D/2); r=D/2 , u=0; r=0, u#oo.
(15.52)
Esta ecuacién se puede hacer homogenea (eliminar la constante p;) mediante
el cambio de variable

U= Pg [1 - (%)2} _u, (15.53)
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donde el primer sumando del segundo miembro es el perfil de velocidades de
Poiseuille (15.3), o solucién estacionaria a la que tiende u cuando t — oo
[cuando el primer miembro de (15.51) se hace cero]. La ecuacién queda:

Aunque el tiempo que tarda en alcanzarse la solucién estacionaria (que en
la nueva variable es U = 0) es infinito, el orden de magnitud efectivo de
este tiempo se obtiene por comparacién de los dos términos de la ecuacién
anterior, resultando que este tiempo es del orden de t, ~ D?/v. Esto nos
sugiere introducir las variables adimensionales

6_U_V6(6U)

_t tdw _2r _Ulbu
r=r=% » £=p » v=—p5) (15.55)
que transforman (15.54) y (15.52) en
ov 10 (. 0v
e o e | s 15.56
= ¢ (€3¢ eid

T=0, v=1-¢ (0<€<1); £€=0, v#oo; £€=1, v=0.
(15.57)
La solucién general de la ecuaciéon anterior se puede obtener por separacion
de variables:

v(§,7) = F(1)G(§) , (15.58)
1 dF 1 d /. dG 9
s s . et || s § e 32 15.
Fdr G&d€ (gdf) ),
donde A es una constante, en principio arbitraria. La solucién es:
F=Ce™ | (15.60)
G = AJ,(X€) + BY,(\E) (15.61)

donde A, B y C son constantes arbitrarias y J, e Y, son funciones de Bessel de
orden cero. Como Y, es singular en el eje (§ = 0), se tiene que B = 0. Por otra
parte, G(§) tiene que anularse en £ = 1, por lo que la constante A no puede ser
cualquiera, sino un cero de J,. Teniendo en cuenta que las funciones J,(A,€),
donde los A, son los ceros positivos de J,, forman un conjunto completo de
funciones (definidas en 0 < £ < 1), la solucién se puede escribir como:



CAPITULO 15. MOVIMIENTO LAMINAR DE LIQUIDOS EN CONDUCTOS 229
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Figura 15.2: Puesta en marcha de un flujo laminar en un tubo circular: Perfiles de velocidad
para distintos tiempos.

v, 7) = i Ando(Mnf)e A7 . (15.62)

n=1

Las constantes A, se obtienen mediante la condicién inicial, que no se ha
impuesto todavia:

1-¢%2= i AnJo(Anf) . (15.63)

n=1
Haciendo uso de la ortogonalidad de las funciones J,(\,£),

! 0 si m#mn
/0 Jo(/\ng)Jo(/\mé)gdé ={ %[Jl(Am)P si m=n" (1564)

multiplicando (15.63) por £J,(An€) e integrando entre £ = 0y £ = 1, se
obtiene

8

gt s
A?n']l()‘m)

(15.65)

donde también se ha hecho uso de
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[ - e1,0neede = 1l (15.66)

siendo J; la funcién de Bessel de orden uno.? Asi, la solucién se puede expresar
en la forma

_Jo An€)e AT (15.67)

0, en variables dimensnonales,

_p‘_D2 _(%)2 - 8 ( &) -A24ut/D?
u(r,t) = 165 [1 B 2/\3J1(/\ 7le (M ) € . (15.68)

La solucién es suma de un término transitorio, expresado como una serie infini-
ta, y la corriente estacionaria de Poiseuille (15.3), a la cual tiende la solucién
cuando ¢t — oo. Cuando ¢t es mayor que aproximadamente t, = D?/4v, el
término exponencial se hace muy pequeno y la solucién se puede aproximar
por la corriente de Poiseuille, lo cual es otra forma de ver que ¢, es el tiempo
caracteristico en el que la solucién alcanza el estado estacionario [comparar con
la condicién (15.21) de validez de la solucién de Poiseuille]. Algunos perfiles
U/ Umaz = u/2V = ul6u/D?p, se representan en la figura 15.2. Esta distribu-
cién de velocidad fue calculada, originariamente, por Szymanski en 1932. En
la figura se han tomado 5 términos de la serie (15.68), los cuales son suficientes
para que la serie converja con errores menores del uno por ciento para tiempos
pequefios y sea practicamente exacta para 7 = O(1).

Referencias.
= G. K. BATCHELOR, 1967. Capitulo 4.
= R.B. BIRD et al. 1960. Capitulos 2 y 4.
= H. LAMB, 1975. Capitulo XI.
= F.M. WHITE, 1983. Capitulo 6.

3Para las propiedades generales de las funciones de Bessel, asi como su uso en desarrollos
en serie, puede consultarse, por ejemplo, R.V. Churchill y J.M. Brown, 1987, Fourier Series
and Boundary Value Problems, capitulo 8.



Capitulo 16

Lubricacion fluidomecanica

16.1. Introduccién

Sabido es que dos superficies sdlidas en contacto pueden deslizar mucho
mas facilmente una sobre otra si entre ellas existe una capa de fluido. Sin un
lubricante, el rozamiento seria mucho mayor, originando el desgaste de las su-
perficies sélidas, e incluso su deformacién debido al calentamiento por friccion.
Bajo ciertas condiciones, en la capa de fluido se genera una sobrepresién que
puede sustentar a uno de los sélidos en contacto, facilitando su deslizamiento.
Por ejemplo, si dejamos caer una hoja de papel sobre un suelo liso, a veces
ésta se desliza suavamente largo tiempo sobre el suelo debido a la sobrepresién
creada en la capa de aire en movimiento entre la hoja y el suelo, que sustenta a
la hoja de papel. Existen muchas situaciones de interés en la practica ingenieril
donde se hace uso de este fenémeno. Un ejemplo tipico que consideraremos
con algun detalle es el cojinete cilindrico: un eje gira en el interior de una
carcasa, ambos cilindricos; para reducir la friccién y evitar el contacto entre
las superficies sélidas se introduce un fluido entre ellas. Este fluido se elije de
tal modo que, para la velocidad de giro dada, la sobrepresion originada en la
capa fluida por el movimiento (que puede llegar a ser muy importante) sea
suficiente como para sustentar el peso del eje y todo lo gira con él, evitando
asi el contacto entre las superficies y, por tanto, el desgaste. Basicamente, este
fenémeno se basa en que, al ser muy delgada la capa fluida, los esfuerzos de
friccién originados por el movimiento son muy grandes, los cuales pueden dar
lugar a gradientes de presién muy importantes si se elije apropiadamente la
geometria de la capa fluida. Para ilustrar el fenémeno consideraremos primero
el movimiento en el interior de una capa fluida delgada bidimensional entre
dos superficies sélidas originado por un gradiente de presién (reducida) y por
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Py y '
i h(X) I:‘|

Figura 16.1: Pelicula liquida bidimensional.

el movimiento de una de las superficies sélidas, lo cual es una generalizacién
del flujo de Couette y de Poiseuille considerado en la seccién 14.1.3. Este
problema se generalizard a capas delgadas tridimensionales, obteniéndose la
denominada Ecuacién de Reynolds de la lubricacién fluidomecanica. Por ulti-
mo se considerara el caso particular de los cojinetes cilindricos, de gran interés
practico.

16.2. Movimiento en peliculas delgadas. Efecto cuna

Considérese una pelicula liquida! bidimensional, confinada por una super-
ficie plana y otra superficie no necesariamente plana, de forma que el espesor
de la pelicula es una funcién h(z) conocida (ver figura 16.1). El liquido de esta
pelicula se mueve debido al movimiento de la superficie plana paralelamente
a si misma con velocidad V en relacién a la otra superficie y debido a una
diferencia de presién reducida, P, — P, = p, + pU, — (p1 + pU,), entre sus
extremos, donde U es el potencial de fuerzas masicas. Supondremos que la
capa liquida es muy delgada, es decir,

h< L (16.1)

para cualquier z. De la ecuacién de continuidad,

ou  Ov

or Oy ( )
donde v = ue€, + véy, esta condicién implica que el movimiento es casi unidi-
reccional: v ~ (h/L)u < u ~ V. Las ecuaciones de cantidad de movimiento
en las direcciones z e y se escriben

1En general, todo lo que se va a ver a continuacién es valido si el flujo se puede considerar
como incompresible, no necesariamente de un liquido
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Oou 5u__8(p+pU)+ 0%u

— W = —_— 16.
_r + p”ay Or N8y2 ’ (16:3)
Ov ov _ dp+pU) 0%
puo +pvay = By +u6y2 ) (16.4)

donde se ha despreciado en los términos viscosos 82u/0z? y 8%v/0z? frente a
0%u/0y? y 8%v/0y?, respectivamente, con errores de orden de (h/L)?. También
se ha supuesto que el movimiento es casi estacionario, lo cual implica que, o
bien V, P, y P; son independientes del tiempo (en cuyo caso el movimiento
seria estrictamente estacionario), o bien si varian con el tiempo lo hacen tan
lentamente que el tiempo caracteristico de variacion, t,, satisface

h2

2 K1, (16.5)
tov

donde h, es un valor caracteristico de h(z). Por dltimo, supondremos que las

fuerzas viscosas son dominantes frente a las inerciales, es decir,

V:O% = Re% <1, (16.6)
condicién que puede ser satisfecha incluso para Re moderadamente altos de-
bido a que h,/L < 1.

Las variaciones de presion reducida en la direccién y son, debido a que h, <
L, mucho menores que las variaciones en la direccion principal del movimiento,
z. Por este motivo, con errores del orden de (h,/L)? < 1, se puede suponer
que p + pU es independiente de y, siendo, por tanto, innecesaria la ecuacion
(16.4) en el orden de aproximacién mas bajo. Las ecuaciones y condiciones de
contorno que gobiernan el movimiento quedan

ou Ov
—+—ax 5y (16.7)
2
0=_6(p+pU) . 0%u (16.8)

x| oy’

wy=0)=V, uy=h)=0, v(y=0)=0;

(p+pU)z=0=Po, (P+pU)ser = P1, (16.9)
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donde en vez de una condicién de contorno para u segin  se tiene una segunda
condicién de contorno para p + pU.? El gradiente de presién reducida

=2 coliy (16.10)
Oz
que es independiente de y en primera aproximacion, es una funcién suave de x
y de t, ya que esta dependencia es a través de las condiciones de contorno en
donde aparecen las funciones h(z), V(t), Po(t) y Pi(t) [téngase en cuenta las
condiciones (16.1), (16.5) y (16.6); h también podria depender del tiempo en
esta aproximacién siempre que se cumpliera la condicién (16.5)]. La integracién
de (16.8) junto con las condiciones de contorno para u proporciona el perfil de

velocidad (Couette + Poiseuille):

u(y; z,t) = —%y(y —h)+V (1 - %) ‘ (16.11)

Sustituyendo en la ecuacién de continuidad, integrando con respecto a y e
imponiendo la condicién de contorno v(y = 0) = 0, se obtiene

_[Lom 2__’2)_(& L)@J 2
v_[2,u8x (3 2 4,u+2h2 az] Y- )

Como v = 0 también en y = h, esta expresién proporciona una ecuacion
diferencial para p;, que se puede escribir en la forma

o | hd Vh
- | = — = : 16.1
es decir,
h3 Vh

es independiente de z. Esta es otra forma de expresar la ecuacién de continui-
dad: el caudal por unidad de longitud,

_ rhi@) h3 Vh
q= /O udy = mp[ + _2‘ (16'15)

2Las condiciones de contorno para la presién (reducida) son aproximadamente validas,
puesto que en las regiones de entrada y salida de la pelicula liquida la condicién (16.1) no se
satisface. Pero el error cometido es del orden de h,/L <« 1, puesto que la caida de presién
en estas regiones, de espesores Az ~ h, es del orden AP ~ uV/h,, mientras que la caida de
presién en toda la pelicula liquida es del orden de AP ~ 'V L/h2. Por supuesto, la solucién
que veremos a continuacién no es valida en las proximidades de la entrada y de la salida, en
regiones cuyas longitudes son del orden de ho < L.
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[comparese con la expresién (14.21)] es independiente de z (puede ser una
funcién de t a través de las condiciones de contorno si éstas dependen del
tiempo). Para obtener esta constante q y la distribucién de presién reducida
aplicamos las dos condiciones de contorno para la presién reducida:

op+pU) _ 6uV  12uq
dr  h? h3 "’

(16.16)

_l=
T dzx T dzx
-P,= — — 16.17
p+pU-F 6uV/o () 12#(1/0 WD) ( )
Ld
q=[6uV/ X _P+p,
[o]

L
= / [12;1./0 %‘;i] . (16.18)

Conocida h(z), (16.18) nos da el caudal por unidad de longitud que circula por
la pelicula liquida, g, que, sustituido en (16.17), proporciona la distribucién
de presién reducida p + pU. Una vez obtenido p + pU, la expresién (16.11)
permite conocer la velocidad u.3

El fluido ejerce sobre las superficies una fuerza debida a la presién y a
los esfuerzos viscosos. Sobre la superficie inferior, la fuerza de presién es en
la direccién —€,, y estd compensada con una reaccién normal; la fuerza de
friccion es en la direccion —é,, y es la que hay que vencer para mover la
superficie con velocidad V, siendo por unidad de longitud,

z L /0u Lruv ph
Ff(!/=0)=/ 7f(y = 0)dz = —/ “(5&) Ode:/ (_h_ *—éﬂ) dz,
o o y= o

(16.19)
Sobre la superficie superior, las fuerzas de friccién y presién tienen compo-
nentes segun los ejes £ e y. Como dh/dz ~ h,/L < 1, la componente = de
la fuerza de presién y la componente y de la fuerza de friccién son muy pe-
quenas comparadas con las otras proyecciones. La componente = de la fuerza
de friccion estd compensada por una reaccién en direccion opuesta, ya que la
superficie superior es fija. Por iltimo, la componente y de la fuerza de presion
es, descontada la correspondiente a la presion atmosférica:

L
Fp~ [ (p—pd)dz, (16.20)

o
donde no se ha especificado y = h puesto que p no depende de y en primera
aproximacién, y donde tampoco se ha concretado que es la componente segiin

3Esta solucién fue obtenida por Reynolds en su articulo de 1886 sobre la teoria de la
lubricacién fluidomecénica.
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el eje y puesto que la normal a la superficie es practicamente paralela al eje y
al ser dh/dzr < 1.

La fuerza de presién (16.20) debe sustentar, en las aplicaciones practicas
de la lubricacién fluidomecénica, al sélido superior (ver seccién 16.3). Para ello
es necesario que se produzca una importante sobrepresion en el interior de la
pelicula liquida, lo cual es posible si i decrece en la direccién del movimiento o,
expresado mas generalmente si h(z = 0) > h(z = L). De una forma intuitiva,
la existencia de esta sobrepresién se deduce facilmente de la ecuacién (16.15):
como el caudal total g es constante, y el caudal de Couette Vh/2 es mayor
en z = 0 que r = L, el caudal de Poiseuille h3p,;/12y1 debe ser negativo en

= 0 y positivo en £ = L, lo cual implica que la presién en el interior de
la pelicula liquida debe ser mayor que en los extremos. Este es el llamado
efecto cuna que hace posible la lubricacién fluidomecanica, estando asociado
a una contraccion de la pelicula liquida en la direccion del movimiento. Para
cuantificar este efecto, consideremos el caso sencillo en que h(x) es lineal:

ho — h1

L
Por simplicidad suponemos que P, = P, = p, (es decir, el movimiento del
liquido esta originado unicamente por el movimiento de la superficie inferior;
lo cual no quiere decir que no se produzca un gradiente de presiones en el
interior y, por tanto, una corriente tipo Poiseuille). De (16.18) y (16.17) se
tiene

h(z) = ho — T o, (16.21)

hohy

q= hothy (16.22)
(p—pa)h?, l-a 5(1—3)
= = , 16.23
¢ 6uVL l+a 1+ (a—1)s? ( )
donde
_h _z
a = h, § = I (16.24)

La funcién ¢(s) se representa en la figura 16.2 para distintos valores de a. Esta
funcién presenta un extremo en s = (1 + a)~!, que es un méaximo si a < 1.
Es decir, se produce una sobrepresion en el interior de la pelicula liquida si
dh/dx = —ho(1—a)/L < 0 (a < 1). Este maximo de la presién vale, en forma
adimensional,

Pmaz — Pa _ 3uL(l —a) _ i£ 3(1 — @)
pV2/2  pVh2(1+a)a Reh,(l+a)a '

(16.25)
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Figura 16.2: Funcion é(s) [ecuacién (16.23)] para diversos valores de a.

que es un nimero muy grande (recuerdese que Reh,/L < 1), salvo que a ~ 1,
es decir, salvo que las superficies sean practicamente paralelas. De aqui la
importancia del efecto cuna, que hace posible la lubricacién fluidomecénica.
La fuerza de presién (16.20) vale

. 6uV L2 [l+a
P h2(1-0a?) la—1

Ina — 2] , (16.26)

mientras que la fuerza de friccién (16.19) sobre la superficie inferior es

Fy=

6uVL [g a+1

ho(l+ o) 3a—11na_1] . (16.27)

De (16.26) se encuentra que Fj, es maxima para a ~ 0,456, resultando F}, ~
0,776uV L2 /h2 y Fy ~ 1,65TuVL/ho. Si 1 — a = O(1), el cociente entre la
fuerza de friccién y la de presién es una cantidad pequena:

Fy
FP

_Jho—m| §2ma—1 |h,— |

1 16.28
L Z—f}lna—Q L - ( )

lo cual es, como se apunté en la introduccién, la base de la lubricacién fluido-
mecanica.
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16.3. Ecuacion de Reynolds

La solucién anterior se generaliza facilmente para una pelicula liquida tri-
dimensional. Supongamos que la pelicula se extiende sobre una superficie en
la que definimos unas coordenadas curvilineas ortogonales (a,3). Un punto
de la pelicula liquida viene definido por las coordenadas (a, 8,y), siendo y la
coordenada normal a la superficie. Si se verifican las hipo6tesis de la seccién
anterior, es decir,

ho Vho ho h2
— <1 2«1 -2 x1 16.
7 <1 , I <1 , = <1 (16.29)

donde h,, L, V y t, son, respectivamente, un espesor caracteristico de la
pelicula liquida, una longitud caracteristica, una velocidad caracteristica y
un tiempo caracteristico, las componentes « y G de la ecuacién de cantidad
de movimiento se escriben, en primera aproximacion,

Pa 82“0:
0= — 16.30
he O (16.30)

2

ps ,  O%ug
0=+~ ) 16.31
hﬁ + N 8y2 ( )

donde 7 = ug€s + ug€s + vy, || K |ual, |v] < |ugls
o(p + pU o(p + pU

pom-2ELED gy MLAD) (16.32)

oB

y dl = hoda€y, + hgdfep es el elemento de longitud sobre la superficie. Al
igual que antes, la componente y de la ecuacion de cantidad de movimiento
nos dice que, con errores del orden de (h/L)? <« 1, p + pU no es funcién de
y, siendo por tanto practicamente constante transversalmente a la pelicula
liquida. Suponiendo que la superficie que se mueve es la inferior (y = 0), con
velocidad V' = V€5 + Vgé€p, las condiciones de contorno para (16.30)-(16.31)
son:

Ua(y=0)=Va , ug(y=0)=Vg , wualy=h)=ugly=h)=0 ,
(16.33)
donde h = h(a, 3;t) es el espesor de la pelicula liquida. La solucién es, por
tanto,

_ Do _ ¥
By 5 2uha.y(y h) + Vq (1 h) ; (16.34)
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Ps Y
=———yly—h)+Vz(1-= : 16.35
up = —5oyly =1+ Vs (1-7) (16.35)
Los caudales en las direcciones a y B, por unidad de longitud en las respectivas
direcciones transversales 8 y a, son:

_ c h3 Da Vah
QQ=/O Uady = -7+ =, (16.36)
h K ps  Vsh
- dy = — B 4 282 16.37
5= | uady = 120+ 2 (16.37)

La ecuacién que satisface la presién (reducida) se obtiene, al igual que antes,
aplicando una ecuacién de conservacion de la masa a la solucién anterior. Si
el flujo es incompresible, la ecuacién de continuidad se escribe

ov

V"U= -a-g

1 0 0
Integrando entre y = 0 e y = h y teniendo en cuenta que v(y = h) ~ Oh/0t,

se llega a

oh 0 0
hahﬁa + %(Qahﬂ) + 3—ﬂ(%ha) =0, (16.38)

que es la Ecuacién de Reynolds. De acuerdo con (16.36)-(16.37) y (16.32),
ésta es una ecuacién en derivadas parciales, de segundo orden, para p + pU.
Al ser eliptica, su resolucién requiere que se conozca sobre todo el contorno
C(a,B) = 0 de la pelicula liquida la presién reducida, o bien su derivada
normal [lo cual es equivalente, de acuerdo con (16.36)-(16.37), a especificar g4
y qg]. Es decir, sobre C(a, 8) = 0,

p+pU =Po(e, ) 0 gn = qanta +qsns = go(, B) (16.39)

donde n, y ng son las componentes del vector unitario normal al contorno
en las direcciones a y (3. Cada una de estas condiciones de contorno puede
también especificarse sobre una parte de la superficie. Por ultimo, no son
necesarias condiciones iniciales puesto que la derivada temporal no afecta a la
presion (el problema es casi estacionario, y las variaciones temporales vienen
dadas a través de las condiciones de contorno, h(t), V,(t), etc., debiéndose
verificar h2/vt, < 1).



240 MECANICA DE FLUIDOS

Figura 16.3: Cojinete cilindrico.

16.4. Cojinetes cilindricos

Como aplicacién practica de la Ecuacion de Reynolds (16.38) considerare-
mos el caso de un cojinete cilindrico, esquematizado en la figura 16.3. Basica-
mente, un eje cilindrico de radio R; gira con velocidad angular w en el interior
de una carcasa, también cilindrica, de radio R, siendo R — R; < R; en el
espacio entre ellos existe un liquido (fluido incompresible, en general) de vis-
cosidad u v de densidad p, que actia como lubricante. Como consecuencia del
giro se produce una escentricidad e entre los ejes O; y O de los dos cilindros, de
forma que la recta O; 0 forma un angulo % con la vertical. Esta escentricidad
se traduce en un espesor variable de la pelicula liquida que produce un efecto
cuna, el cual debe ser suficiente para sustentar la carga que gira con cilindro
interior, de peso W.

El problema que se va a resolver es el siguiente: Dados R, Ry, w y las
propiedades del fluido, se calcularan las distribuciones de presién y velocidad
en la pelicula liquida. Con estos resultados se obtendrd, por una parte, la
fuerza de friccion que el fluido ejerce sobre el eje, y, por tanto, el par necesario
para hacerlo girar; por otra parte se calculara la fuerza de presion sobre el
eje, la cual tiene que igualar el peso del cilindro; este balance proporcionara el
angulo ¥, y una relacién entre la escentricidad e, el peso del eje W, y las
propiedades del fluido, las cuales se elegiran a posteriori para que e < R — Ry,
es decir, para que los cilindros no se toquen (si las caracteristicas del fluido son
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fijas, habria que variar la velocidad de giro w o los radios R y R;, pero esto no
es lo habitual). En la eleccién del liquido también intervienen otros requisitos
como la condicién de que no cavite como consecuencia de las importantes
depresiones que se producen en la pelicula liquida (se considerard este efecto
en la seccién 16.4.4), que sea estable frente a los incrementos de temperatura
originados, etc.

Para resolver este problema utilizamos coordenadas cilindricas (z, #) sobre
la superficie del cilindro interior (el &ngulo 6 se mide, por ejemplo, a partir de
la recta O;0), y la coordenada y perpendicular a esta superficie. El espesor
h(8) de la pelicula liquida viene dado por la relacién

R? = [R— h(0)]2 + €% — 2¢[R — h(0)] cos(m — ) ; (16.40)
como
R—-R ~e<R , h(O)< R , (16.41)
en primera aproximacion se tiene

h(6) = R— Ry + ecosf. (16.42)

Teniendo en cuenta que h, = 1y hg = R, y que V, = 0,Vy = wRy, los
caudales por unidad de longitud ¢, y gg son [ecuaciones (16.36)-(16.37)]:

h3 h3 op
q: = _12u'pz = _—]2 _3 ) (16.43)
h3 leh h3 6]) leh
_ - e , 16.44
%= a2 2Rpu06 T 2 (16.44)

donde se ha supuesto que las fuerzas gravitatorias son poco importantes (el
cojinete es horizontal y su radio no es muy grande). Introduciendo estas ex-
presiones en la Ecuacién de Reynolds (16.38) se tiene la siguiente ecuacién
diferencial para la presién:

) R® dp wRih ) h® Op
kit ! A Wk i A GOl . Py 16.4
ae( 2R 06 2 )+R18z( 12402) " (16.45)

Como condiciones de contorno imponemos

p(xL/2,0) =p. , p(2,0)=po=p(z,2m) , (16.46)

donde p, y p, son presiones conocidas. Para escribir este problema en forma
adimensional definimos
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h e

n:R_Rlzl-l-e(:OSG : 6=R—R1 , (16.47)
_z _ (p—pa)(R— R1)?
| ¢=7 » ¢= S , (16.48)
quedando
ad 0 0 a
5 (755 —1) + 85 (1°5¢) =0, (16.49)
— _ _ — (Po — pa)(R - R )2
¢(£1/2,0) =0 , (&,0)=¢(§,2m) = ¢ = B ;
(16.50)
donde
B=R/L |, (16.51)

que junto con € y ¢, son los unicos parametros que aparecen en el problema.
Aunque este problema tiene solucién analitica, es lo suficientemente complica-
da como para que sea interesante obtener soluciones aproximadas para valores
limites del unico pardmetro que no necesariamente es de orden unidad en el
problema, 5= R, /L.

16.4.1. Cojinetes largos

En primera aproximacidon se tiene

9 ( 39¢ _
09 (’7 00 ) -0 162
que integrada da
o
3— f— —
M5 ~ " q, (16.53)

donde la constante ¢ no es otra que el caudal —gg adimensional [el problema se
reduce, pues, al de una pelicula liquida bidimensional como las consideradas
en 16.1, con el espesor h dado por (16.42)]. Integrando otra vez e imponiendo
#(0 = 0) = ¢,, se tiene

g do g df
#0) — o =/O (14 ecosh)? +q/o (1+e€cosh)3’ (i)
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Figura 16.4: Distribucién de presién en un cojinete cilindrico largo para € = 0,5.

Teniendo en cuenta que ¢(6 = 27) = ¢,, se obtiene el caudal ¢:

27 do
I e R 16.55
7= f27r( o _ T 1+ e2)2 (16.55)
o I+€cos 0)3
La distribucién de presion queda
— — 2 i PR
$(6) — by = (P —Po)(R—Ry)*  €sinf(2 + ecosb) (16.56)

6uwR? " (2+€2)(1+4 ecosh)’

que se representa en la figura 16.4 para una escentricidad ¢ = 0,5. Esta solucién
fue obtendia por Sommerfeld en 1904.

La solucién anterior no vale cerca de los extremos del cojinete, £ = £1/2,
ya que la presién no depende de z y no se pueden verificar las condiciones de
contorno. En las proximidades de £ = +1/2, sendas capas limites de espesores
de orden 8 < 1, en las que todos los términos de (16.49) cuentan, se encargan
de que se cumplan las condiciones de contorno ¢(§ = £1/2) = 0, pero que no
consideraremos aqui puesto que su efecto es despreciable (errores del orden
B3) en las fuerzas de friccién y de presién que el fluido ejerce sobre el cojinete.

La fuerza de friccién que el liquido ejerce sobre el eje es, por unidad de
drea:
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__ (%) __h o R
=M\ by ) ey 2RIO6 T R

_ 2
_ Hwhy 31 -€) 1 ’ (16.57)
(R—R1)(1 + ecosf) 1+€2/2 1+ ecosf
donde se ha hecho uso de
1 0Op y
= ———y(y— - = 16.58
ug SRiA aey(y h) + wR; (1 h) ( )

y de (16.42) y (16.56). El par necesario para mover el eje es, por unidad de
longitud,

Par 2m ATpwR3 1+ 2¢2
— = R2d6 = 1 16.59
L /o Y= RTR VI €2+ ) (16.59)

Debido a que p(6) — p, es una funcién impar de 6 [ecuacién (16.56); ver
figura 16.4], la fuerza de presién es perpendicular a la recta 0,0, y como ésta
debe igualar al peso W del eje, el angulo de O,0 con la vertical es ¢ = /2.
El balance entre W y la fuerza de presion da la siguiente relacion entre W'y
los demas parametros del problema:

44

2m
— = / (p — po)R1sin0d =
L 0

12pwR3 €
(R—R1)? (24 €2)V1 — €2

Dada una configuracion geométrica (R y R;), una velocidad de giro (w) y
un fluido (u), esta ecuacién nos relaciona la carga del cojinete por unidad de
longitud con la escentricidad. Para W = 0, ¢ = 0 (cilindros concéntricos),
mientras que para W — oo, € — 1 (los cilindros se tocan en § = 7). La carga
maxima no estd, por tanto, condicionada por limitaciones de escentricidad,
aunque para € — 1 el par necesario para hacer girar al eje tiende a infinito.
Hay otros condicionantes que limitan la escentricidad maxima y, por tanto,
la carga maxima. Quiza el mas importante es la cavitacion: De la expresion
(16.56), se tiene que a medida que € aumenta la presién méxima aumenta,
pero también disminuye la presién minima al ser p(6) — p, una funcién impar
de 6 (ver figura 16.4). La presién minima no debe ser inferior a la presién
de vapor del liquido a la temperatura de trabajo para evitar que cavite. Este
requerimiento impone una escentricidad € maxima y, por tanto, una carga
maéaxima. A veces, por requerimientos fisicos (por ejemplo, la carga, w y el

(16.60)
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fluido son dados), se admite un movimiento con cavitacién en alguna regién
de la pelicula liquida. En esas condiciones la soluciéon que acabamos de ver no
es valida, y se considerara en la seccion 16.4.4.

Por 1ltimo, es interesante sefialar que, andlogamente al caso de una pelicula
liquida bidimensional con h(z) lineal (ver final de la seccién 16.1), la fuerza de
viscosidad es despreciable frente a la fuerza de presién [siempre que € = O(1)]:

Tf ule/(R R1) R* R1
p— po Rz/ B == Hy Ry

&l (16.61)

16.4.2. Cojinetes cortos

En este limite, la definicion de ¢ dada en (16.48) no es apropiada puesto que
la diferencia de presién caracteristica no es 6 uwR?/(R—R;)?, sino 6pwL?/(R—
R1)?. En su lugar definimos, por tanto,

(p — pa)(R — Ry)?

= , 16.62
¢ L (16.62)
y la ecuacién (16.45) queda
0 1,309 ) ( 3 ¢>
— — . 16.
55 (5 m5e 1) + 5 (1°5¢) =0 (16.63)
En primera aproximacion, con errores del orden de 3~! < 1, se tiene
8¢> on _ .
7 = —esinf 16.64
% (7%) = % ot
Pp(€f==%1/2)=0 , (16.65)
cuya solucién es
esind 1/, 1
= e - ; 16.66
¢ (1+ €ecosf)®2 <€ 4) ( )

Por supuesto, esta solucién no es valida en las proximidades de § = 0, donde
una capa limite de espesor 37! se encarga de que se satisfaga la condicién de
contorno p(f = 0) = p(6 = 2m) = p, (si seria vilida en el caso particular en
que P, = Pa).

El esfuerzo de friccién en el eje es

Oug h Op wRip wRip
_ = 2 O - 16.67
T "(ay) o 2R90 T Th R (16.67)
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donde la contribucion del flujo de Poiseuille se ha despreciado con errores del
orden de 72 <« 1. El par necesario es, por tanto,

2w r1/2 WuszL
S / / R2dOLd¢ = I . 16.68
o J-1/2 i ¢ 2(R — R))V1 — €2 ( )

La componente de la fuerza de presién perpendicular a 0,0 es

27 r1/2 3R €

pwL’ Ry e
F, = p déL X 16.
L= / / Do) Sin Ry d§ = R-Ri)E(1—pR ° (16.69)

mientras que la componente segin 0,0 es

pwLl3R, 4¢?
(R—Ry)% (1 —€2)?

2w r1/2
F = / / (p — pg) cos @R dOLdE = — (16.70)

Como la fuerza total de presion debe igualar al peso W, el dngulo ¥ que forma
010 con la vertical es

. /1 — €2
¥ = arctan B = arctan | —Z¥- "% , (16.71)
Ey -
y la relacién entre W y € queda
IR e 16
w=,F2+F =220 1 2(——1) . (1672
L+ (R—Ry)2(1-e)? R = ( )

16.4.3. Cojinetes cilindricos finitos con escentricidad pequena

Cuando 8 = O(1), la ecuacién (16.49) tiene una solucién aproximada facil
de obtener en el limite en que la escentricidad es muy pequeia,

e=e/(R-Ri)K1 , (16.73)
correspondiente a cargas W pequenas. En primera aproximacion se tiene
n~1 , On/dd=—esinf<K1 |, (16.74)
y la ecuacién (16.49) queda

0%
862

20°¢

+ B oe2

= —sinf (16.75)
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donde se ha redefinido ¢ como
(p—pa)(R - Ry)?
6uerf’e

siendo ahora la diferencia de presién caracteristica del orden de 6uwR?%/(R —
R1)?. Las condiciones de contorno son:

¢=

(16.76)

$(€=%1/2)=0, (0 =0)= (6 =2r) = ¢ = (po—pa) (R—R1)*/(6pwRie).

(16.77)
En el caso particular en que p, = p, (¢ = 0), este problema admite soluciones
en la forma

¢ =sinfG(&) (16.78)
donde G satisface
2
ﬁ2%§—f—c=—1 , GE=+1/2)=0 ; (16.79)
es decir,
_,_ cosh(&§/B)
G(&) = cosh(1/25) (16.80)

La distribucién de presién queda pues

(16.81)

#(€,0) = (p—pa)(R = R1)® _ no [1 cosh(£/1) ]

6uwR2e " cosh(1/28)
Andlogamente al caso de cojinetes largos, al ser ¢ una funcién impar de 6,

1 = /2, y el balance entre las fuerzas de presién y la carga proporciona

1z o . 6repwRIL 1
W = /_1/2/0 (p — po)R1 sin6dOLAE = R-R)? [1 (3 tanh (2[3>] ,
(16.82)
que es una relacion lineal entre W y € (vilida para e < 1). El par necesario
para hacer girar al eje es:

1/2 r2nm 9 27TWR3L
= dOLde ~ ——1— 16.83
Par /—1/2/0 7y RidfLdE R-R (16.83)

donde se ha despreciado el término correspondiente al flujo de Poiseuille por
ser del orden de € € 1 en relacién al término de Couette.
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16.4.4. Cavitacion

Si en algin punto de la pelicula liquida la presién desciende por debajo de
la presion de vapor del liquido a la temperatura de trabajo, p, (T'), se produce la
cavitacion del liquido, dejando de ser validas las soluciones anteriores. Cuando
hay cavitacién, una solucién aproximada, propuesta por Sommerfeld, consiste
en suponer que la solucién es la obtenida en las secciones anteriores para p > p,
y, en la regién 0; < 6 < 6, donde p < p,, sustituirla por p = p,. Esta solucion,
que para cojinetes largos se suele denominar solucidn medio-Sommerfeld, para
distinguirla de la solucién de Sommerfeld completa (16.56), es continua para
¢, pero tiene derivadas 0¢/06 discontinuas, lo cual da lugar a discontinuidades
en el caudal, puesto que de (16.53),

0
g = 7)352 -n. (16.84)

Para paliar esta dificultad, Reynolds propuso (para el caso de cojinetes largos)
una solucién que no tiene discontinuidad en la derivada de ¢. Antes de que se
produzca la cavitacién, la cual tiene lugar en un § = 6, desconocido a priori ,
se supone que la solucién es (16.54):
6 do 0 dg
o(0) — ¢ = — t4q - 0<60<6. (16.85)
o N o M

El valor de ¢ se obtiene de (16.84) suponiendo que en § = 0}, 9¢/36 = 0, para
que no haya discontinuidad en 0¢/00 al pasar a la regién de cavitacién, donde
¢ = ¢, = constante; es decir,

g=-n(61) . (16.86)

Por otra parte, de (16.85) aplicada en 6 = 6, como ¢(6,) = ¢, se tiene

61 do b1 46
¢v - d)o = / - 7](01)/ = (1687)
o 7 o T

lo cual es una relacién que permite obtener #; para una ¢, dada. Para 6, <
6 < 05, donde 0, es de momento desconocido, ¢ = ¢, = constante. En 6 = 6,
la cavitacion cesa y se regenera la capa de liquido. Como ¢(6 = 27) = ¢,, se
tiene la siguiente relacién para 6s:

2w dé 2w dé
o — Py = — —n(0 / — - 16.88
so=tu= [ - [ (16.88)

Una vez calculado 6,, para 6, < 6 < 27 se tiene,
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9 d6 9 dg
0) — ¢, = — —n(f — , fGa<b<2r . 16.89
(»b( ) ¢ %, 772 ( 1) 6, 773 2 ( )

Esta solucién presenta, sin embargo, una discontinuidad en 9¢/96 para 6 = 0,,
pasando de valer cero a valer

9¢ _ 1 )
(60)0:92 - 772(02) n3(92) ) (1690)

aunque ¢ permanece constante.
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Capitulo 17

Movimiento alrededor de
cuerpos con numero de
Reynolds pequeno

17.1. Ecuaciones de Stokes

En esta leccién se considerard el flujo de un fluido incompresible [i.e., se
verifican las condiciones (10.26) y (10.30)] alrededor de cuerpos cuando las
fuerzas de viscosidad son dominantes frente a las de inercia.

En general, las ecuaciones de continuidad y cantidad de movimiento y las
condiciones iniciales y de contorno que gobiernan el movimiento de un fluido
incompresible alrededor de un cuerpo definido por la superficie S(Z,t) = 0,
referidas a unos ejes que se mueven con él, son:

V-9=0, (17.1)
o . . 2. . - -
P +p0-Vi=-Vp+uV9+p(G—a;), §=—g€:; (17.2)
t=0, T=10,; |&]— oo, 17=V°o, P = Doop — PIZ; (17.3)

S(&,t)=0, T=0QAZ; (17.4)
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donde se ha supuesto que la viscosidad permanece constante (variaciones de
temperatura poco importantes). Lejos del cuerpo, el fluido se mueve con velo-
cidad 1700 en relacién a los ejes ligados a él, siendo @, = —de /dt la aceleracién
de este sistema de referencia con respecto a uno inercial en el que el fluido no
perturbado por el cuerpo esta en reposo o se mueve con velocidad uniforme;
como consecuencia, la distribucién de presion lejos del cuerpo es la hidrostati-
ca, donde py, es una constante. Sobre la superficie, la velocidad es QA Z,
donde §)(¢) es la velocidad angular de giro del cuerpo (los ejes, aunque méviles
con el cuerpo, se mueven paralelamente a si mismos).

Es conveniente descomponer la presién en dos sumandos, uno correspon-
diente a la presién hidrostatica y el otro a las variaciones de presién generadas
por el movimiento, lo cual se puede hacer debido a que la ecuacion de cantidad
de movimiento es lineal en relacién a la presion. Es decir, definimos

P=phtpd , (17.5)
donde
~Vph +pG =0 (17.6)
y
o dv.
pé—) + 97 VT = =Vpa + uV?5 + p—2 (17.7)

cuya suma es (17.2). Consecuentemente,

Ph = Poc,o — P9Z (17.8)

y la fuerza debida a la presién que el fluido ejerce sobre el cuerpo se descompone
en la fuerza de flotabilidad de Arquimedes (seccién 12.4) y la resistencia de
presién (también llamada de forma) originada por el movimiento del fluido:

ﬁp = —/phr‘ids - /pdﬁds = —pgV — /pdv'ids, (17.9)
S S 8
donde V es el volumen del cuerpo y 7i es la normal hacia fuera de S. La fuerza

total que el fluido ejerce sobre el cuerpo es suma de (17.9) y la fuerza de
friccién viscosa:

F=F1}+I*:":/"7_'J-ﬁds—p§V—/pdﬁds ; (17.10)
Js Js

la fuerza puramente de resistencia, que se opone al movimiento del cuerpo, es:
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F‘,:/?’-ﬁds—/pdﬁds . (17.11)
S S

En el limite en que

pDV., D pD?

_ PDVeo _
p Voolo wto

donde D es una longitud caracteristica del cuerpo y t, un tiempo caracteristi-
co (de variacién de Vi y ), los términos pd3/dt, piv - Vi y pdVio/dt son
despreciables frente al término viscoso V¥, y el problema viene gobernado,
en primera aproximacion, por:

V-7=0, (17.13)

—Vpg +pV3i=0, (17.14)
|#| > 00, T=Ve, pa=0, (17.15)
S(Zt)=0, T=0AZ. (17.16)

Las ecuaciones (17.13)-(17.14), que son el limite de las ecuaciones de Navier-
Stokes para movimientos lentos o reptantes, se suelen denominar ecuaciones
de Stokes, quien resolvié este problema para el movimiento alrededor de una
esfera que se mueve con velocidad constante Vo, (sin giro) en 1851 (ver seccién
siguiente). Obsérvese que aunque estas ecuaciones son analogas a las conside-
radas en las lecciones precedentes, alli los términos convectivos eran despre-
ciables debido, principalmente, a la casi unidireccionalidad del movimiento,
mientras que aqui el movimiento es esencialmente tridimensional [compérese
las condiciones (17.12) con, por ejemplo, (15.20)-(15.21)].

Las ecuaciones de Stokes se suelen escribir separando p; y v. Para ello se
tiene en cuenta que [ecuacién (1.43)]

V% =V(V -7 -VAVAT)=-VA(VAD), (17.17)
donde se ha hecho uso de (17.13). Por tanto, (17.14) se puede escribir

Vps+uVAVAT=0 . (17.18)

Tomando la divergencia de esta ecuacion,
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Vipg =0, (17.19)

mientras que tomando el rotacional

VAVAVAT=0 o VAVAT=-V35=0, (17.20)

que son dos ecuaciones donde la presién y la velocidad (o la vorticidad) entran
por separado [en (17.20) se ha hecho uso de V-& = V- (V A%) = 0]. Obsérvese
que en ambos casos el problema se reduce a resolver una ecuaciéon de Laplace.
Normalmente se resuelve (17.20), puesto que las condiciones de contorno suelen
venir expresadas en términos de la velocidad; una vez obtenida v, se sustituye
en (17.14) y se obtiene la distribucién de presién. En algunos problemas, sin
embargo, las condiciones de contorno se expresan mas facilmente en términos
de la presién, por lo que se procede a la inversa: se resuelve (17.19) y se
sustituye en (17.14) para obtener ¥. En cuanto a las condiciones de contorno,
éstas se pueden tratar por separado basandose en la linealidad del problema,
que admite superposicién. Por ejemplo, el problema (17.13)-(17.16) se puede
resolver definiendo ¥ = ¥; + ¥, donde ¥} y v, satisfacen las ecuaciones de
Stokes (17.13)-(17.14), y las condiciones de contorno son

|| - 00, @ =Ve; S(@t)=0, @ =0; (17.21)

7] - 00, Ta=0; S(Z,t)=0, Gh=0QALZ. (17.22)

Esto permite obtener soluciones de movimientos complejos sin mas que sumar
soluciones de problemas mas sencillos.

17.2. Movimiento alrededor de una esfera. Ley de
Stokes

Consideremos el flujo con viscosidad dominante alrededor de una esfera
de radio R que se mueve con velocidad constante V en la direcciéon —€; (o la
esfera estd fija y sobre ella pasa una corriente que en |z| — oo vale Vé,). De
acuerdo con lo visto anteriormente, el problema a resolver es:

V.- #=0, VAVAVAT=0 (0o V%5=0), (17.23)

¥ - 00, ¥=Vé; |z|=R, #=0. (17.24)
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Figura 17.1: Coordenadas en el flujo alrededor de una esfera.

Obviamente, este problema se resuelve mas ficilmente en coordenadas
esféricas (7,6, ) (ver figura 17.1). Como el movimiento tiene simetria con
respecto al eje  (nada depende de la coordenada azimutal ¢ siendo, ademads,
v, = 0), es posible escribir ¢ en términos de una funcién de corriente ¢ (ver
seccién 6.2):

L Y
v=VA (rsinOe‘p) , (17.25)
de donde
1 oy . 1 0y
U 2singa6° T “rsmdor’ (17.26)
de esta forma, la ecuacién de continuidad,
L 19, 4 1 0 . _
V.o= T—28—T(r vr)+;§n—969(sm0vg) =0 , (17.27)

se satisface automadticamente. Obsérvese que la definicién de la funcién de
corriente no es unica. La eleccién dada por (17.26 se suele denominar funcién
de corriente de Stokes. En términos de %, el vector vorticidad se escribe

J:VAU:VA(VAwé;,):—l[

r

1 6% 10 ( 1 0p\|.
sinfor2 1290 (—9%) o

(17.28)

que sélo tiene componente segiin €,. Consecuentemente, la ecuacién de canti-

dad de movimiento V23 = 0 se convierte en la siguiente ecuacién escalar para

P:
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2 .
EZ(E2‘11))_—_O’ E2E a blnga ( 1 8)

=5+ —5 75 | === 7s

Or? r2 90 \sin6 o0

que es una ecuacion en derivadas parciales de cuarto orden.
En coordenadas esféricas, las condiciones de contorno (17.24) se escriben

(17.29)

r=R, v,=v9=0, (17.30)

r—o00, v — Vcosf, vg— —Vsinb, (17.31)

que proporcionan las siguientes condiciones de contorno para :

oy
r—o0, P— r sin? § + constante . (17.33)

Tenemos, pues, tres condiciones de contorno, siendo la ecuacién (17.29) de
cuarto orden, lo cual es una consecuencia de que al utilizar la funcién de
corriente se ha introducido una derivada m4és. Sin embargo, por la misma
razon, para hallar v, cualquier constante aditiva de 1) es irrelevante, por lo que
podemos hacer la constante que aparece en (17.33) igual a cero, y el problema
ya tiene el nimero correcto de condiciones de contorno.

Este problema admite separacion de variables: Sugerido por (17.33), donde
aparece la tinica dependencia de las condiciones de contorno en 6, escribimos

Y(r,8) = f(r)sin?9, (17.34)
que sustituido en (17.29) y (17.32)-(17.33) proporciona
¢ 2 > 2
(m—rfz (m‘rz)f—”' (17.35)
_ df : 2
r=R, f— =0; r—oo, f—oVre2. (17.36)

La ecuacién del tipo denominado de Euler (17.35) admite soluciones potencia-
les para r. En efecto, ensayando la solucién f ~ ™, se encuentra que admite
los valores n = 2, —1,4 y 1. Asi la solucién general de (17.35) es

f=Ar+ % + Asrt + Agr (17.37)
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donde las A; son constantes arbitrarias. Para que la dependencia de f(r) cuan-
do r — oo sea de la forma f ~ r2?, Aj tiene que ser nula. Las otras tres
constantes se calculan de las condiciones (17.36), obteniéndose

VR |[r? 1R 3r 2
=— | =+ =—— == si 17.
V=3 [32 27 zR]S'“e ’ (17.38)
de donde
= 1+-1-R—3—§§ V cos 6 =—|1 1R—3—?—)§ Vsing. (17.39)
Ur = 273 27 ¥ 0= 43 4r S '
Por otra parte, sustituyendo en
Vpa=puV*; r—ooo, p;—0, (17.40)
se llega a
3uV R cosf
= —_— 17.41
Pd 52 ( )

La fuerza de resistencia que el fluido ejerce sobre la esfera es en la direccién
del movimiento y obviamente se opone a él, F;. = F.é;, siendo

ug
F. = 27r/ [(—pa + 7..) cos 8 — 7.gsin 0], g R%sin 6d6 . (17.42)
o
Sustituyendo
Ov
! Vr=R = 2 ( ") =0 , 17.43
(Trr) =R u or pali ( )

0 (v 10v, 3uV sinf
Iy — - 17.44
(Tro)r=r = p [Tar ( T ) 00 lrzR R : (17.44)

y (17.41) en (17.42) se obtiene

F. =6muVR, (17.45)

que es conocida como la ley de Stokes para la fuerza de resistencia de una
esfera a bajos nimeros de Reynolds. Se observa que la friccién viscosa 7/, es
responsable de 2/3 de la resistencia, mientras que las fuerzas de presién son
responsables del tercio restante. Experimentalmente se encuentra que esta ley
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es aproximadamente vélida incluso hasta Re ~ 1 (ver figura 17.2). Esta ley se
suele escribir en forma adimensional en términos del coeficiente de resistencia,

F,
Cp = ———r, 17.46
de forma que,
24
== 17.
CD Re’ ( 7 47)
donde
2
Re= Ruv”. (17.48)

A la fuerza anterior hay que anadir la fuerza de flotabilidad de Arquimedes,
que actia en direccién opuesta a la gravedad Fy = (pg4mR3/3)€,. Un problema
practico de cierta relevancia es la sedimentacién de particulas (mds o menos)
esféricas. En este caso, a la fuerza de la gravedad que hace caer a la particula,
—(ppg47rR3 /3)€é>, donde pj es la densidad de la particula, se le oponen la fuerza
de Arquimedes y la fuerza de resistencia fluidomecénica, que viene dada por
la ley de Stokes (17.45) si se verifican las condiciones (17.12). La ecuacién que
gobierna la velocidad de sedimentacién de la particula, —Vé,, es:

4
—ﬂRspp—E = §7rR3(pp —p)g —6muVR. (17.49)

Obsérvese que aunque en este caso V = V(t), si se cumple que pR?/ut, < 1,
donde ¢, es un tiempo caracteristico de variacién de V', la fuerza de resistencia
dada por la ley de Stokes sigue siendo aproximadamente valida. Se llama ve-
locidad terminal a la velocidad constante que se alcanza cuando las fuerzas
que ejerce el fluido sobre la particula igualan al peso de la misma:

4 2(pp, — p)R?
R0y~ p)g — 6muViR=0 | Vi = %’ . (1750
Definiendo las variables adimensionales
|%4 t
= =—, 17.51
v Vi T P (17.51)

si la particula parte del reposo, el problema queda

2R dv _

=1-v, =0)=0. .
e v, vr=0)=0 (17.52)
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Definiendo
2
b, = 20 (17.53)
I

todos los términos son del orden unidad, por lo que t, ~ ppR2/ . Esto nos
dice que (17.49) [0 (17.52)] es vélida, de acuerdo con la condicién t, > pR?/u,
si pp > p. La solucién es

v=1-¢"", (17.54)

de forma que cuando t = t, = 2p,R%/9u (7 = 1), v ha alcanzado el sesenta
por ciento de su valor final (v = 1,V = V;), aproximadamente. Si p, ~ p, o
pp < O(p), la solucién anterior no es valida puesto que la ley de Stokes deja de
ser valida. Para hallar la fuerza de resistencia habria que resolver la ecuacion de
cantidad de movimiento reteniendo la aceleracion local, p0v/3dt, y la fuerza de
inercia asociada a la aceleracién del sistema de referencia, —pdV /dt [ecuacién
(17.7); por supuesto, se supone que Re < 1 para que el término convectivo no
cuente]. Como el problema es lineal, esto daria lugar a una fuerza de resistencia
que constaria de tres términos: uno de ellos seria la ley de Stokes (17.45), y los
otros dos resultarian de los dos nuevos términos de la ecuacion de cantidad de
movimiento (el alumno interesado puede consultar, por ejemplo, Richardson,
1989). Por supuesto, la velocidad terminal seguiria siendo la misma, puesto
que estos nuevos términos de la fuerza de resistencia son nulos cuando ¢t — oo.

Para terminar es conveniente senalar que la ley de Stokes (17.45) se sue-
le usar, de forma aproximada, incluso cuando la particula no es exactamente
esférica, siempre que se cumplan las hipétesis (17.12), sustituyendo R por un
radio caracteristico de la particula. Debe observarse, ademads, que el anali-
sis dimensional del problema (ver final de la seccién siguiente) nos dice que
F, = constante x uV R si se cumple (17.12), donde la constante depende de
la geometria de la particula (vale 67 para una esfera), y R es un tamaifio
caracteristico de la misma.

17.3. Aproximacion de Oseen

La solucién anterior de Stokes tiene la dificultad de que no es vélida lejos
de la particula: De (17.39) se tiene que

(17.55)

R® 2 3R
7‘2 7‘3 ?

uV2v, = pV cosd |:2—5 - =
.
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Figura 17.2: Coeficiente de resistencia Cp para una esfera. La curva continua es una inter-
polacién de numerosos datos experimentales dada por Cp = 24/Re + 6/(1 + VRe) + 0,4
(White, 1991), valida hasta Re =~ 2,5 x 10° (ver también figura 27.10 mdas adelante). La
curva a trazos es la ley de Stokes (17.47) y la curva de trazos y puntos es la ley de Oseen
(17.62).

3 3
pUVUrsz2COS20(1—§£+£_) <3R 3R>

2r 273 22 94
pV2sin? 6 3R RS 3R RS
' T ! 4r  4rd 1= or T 213 ) )

por lo que para r > R el término viscoso y el término convectivo son del
mismo orden si 7/R ~ Re™! > 1:

2
N4 - 14 r H -1
Vi, ~ S~ pT - Vo, ~ — —=~-——n~Re " >1. 17.57
En otras palabras, la condiciéon Re < 1 permite no tener en cuenta el término
convectivo en la ecuacion de cantidad de movimiento en relacién al término de
fuerzas viscosas siempre que la longitud caracteristica del campo de velocidad
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sea el diametro de la particula, en la que estd basado Re. Esto es rigurosa-
mente cierto cerca de la particula. Pero a medida que nos alejamos de ella,
la longitud caracteristica se hace mayor puesto que el flujo se hace cada vez
mas uniforme; suficientemente lejos de la particula [en particular, cuando se
cumple (17.57)], el término convectivo se hace del mismo orden que el viscoso,
y no esta justificado despreciar el primero respecto al segundo, a pesar de que
Re basado en D es pequeno. Si Re -~ 0, esta dificultad no seria tal puesto
que la solucién seria valida hasta r — oo. Para Re < 1, pero finito, es nece-
sario corregir la solucién de Stokes. Esto lo hizo Oseen (1910) linealizando el
término convectivo para r — oc, con lo cual, obtuvo una correccion de la ley
de Stokes que viene a ser el siguiente término en el desarrollo en potencias de
Re < 1.

Basicamente, como el término convectivo empieza a contar en la solucién
de Stokes cuando /R ~ Re™! > 1, se puede suponer que alli la velocidad del
fluido es aproximadamente la de la corriente en el infinito, V é;. Es decir,

ov

pvU- Vi~ pVe, Vi = pV§ . (17.58)

De esta forma, la ecuacién de cantidad de movimiento sigue siendo lineal:

pV% = —Vpa+ pV3. (17.59)

Esta ecuacion se suele denominar ecuacion de Oseen. Analogamente a como
se hizo en la seccién 17.1, sustituyendo V2% = —V A& y tomando la divergencia
y el rotacional de la ecuacion anterior se llega a:

Vpg=0, (17.60)

2 O\ . _

(V 2k5—$> w=0, (17.61)
donde para hallar (17.60) se ha hecho uso de la ecuacién de continuidad,
V- 9=0,yen (17.61) k = pV /21 y se ha hecho uso de V A 94/9z = 8&5/0x.
Para el flujo alrededor de una esfera, la ecuacién (17.61) se debe resolver con
las condiciones de contorno (17.30)-(17.31). La solucién de este problema se
obtiene mas facilmente utilizando coordenadas cilindricas con el eje £ como
eje axial, pudiéndose obtener, por separacion de variables, una solucién en
términos de funciones de Bessel esféricas (ver, por ejemplo, Rosenhead, 1988).
Reteniendo los primeros términos de la expansion se llega a la siguiente ex-
presion para el coeficiente de resistencia:
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co=2 [1 + %Re] , (1762)
donde el término 3Re/16 es la correcién de Oseen a la ley de Stokes (17.42). En
la figura 17.2 se representa las leyes de Stokes y de Oseen junto con resultados
experimentales.

La solucién de Oseen fue perfeccionada por Proudman y Pearson en 1957,
y por otros investigadores posteriores (ver, por ejemplo, Rosenhead, 1988),
utilizando la técnica de los desarrollos asintdticos acoplados, de la cual un
ejemplo sencillo fue considerado en la seccién 14.1.5 (limite 8 < 1; alli, la
solucion bdsica dejaba de valer cerca de la pared; aqui, la solucién de Stokes
deja de valer lejos de la esfera). Aunque no vamos a entrar en detalles, basica-
mente, la solucién de Stokes corresponde al orden mas bajo del desarrollo en
potencias de Re de la solucion cerca de la esfera, mientras que la solucién de
Oseen es el siguiente orden [O(Re)] de ese desarrollo cerca de la esfera. Proud-
man y Pearson calcularon el desarrollo en potencias de Re de la solucién lejos
de la esfera y la acoplaron con la solucién cerca de la misma para distancias
intermedias. De esta forma obtuvieron la correccién de Oseen de una forma
mas rigurosa, ademas de correcciones de mayor orden. Sin embargo, como se
observa en la figura 17.2, la resistencia calculada con la aproximacién de pri-
mer orden (Oseen) practicamente coincide con los resultados experimentales
hasta Re = 1 (para Re > 1, el método de desarrollar la solucién en potencias
de Re obviamente no vale). Aunque para hallar la correccién de Oseen en el
caso de una esfera no es necesario utilizar la técnica de los desarrollos asintéti-
cos acoplados (si para su justificacién matematica), en el caso de la corriente
alrededor de un cilindro, que veremos a continuacion, esta técnica es necesaria
incluso para hallar la solucién de orden menor.

17.4. Movimiento alrededor de un cilindro circular.
Paradoja de Stokes

Consideramos ahora, brevemente, el caso de un cilindro de longitud infinita
y radio R sobre el que incide, normalmente a su eje, una corriente de un fluido
incompresible de viscosidad ¢ y densidad p, que lejos del cilindro tiene una
velocidad Vé,. Veremos que la solucién de este problema es bastante diferente
al problema de la esfera.

Suponiendo que el eje del cilindro estd alineado segin el eje €,, tomamos
coordenadas cilindricas (7,0, z) de forma que la direccién de la corriente es
z = rcosf (ver figura 17.3). El campo de velocidades es bidimensional, con
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..............

Figura 17.3: Geometria del flujo alrededor de un cilindro.

v, = 0, y ninguna magnitud fluida depende de z, por lo que es posible definir
la funcién de corriente ¥ como

10y o
7= g, 3 v, = e = 17.
v=VAYe, ; v -0 Vg o (17.63)
El vector vorticidad sdélo tiene componente segun z:
. O 18y  10%)
v=- <m ror TriogE )% (17.64)
y la ecuacién (17.23) queda
2 1 2
FY2(F*) =0, F?= Ly 9 0 (17.65)

T or2  ror  r200?°
Como condiciones de contorno se tiene

r=R, v,=v9=0; r—oo, v,=Vcosl, vg=-Vsinf; (17.66)

0, equivalentemente,

oYy oY .
=R, —=—=0; r—oo, — Vrsinf. 17.67
00  Or v ( )
Anélogamente al caso de la esfera, la condicién de contorno en el infinito, la
que contiene la Unica informacién sobre la variacién de ¥ con 6, nos induce a

suponer que

Y(r,0) = f(r)sinf . (17.68)
Sustituyendo en (17.65) y (17.67) se obtiene
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¢ 2d> 3d*> 3d 3
sl i o e o e 2 = 17.
(dr4 + rdr3 r?dr? + r3dr 7‘4) f=0, (17.69)

r=R, f=df/dr=0; r—ooo, f-oVr, (17.70)

que, efectivamente, sélo involucra a r. Ensayando soluciones tipo f ~ r7",
se obtiene que n = —1,1 6 3. La cuarta soluciéon independiente es de tipo
logaritmico. Probando f ~ r™Inr se obtiene que n = 1. Luego la solucién
general es

C
P = (71 +Cz’l‘+Cg’f‘lIl’f‘+C47‘3> sinf . (17.71)
La condicién de contorno en el infinito exige que

Co=V |, C3=Cs4=0 |, (17.72)

lo cual nos impide satisfacer las dos condiciones de contorno en la superficie
del cilindro. Por otro lado, si imponemos las dos condiciones de contorno en
r = Ry elegimos la solucién menos divergente cuando r — oo (Cy = 0 pero
C3 #0), se obtiene

= C3V Rsin 8 [% ln% - é + 2—}:] (17.73)

que proporciona un campo de velocidades que diverge logaritmicamente cuan-
do r — oo:

r 1 R? r 1 R?
= - — =4 — = —-C3Vsinf |In =+ - — —
vr = C3V cosf [lnR 2-{-27‘2 ., vg 3V sin |inR-+—2
(17.74)

Por tanto, no existe solucién a este problema (flujo estacionario y lento al-
rededor de un cilindro) tal y como la estamos buscando. Esta es la llamada
paradoja de Stokes, que, por supuesto, no es una paradoja real, puesto
que flujo alrededor de un cilindro se puede dar a nimeros de Reynolds tan
pequenos como se quiera. Esta paradoja nos dice, simplemente, que alguno
de los requisitos que hemos impuesto para obtener la solucién anterior no se
satisface.

De hecho, la solucién anterior adolece de la misma dificultad que la solucién
de Stokes para una esfera: lejos del cilindro el término convectivo y el viscoso
son del mismo orden: de (17.74), se tiene que
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"Zv—z:’-- NRe;—%ln%, (17.75)
que se hace de orden unidad cuando fIn ~ Re! > 1. Asi, la solucién
anterior es tan vdlida como la solucién de Stokes para el flujo alrededor de una
esfera (es decir, ninguna de las dos son vélidas lejos del origen), con la tinica
diferencia que para el flujo alrededor de un cilindro la ruptura de la solucién
lejos del origen se hace mas dramatica que en el caso de la esfera, al diverger
el campo de velocidad [en el caso de la esfera la paradoja era maés sutil puesto
que, aunque la hipdtesis de fuerzas viscosas dominantes no es vélida lejos de
la esfera, el campo de velocidad (17.39) obtenido con esta hipdtesis no sélo
no diverge cuando r — oo, sino que cumple las condiciones de contorno]. En
definitiva, aunque Re < 1, lejos del cuerpo el término convectivo se hace tan
importante como el de fuerzas viscosas en la ecuacién de cantidad de movi-
miento, y aunque en el caso de una esfera esto afectaba poco al campo de
velocidad, en el caso de un cilindro no se puede obtener una solucién unifor-
memente valida para ¥ sin retener el término convectivo. Por tanto, hay que
utilizar la tecnica de los desarrollos asintéticos acoplados, reteniendo el termi-
no convectivo y utilizando la aproximacién de Oseen, incluso para obtener el
orden de aproximacién mas bajo.

Utilizando la aproximacién de Oseen,

pi- Vi~ pVE, - Vi, (17.76)

la ecuacién de cantidad de movimiento es (17.61). Al igual que en el caso de
la esfera, la solucién cerca del cilindro se puede expresar en términos de una
serie infinita de funciones de Bessel (ver, por ejemplo, Rosenhead, 1988); los
dos primeros términos del desarrollo en potencias de Re de la solucién cerca
del cilindro es (ver referencia anterior):

VRsinf [r T R
V= [1_% (2l“ﬁ_1>+7]

LI TSN S S SSUNI--ST (r SOU § I LAY
2 scrR2 "R 8r: 1wc tat\mc "8) |
(17.77)

el acoplamiento con la solucién asintética lejos del cilindro fija el valor de la
constante C':

VRsin20[1r2 r 172 1 1(1 1>R2
Re —— =

1 8
== —~+In— 17.78
C 5~ 7ting, ( )
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siendo v ~ 0,5772157 la constante de Euler. Esta solucion proporciona el
siguiente coeficiente de resistencia en funciéon del niumero de Reynolds, Re =
pV2R/

8n

P = Rec

£ i i = ,]; 2 2 2
[1 32 (160 2+C) Re®+ O([Re*InRel®)| . (17.79)

Este coeficiente de resistencia corresponde, por supuesto, a la fuerza de resis-
tencia por unidad de longitud del cilindro, puesto que éste es infinito:

FI

Cp =-=I—, ., 17.80
P Tov2eR (17.80)

2m
Fl = / [(—~p4 + 71) cos O — T.gsin 6],=gRdO . (17.81)

Si se hubiese utilizado la solucién divergente (17.74), se hubiera obtenido
8nC

F! =4nuVCs , Cp= 71;63 ; (17.82)

es decir, el primer término de (17.79), pero con la diferencia de que la constante
C es conocida [depende de Re de acuerdo con (17.78)], mientras que C3 era
desconocida [del acoplamiento con la solucién lejos del cilindro se obtiene
C3 = C~!; compérese también (17.77) con (17.73)).

La diferencia tan notoria que acabamos de ver entre el flujo alrededor de
una esfera y el flujo alrededor de un cilindro infinito se podia haber previsto
mediante un simple andlisis dimensional: Para una esfera, la fuerza de resis-
tencia F, a bajos nimeros de Reynolds debe ser funcién del radio R, de la
velocidad V' y de la viscosidad p (de la densidad p no, puesto que el término
convectivo es despreciable en la ecuacién de cantidad de movimiento); con-
secuentemente, el grupo adimensional F;./uV R debe ser una constante y, de
hecho, la ley de Stokes (17.45) nos dice que esta constante es 6x. Para un
cilindro infinito, la fuerza de resistencia por unidad de longitud F debe ser
funcién de las mismas magnitudes R, V' y p; pero, ahora, el andlisis dimensio-
nal nos dice que F//uV es una constante, lo cual es imposible puesto que F}
debe depender del radio del cilindro. Asi, la densidad p debe entrar en el pro-
blema y, por tanto, la inercia debe contar en el flujo alrededor de un cilindro,
como acabamos de demostrar matematicamente. De esta forma, F)/uV es una
funcién del mimero de Reynolds pV2R/p.

El argumento dimensional anterior sirve para hallar, mediante un solo ez-
perimento , la fuerza de resistencia alrededor de un cuerpo de forma arbitraria
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a bajos nimeros de Reynolds, ya que F,./uV R, donde ahora R es una longi-
tud caracteristica para una serie de cuerpos geométricamente semejantes, debe
ser una constante. Equivalentemente, Cp = K/Re, donde la constante K se
obtiene con un solo experimento para cuerpos geométricamente semejantes.
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Capitulo 18

Flujo en medios porosos

18.1. Introduccién

La denominacién de medio poroso se aplica, de una forma simple y general,
a un sélido con agujeros interconectados entre si (los poros) a través de los
cuales puede fluir un fluido. Normalmente, esta constituido por particulas séli-
das compactadas cuyos intersticios constituyen los poros. El tamaio y forma
de los poros, que puede variar mucho de un medio poroso a otro, tienen, en
general, una distribucién mas o menos aleatoria. Ejemplos practicos de interés
son el terreno de un acuifero o de un depdsito petrolifero, el material poroso
de un reactor catalitico o de un equipo de filtracion, etc. El estudio del flujo a
través de medios porosos tiene interés, por tanto, en la ingenieria hidraulica de
suelos, en la mineria del petroleo y del gas natural y en la ingenieria quimica,
principalmente.

En esta leccion se va a presentar una breve introduccién a la dinamica de
fluidos en medios porosos considerandolos como un medio continuo. Es decir,
supondremos que el didmetro caracteristico a de los poros es, independiente-
mente de su forma y distribucién, mucho menor que la longitud caracteristica
L en la que las propiedades del flujo varian apreciablemente. Esta hipétesis
permitird hacer una descripcién continua del flujo, en la cual las magnitudes
del flujo en cada punto son, en realidad, promedios de esas magnitudes en un
volumen &V lo suficientemente grande para que contenga muchos poros, pero
lo suficientemente pequeno para que se pueda considerar como un diferencial
matematico en la escala de variacién de las magnitudes promediadas:

a< V)P« L. (18.1)

Obviamente, esta restriccién es muchisimo mas fuerte que la de medio continuo
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introducida en la seccién 2.2, pues en el interior de cada poro se supone que
el fluido ya se comporta como un medio continuo. Afortunadamente, la gran
mayoria de los flujos en medios porosos de interés préactico satisfacen mas o
menos holgadamente esa condicién. Flujos que no satisfacen (18.1) son mucho
mas dificiles de analizar y no se consideraran aqui. Tampoco se tendrd en
cuenta en esta leccién introductoria al flujo en los medios porosos el efecto de
la tension superficial, entre otras razones porque se considerara inicamente el
movimiento de una sola fase fluida, lo cual si que constituye una limitacién
importante, pues se excluye asi el estudio de algunos flujos de interés practico.
Para éstos y otros muchos aspectos fisicoquimicos de los medios porosos se
remite al lector a las referencias citadas al final.

En las secciones siguientes se derivaran las ecuaciones que gobiernan el
flujo en medios porosos, promediando las ecuaciones fluidodindmicas en un
volumen 6V, se introducirdan las aproximaciones fenomenoldgicas o empiricas
mas usuales que cierran esas ecuaciones, se discutirdan las condiciones de con-
torno y se veran algunos ejemplos significativos. El estudio de estos flujos se
incluye en esta parte dedicada a los flujos viscosos debido a que, dentro de
los poros, el movimiento suele tener un nimero de Reynolds, basado en el
didmetro caracteristico a, muy pequeno. De hecho, la ecuacion de cantidad de
movimiento que se utilizard tiene una forma muy similar a la ecuacién que
describe el movimiento en el interior de un conducto en el limite ReD/L < 1.

18.2. Ecuaciones para un fluido homogéneo

18.2.1. Magnitudes promediadas. Porosidad

Considérese un volumen infinitesimal 6V (en el sentido descrito anterior-
mente) del medio poroso. Una parte §V}, de este volumen estard ocupada por
los poros (es decir, por el fluido), y el resto V' — 4§V}, por el material sélido (im-
permeable). Una magnitud fundamental en un medio poroso es la porosidad
T, definida como la fraccién volumétrica de poros:

_ W
T= v (18.2)
Esta magnitud es, en general, una funcién de la posicién y del tiempo (esta
ultima dependencia puede estar originada por el propio movimiento del fluido).
Sin embargo, por simplicidad se supondra en lo que sigue que la porosidad es
una propiedad del material que no se ve afectada por el movimiento del fluido.
Es decir, se supondra que el material poroso es lo suficientemente rigido como

para que T = T(&). Si el medio poroso es homogéneo, T es una constante.
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Las magnitudes fluidas en el medio poroso se suelen definir promediando
sobre el volumen de poros. Asi, si se designan con primas a las magnitudes
fluidas en el interior de los poros, la densidad p, la presién p, la velocidad 7'y
la temperatura T, promediadas en un punto £ y en cada instante ¢, se definen:

1 /' ’
- v, 18.3
=5V S, (18.3)
! / pdv (18.4)
P=5, Jsv, ’ '
0ApU -7l = pv - ids, (18.5)
5Ap
7= [ Tav (18.6)
6V, Jov, ' '

En (18.5), A es un elemento de area en Z orientada segin 77 y 6 A, es la parte
de esa seccién ocupada por los huecos de los poros.

18.2.2. Ecuacién de conservacién de la masa

Dado un 6V en un punto Z, si d 4, es la parte de la superficie que encierra
a 0V ocupada por los poros, la ecuacién de conservacion de la masa aplicada
al volumen de poros 4§V, se escribe

6 / U A
— dV; +/ v -nds =0. 18.7
p /(pr » Mpp (18.7)

Aplicando las definiciones anteriores y el teorema de Gauss se llega a

0 =

5;0VpP) +OVV - (p7) =0. (18.8)
Finalmente, utilizando (18.2), se tiene

9 (Xp) + V- (p3) =0, (18.9)

que es la ecuacién de continuidad para un fluido homogéneo en medio poroso
de porosidad T.
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P

Q

Figura 18.1: Esquema del experimento de Darcy.

18.2.3. Ley de Darcy

La ecuacién de cantidad de movimiento también se puede derivar teori-
camente promediando la correspondiente ecuacion en el interior de los poros.
Sin embargo, dada la dificultad de modelar de forma precisa las fuerzas que
el material sélido del medio poroso ejerce sobre el fluido, que inevitablemente
requiere la utilizacion de modelos semiempiricos, es mucho mas practico re-
currir a leyes experimentales mas o menos fundamentadas que proporcionan
el campo de velocidad ¢ directamente.

De éstas, la mas usada es la denominada ley de Darcy. En 1856 Darcy
publicé un trabajo sobre las fuentes de la ciudad francesa de Dijon, en el que
presentaba sus investigaciones sobre el flujo de agua en columnas de arena que
actuaban como filtros (ver figura 18.1). Béasicamente encontré que el caudal
@ que circulaba por el filtro era proporcional a la seccién multiplicada por la
diferencia de presion reducida, e inversamente proporcional a la longitud del
filtro:
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D? -
@ = constante x WT (pl 7 2 + pg) ) (18.10)

La constante dependia del fluido (agua) y del material poroso. Esta ley se pue-
de justificar teéricamente si se sustituye el material poroso por un conjunto de
N tubitos verticales de diametro a. Suponiendo que las fuerzas de viscosidad
dominan en el movimiento del liquido en cada tubo, es decir, Rea/L < 1, don-
de Re es un nimero de Reynolds basado en a y en una velocidad caracteristica,
el caudal Q; que circula por cada tubo obedece la ley de Hagen-Poiseuille. Su-
mando los caudales de los N tubos, se tiene

_E'l_ P1 — D2
1284 L
Teniendo en cuenta que la seccién ocupada por los tubitos es una fracciéon k
de la seccién total, Na? = kD?, donde k depende de cémo de juntos estén
los tubos, es decir, de las caracteristicas del material poroso, la constante en
(18.10) vale, en este particular medio poroso,

Q=NQ:i=N +pg> , (18.11)

ka?
@ .
Es decir, es inversamente proporcional a la viscosidad del fluido y proporcional
a una caracteristica fisica del medio poroso que tiene que ver con la seccién
disponible para el paso del fluido.
La ley (18.10) se puede escribir en forma general como una relacién lineal
entre ¥y Vp+ pVU:

(18.12)

1=
§=—-11.(Vp+pVU), (18.13)
I

donde T es el tensor de permeabilidad del medio poroso. Si éste es isotropico,
el tensor se reduce a una sola constante, II = I1I, y la ley de Darcy se escribe

%(Vp+pVU). (18.14)
donde II es la permeabilidad, que es una propiedad fisica del medio poro-
so (experimentalmente se determina, por ejemplo, midiendo el caudal en un
dispositivo como el de la figura 18.1) Obsérvese que la permeabilidad tiene di-
mensiones de drea y, de acuerdo con (18.12), es proporcional al tamafio medio
del poro al cuadrado (a?). Si II/p es constante, (18.14) implica que el campo
de velocidad media en los poros ¥ es potencial y, por tanto, el flujo medio

v=—
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es irrotacional (a pesar de que, para que la ley de Darcy sea vélida, las fuer-
zas viscosas deben ser dominantes en el flujo en el interior de los poros, con
velocidad ¢"):

I1 =
v=V¢, ¢=—;(p+pU); VAT =0.

Teniendo en cuenta que en un medio isotrépico el tamano y la longitud de
los poros son del mismo orden a, de acuerdo con las consideraciones anteriores,
la ley de Darcy es valida siempre que el nimero de Reynolds,

Re=£a% (18.15)

I

donde V, es una velocidad caracteristica del fluido, es mucho menor que la
unidad. Experimentalmente se corrobora que, efectivamente, la ley de Darcy
se verifica cuando Re < 1, siendo ésta la situacién mas comun en la préctica
debido a que el tamaiio de los poros suele ser muy pequeno y las velocidades
no suelen ser muy grandes. Se han propuesto leyes mds generales, validas para
cualquier nimero de Reynolds, pero que no se veran aqui (ver referencias
citadas al final). Sélo indicar que, en el limite opuesto Re > 1, el gradiente de
presién reducida es proporcional a la velocidad al cuadrado (concretamente a

puv).

18.2.4. Ecuacion para la presion

En el caso de un flujo incompresible, la ecuacién de continuidad (18.9) se
reduce a V-7 = 0. Sustituyendo la ley de Darcy (18.14) y suponiendo que tanto
la permeabilidad como la viscosidad son constantes, el problema se reduce a
la resolucién de una tnica ecuacién para la presion reducida:

Vi(p+pU) =0. (18.16)

Se tiene, pues, que el problema viene gobernado por una ecuacion de Laplace.

Si el flujo es compresible (un gas), para cerrar el problema hace falta una
ecuacién de la energia y las ecuaciones de estado. Si Re < 1, la ecuacién de la
energia se suele simplificar a T ~ constante = T, donde T es la temperatura
del sélido. Esto esta justificado teniendo en cuenta que si los poros son muy
pequeriios y la velocidad de paso es también muy pequeiia, todo el fluido tiende
a estar en equilibrio térmico con el material sélido. Sustituyendo la ecuacién de
estadop/p = RyT =~ constante y la ley de Darcy en la ecuacién de continuidad,
se llega a la siguiente ecuacion para la presion
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Aire en poros

Aire

Agua L — Superficie freatica
Hy
P
Agua en poros s
p+pgz=p,+ pgH, p+pgz=p + pgHy
H,
r z v 'n=0

D

Figura 18.2: Condiciones de contorno en el flujo a través de un dique.

op 1I B
To =57 #99) =0, (18.17)

donde se han despreciado las fuerzas masicas por tratarse de un gas y se ha
supuesto que la porosidad no depende del tiempo y que II/u es constante.

18.2.5. Condiciones de contorno

Para resolver (18.16) o (18.17) hay que fijar condiciones de contorno para
la presion [en el caso de (18.17), hace falta también imponer una condicién
inicial, que consistird en el valor de la presién en t = 0, p(Z,0) = po(Z)).
Debido al operador laplaciano, se deben especificar condiciones de contorno
en todo el contorno del flujo en el interior del medio poroso. Para fijar ideas,
se considerara el ejemplo del flujo de agua a través de un dique de terreno
poroso (figura 18.2).

En las superficies de separacién entre un fluido libre y el fluido en el interior
del medio poroso (superficies A, B y C en la figura 18.2) normalmente se
conoce la presién. En las superficies impermeables (D en la figura 18.2), se
tiene que U-7 = 0 que, utilizando la ley de Darcy, se convierte en una condicién
de tipo Neumann para la presién: dp/0n+p0U/0n = 0 en el caso de un liquido,
0 Op/dn = 0 para un gas. Por 1ltimo, en las superficies libres de separacién
entre dos fluidos inmiscibles en el interior del medio poroso (superficie E en la
figura 18.2) se tiene que la presion es la misma a ambos lados de la superficie
(en el caso de la figura se puede suponer que la presién por el lado del aire es
la atmosférica y, por tanto, conocida). La posicién de la superficie libre no es
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Pa

H()

Figura 18.3:

conocida, por lo que hay que imponer la condicién adicional de que la superficie
S(Z,t) = 0 es una superficie fluida: 8S/0t+v-VS = 0. Como 77 = VS/|V S|, la
segunda condicién de contorno queda v -7 = —(9S/0t)/|VS| = —(I1/p)d(p +
pU)/dn, sobre S(Z,t) = 0.

18.3. Ejemplos

Si la geometria no es sencilla, normalmente hay que recurrir a la integracién
numérica de las ecuaciones (18.16) o (18.17) con sus respectivas condiciones de
contorno. Aqui se van a considerar dos ejemplos con geometrias muy simples
que tienen solucién analitica.

18.3.1. Avance de una superficie freatica plana en un medio
poroso infinito

Considérese un liquido de viscosidad p que reposa sobre un medio poroso
semiinfinito, de permeabilidad IT y porosidad T, inicialmente seco. Por accién
de la gravedad, el liquido, que inicialmente tiene una altura H,, avanza a
través del medio poroso, de manera que el frente hiimedo alcanza una posicién
2 = —h en el instante t (ver figura 18.3). La ecuacion (18.16) en este caso se
escribe
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& (p+p92) _

18.18
. ' (18.18)
que hay que resolver con las condiciones de contorno
z=0, p=pa+pgH(t); 2z=—h(t), p=po, (18.19)
donde p, es la presién de saturacion del liquido. La solucién es:
— Do + pgH
P+ pgz = Ea—poh—pg—+pg]z+pa+ng_ (18.20)

De acuerdo con la ley de Darcy, la velocidad de avance del liquido es

_ _To(p+pgz) _ T [py—po+ pgH

. = —_— —

w0z wl h

Como esta velocidad no depende de 2z, coincide con la velocidad de avance del
frente himedo,

+.pg] . (18.21)

dh
L 18.22
v at e22)

Por otro lado, el nivel H(t) se puede relacionar con h(t) teniendo en cuenta
que el caudal por unidad de superficie que entra en el medio poroso es igual
al caudal que avanza por él:

dH _dTh

S22 ¢—0, H=H, h=0, 18.23
dt dt Ho ( )

de donde

H(t)= H, — Th(t). (18.24)

Sustituyendo (18.21) y (18.24) en (18.22), y utilizando las variables adimen-
sionales

h I(pa — po + pgHo)
= — =t , 18.25
se tiene la siguiente ecuacién diferencial para 7(7):
dn 1
— =—-+a; 0) = O, 18.26
H=tai () (18.26)

donde se ha definido el parametro adimensional
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Figura 18.4:
_ P -T)H, (18.27)
Pa — Po + PgH,
Por tanto, el frente de avance viene dado, en forma implicita, por
1
ar =1 -~ In(1 + an). (18.28)

Obsérvese que todo el liquido ha pasado al medio poroso (H = 0) cuando
n =1/7, lo cual ocurre cuando 7 = 1/(aY) — [In(1 + a/T)]/a?.

18.3.2. Flujo en un medio poroso con una cavidad esférica

Considérese ahora el flujo a través de un medio poroso ilimitado en el que
existe una cavidad esférica de radio R > a. Del infinito viene una corriente
con velocidad # = V€&, (ver figura 18.4), y se quiere averiguar como afecta la
cavidad al campo de velocidad uniforme en el medio poroso.

Teniendo en cuenta que la presion reducida p, = p + pU no depende de ¢,
la ecuacién de Laplace (18.16) se escribe, en coordenadas esféricas,

10 (o), 10 (L oy
r2 or <r 6r)+r2sin060 S"‘oao =0, L3,

que debe ser resuelta con las condiciones de contorno

r=R, pr=po; T—o00, U— Vcosbhe,—Vsinbhéy, (18.30)

donde se ha supuesto que en la cavidad la presién reducida del liquido es
uniforme y constante. Utilizando la ley de Darcy, la condiciéon de contorno en
el infinito para p, se escribe
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0 | % |4
OI: — —%COSG, %;T — ﬂ—n—rsinO. (18.31)
Teniendo en cuenta la ecuacién y las condiciones de contorno, se sospecha

que p, tiene la forma

T — 00,

pr(r,0) = po + f(r)cosb, (18.32)

lo cual se corrobora sustituyendo en (18.29) y (18.31), que proporciona la
ecuacién diferencial y condiciones de contorno para f(r) siguientes:

(d2+2d 2>f=0, (18.33)

dr?  rdr 1r?

f(R)=0; r— o0, f—»—%. (18.34)

La ecuacién (18.33) es del tipo de Euler, teniendo por solucién general

f=Cr+ % , (18.35)

donde C; y C; son constantes de integracién, que, de (18.34), valen

_ uV R3 A4
C = o Oy = T (18.36)
Finalmente, la soluciéon queda
n% R3
pr:po_f 1_1‘_3 rcosf. (1837)

Aplicando la ley de Darcy, el campo de velocidad se escribe
2R3 R3
17=Vcos¢9(1+~—3—> é’r—VsinG(l——:;-) €p . (18.38)
T r
El caudal de liquido que atraviesa el agujero de radio R vale

w/2
Q= f Y (7 &2nrsin6rds),_p = 3rR2TV, (18.39)
0

lo cual implica que se triplica el caudal que pasaria por la misma seccién del
medio poroso en el caso de que no existiera la cavidad, @ = TR?2YTV.
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Capitulo 19

Movimientos con numero de
Reynolds grande

19.1. Introduccién

Los efectos viscosos y de conduccion de calor en el movimiento de un
fluido (y también los efectos de difusién madsica en el caso de que el fluido
esté constituido por varias especies quimicas) son poco importantes en muchos
flujos reales, por lo que pueden ser despreciados en primera aproximacién, al
menos en ciertas regiones del flujo. Esto es consecuencia de que los fluidos
mas comunes tienen una viscosidad y una conductividad térmica relativamente
pequeiias (para el agua a 20°C, v ~ 107%m?2/s, a ~ 1,42 x 10~ "m?/s, mientras
que para el aire en condiciones normales, 20°C' y latm., v ~ 1,5 x 10~®m?/s,
a ~ 2,08 x1075m?/s), por lo que en la mayoria de los flujos de interés su efecto
suele ser muy pequeno. Esta parte de la asignatura se dedica a estudiar este
tipo de flujos donde, en primera aproximacién y en casi todo el dominio fluido,
se pueden despreciar los efectos disipativos de la viscosidad y la conductividad
térmica (y la difusién maésica si la hubiese), también llamados flujos de fluidos
ideales.

Ya se vi6 en la seccién 11.2 que la condicién que debe verificarse para que
las fuerzas viscosas sean despreciables frente a la conveccién de la cantidad de
movimiento es

Re = KVI: >1, (19.1)

donde V' y L son una velocidad y una longitud caracteristica del flujo y v es
la viscosidad cinemadtica. Por otro lado, la conduccién de calor es despreciable
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frente a la conveccién de energia interna en la ecuacién de la energia si

L
Pe = RePr = VT >1 (19.2)

siendo « la difusividad térmica. También se vié que para la gran mayoria de
los fluidos esta segunda condicién se verifica si la condicién (19.1) se satisfa-
ce, puesto que el nimero de Prandtl es de orden unidad o mayor para casi
todos los fluidos (exceptuando los metales liquidos, para los que Pr < 1).
Por todo ello, se concluia que los efectos disipativos son despreciables frente a
los convectivos si se cumple que el nimero de Reynolds es muy grande. Esta
condicién también incluye a los flujos con varias especies quimicas puesto que
los efectos disipativos debidos a la difusién masica son despreciables frente a la
conveccién de masa en la ecuacién de conservacion de la masa de cada especie
1 si
VL

ReSci= 7=>1 (19.3)
donde D; es el coeficiente de difusién de la especie i en el seno de la mezcla,
y el nimero de Schmidt es siempre de orden unidad o mayor. Asi, pues, la
condicién (19.1), nimero de Reynolds alto, caracteriza a los flujos de fluidos
ideales.

19.2. Ecuaciones de Euler

Si (19.1) se satisface, las ecuaciones del movimiento (10.1)-(10.7) en pri-
mera, aproximacion se escriben:

o o
Eﬁ-V-(pv)—O, (19.4)
Dv -

e\ 19.

T P+ ofm, (19.5)
Ds

pTDt =Qr, (19.6)
p=p®,T) , s=s(pT), (19.7)

donde en lugar de la ecuacion de la energia interna se ha utilizado la ecuacion
de la entropia (8.27) puesto que ésta se simplifica notoriamente al no haber
fenémenos de transporte o disipativos. Si hubiese mas de una especie quimica,
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a la ecuacién de continuidad habria que anadir la ecuaciéon de conservacion
de cada especie quimica ¢ (6.31), salvo una, que en primera aproximacién se
escribe:

DY;
P Dt =W . (198)

Este sistema de ecuaciones que describe el movimiento de un fluido ideal
se denomina ecuaciones de Euler.! A veces, en vez de la ecuacién de la en-
tropia conviene usar otras formas de la ecuacion de la energia, que se escriben
aqui para futuras referencias:

D(e +v?/2 . -
2D 9 i) o TG, (199)
D(h+v%/2) Op W
T m T 1
p Di 5 + pfm T+ Q (19.10)
De o
e pv-5+a, (19.11)
Dh Dp
,DE =Dt +Qr. (19.12)

Una particularidad importante de las ecuaciones anteriores, desde un punto
de vista matemaético (aunque como se vera tiene también importantes impli-
caciones fisicas), es que con los efectos disipativos han desaparecido también
los términos que contenian las derivadas de orden mayor (segundo orden) pa-
ra la velocidad, la temperatura y las concentraciones en las ecuaciones (en
lo que sigue nos olvidaremos de las concentraciones suponiendo que el fluido
esta constituido por una unica especie quimica o, si varias, estan en equili-
brio). Ello implica que no se pueden imponer la totalidad de las condiciones
de contorno para estas magnitudes. Por ejemplo, en el flujo alrededor de un

'Desde un punto de vista histérico, Euler dedujo las ecuaciones de continuidad y cantidad
de movimiento (19.4)-(19.5) y para un fluido incompresible [V - @ = 0 en vez de (19.4)], por
lo que, estrictamente, sélo a este conjunto de dos ecuaciones se le deberia dar el nombre de
ecuaciones de Euler. Sin embargo, por extension, se suele denominar ecuaciones de Euler al
conjunto de todas las ecuaciones que describen el movimiento de un fluido ideal. Conviene
resaltar también que Euler dedujo sus ecuaciones casi un siglo antes que se establecieran
las ecuaciones de Navier-Stokes para un fluido viscoso, por lo que el estudio de los fluidos
ideales (la hidrodindmica cldsica) constituyé una ciencia independiente, incluso después de
que se empezara a estudiar los movimientos viscosos, hasta el advenimiento de la teoria de
la capa limite, creada por Prandtl en 1904, que unié formalmente estas dos hasta entonces
inconexas ciencias.
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obstaculo considerado en la seccion 10.3, si se usa el sistema de ecuaciones an-
terior para describir el flujo, se pueden imponer todas las condiciones iniciales
y de contorno, excepto las condiciones de contorno en la superficie del obstacu-
lo, (10.33) y (10.36). Ello implica que la solucién no puede ser uniformemente
véalida en todo el dominio fluido puesto que sobre el obstdaculo no se satisface
(en general) que la velocidad y la temperatura del fluido sean iguales a las del
sélido. Fisicamente, lo que ocurre es que, aunque Re > 1 y la viscosidad y
conductividad térmica no son importantes en el flujo, cerca de la superficie del
cuerpo esto no es cierto, y existe una capa limite delgada en sus proximidades
donde, a pesar de que Re > 1, los efectos viscosos y de conduccion de calor son
tan importantes como la conveccion, y ellos son los que se encargan de hacer
cumplir las condiciones de contorno. A pesar de su importancia, de momento
nos olvidaremos de esta capa limite, la cual serd tratada en la parte VIII, y
nos limitaremos a obtener soluciones de las ecuaciones de Euler.

Desde un punto de vista mas general, al haber desaparecido las derivadas de
mayor orden en las ecuaciones de Euler, éstas no representan uniformemente
a las ecuaciones de Navier-Stokes, ni siquiera en el limite formal Re — oo,
y no existen, en general, soluciones continuas y/o con derivadas continuas
del problema constituido por las ecuaciones de Euler y las correspondientes
condiciones iniciales y de contorno. Asi, en las soluciones aparecen superficies
de discontinuidad, en forma de ondas de choque, capas limites, etc. En realidad,
estas discontinuidades no son tales, sino, como acabamos de decir, son capas
muy delgadas en las que al ser los gradientes de velocidad y/o temperatura muy
elevados, los efectos disipativos son importantes, a pesar de que la viscosidad y
conductividad térmica son relativamente pequenas. De momento no tendremos
en cuenta estas capas delgadas y admitiremos la existencia de discontinuidades
en las soluciones de Euler.

19.3. Ecuacion de Bernoulli

La ecuacién de cantidad de movimiento para un fluido ideal (19.5) puede,
bajo ciertas condiciones, integrarse a lo largo de lineas de corriente. En efecto:
si hacemos uso de la identidad vectorial (7 - V)7 = Vv?/2 — A (VA D), y
multiplicamos la ecuacion escalarmente por ¥, se tiene

0v? /2
ot

+U'Vv2/2+%-Vp—17-f:n———0 . (19.13)

Ahora bien, -V = v9/0l, donde [ es la coordenada a lo largo de las distintas
lineas de corriente, por lo que dividiendo por v y suponiendo que las fuerzas
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maésicas derivan del potencial U (al menos a lo largo de las lineas de corriente,
es decir, v - f, = —voU/dl),

ov 0 [v? 10p
—+=|=+U —— =), 19.14
w+m<2+ )+pm (19.14)
Si, ademaés, el flujo es barétropo (con funcién de barotropia w = [Pdp/p ) y
casi estacionario, finalmente se tiene,

2
%<%+w+U>=O, (19.15)

que integrada proporciona,

2

%+w+U=Hm, (19.16)
donde H es una constante para cada linea de corriente, y que puede depender
del tiempo (suavemente) a través de las condiciones de contorno. Asi, pués,
el Teorema de Bernoulli nos dice que, si se verifican las condiciones: (i) fluido
ideal, (#i) componente de las fuerzas mésicas sobre las lineas de corriente
deriva de un potencial U, (iii) flujo barétropo y (iv) flujo casi estacionario
(St = L/Vt, < 1), la magnitud H = v?/2 + w + U es constante a lo largo
de cada linea de corriente. Esta magnitud H se suele denominar funcién de
Bernoulli o, simplemente, el Bernoulli del flujo, y la ecuacién (19.16) también
se llama de Bernoulli. Para un liquido (w = p/p) bajo la accién de la gravedad,
(19.16) queda

2
Y v Pige=H . (19.17)
2 p

Enlas ecuaciones anteriores H puede ser distinta en cada linea de corriente.
Sin embargo, hay un caso particular importante en el cual H es la misma
constante en todo el campo fluido: cuando el flujo es irrotacional. Si el flujo es
irrotacional, VA¥ = 0, y ademas se cumplen las otras condiciones del Teorema
de Bernoulli (fluido ideal, flujo barétropo y casi estacionario, fuerzas masicas
derivan de un potencial), la ecuacién de cantidad de movimiento se escribe

’U2
V g tw+U]=0, (19.18)

que integrada da
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2

%+w+U=H(t) ; (19.19)

Obsérvese que, cuando el flujo es irrotacional, VH = 0, mientras que si no
es irrotacional, esta igualdad esta restringida a lo largo de lineas de corriente:
0H/0l = v- VH = 0. Sobre los flujos irrotacionales e ideales volveremos en
la leccién siguiente, donde veremos que la condiciéon de irrotacionalidad y las
condiciones bajo las cuales el teorema de Bernoulli es védlido no son totalmente
independientes.

19.4. Flujos isentropicos

Si no hubiesen aportes volumétricos de calor (Q, = 0), la ecuacién de la
entropia (19.6) nos dice que la entropia se conserva a lo largo del movimiento

Ds

Dt 0. (19.20)
Es decir, la entropia de las distintas particulas fluidas se conserva, lo cual es
consecuencia de que se han despreciado todos los efectos disipativos. Estos
flujos se denominan isentropicos. Si todas las particulas fluidas tuviesen la
misma entropia s, en algin instante (por ejemplo, si todo el fluido tuviese ini-
cialmente la misma temperatura y presién), la entropia seria la misma en todo
instante en la region ocupada por las mismas particulas fluidas. Estrictamente
esto seria un movimiento isentrépico.

Si el flujo es casi estacionario, la ecuacién (19.6) implica que la entropia se
conserva a lo largo de las lineas de corriente: 7- Vs = 0 0 9s/9l = 0; s = s0(t),
donde s, es una constante para cada linea de corriente. Si s, es la misma
para todas las lineas de corriente, la entropia de todo el campo fluido es la
misma en cada instante, pero puede variar de instante a instante a través de
las condiciones de contorno; esto es lo que se denomina un flujo homentrépico,
donde Vs = 0, pero 0s/0t puede ser distinto de cero, aunque la variacién de
s con el tiempo debe ser muy lenta para que el flujo se pueda considerar casi
estacionario (St < 1).

Una particularidad de los flujos isentrépicos (y homentrépicos) es que son
también barétropos: De (8.8) se tiene que

dh=Tds+d7p ; (19.21)
por lo que si ds = 0 (en todo el campo fluido o a lo largo de las lineas de
corriente),
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_dpr

P
siendo, por tanto, la funcién de barotropia igual a la entalpia. Asi, pues, las
condiciones (i) y (iii) del teorema de Bernoulli (fluido ideal y barotropia a lo
largo de las lineas de corriente) se cumplen para los flujos isentrépicos. Si,
ademads, el flujo es casi estacionario, (iv), y las fuerzas masicas sobre las lineas
de corriente derivan de un potencial, (ii), se verifica (19.16).

dh (19.22)

19.5. Conservacion de las magnitudes de remanso

Consideremos el flujo de un fluido ideal casi estacionario, en el que no hay
aportes volumétricos de calor (Q, = 0) y en el que las fuerzas maésicas pueden
despreciarse (como ocurre en la mayoria de los flujos de gases). En este caso,
de las ecuaciones (19.6) y (19.10) se deduce que tanto la entropia como la
entalpia total o de remanso, h + v%/2, se conservan a lo largo de las lineas de
corriente:

$=S, , (19.23)
h+v?/2=h, . (19.24)

De esta forma tenemos dos primeras integrales del movimiento que facilitan
enormemente la resolucién del problema. Obsérvese que la conservacién de la
entalpia de remanso es equivalente a la ecuacion de Bernoulli, puesto que si el
flujo es isentrépico la funciéon de barotropia coincide con la entalpia y hemos
despreciado las fuerzas mésicas: H = v?/2 4+ w = v%/2 4+ h = h,. Si, ademas,
todas las lineas de corriente parten de alguna region donde las propiedades
son uniformes, la entropia y la entalpia de remanso son constantes en todo el
campo fluido.

La conservacion de la entalpia de remanso sugiere la introduccién de otras
magnitudes de remanso, como la presion, la temperatura y la densidad de
remanso, asociadas todas a la entalpia de remariso. Asi, para un gas ideal se
tiene

To = ho/cp e R,T, , p—f; = constante, (19.25)
Po Po

donde la tltima relacién proviene de la conservacién de la entropia [ecuacién

(8.39)]. De estas expresiones se pueden obtener T, p y p en funcién de las

magnitudes de remanso, T,, p, ¥ po (las cuales se conservan a lo largo de las

lineas de corriente) y del nimero de Mach, M = v/a = v/\/yR,T:
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T, h, h+ ”—22 v? -1, ,
—_— — = — = 1 —M 3 19-26
T-h- h terTltT (19.26)
¢!
Po _ (ﬁ) _ PTo (19.27)
P p pT
-1 1/(y-1)
Po = (1 + 7—M2> : (19.28)
P 2
- v/(v=1)
Po _ (1 + 7—1M2) (19.29)
D 2
Para un liquido (p = constante) se tiene, simplemente,
s=8, (19.30)
T=T, , p+p?/2=p, . (19.31)

Las magnitudes de remanso representan, fisicamente, las magnitudes que
se obtendrian al decelerar el fluido desde la velocidad v hasta la velocidad nula
de forma isentrépica y estacionariamente, y en ausencia de fuerzas madsicas.
Las relaciones anteriores son muy 1itiles, puesto que permiten conocer todas
las magnitudes fluidas si se conocen las magnitudes de remanso (constantes a
lo largo de las lineas de corriente, y en muchas situaciones en todo el campo
fluido) y una sola magnitud mas: el nimero de Mach en el caso de un gas, o la
velocidad en el caso de un liquido. Pero para que éstas relaciones sean validas,
es decir, para que se conserven las magnitudes de remanso, se tienen que veri-
ficar ciertas condiciones que resumimos de nuevo: (i) fluido ideal (viscosidad y
conductividad térmica despreciables), (ii) fuerzas masicas despreciables, (iii)
movimiento sin adicién o eliminacién de calor y (iv) movimiento casi esta-
cionario [los requisitos (i) y (iii) pueden resumirse en la condicién de que el
movimiento debe ser isentrépico).
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Capitulo 20

Vorticidad

20.1. Ecuacion de la vorticidad para fluidos ideales

En este capitulo se veran algunos importantes resultados que conciernen a
la evolucion de la vorticidad en el flujo de un fluido ideal.
Para un fluido ideal, la ecuacién de la vorticidad (7.46) se escribe

2@) ~® Vit Lvpavp | (20.1)
Dt \p p p?

donde se ha eliminado el término viscoso ¥V2@ que, como se vi6 en la seccién
14.2.3, representa la difusion de la vorticidad debido al transporte molecular
(ver seccién 20.6 mas adelante), efecto despreciable en un fluido ideal. En la
ecuacién anterior tampoco aparecen las fuerzas masicas, lo cual es valido si
éstas derivan de un potencial. El término de Bjerkness, VpAVp/p?, representa,
segun se vio en 7.6, el par ejercido por las fuerzas de presién sobre cada
particula fluida, que da lugar a una variacién de la vorticidad de la particula.
Este término es nulo para flujos barétropos, como son los flujos con densidad
constante o los flujos isentrépicos. Por tanto, este término también va a ser
nulo para los movimientos que aqui estamos considerando si no hay aportes
volumétricos de calor, puesto que entonces el flujo es isentrépico (seccién 19.4).
Asi, la ecuacion de la vorticidad para un flujo isentrépico con fuerzas masicas
conservativas queda reducida a

D - -
— <‘ﬁ) =Y. vs. (20.2)
Dt \ p p

Si el flujo es bidimensional, por ejemplo plano, ¥ = (vg,vy,0), donde vz y
vy dependen de z, y y t, la vorticidad sélo tiene componente segin el eje z, & =
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(0,0,w), y el segundo miembro de la ecuacién anterior se anula idénticamente:
(& V)U = wdi/0z = 0. Por tanto,

B(2)-

es decir, &J/p se conserva a lo largo del movimiento para un flujo bidimen-
sional y barétropo de un fluido ideal cuando las fuerzas masicas derivan de
un potencial. En particular, si el flujo es inicialmente irrotacional, permane-
cerd siempre irrotacional. En las secciones siguientes veremos que esta ultima
afirmacién también se cumple para los flujos tridimensionales, aunque en ellos
(J-V)¥ no es nulo en general . Se veran, ademas, otras importantes conclusiones
de la ecuacién (20.2). Pero antes son pertinentes unas definiciones.

20.2. Lineas y tubos de vorticidad

El campo de vorticidad de un flujo puede visualizarse en forma andloga a
como se visualiza un campo de velocidades, o un campo magnético. Asi, se
define una linea de vorticidad como aquella curva que es tangente al vector
vorticidad en todos sus puntos. Matematicamente viene dada por d¥ = kdJ, es
decir dZ es paralelo a &, siendo k una constante. En coordenadas cartesianas
se tienen las dos ecuaciones diferenciales

ot iy 0

w1 w2 w3
donde wj, wy y ws son los tres componentes de . Al igual que las lineas de
corriente de un flujo proporcionan una visualizacién de las direcciones del flujo
en cada instante, las lineas de vorticidad dan una vision de las direcciones de
los vectores vorticidad en el campo fluido. En general la orientacién de estas
lineas cambian de un instante a otro, excepto en un flujo estacionario, en el
cual permanecen fijas en el espacio.

Un tubo de vorticidad estd constituido por la familia de lineas de vorticidad
que pasan por una curva cerrada dada. Debido a que el campo de vorticidad
es siempre solenoidal, V-&J =V - VA7 =0, el flujo de vorticidad permanece
constante a lo largo de todas las secciones transversales de un tubo de corriente:

/w-dgz V.3V =0 , (20.5)
S v
y, como sobre la superficie lateral del tubo & es perpendicular a la normal,

W -dsi =wy-dsy (20.6)
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ds n

Figura 20.1: Tubo de vorticidad.

para un tubo de vorticidad de seccién diferencial (figura 20.1). Es decir, la
cantidad & - d§, que se denomina intensidad del tubo de vorticidad, es
constante a lo largo del tubo. De aqui se pueden sacar varias consecuencias:
(a) la vorticidad varia a lo largo del tubo inversamente a la seccién transversal
del mismo; (b) si & estd limitado en todo el flujo (no es infinito en ningin
punto), ningin tubo de vorticidad puede terminar dentro del fluido, y (¢) un
tubo de vorticidad debe terminar en los limites del campo fluido o formar
un tubo cerrado. Estas propiedades de los tubos de vorticidad son también
algunas de las consecuencias de los teoremas de la vorticidad de Helmholtz,
que pasamos a ver ahora en forma general.

20.3. Teoremas de la vorticidad de Helmholtz

Demostraremos a continuacién que la ecuacién (20.2) implica lo siguiente:

(i) Las lineas de vorticidad son convectadas por el flujo.
(ii) |J|/p aumenta con el estiramiento de la linea de vorticidad.

(iii) La intensidad de un tubo de vorticidad se mantiene constante en el
movimiento del fluido.
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Figura 20.2: Conveccién de una linea de vorticidad.

(iv) La vorticidad en cualquier punto de un tubo de vorticidad se incrementa
cuando la seccion transversal del tubo se reduce en ese punto, y decrece
cuando la seccién transversal en ese punto crece.

Estos constituyen los denominados teoremas de la vorticidad de Helmholtz.
También demostraremos que

(v) si el vector posicién F de todas las particulas fluidas en el instante t es
conocido, es decir, si las trayectorias £ = (%, t) son conocidas, donde
T, es la posicién en t = 0, entonces la vorticidad en el instante t viene
dada por

g=Ly, vz, (20.7)
Po
donde V, es el operador gradiente con respecto a la variable Lagrangiana
Tp, ¥ Wy es la vorticidad inicial.

Para demostrar todas estas afirmaciones, consideremos una linea de vor-
ticidad en un instante, que podemos considerar el inicial, ¢ = 0, y sean dos
puntos P y Q infinitesimalmente préximos de esta linea de coordenadas =, y
T, + 0T,, respectivamente (ver figura 20.2). Por ser una linea de vorticidad, se
tiene que
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—

PQ=6z,=¢=2, e<1, (20.8)

Po

donde el subindice o denota que las propiedades estan evaluadas en el punto
P. Después de un intervalo de tiempo 4t, la particula P es convectada a P’ y
la Q a @', de coordenadas

P &=z, + U0t , (20.9)
Q' T+ 0% = Tp+ 0T, + [Tp + 0T, - Voio)0t (20.10)

respectivamente, donde v, es la velocidad de la particula P y V, es el gradiente
respecto a la coordenada Z,. La variacién del segmento PQ es, por tanto,

6T — 63, PQ -PQ QQ-PP . R~
= = = 5 o V = €= oVo . .
5 = 5 I oo epo Vo, (20.11)

Haciendo uso de (20.2), como 4t es infinitesimal,

O0F — 0%, € [& d)’o]
— == |=-=-— ; 20.12
G o 2012)
donde & y p son la vorticidad y densidad del punto P; es decir,
67 = e%. (20.13)

Por tanto, una linea que inicialmente coincidia con una linea de vorticidad,
permanece coincidiendo con la linea de vorticidad en el instante siguiente, lo
cual prueba (i).

Dividiendo (20.13) por (20.8), se tiene que

Bl/e _ 1P _ 162

|&ol/ po |Pb| |62, °
por lo que |&J|/p incrementa en proporcién al estiramiento de la linea de vor-
ticidad, lo que prueba (ii).

Considérese un pequefio tubo de vorticidad que rodee a la linea de vortici-
dad que pasa por P en el instante inicial. En el instante 4t, este tubo ha sido
convectado por el flujo y se transforma en un tubo de vorticidad que rodea al
punto P’. Si las secciones transversales de los tubos de vorticidad en P y P’
son 6A, y d A, respectivamente, por conservacién de masa se tiene que

(20.14)
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PIOT|6A = po|dTo|0 A, . (20.15)
Sustituyendo en (20.14),
|o)|6Z]6A |0

= ; 20.16
|50 [6Z0|0A, |02, (20.16)
es decir,
5104 = |@ol640 (20.17)
o
%(‘3 -64) =0, (20.18)

donde 6 4 es cualquier elemento de 4rea que contiene al punto P’, cuya vorti-
cidad es &, y que es convectada con el flujo. De esta expresion siguen inme-
diatamente las afirmaciones (iii) y (iv).

Finalmente, para probar (v), lo cual equivale a integrar formalmente la
ecuacion de la vorticidad (20.2), consideremos que la trayectoria del punto
P viene dada por £ = I(Z,,t); la del punto @ vendria entonces dada por
T+ 0% = T(Tp + 0Fp,t) = T(Fp, t) + 0T, - VoZ(Zp, t), donde V, es el operador
gradiente con respecto a la variable Lagrangiana &,. Por tanto, el segmento
P'Q' = 6% = 6%, - V,&(Zo,t) = €&/p, donde se ha hecho uso de (20.13). Es
decir,

&= fafo Vi (20.19)
Sustituyendo (20.8),
&= pﬁgo VoF | (20.20)

como se queria demostrar.

Una consecuencia importante de esta iltima expresion es que si &, = 0
en todo el campo fluido, es decir, si la vorticidad en un instante es nula en
todo el campo fluido (por ejemplo, si el fluido estd inicialmente en reposo o en
un estado de movimiento uniforme), entonces & = 0 para cualquier instante
posterior. En otras palabras si un flujo es inicialmente irrotacional, bajo las
hipétesis en que (20.2) es vélida, permanecera siempre irrotacional. Esta es,
realmente, una de las formas de enunciar el teorema de la circulacién de Kelvin,
que demostraremos por un procedimiento alternativo en la seccion siguiente.
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Figura 20.3: Deformacién de un tornado cuando las nubes se mueven por encima (adaptada
de Acheson, 1990).

En realidad Helmholtz demostrd, en 1858, las afirmaciones (i)-(iv) y para un
fluido incompresible (p = constante), mientras que la demostracién anterior
estd hecha con la condiciéon de que el flujo sea barotrépo, lo cual incluye
también, por ejemplo, los flujos isentrépicos de gases. El resultado (v), es decir,
la integracion formal de (20.2) en la forma (20.7), fue obtenida por Cauchy, y
se suele denominar ecuacién de Cauchy.

Un ejemplo tipico que ilustra muy bien los resultados anteriores es el flujo
de aire en un tornado. La conveccién térmica del aire cerca del suelo hacia las
nubes produce, por un mecanismo que no vamos a tratar aqui, un movimiento
rotatorio muy intenso, concentrando la vorticidad en el centro del tornado.
El centro del tornado se ve porque en la regién de giro intenso la presién es
muy baja y la humedad del aire se condensa, formando una nube en forma de
chimenea, que es lo que normalmente se identifica con el tornado. Esta nube
giratoria es una visualizacién de un tubo de vorticidad muy estrecho donde la
vorticidad es muy intensa, que muere en las nubes de la tormenta (ver figura
20.3). Cuando las nubes superiores se mueven, el tornado se dobla, es decir,
el tubo de corriente es convectado por el flujo, (i), aumentando la vorticidad
en gran parte del tornado al estrecharse la seccién transversal del tubo de
corriente, (ii)-(iv).

20.4. Teorema de la circulacién de Kelvin

El teorema dice: Sea un flujo de un fluido no viscoso, barétropo en donde
las fuerzas masicas derivan de un potencial U, y sea C(t) una curva cerrada
que se mueve con el fluido. Entonces, la circulacién
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r=/ 7.dl (20.21)
c)

alrededor de C(t) no depende del tiempo. Para demostrarlo, hallamos la deri-
vada sustancial de la circulacion:

DT D - D¥ - Ddl’
br_ D ioai= [ 2V 4i /*._. 20.22
Dt Dt ./C(t) v c Dt + cv Dt ’ ( )

El segundo término es idénticamente nulo puesto que Ddl, /Dt = dv (ver figura
20.4) y la integracion es sobre una curva cerrada. Por otro lado, de la ecuacién
de cantidad de movimiento bajo las hipétesis del teorema se tiene que

Dy
Dt

donde Vw = Vp/p; es decir, la aceleracién Dv/Dt deriva del potencial w+U.
Como V(w+U) -dl = [8(w + U)/dl]dl,

Vw+U) , (20.23)

pr
Dt

al ser una curva cerrada, con lo que queda demostrado el teorema.

Como consecuencia del este teorema, si inicialmente la circulacién a lo
largo de cualquier curva cerrada del flujo es cero, ésta permanecerd siendo
cero en todo instante posterior. Por el teorema de Stokes se tiene que

=-w+Ulc=0 , (20.24)

I‘=/17-df=/u’5-d§ . (20.25)
(6 S

donde S es una superficie que se apoya en C. Por tanto, como corolario del
teorema de Kelvin, si el movimiento de un fluido ideal y bardtropo en presen-
cia de fuerzas masicas que derivan de un potencial es inicialmente irrotacional
(por ejemplo, si parte del reposo o de un movimiento uniforme), permane-
cera siempre irrotacional.! Esta afirmacién coincide con la obtenida en la sec-
cién anterior a partir de la ecuacién de la vorticidad. De hecho, el teorema de
Kelvin se podria haber demostrado sin mas que aplicar el teorema de Stokes
a la variacién de la circulacion,

Dl D . D
or_b 17~dl=—/ 5.d5 20.26
Dt Dt Jow) Dt Js@) ( )

'Ver seccién 21.8 més adelante para una matizacién importante de este corolario.
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Figura 20.4: Teorema de Kelvin.

y aplicar (20.18). Y viceversa, los teoremas de Helmholtz [afirmaciones (i)-(iv)
de la seccién anterior] podrian haber sido demostrados utilizando el teorema de
Kelvin, o invariancia en el tiempo de la circulacién para un flujo barétropo de
un fluido ideal en presencia de fuerzas masicas conservativas. Se debe observar,
sin embargo, que el teorema de Kelvin es mas general, puesto que aunque se
ha hecho la hipdtesis de un fluido ideal, esta hipétesis sélo afecta al fluido
contenido en la curva C(t), por lo que si las fuerzas viscosas son importantes
fuera de la curva C, no afectaria a la invariancia de la circulacion alrededor de
C. Por otra parte, al pasar de hablar de circulacién a hacerlo de vorticidad, se
hace uso del teorema de Stokes, y las conclusiones respecto a la invariancia de
la irrotacionalidad son sdlo vélidas si la region fluida es simplemente conexa,
es decir, si es posible construir una superficie S que se apoye en C y que
esté completamente inmersa en el fluido.

20.5. Ecuacion de Bernoulli para flujos irrotaciona-
les. Funcion potencial

La persistencia de los flujos irrotacionales que inicialmente lo son (si se
verifican las condiciones de idealidad, barotropia y fuerzas masicas conserva-
tivas, y salvo que existan capas limites u otras fuentes de vorticidad) hace
que el estudio de estos flujos sea bastante importante desde un punto de vista
practico. Ademas, el estudio de estos flujos es particularmente simple por el
hecho de que se puede utilizar la funcién potencial de velocidad (seccién 3.6):
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7=V, (20.27)

La ecuacién de cantidad de movimiento para estos flujos se escribe

o 1
%% + Vo224 Vw+VU =0, Vw= ;VP (20.28)

(recuérdese que w = h para un flujo isentrépico). Sustituyendo (20.27) e inte-
grando se tiene la ecuacion de Bernoulli para flujos irrotacionales:

0¢p v? _
% Y wrU=HE), (20.29)

donde H es una funcién arbitraria del tiempo que viene fijada por las condi-
ciones de contorno. A esta ecuacién hay que unir la ecuacién de continuidad,
que en el caso general de un gas seria:

Op

—_ . —‘=0 ; 2.
o TV PO (20.30)

la ecuacién de la energia (19.6) proporciona la relacién p = p(p) (recuérdese
que el flujo es bar6tropo), la cual, salvo que existan aportes volumétricos de
calor, es la relacion isentropica, que para un gas ideal se escribe

D _
p_7 = constante. (20.31)

Este sistema de ecuaciones (20.29)-(20.31), junto con v = V¢, se simplifica
bastante para el caso de un flujo estacionario:

v?
2

Desarrollando la ecuacién de continuidad,

1
Vopi=0 , Vgt Vp+WVU=0. (20.32)
V-1')‘+%-Vp=0 , (20.33)

y sustituyendo la definicién de la velocidad del sonido (recuérdese que el flujo
es isentropico), se tiene

a
Vi + Ve, Vp=0 | (20.35)
pa?
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donde se ha sustituido también v = V¢. Por iltimo, sustituyendo Vp de la
ecuaciéon de cantidad de movimiento, se obtiene una unica ecuacion para el
potencial de velocidad, donde aparece la velocidad del sonido:

a’V2p =V¢-V[(Ve/2)2 + U] . (20.36)

El limite de esta ecuacién para un flujo incompresible (p = constante) se
obtiene sin mas que hacer a — 00:

Vip=0 |, (20.37)

que, por supuesto, se podria haber obtenido mucho mas facilmente sin mas que
sustituir ¥ = V¢ en la ecuacién de continuidad para un fluido incompresible,
V.v=0.

Vemos pues que para calcular el movimiento en un flujo irrotacional esta-
cionario es suficiente con resolver una ecuacién de tercer orden para ¢ con sus
correspondientes condiciones de contorno (realmente solo son necesarias dos
condiciones de contorno puesto que cualquier constante aditiva es irrelevante
en ¢, ya que no afecta al campo de velocidad). En el caso de un liquido se
tiene, simplemente, una ecuaciéon de Laplace. Si el movimiento es, ademas,
bidimensional, la resolucion es particularmente simple puesto que se puede
utilizar también la funcién de corriente y hacer uso de la teoria de funciones
analiticas en variable compleja (ver capitulo siguiente). Una vez obtenida la
funcién potencial se obtiene el campo de velocidad y de la ecuacién de can-
tidad de movimiento el campo de presién, que integrado sobre las superficies
sblidas nos dan las fuerzas que el fluido ejerce sobre ellas.

20.6. Generacion de vorticidad

Hasta aqui hemos considerado fluidos ideales, en los cuales, segiin hemos
visto, el flujo de vorticidad a través de cualquier superficie que se mueva con el
fluido se conserva. En los flujos no isentropicos aparecen, segin se vié en §7.6.,
dos nuevos términos que afectan a la variacién de la vorticidad: el movimiento
angular generado por las fuerzas de presién, Vp A Vp/p?, y la difusién de la
vorticidad con difusividad v, ¥V23. Aunque la difusién de la vorticidad por la
viscosidad ya fue considerada en el ejemplo de la seccién 14.2.3, aqui se vera de
forma mas general como este término no sélo difunde, sino que, ademas, es el
encargado de producir la vorticidad en una clase importante de flujos.

El cambio de & en una particula fluida, que para un fluido ideal se pue-
de visualizar como resultado del estiramiento y curvamiento de los tubos de
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vorticidad, se ve suplementado por una difusién que equivale a un flujo cuya
velocidad es v veces el gradiente de & a lo largo de la normal hacia fuera de
la superficie dada, f; = —v(Vd) - 7, de forma andloga a como se difunde el
calor. Asi, la intensidad de un tubo de vorticidad ya no permanece constante
puesto que la vorticidad se difunde a través de las paredes del tubo. Pero lo
mas importante es que la conclusién de que una particula fluida con vortici-
dad cero continia con vorticidad nula a lo largo del movimiento es falsa en
un fluido viscoso, puesto que existe difusion de vorticidad desde las particulas
fluidas vecinas. Sin embargo, para que haya difusién de vorticidad, ésta debe
crearse en algun lugar, puesto que la difusion no puede crear vorticidad de la
nada. Y ésta se crea en el contacto del fluido con las superficies sélidas. Para
verlo, consideremos el flujo unidireccional a lo largo de una placa plana en la
direccién de €z : ¥ = u(y,t)ez. En este flujo, la inica componente no nula
de la vorticidad seria w, = —9u/dy; es decir, la componente transversal al
movimiento, pero en el plano del mismo. El flujo difusivo de esta vorticidad
desde la superficie (y = 0) hacia el fluido (y > 0) seria:

Ow 0%u

L =y— =vVu . (20.38)
0y &y
En el caso de un movimiento estacionario se tendria que este flujo de vorticidad
es proporcional al gradiente de presién reducida [ver ecuacién (14.2) para los

flujos unidireccionales]:

-V

_y0w. _ 10+ pU)
Yo = 5 Bz ; (20.39)

Asi, hay una generacién neta de vorticidad en la superficie que se difunde al
resto del fluido si el movimiento estd generado por un gradiente de presion.
Esto explica, por ejemplo, que el flujo alrededor de un cuerpo con niimero
de Reynolds alto no sea irrotacional, puesto que se genera vorticidad en la
superficie y, aunque su difusién estd confinada a una capa limite delgada,
ésta se convecta hacia la estela formando un torbellino en el caso de perfiles
aerodindmicos (ver seccién 21.8 en el capitulo siguiente), o modificando com-
pletamente el flujo, el cual deja de ser irrotacional en su mayor parte, cuando
el cuerpo es romo (en estos casos se separa la capa limite y los efectos viscosos,
confinados originalmente en una capa delgada, terminan por ¢impregnar a casi
todo el flujo; ver seccién 21.8 y capitulo 27).
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Capitulo 21

Movimiento irrotacional y
bidimensional de un fluido
incompresible

21.1. Introduccién

Los movimientos irrotacionales (o potenciales) que ademads son incompre-
sibles son particularmente faciles de describir porque la funcién potencial ¢
(U = V¢) satisface la ecuacién de Laplace (ver seccién 20.5)

V.-Vé=V2p=0. (21.1)

Como esta ecuacion es lineal, permite aplicar el principio de superposicién. Es
decir, soluciones de (21.1) con condiciones de contorno complejas y, por tanto,
dificiles de obtener directamente, se pueden construir superponiendo (suman-
do) soluciones sencillas, correspondientes a condiciones de contorno mas sim-
ples, siempre que la suma de estas condiciones de contorno reproduzcan las
condiciones de contorno originales. Esta técnica es de mucha utilidad pues se
conocen un conjunto de soluciones elementales (con condiciones de contorno
sencillas), bidimensionales y tridimensionales, de la ecuacién de Laplace. De
particular interés son los movimientos bidimensionales, pues se pueden des-
cribir mediante una funcién de corriente que, como se vera, también satisface
la ecuacién de Laplace. Esto hace que se pueda introducir el denominado po-
tencial de velocidad complejo y utilizar toda la potencia de la teoria de las
funciones analiticas en el campo complejo para describir estos movimientos.
En esta leccion se utilizaran ambos procedimientos, el de superposicion y
el de la funcion potencial compleja, para describir algunos movimientos po-
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tenciales e incompresibles de interés. En particular, se aplicard al movimiento
potencial alrededor de perfiles aerodinamicos bidimensionales, que histérica-
mente fue la principal aplicacién de estas técnicas y que tanto contribuyé al
arranque de la aviacion a principios del siglo XX. Téngase en cuenta que, una
vez que el campo de velocidad potencial se ha obtenido mediante alguno de
estos procedimientos, el campo de presion se obtiene directamente de la ecua-
cién de Bernoulli. También se describiran otras técnicas tipicas de resoluciéon
de la ecuacién de Laplace como, por ejemplo, el método de las imdgenes.

21.2. Movimientos potenciales elementales

El movimiento potencial mas simple posible es la corriente uniforme
unidireccional, cuyo campo de velocidad viene dado por

i=Ué,, (21.2)

donde se ha supuesto que la corriente tiene la direccién del eje z, y U es la
magnitud (constante) de la velocidad. La funcién potencial de velocidad ¢ y
la funcién de corriente ¥ de este movimiento se obtienen, en el plano (z,y),
de las ecuaciones

0 oY

_— = — = — 1.

7 =V U 3y’ (21.3)

09 oy

ay Y oz’ (21.4)
de donde, omitiendo constantes aditivas irrelevantes,

¢p=Uz, ¥=Uy. (21.5)

Obviamente, las lineas de corriente son rectas paralelas al eje z, mientras
que las lineas de potencial constante, denominadas lineas equipotenciales, son
rectas paralelas al eje y.

Otro movimiento elemental importante es la fuente o manantial bidi-
mensional, y el correspondiente sumidero bidimensional, que son mo-
vimientos puramente radiales asociados a un caudal por unidad de longitud
constante ) que sale de, o entra en, un punto del plano que se toma como el
origen de coordenadas (por supuesto, estos movimientos son singulares en ese
punto). En coordenadas cilindricas planas (r, ), el campo de velocidad viene
dado por
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F = Pl = :tié}, (21.6)

27r
donde el valor de v, en funcién de @ se obtiene hallando el caudal por unidad de
longitud perpendicular al plano en un circulo de radio r centrado en el origen
y suponiendo que su valor @ no varia con r. El signo positivo corresponde a un
manantial o fuente y el negativo a un sumidero (compruébese que, ademas de
incompresible por definicién, este movimiento es irrotacional). Las funciones

potencial y de corriente se obtienen de las ecuaciones

9 _ _EQ _ 1
o " T2 roe’ (21.7)
16(15_ _ __8_111
;% = V9 = 0 = 87‘ s (218)
de donde
= icglnr’ P = _iQ(), (21.9)
27 27

Las lineas de corriente son rectas que pasan por el origen (f = constante),
naturalmente, mientras que las curvas equipotenciales son circulos centrados
en el origen (r = constante). Obsérvese que, como en el caso anterior, ambos
conjuntos de lineas son ortogonales, lo cual serd evidente en general cuando
introduzcamos el potencial complejo mas adelante.

Un tercer movimiento elemental es el denominado torbellino potencial
o (irrotacional) plano, ya introducido previamente en la seccién 14.2. Se
define como el movimiento puramente circunferencial, 7 = vg€p, que es ademas
irrotacional. Teniendo en cuenta que la componente z (perpendicular al plano)
de la vorticidad se escribe

o 1
(VA#)= ~~ 30 + ;E(TW) =}, (21.10)

se tiene vg = C/r. La constante de integracién C se suele relacionar con la
circulacién I' alrededor de un circulo de radio r centrado en el origen, que se
supone independiente de r: C = I'/(27). De hecho, otra forma de definir este
tipo de torbellinos es como un movimiento plano puramente circunferencial
cuya circulacién alrededor de cualquier curva cerrada que encierra al origen es
siempre igual a I'. Obsérvese que, a pesar de que el movimiento es irrotacional,
su circulacion a lo largo de una curva cerrada que encierra al origen no es cero.
Pero esto no vulnera el teorema de Stokes porque el campo de velocidad, que
viene dado por
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r
7= —2¢p, 21.11
omr? ( )
es singular en el origen. Si I' es positivo, el torbellino gira en el sentido de
0 creciente, es decir, en el sentido opuesto a las agujas del reloj (si tanto las
coordenadas r — € como el reloj son los que se usan convencionalmente). Las

funciones potencial y de corriente se obtienen de las ecuaciones

oo o 10y
10¢ . r 8_1/1
o0 0 27 or' (21.13)
de donde . =

Obsérvese que las lineas de corriente son circulos centrados en el origen y las
lineas equipotenciales son rectas que cruzan el origen.

Para terminar con los movimientos elementales planos, se considerara el
dipolo bidimensional. Se define como la superposicién de un manantial
centrado en (z = —a,y = 0) y un sumidero centrado en (z = a,y = 0), ambos
con la misma intensidad @), en el limite en que a — 0, Q — oo, pero con el
producto Qa manteniéndose constante. Para hallar la correspondiente funcién
de corriente, primero se escribe la funcién de corriente de cada uno de sus dos
elementos de acuerdo con (21.9), pero en coordenadas cartesianas [z = r cos 6,
y = rsinf, 12 = 122 + y?, § = arctan(y/r)], y desplazando el origen a los
centros respectivos del sumidero y del manantial:

_.Q y
Py = :t27r arctan sta’ (21.15)
Haciendo ¥ = ¥4 + ¥_ y hallando el limite a — 0, se obtiene
2 M
eSS M — Yy (21.16)

2 22442 2ma?+y?

donde M = 2a() se denomina intensidad del dipolo, que tiene unidades de
caudal. El signo negativo proviene de que se ha colocado al manantial a la
izquierda del sumidero. Si se cambia el manantial por el sumidero, la expresion
seria la misma, pero con signo positivo. En ambos casos, las lineas de corriente
son circunferencias centradas en algin punto del eje y tangentes al eje x en el
origen. En coordenadas cilindricas, (21.16) se escribe
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, M sin @
b= (21.17)

El campo de velocidad y el potencial de velocidad se obtienen de (21.17)
utilizando las ecuaciones

_@_ww Mcos@

= L - 21.1
U= 5 T T o8 2r r2 "’ ( 8)
10¢ oY M sin @
=P o = am g2 (21.19)
de donde
M cos 8 M sinf
p= g gy 007 21.2
v B 72 ve 2 12 (21.20)
M cos 8
= — . 21.2
¢ 2T r ED

En cuanto a los movimientos potenciales tridimensionales simples, se consi-
derara primero la fuente o manantial tridimensional (y el correspondiente
sumidero tridimensional) que se define, de forma andloga al caso bidimensio-
nal, como el movimiento incompresible puramente radial originado por un
caudal @ que sale de (o entra en) un punto que se toma como el origen de
coordenadas (obsérvese que, en el caso tridimensional, () tiene unidades de
caudal). En coordenadas esféricas (r, 6, ¢), el campo de velocidad viene dado
por (téngase en cuenta que 7 y 6 tienen aqui un significado distinto que las en
coordenadas cilindricas anteriores; véase la figura 1.1 del capitulo 1):

+Q
Er . 21.22
47r? : ( )

Esta expresion se obtiene calculando el caudal que atraviesa una esfera de radio
r e imponiendo el requisito de que su valor @) no varia con 7. El signo posi-
tivo corresponde a un manantial y el negativo a un sumidero. Se comprueba
facilmente que este movimiento es irrotacional, por lo que admite potencial de
velocidades. También se puede definir una funcién de corriente pues, aunque
tridimensional, el movimiento es unidireccional en coordenadas esféricas. Esto
ultimo hace que la ecuacién de continuidad tenga un sélo término en estas
coordenadas, de forma que la funcién de corriente se puede definir en el plano
(r,0) o en el plano(r, v). Por razones evidentes es preferible utilizar la primera
posibilidad; en particular, se suele usar la denominada funcién de corriente
de Stokes (véase seccién 17.2). Asi, las funciones potencial y de corriente se
obtienen de las ecuaciones

U =v,€ =
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Figura 21.1:

+Q 1 oy 9¢

U= dm? = P56 06 or (21.23)
_g=__1 W _10
Y= T T sin6or  rog’ (R
de donde
_FQ  ,_F
¢_47r7" Y= ztﬂ_costﬁ?. (21.25)

A diferencia de las funciones de corriente bidimensionales (planas) que se
ha utilizado anteriormente, que en virtud de (V A ), = 0 siempre satisfacen
la ecuacién de Laplace V29 = 0 (tanto en coordenadas cartesianas como
en cilindricas), la funcién de corriente de Stokes no satisface la ecuacién de
Laplace. En efecto, sustituida en (V A %), = 0, se tiene

Q(Lowy 8 1 o,
Or \sin@ Or 00 \r2sinf 98/

que, aunque lineal, no es una ecuacion de Laplace.

Por 1ltimo se considerara el dipolo tridimensional. Para ello se defi-
nen las coordenadas polares (R, ¢, 2) asociadas a las coordenadas esféricas
(r, 6, p)(véase figura 21.1). Tanto el manantial como el sumidero, ambos de la
misma intensidad @, se sitian en el eje polar z (R = 0), el primero en z = —a
y el segundo en z = a. Escribiendo la funcién de corriente superposiciéon de
ambos elementos en las coordenadas polares y hallando el limite a — 0, pero
con el producto Qa finito, se llega a
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Qa R? Qa sin? @ M .,
= - =— =- 6, L.
v 2m (22 + R2)3/2 2r T y——— (21.26)

donde M = 2Qa es la intensidad del dipolo, que ahora tiene dimensiones de
caudal por longitud. De (21.26) se obtienen el campo de velocidad y la funcién
potencial, que valen:

sinf, (21.27)
¢ = ﬂco&;9. (21.28)

21.3. Superposicion de movimientos elementales

En esta seccidon se consideraran varios ejemplos de superposiciéon de al-
gunos de los flujos potenciales elementales anteriores que dan lugar a flujos
potenciales también simples y de interés préctico.

Por ejemplo, la superposicién de una corriente uniforme con velocidad U
y una fuente bidimensional en el origen de intensidad @ simula la corriente
potencial alrededor de un cuerpo bidimensional semiinfinito, cuya forma se
obtendra a continuacion. Para ello se escribe la funcién de corriente suma de
las funciones de corriente de estos dos elementos [ecuaciones (21.5) y (21.9)]
en coordenadas cartesianas:

Q y
Y= — = 21.2
Y =Uy + o arctan . (21.29)
El campo de velocidad viene dado por
Q T Q Yy

(21.30)

vz— or a2+ y2’ vy—%ﬁ-}-yr
En la figura 21.2 se representan las lineas de corriente de este movimiento para
diversos valores de 27y)/Q = C. Se observa que el eje z (y = 0) es una linea
de corriente, correspondiente a C = 0. En esta linea se sitia el tinico punto
de remanso del flujo, que, haciendo uso de (21.30), viene dado por [z = zg =
—Q/(2nU),y = 0]. De este punto de remanso parten dos lineas de corriente,
correspondientes a C' = =7, de manera que todo el caudal que sale de la fuente
permanece entre esas dos lineas, mientras que la corriente procedente de x —
—o00 no atraviesa nunca a esas dos lineas de corriente. De esta forma, el campo
de velocidad (21.30) simula el flujo potencial e incompresible alrededor de un
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5 T T T T T T T T

Figura 21.2: Lineas de corriente dadas por (21.29) con 27U/Q = 1 para diversos valores de

C =2n¢/Q.

cuerpo semiinfinito bidimensional que viene dado por las lineas de corriente
correspondientes a C = +; es decir, dado por las curvas

Y — tan (& 2W—U1>
;—an(w QJ )

(21.31)
que en la figura 21.2 estdn en trazo grueso. Las ordenadas de estas dos lineas
tienden asintGticamente a y — +Q/(2U) cuando £ — o0, lo cual se podria
haber predicho de antemano sabiendo que la corriente es uniforme con veloci-
dad U lejos de la fuente, y que todo el caudal @ que sale de la fuente pasa por
entre esas dos asintotas. Se puede decir, por tanto, que el presente flujo simula
el movimiento potencial e incompresible alrededor de una placa semiinfinita
de espesor Q/U con un borde de ataque romo dado por (21.31).

Si quisiéramos simular el flujo potencial de una corriente uniforme con
velocidad U sobre un cuerpo bidimensional finito, habria que anadir un sumi-
dero a la derecha de la fuente, con la misma intensidad @, para que se trague
todo el caudal que sale del manantial. Supongamos, por simplicidad, que el
manantial estd situado en (z = —a,y = 0) y el sumidero en (z = a,y = 0). La
funcion de corriente y el campo de velocidad se obtienen de la superposicién
de los tres movimientos elementales. En coordenadas cartesianas se escribe
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a=1, 2zxU/Q=1

| e
-_-—

-3 1 1 Il

Figura 21.3: Lineas de corriente dadas por (21.32) con 27U/Q = 1y @ = 1. No se han
dibujado lineas de corriente en el interior del évalo.

_ Q y )
Y =Uy+ o (arctanz+a arctanx — ) (21.32)
_ Q [ T+a rT—a ]
Ve =V o (x+a)2+y? (z—a)?+y?]’
Q [ y y ]
= —= - : 21.33
WS @talty? (@-a2+4? ( )

El campo de velocidad tiene ahora dos puntos de remanso situados en el eje
z (que sigue siendo una linea de corriente), dados por

Q
zp = tay/1+ ——, =0. 21.34
R \/ 0 UR ( )
En estos dos puntos de remanso se cruzan las lineas de corriente y = 0,

correspondiente a ¢» = 0, y las dos lineas de corriente correspondientes a
2mp/Q = C = *m. La unién de estas dos tltimas lineas de corriente for-
man una curva cerrada, cuya forma exacta depende de los dos parametros a
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y 2nU/Q, que a veces se denomina 6valo de Rankine. Asi, el campo de velo-
cidad dado por (21.33) simula el flujo potencial e incompresible alrededor de
un cuerpo cilindrico cuya seccién viene dada por dicho 6valo (ver figura 21.3).

Un caso particular del anterior es el limite a — 0, pero con Qa finito. Es
decir, la superposicion de una corriente uniforme de velocidad U y un dipolo
de intensidad M. Haciendo uso de (21.5) y (21.17), y utilizando coordenadas
cilindricas, la funcién de corriente se escribe:

M sinf :
1[)=Ursin9—§r%— _=_Ursin9(1-:—;) , (21.35)

| M
ro= 55 (21.36)

Las dos lineas de corriente correspondiente a ¥ = 0 son el eje £ (§ = 0) y
un circulo de radio r, centrado en el origen. Estas dos lineas de corriente se
cortan en los puntos de remanso (z = xr,,y = 0), que son los tnicos que
existen. Por tanto, todas las lineas de corriente del dipolo tangentes al eje =
en el origen permanecen dentro de la circunferencia de radio r,, mientras que
todas las lineas de corriente que provienen del infinito no cruzan dicho circulo.
Asi, el movimiento dado por (21.35), cuyo campo de velocidad se escribe en
coordenadas cilindricas como

donde se ha definido

,,.2 ,,.2
v = U cos 6 l—T—‘2’ , vg=—-Usiné 1+;—f’2— , (21.37)

representa el flujo potencial e incompresible de una corriente uniforme con
velocidad U alrededor de un cilindro circular infinito de radio r, (figura 21.4).
De forma andloga, la superposiciéon de un dipolo tridimensional de inten-
sidad M, que en las coordenadas esféricas de la figura 21.1 viene dado por
(21.26)-(21.28), con una corriente uniforme en la direccién polar z,

1 1
T=Ué&, ¢= §UR2 = 573 sin?4, (21.38)

simula el flujo alrededor de una esfera de radio r,, dado por

1/3
ro = (%) . (21.39)
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-2

-3 1 1 1 1 L ! 1

Figura 21.4: Lineas de corriente dadas por (21.35) con 7, = 1.
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Téngase en cuenta que las dimensiones de M no son las mismas para un dipolo
bidimensional que para un dipolo tridimensional. En coordenadas esféricas, la
funcién de corriente y el campo de velocidad de este flujo se escriben

_l 9 9 B (E)S

Y= 2Usm or [1 - , (21.40)
3 3

v, = U cosf [1 - (%) :| , U= —%UsinG 2+ (:—0) ] : (21.41)

Esta técnica de superposicién de fuentes y sumideros con una corriente
uniforme se puede extender para simular el flujo potencial alrededor de una
gran variedad de cuerpos planos o con simetria de revolucién. Para ello no
hay mas que distribuir una serie de fuentes y sumideros con diferentes inten-
sidades @Q; a lo largo de un eje. Si la suma neta de los caudales es cero, el
cuerpo simulado serd finito, mientras que en caso contrario sera semiinfinito.
Esto se puede generalizar incluso para una distribucién continua de fuentes.
Considérese, por ejemplo, el caso plano. El flujo alrededor de un cuerpo bidi-
mensional de longitud L (el perfil del ala de un avién, o el del dlabe de una
turbina), puede ser simulado mediante una fuente continua con intensidad por
unidad de longitud ¢(z), 0 < £ < L. La funcién ¢(z) tiene unidades de caudal
por unidad de area (velocidad), y puede tomar valores positivos (fuente) o
negativos (sumidero). Para que el cuerpo sea cerrado,

L
/0 g(z)dr =0. (21.42)

La forma del objeto plano simulado se obtiene de la funcién de corriente. Para
ello se tiene en cuenta que una fuente infinitesimal de intensidad dQ = q(z’)dz’
situada en z’ tiene por funcién de corriente (véase (21.9))

N,
dy = 9z )dz’ arctan —2— , (21.43)
2T r—2x

de forma que la funcién de corriente total, superposicién de la corriente uni-
forme y la distribucién continua de fuentes, viene dada por (compérese con
(21.32))

1 L
Yv=Uy+ —/ q(z') arctan dz’. (21.44)
27 Jo

z—x
Conocida la funcién de corriente se obtendria el campo de velocidad. Este seria,
el denominado problema inverso, donde conocida la distribucion de fuentes se
calcularia el flujo potencial alrededor de un objeto dado por esa distribucién.
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Normalmente a uno le interesa conocer el campo de velocidad alrededor de
un objeto de forma conocida, y para ello tiene que calcular la distribucién de
fuentes que lo origina (problema directo). Esto se puede hacer sustituyendo la
forma del objeto para un determinado valor de 1 en (21.44) y resolviendo la
ecuacion integral resultante para q(z'). Existen diversas técnicas para resolver
ese tipo de ecuaciones integrales, pero que no van a ser comentadas aqui.
En cualquier caso, conocido ¥(z,y), la presién se obtiene de la ecuacién de
Bernoulli,

P+%pv2=poo+%pU2, c,,#%p%:p%, (21.45)
donde po, es la presién en el infinito y ¢, es el denominado coeficiente de pre-
sién. Conocido p se obtiene la fuerza que la corriente potencial ejerce sobre el
objeto, que es lo que se va buscando desde un punto de vista practico. Sin em-
bargo, uno se encuentra con la sorpresa de que esa fuerza es cero (paradoja de
D’Alambert). Este resultado es facil de intuir a partir de los flujos planos dibu-
jados en las figuras 21.3 y 21.4, donde la simetria del campo de velocidad con
respecto a los ejes = e y proporciona, de acuerdo con la ecuacién de Bernoulli,
un campo de presién también simétrico, que da como resultado una fuerza de
presion nula. Para que al menos la fuerza en la direccién perpendicular a la
corriente no sea nula, y se pueda asi simular la fuerza de sustentacion sobre
un perfil aerodinamico, lo que se suele hacer es superponer una distribuciéon
adicional de torbellinos sobre el eje, que rompe la simetria del flujo en relacién
al eje . Pero esta técnica se va a considerar mas adelante, ya que es mas
facil simular perfiles aerodinamicos planos, con sustentacion incluida, hacien-
do uso de la funcién potencial compleja, que serd introducida en la seccion
21.5. También se demostrard en general la paradoja de D’Alambert para este
tipo de movimientos potenciales planos alrededor de un cuerpo cerrado y se
verd c6mo la inclusién de circulaciéon alrededor del perfil genera una fuerza de
sustentacién (secciones 21.7-9).

21.4. Meétodo de las imagenes

Antes de pasar a formular la funcién potencial compleja, que facilitara el
andlisis de los movimientos potenciales planos, se comenta brevemente aqui otra
de las técnicas generales que se suelen utilizar, junto con el principio de super-
posicién, para componer flujos potenciales e incompresibles (bidimensionales
o tridimensionales) de interés.
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El método de las imédgenes se puede emplear siempre que exista algun tipo
de simetria que permita reformular el problema original. Para introducirlo se
usard un ejemplo sencillo: el flujo potencial originado por una fuente bidi-
mensional en presencia de una pared. Supongamos, por simplicidad, que
la pared se corresponde con el eje y, y la fuente (de intensidad Q) est4 situada
a una distancia a de la pared sobre el eje x. Para simular el efecto que la pared
tiene sobre el flujo, el método de las imagenes lo que hace es situar otra fuente
de la misma intensidad con simetria especular con respecto a la pared; es decir,
en el punto £ = —a,y = 0. Aunque el campo de velocidad engendrado por
estas dos fuentes no tiene significado fisico para z < 0, donde no hay fluido, el
flujo resultante tiene, por simetria, una linea de corriente que coincide con la
pared (z = 0) y, por tanto, simula para z > 0 el fluyjo buscado. En particular,
la funcién de corriente correspondiente a las dos fuentes viene dado por

Y= % (arctan a:_g_a + arctan poury a) = % arctan 22 _2(::2y_ 2 (21.46)
con campo de velocidad
- Q [ r+a . rT—a )
T2z l(z+a)+y?  (z—a)+y?)’
Q [ y y ]
= = . 21.47
T o (:r;+a)2—+-y2_+-(z—a)2+y2 ( )

De particular interés en este problema seria calcular la fuerza de presion sobre
la pared producida por el manantial. Para calcular la presién sobre la pared
se aplica (21.45) con v evaluado en = = 0:

pQ* P

T Eray (2148

1
P(0,) — oo = —5p [v2(0,9) + v3(0,9)] =
donde se ha tenido en cuenta que la velocidad es nula en el infinito. La fuerza
sobre la pared (en la direccién z) por unidad de longitud se obtendria de la
integracién de (21.48):

00 2
= /_w(p(O, Y) — Poo)dy = —i%, (21.49)

que, légicamente, tiene signo negativo.
Otra informacién que se puede obtener de la solucidon anterior es el efecto
que la pared tiene sobre la fuente. En particular, si la fuente no tiene ninguna
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Fuente imagen

> 0OF *

=1}

Figura 21.5: Lineas de corriente dadas por (21.46) para z > 0 con a = 1.

ligadura, se mueve con una velocidad que viene dada por el valor del campo
de velocidad generado por la otra fuente (que simula la pared) en el punto
(z=1a,y=0):

== ’ 21.50
v (47ra 0 ( )
Por tanto, la fuente se aleja de la pared a lo largo del eje £ de acuerdo con
da Q Qt 2
= = = == 21.51
dt 4dra ) a(t) \/27‘_ + 0.0, ( 3 )

donde ag es la posicién inicial de la fuente.

Una de las aplicaciones tipicas del método de las iméagenes es simular el
efecto que una pared tiene sobre el flujo alrededor de un perfil aerodinamico.
La pared, si esta suficientemente cerca del perfil, puede cambiar sustancial-
mente la distribucién de presiones sobre el mismo y, por tanto, la fuerza que
la corriente ejerce sobre el perfil. Para simular la pared, se superpone una
distribucion de fuentes idéntica a la que simula el perfil, pero con simetria
especular en relacion a la pared.
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21.5. Potencial complejo

Como ya se ha comentado anteriormente, en un movimiento irrotacional,
incompresible (solenoidal) y bidimensional, es posible hacer uso de la teoria
de las funciones analiticas en variable compleja para describir el inovimiento
fluido, con toda la elegancia y potencia analitica que ello comporta. Con tal
fin se define el potencial complejo como se describe a continuacién.

En este tipo de movimientos, la funcién potencial de velocidad ¢ y la
funcién de corriente i, proporcionan dos formas alternativas de especificar
el campo de velocidad que, en coordenadas cartesianas, estan relacionadas
mediante

R )

=5 =T e~ 8 (21.52)

Estas son las conocidas condiciones de Cauchy-Riemann que deben satisfacer
las partes reales e imaginarias de las funciones analiticas en variable compleja.
Asi, se define la funcién compleja

f(z) = o(z,y) +iv(z,y), 2=Ttw, (21.53)

denominado potencial complejo, que por las relaciones anteriores es una fun-
cién analitica (o diferenciable, u holomoérfica). Una particularidad de las fun-
ciones analiticas en el plano complejo es que tanto la parte real como la parte
imaginaria satisfacen la ecuaciéon de Laplace, lo cual es algo que ya conocemos
del potencial de velocidad y la funcién de corriente de este tipo de flujos:

V=0, VX =0. (21.54)

Por otra parte, debido a las condiciones de Cauchy-Riemann, las lineas equi-
potenciales ¢ = constante, o lineas de gradiente de velocidad constante, son
ortogonales a las lineas de corriente i = constante.

La derivada del potencial complejo es la velocidad conjugada:

i 9 Ow 1.0 .aw)
d.z_a:z+18x_vr zty—i<8y+zay " (21.55)
Los puntos de remanso del flujo vienen dados por la ecuacién
d
4 =0 (21.56)

dz
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21.6. Soluciones elementales

Se enumeran a continuacién las soluciones elementales de la ecuacién de
Laplace mas representativas, escritas en términos del potencial complejo, jun-
to con una descripcién del flujo potencial que representan. Algunas de ellas se
obtienen por superposicion de otras mas elementales, o por el método de las
imagenes. La mayoria de ellas ya se han descrito en las secciones anteriores,
pero se repiten aqui para poner de manifiesto la simplicidad de escritura que
representa el potencial complejo. Se incluye también un comentario sobre su
utilidad en la teoria potencial de perfiles aerodindamicos, que se tratara bre-
vemente mas adelante. No se incluye el campo de velocidad o la funcién de
corriente pues se pueden derivar facilmente de f utilizando (21.55) o (21.53).

21.6.1. Corriente uniforme

Potencial complejo:

f(z) =Uze™, (21.57)

U esla velocidad y a el 4angulo que forma la corriente respecto al eje x (dngulo
de ataque en la teoria de perfiles).

21.6.2. Manantial o sumidero

Potencial complejo:

fz) = % In(z — 20) (21.58)

Q es la intensidad del manantial (Q > 0) o del sumidero (Q < 0) situado en
el punto del plano z = z,. Se utiliza para simular el espesor de un perfil.

21.6.3. Torbellino potencial

Potencial complejo:

f(z) = g In(z — 2). (21.59)
2o es el centro del torbellino de circulacién —T" [el giro dado por (21.59) es en

el sentido horario]. Se utiliza para simular el efecto sustentador en un perfil.
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(c)

o @ ©

n=2/3 : E

Figura 21.6: (a) Dipolo. (b) Flujo en una esquina. (c) Flujo en las proximidades de un punto
de remanso. (d) Flujo sobre una esquina de 90°. (e) Flujo alrededor de una placa plana.

21.6.4. Dipolo

Potencial complejo:

i3
f(z) = Me 1

. 21.60
2T 2 — 2, ( )
El dipolo, de intensidad M e* de acuerdo con la notacién de (21.16), est4 cen-
trado en z = 2, e inclinado un dngulo (3 respecto al eje = [ver figura 21.6(a)].
Al igual que las fuentes y sumideros, sirve para simular el efecto de espesor.
En particular, sirve para simular el flujo alrededor de un cilindro circular.

21.6.5. Corriente en una esquina

Potencial complejo:

f(z) = Az". (21.61)

Las lineas de corriente representan el flujo potencial en una esquina de dngulo
m/n [ver figura 21.6(b)]. La constante A es real, representando la intensidad del
flujo. Es un ejemplo del método inverso: ;Qué representa una funcién analitica
sencilla? El caso particular con n = 2 sirve para simular el flujo potencial que
incide normalmente sobre un plano [flujo en las proximidades de un punto de
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remanso; ver figura 21.6(c)]. El caso n = 2/3 simula el flujo alrededor de una
esquina convexa de 90° [figura 21.6(d)], mientras que el caso n = 1/2 simula
el flujo potencial alrededor de un plano semiinfinito [figura 21.6(e)].

21.6.6. Corriente incidente sobre un cuerpo romo

Potencial complejo:

f(z)=Uz-+-%lnz. (21.62)

Como yase ha visto, la superposicién de una corriente uniforme y un manantial
en el origen simula un cuerpo plano semiinfinito, con borde de ataque romo
(ver figura 21.2) y con espesor Q/U.

21.6.7. Corriente alrededor de un cilindro circular

Potencial complejo:

flz)=U (z + 3;) . (21.63)

Superposicién de una corriente uniforme U y un doblete que simula el flujo
potencial alrededor de un cilindro circular de radio a. En la seccién 21.8 se le
superpondrd también un torbellino potencial para simular el efecto sustenta-
dor.

21.6.8. Corriente alrededor de un 6valo de Rankine

Potencial complejo:

. Q6 z+a
f(z)—Uz+27rlnz_a. (21.64)
21.6.9. Fuente en la proximidad de una pared
Potencial complejo:
f(2) = @ In[(z — a)(z +a)] = Q In(22 — a?). (21.65)

27 2m
a es la distancia de la fuente a la pared, representada por el plano z = 0.
Como se analizé en la seccién 21.4, el flujo se obtiene mediante el método de
las imagenes por superposicion de dos fuentes simétricas respecto a £ = 0. Si
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la pared esta situada en el plano y = 0 y la fuente en £ = 0,y = q, se tiene el
potencial complejo
Q

f(z) = % In[(z — ta)(z + ia)] = 7

In(22 + a?).
21.6.10. Torbellino en la proximidad de una pared

Potencial complejo:

) = zFl z+4+a

o z—a’

(21.66)

También se obtiene por superposicién de dos torbellinos especularmente simé-
tricos a la pared, representada en este caso por el plano z = 0. Téngase en
cuenta que el torbellino imagen, situado en £ = —a,y = 0, tiene circulacién
-TI.

21.7. Fuerzasobre un perfil. Paradoja de D’ Alambert
y féormula de Kutta-Joukowski

Una de las aplicaciones mas importantes de la teoria potencial es el cdlculo
de la fuerza de sustentacion en perfiles aerodinamicos, de interés sobre todo en
aeronautica, en ingenieria naval y en la teoria de las turbomaquinas hidrauli-
cas. En esta seccion se derivard de forma general las fuerzas sobre un perfil
considerado como la superposicién de fuentes, sumideros y torbellinos.

Para ello se aplicara el principio de la conservacion de la cantidad de mo-
vimiento en forma integral a un volumen de control como el de la figura 21.7:

/ PTG Ads = _/ (0 — poo)iids — F, (21.67)
Se Se

donde S, es la superficie cilindrica con centro en el perfil y radio R — oo, y
F es la fuerza que el flujo ejerce sobre el perfil. El campo de velocidad ¥ se
obtiene de un potencial complejo f(z) superposicién de:

s una corriente uniforme, U z;

= una superposicion de manantiales y sumideros de intensidad por unidad
de longitud ¢(z'), dado por

—/q 2)In(z - 2')d /q(z (21.68)
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Figura 21.7: Fuerza sobre un perfil.

= una superposicién de torbellinos de circulacién por unidad de longitud
~(2'), cuyo potencial complejo es

:?% /’Y(Z') In(z — 2')d?’, con/‘y(zl)dzl =T. QA

El potencial total sera:

f(z)=Uz+ él; /q(z')ln(z —2\d2' + éz; /’y(z') In(z — 2')d2’. (21.70)

Sobre la superficie Se, dada por |z| — oo, se tiene
zl
In(z—2)=lnz+0 (;) ;
de donde

f(z):Uz+£lnz+O(z—,) (21.71)

27 2

sobre Se. Es decir, lejos del perfil la corriente es, con errores de orden |z| ™! — 0,
una superposicién de una corriente uniforme y un torbellino centrado en el
origen de intensidad I'. La velocidad conjugada es
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£ _yoliofd)
S =U+5—-+0(3), (21.72)

por lo que las componentes de la velocidad segin los ejes e y son:

r 1
= — si — 1.
Ve U+27rrsm0+0(r2>, (21.73)
r 1
= —— = ). 21.74
Vy 27rrcos¢9+0(r2) ( )
De la ecuacién de Bernoulli, la presiéon en S, viene dada por
1 UT 1
= — —p—sin#f —=. 21.
P = Poo — 5p——sin +O(r2> (21.75)
Si definimos
F = Dé, + Lé,, (21.76)

siendo D la fuerza de resistencia (componente de la fuerza en la direccién
del movimiento) y L la fuerza de sustentacién (componente de F normal a
la corriente exterior), teniendo en cuenta que sobre Se 7 = cos 6€éz + sin 6¢€),
y U7 = Ucosf + O(1/r?), la ecuacién integral de cantidad de movimiento
proporciona los siguientes valores para D y L:

2 2T
D= BQE / cos 6 sin 6rdf — pU/ (UCOSG + LcosGsinG) rdf =0,
2mr Jo 0 2nr
(21.77)
2w 2w
=Pt / sin? rdg + 20T / cos? 6rd6 = pT'U . (21.78)
2nr Jo 27t Jo

La primera expresion es una demostracion general de que la fuerza de
resistencia es nula para el flujo potencial, estacionario e incompresible so-
bre un cuerpo cerrado bidimensional. El mismo resultado se obtendria si el
cuerpo fuese tridimensional. Este resultado se suele denominar paradoja de
D’Alambert. La segunda expresion es la denominada férmula de Kutta-
Joukowski, que nos dice que la componente perpendicular a la corriente de
la fuerza sobre un perfil es distinta de cero si, y sélo si, la circulacién en una
curva cerrada que lo encierra es distinta de cero.

Evidentemente, la fuerza de resistencia no es nula en fluidos reales. Sin
embargo, a diferencia del flujo alrededor de un cuerpo romo (como, por ejem-
plo, un cilindro), donde el flujo viscoso real se parece muy poco al obtenido
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Figura 21.8: Distribucién de presién alrededor de dos perfiles en términos del coeficiente
de presién. Los puntos corresponden a los valores experimentales medidos en un tunel de
viento para un numero de Reynolds alto, y la curva continua representa los resultados de
la teoria potencial. (Figura tomada de Prandtl y Tietjens (1957), que a su vez reproduce
los resultados de la tesis doctoral de Fuhrmann (1912), que constituye uno de los trabajos
pioneros en aerodindmica experimental.)



328 MECANICA DE FLUIDOS

por la teoria potencial, incluso si el nimero de Reynolds es muy alto (véase
seccién 21.9), en perfiles esbeltos los resultados de la teoria potencial se pare-
cen mucho a los reales si el nimero de Reynolds es suficientemente alto (ver
figura 21.8) y, aunque la fuerza de resistencia no es nula, es realmente muy
pequena. Dado, por tanto, que la teoria potencial es una buena aproximacion
en perfiles aerodinamicos esbeltos, y dado que la fuerza de sustentacion es,
evidentemente, distinta de cero (los aviones vuelan y las turbomdaquinas inter-
cambian cantidad de movimiento con el fluido que impulsan), la pregunta que
surge es: jcomo se genera la circulacion I' en el flujo alrededor de perfiles y
cuanto vale?

21.8. Generacion de sustentacion en perfiles aero-
dinamicos

En el marco de la teoria del flujo potencial alrededor de un cuerpo, la
generacion de circulacion es un tanto paraddjica debido a que el teorema de
Kelvin (ver capitulo anterior) nos dice que si la circulacién es inicialmen-
te nula (que lo es, pues el flujo parte del reposo), seguird siendo nula si la
aceleracion D%/ Dt deriva de un potencial, lo cual se verifica en el presente
flujo [DU/Dt = —V(p/p)]. Como se vera a continuacién, lo que ocurre es que
aunque la hipétesis de fuerzas viscosas nulas es aproximadamente vélida (si
Re — 00) en la mayor parte del campo fluido, el hecho de que no lo sea en una
capa limite muy delgada alrededor del perfil juega un papel muy importante
en el establecimiento del movimiento en sus etapas iniciales (en concreto, en
el establecimiento de una circulacién), aunque una vez que se ha alcanzado
el régimen estacionario, la capa limite viscosa no afecta apreciablemente a la
distribucién de presién y, por tanto, a la fuerza sobre el perfil (salvo, por su-
puesto, en la resistencia viscosa, y siempre que la separacién de la corriente se
produzca muy cerca del borde de salida del perfil; véase el capitulo 27).

Considérese un perfil como el de la figura 21.9(a), donde se dibuja un
esquema de la configuracién del flujo potencial con circulacién nula. Existe
una linea divisoria que separa la corriente del estradds del intradds; dicha
linea se bifurca en el punto de remanso anterior (a), pero ambas ramas salen de
nuevo unidas del punto de remanso posterior (b). Esta configuracién no puede
parecerse a la realidad en las proximidades de la salida ya que la corriente
se decelera en el pequefo espacio que hay entre el borde de salida ¢ (donde,
teniendo en cuenta que el potencial complejo vendria localmente dado por
(21.61), con n préximo a 1/2, la velocidad es tedricamente infinita) y el punto
de remanso b (donde la velocidad es cero). Esta deceleracién se traduce en
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(c)

Figura 21.9: (a): Flujo potencial alrededor de un perfil. (b) y (c): Generacién de un torbellino
aguas abajo.

un gradiente adverso de presién muy intenso y en el desprendimiento de la
capa limite (véase leccién 27). Ahora bien, el flujo de cortadura resultante es
inestable (inestabilidad de Kelvin-Helmholtz; véase capitulo 30), y el resultado
es que se forma un torbellino que viaja aguas abajo, como se esquematiza en
las figuras 21.9(b) y (c). Alrededor de la curva ABCD de la figura 21.9(a),
asi como de la figura 21.9(c), donde engloba tanto al torbellino producido
como al perfil, la circulacién debe ser nula, pues se verifican las hipdtesis
del teorema de Kelvin. Como consecuencia, aparece una circulacién no nula
alrededor de la curva AEFD que engloba sélo al perfil, que es de signo contrario
y aproximadamente igual en valor absoluto a la del torbellino generado (seria
exactamente igual si la viscosidad fuese exactamente cero, pues la circulacion
a lo largo de ABCD seria exactamente nula).

El efecto de la circulacion es aproximar el punto de remanso posterior al
borde de salida del perfil, aumentando para ello la velocidad en el estradds a
costa de la del intradds. La formacion del torbellino continia hasta que el punto
de remanso se sitia en el borde de salida del perfil (ver figura 21.10(a)). Dicho
de otra forma, la circulacion es la apropiada para que el borde de salida del
perfil sea un punto de remanso, si el borde tiene un dngulo finito, o desaparezca
el punto de remanso si el borde de salida es un punto de retroceso (ver seccién
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Figura 21.10: (a) Flujo potencial con circulacién alrededor de un perfil. (b) Flujo potencial
y flujo tras la separacién de la corriente alrededor de un cuerpo romo.

21.10 més adelante). Esto se conoce como la hipétesis de Kutta-Joukowski.

En el caso de un borde de salida romo (figura 21.10(b)], se forman una serie
de torbellinos de signo opuesto de manera que tanto la circulacién alrededor
de una curva que engloba al objeto y a los torbellinos, como alrededor de una
curva que sélo engloba al cuerpo romo, es practicamente nula. La sustentacién,
por tanto, es nula, o casi nula, en un cuerpo romo. Por supuesto, la corriente
real no se parece en nada a la ideal y el resultado de D’ Alambert de resistencia
nula no es ni siquiera aproximado. Precisamente aqui es donde reside una de
las principales ventajas del perfil aerodindmico sobre el romo: La fuerza de
resistencia es mucho menor en el perfil, al ajustarse el flujo real bastante bien
al ideal (salvo muy cerca del borde de salida; véase la figura 21.8), siendo esta
fuerza principalmente debida a la friccion viscosa, cuyo efecto es mucho menor
que el de la presion cuando la corriente se separa en un cuerpo romo. Por
otro lado, la sustentacién en un perfil aerodinamico es distinta de cero debido
a la generacion de circulacion neta alrededor del perfil, de acuerdo con la
hipétesis de Kutta-Joukiwski, mientras que en un cuerpo romo la sustentacion
es practicamente nula pues los torbellinos generados aguas abajo tienen una
circulaciéon neta total casi nula. En el capitulo 27, dedicado a la capa limite,
se dara la explicacién fisica de porqué se separa la corriente en un cuerpo
romo mucho antes que en un perfil aerodindmico, que a su vez explica la razén
por la cual el flujo potencial reproduce mucho mejor el flujo real sobre un
perfil esbelto que sobre un cuerpo romo, en el que el flujo potencial tiene muy
poco parecido con el real (como también se vera a continuacién para el caso
particular de un cilindro circular).
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21.9. Flujo con circulacién alrededor de un cilindro
circular

- Otro procedimiento muy usado para obtener el flujo alrededor de un perfil
aerodindmico, ademads de la superposicién de flujos elementales (con o sin el
uso del potencial complejo), es mediante la transformacién conforme del flujo
alrededor de un cilindro circular, flujo que repasamos en la presente seccién
con especial énfasis en el efecto sustentador de los torbellinos.

Como ya se ha visto, el flujo potencial alrededor de un cilindro circular se
obtiene mediante la superposiciéon de una corriente uniforme y un doblete o
dipolo alineado con la corriente (a« = 3 = 0, por ejemplo):

f(z)=Uz+%EU<z+9;> , (21.79)

donde a = \/M/(27U) representa el radio del cilindro. La parte imaginaria
de f es la funcién de corriente, que en coordenadas cartesianas se escribe
(compérese con (21.35), donde r, = a)

a2
= ] —— 21.80
U(z,y) Uy( x2+y2>, ( )
que ya ha sido representada en la figura 21.4.
El campo de velocidad sobre el cilindro (r = a) viene dado, en coordenadas
polares, por [véase (21.37)]
vz(r = a) = 2Usin’0, v, (r = a) = —2Usinfcos¥b, (21.81)

de donde, utilizando la ecuacion de Bernoulli, la distribuciéon de presion sobre
el cilindro es

1 1 "
p(r =a)—poo = Ep[U2—v§(r = a)—vﬁ(r = g = EpU2(1—4s1n2 6); (21.82)
es decir, el coeficiente de presiéon local viene dado por

P — Poo .2
Cp = =1-4sin“f. (21.83)
(4 %pUz

Se observa que la distribucién de presién sobre el cilindro tiene simetria res-
pecto a los planos z =0 ey =0:

p(9) = p(m — 6) = p(-6), (21.84)
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por lo que la fuerza resultante sobre el cilindro es nula, de acuerdo con los
resultados generales (21.77) y (21.78).

La solucién anterior no es tnica, en el sentido de que si se le superpone un
torbellino centrado en el origen de intensidad arbitraria I", la circunferencia
r = a sigue siendo una linea de corriente, por lo que el flujo resultante tam-
bién representa el flujo potencial alrededor de un cilindro circular, pero con
circulacién no nula. Es decir, el potencial complejo

a? r
fz)=U(z+— ] +i—Inz, (21.85)
z 2w
cuya parte imaginaria es
P(z,y) =U 1—L +£ln(2+ 2) (21.86)
’y - y .I:2+y2 47'[' T y y .

también tiene por linea de corriente la circunferencia r? 4+ y? = a? (ahora
correspondiente a ¥ = 2% Ina) para cualquier valor de T'.
La posicién de los puntos de remanso se obtiene de f’(z) = 0:

2
(f) +i—t % _1=0. (21.87)

Si [I'/(4maU)| < 1, los puntos de remanso estdn situados en la circunferencia
z? 4+ y? = a?:

§=:I:cosﬂ—isinﬂ, sin 3 = (21.88)

dmwal
Estos dos puntos de remanso convergen en uno solo, situado en z = ai, para
I'/(4maU) = 1. Si [I'/(4waU)| > 1, los puntos de remanso estdn sobre el
eje imaginario y, uno de ellos en el interior del cilindro (que no tiene mucho
interés), y el otro en el exterior:

r
dmalU -’

Aunque no existe ningun criterio fisico (de momento) para fijar I', y por
tanto la solucién deseada, lo que si estd claro es que la introduccién de un
torbellino rompe la simetria del flujo (ver figura 21.11) e introduce una fuerza
de presion en la direcciéon perpendicular a la corriente U. En efecto, de la
ecuacion de Bernoulli, la distribucién de presién sobre el cilindro » = a viene
dada por

Z_ i(+sinh 3 — cosh3), coshf@ = (21.89)
a
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Figura 21.11:

= — 1- — . 21.
P = Poo + 2,oU [ 2sin 8 + 5ol (21.90)

Las componentes de la fuerza de presién segin los ejes z e y son:

27
F, = —/ (p — Poo) cosfadd = 0, (21.91)
0

27
F, = —/ (P — Poo) sin fadd = pUT, (21.92)
0

lo cual corrobora, obviamente, el resultado general (21.77)-(21.78).

21.9.1. Utilidad practica de la solucion potencial del flujo al-
rededor de un cilindro circular

Los experimentos muestran que la corriente real alrededor de un cilindro
circular (y, en general, alrededor de cualquier cuerpo romo) es bastante dife-
rente de la obtenida mediante la solucién potencial, incluso si la viscosidad es
muy pequefia (Re — oo). En la figura 21.12 se muestran los flujos reales alre-
dedor de un cilindro circular para varios nimeros de Reynolds. Para Re < 1,
el flujo es practicamente simétrico, pero, por supuesto, no es potencial (flujo de
Stokes; ver capitulo 17). Para Re = 1, el flujo pierde la simetria con respecto
al plano y = 0 debido a la separacién de la corriente, y para 5 < Re < 40,
aproximadamente, se desarrollan torbellinos simétricos estacionarios. Para Re
del orden de 100, se forman continuamente torbellinos en una estructura de-
nominada calles de von Kdrmdn. Para Re = 2000 y mayor, el flujo detras del
cilindro se hace turbulento.
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Figura 21.12: Flujo alrededor de un cilindro circular para diferentes nimeros de Reynolds.
Re = 26 (a), Re = 200 (b) y Re = 2000 (c). Figura tomada de Ryhming (1991), que a su
vez estd basada en fotografias recogidas en M. Van Dyke (1982).
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Figura 21.13: Coeficiente de presién del flujo alrededor de un cilindro circular. Figura tomada
de White (1983).

La distribucién de presién sobre el cilindro se representa, en términos del
coeficiente de presion cp, en la figura 21.13. La presién experimental se aproxi-
ma bastante a la obtenida por la teoria potencial [ecuacién (21.83)] hasta que
se separa la capa limite, lo cual ocurre para angulos 6 bastante menores que
90° si la capa limite permanece laminar hasta la separacion, o para 6 = 90° si
la capa limite se hace turbulenta (esta transicién ocurre para Re ~ 3 x 10°).
Debido a esto, la resistencia de presién (y por tanto la total) disminuye cuan-
do la capa limite se hace turbulenta (ver capitulo 27 y siguientes para una
explicacion fisica de estos fenémenos).

De todo lo anterior podria parecer que la solucion ideal del flujo alrededor
de un cilindro circular no tiene ninguna utilidad practica, ya que la corriente
ideal se parece muy poco a la real. Sin embargo, si tiene utilidad debido a que a
partir de ella, mediante la transformacién conforme que se vera a continuacion,
se pueden obtener los flujos potenciales alrededor de perfiles aerodindmicos,
que si tienen gran parecido con los reales debido a que la capa limite se separa
muy aguas abajo si el perfil es lo suficientemente esbelto.
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21.10. Transformacién conforme

Una herramienta muy potente para calcular la sustentacién en perfiles
aerodinamicos es la transformacion conforme, que permite obtener el flujo
alrededor de un perfil a partir del flujo alrededor de un cilindro circular me-
diante una transformacion del plano complejo. Este método es alternativo al
de superponer fuentes, sumideros y torbellinos.

Considérese la correspondencia entre los planos z =z +iyy 7 = £ + i
a través de la funcién z = F(7) = ®(&,7n) + i¥(&, 7). Si F/'(1) # 0 en el
entorno del punto 7 = 7,, la transformacién en las proximidades de ese punto
es, ademas de biunivoca, conforme, llamada asi porque a un pequeno triangulo
en el plano 7 le corresponde un tridngulo semejante en el plano z (es decir,
conserva los dngulos). Para demostrarlo no hay mdas que desarrollar en serie
de Taylor alrededor de 7:

2—2o= (T —71)F'(15) + ...

Siz—2,=(Ar)e® y 7 — 7, = (As)e'®, aplicando el desarrollo anterior a dos
segmentos 71 — T, = (As)1e'* y 7o — 7, = (As)2€'*?, y dividiendo, se tiene

por lo que, en el limite (As) — 0, los 4ngulos se conservan y un tridngulo
se transforma en otro semejante. Estos resultados se generalizan a dominios
finitos sin mas que exigir que la funcion sea regular y con derivada no nula en
el dominio.

Dos contornos cerrados se corresponden si vienen representados por curvas
diferenciables (al menos a trozos) y si la funcién F es analitica en el recinto
contorneado; ademas, si se verifica lo anterior, al recorrer una unica vez el
contorno en un sentido, se recorre una unica vez el contorno transformado en
el mismo sentido. De acuerdo con esto se puede enunciar el siguiente teorema
(debido a Riemann) que no demostraremos (para los detalles matemaéticos for-
males de la transformacién conforme, el alumno puede consultar, por ejemplo,
L.M. Milne-Thomson, 1996): Dado un recinto simplemente conexo con mas de
un punto frontera, existe una transformacioén que lo convierte en el interior de
una circunferencia, y para definir la transformacién basta dar dos puntos y un
par de direcciones homologas.

Naturalmente, el que exista la transformacién no implica que sea féicil en-
contrarla para cada caso particular. Una primera dificultad aparece en relacién
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Figura 21.14:

al borde de salida del perfil, que tiene que ser anguloso para que sustente. Co-
mo la transformacién conforme conserva los dngulos [si F'(7) es distinta de
cerol, para que z = F(7) transforme un punto de la circunferencia en el bor-
de de salida de un perfil, este punto, por ejemplo z, = F(7,), tiene que ser
un cero o un polo de F'(7). Suponiendo que sea un cero de orden n, en las
proximidades de 7, el desarrollo en serie de Taylor proporciona:

z—2z,=C(T—7,)" & (Ar)e? =C(As)"e™,

siendo C una constante compleja [proporcional a d" F/d1™(7,)]. Dos segmentos
infinitesimales que tiene 7, como punto de unién se transforma de acuerdo con

(As)1\"  (Ar) B
(G) =@p: O—fa=nler—aa).

Para transformar 6, — 8 = m en a; — ay = 2w — 3, el cero debe ser de orden

™

n=27r—-ﬁ

Si n fuese negativo (que no es el caso de un perfil; véase figura 21.14), el punto
T, seria un polo en vez de un cero.

En lo que sigue se llamard z al plano del circulo, 7 al del perfil, z = F(7) a
la transformacién, f(z) al potencial complejo en el plano 2z y G(7) = f[F(7)]
al potencial complejo en el plano 7. Algunas propiedades de la transformacién
son las siguientes:

= Las lineas equipotenciales se corresponden en la transformacion

= Las lineas de corriente también. En particular, las lineas de corriente
cerradas se transforman en lineas de corriente cerradas

= Fuentes, sumideros y torbellinos se convierten en fuentes, sumideros y
torbellinos de la misma intensidad, si los puntos en los que estan centra-
dos son puntos regulares de la transformacién.
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Los puntos de remanso no tienen porqué convertirse en puntos de remanso.
Teniendo en cuenta que

G _dds_arar
dr ~ dzdr  dzdr’

los puntos de remanso en el plano z, dados por df /dz = 0, se corresponden
con los puntos de remanso en el plano 7 si dF/dr es distinto de cero. Si
dF/dT ~ (1 — To)f'"'"-_ﬁ_l (borde de salida), puede ocurrir que el punto 2z, no
sea de remanso, en cuyo caso la velocidad en 7, es infinita, o que si lo sea. En
este ultimo caso, df /dz ~ (z — z,) — 0, de donde

dG o — —r
— ~ (2= 20)(T = 7o) TP !~ (T = 7o) T (1 — 7,) TP

ar

_B
A (1 —15)78;

es decir, si el borde de salida es anguloso (8 # 0), hay punto de remanso en
To, ¥ si el borde de salida es de retroceso (3 = 0), no hay punto de remanso
(velocidad finita). Obsérvese que si se quiere que en 7, la velocidad no sea
infinita, G'(7,) # 00, es necesario que el homdélogo de 7, sea punto de remanso.
Esto fija la circulacién: la circulacion alrededor del cilindro circular debe ser
tal que el homodlogo del borde de salida del perfil sea un punto de remanso,
pues en caso contrario el borde de salida tendra velocidad infinita. Esta es la
hipétesis de Kutta-Joukowski, ya comentada anteriormente. El borde de salida
sera de remanso si es anguloso, o de velocidad finita si el borde es de retroceso.

Finalmente, hay que indicar que la transformacién debe ser tal que en el
infinito se reduzca a una identidad, para que asi las velocidades de las corrientes
incidentes sobre el cilindro y sobre el perfil sean iguales. Esto quiere decir que
el desarrollo de Laurent de la transformacién debe ser de la forma

z—F(7')—‘r—i~§ﬂ T—z+§:B"
Tl::lTn, n:lzn.

21.10.1. Placa plana con angulo de ataque o

La transformacion conforme se puede aplicar para simular el flujo alre-
dedor de practicamente cualquier perfil. El caso mas simple es la simulacién
de la corriente alrededor de una placa plana con un angulo de ataque «. Este
modelo sencillo proporciona una estimacién de la sustentacién en perfiles aero-
dinamicos muy esbeltos cuando sobre ellos incide una corriente con un angulo
a.

Para ello se utiliza la transformacion de Joukowski,
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o e 2
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Figura 21.15:
a2
r=z+2, (21.93)
z

que convierte la circunferencia de centro en el origen y radio a del plano z, en
la placa situada entre (—2a,0) y (2a,0) del plano 7 (ver figura 21.15).

Como lejos de la circunferencia la transformacién es una identidad, 7 = z,
la corriente no perturbada tiene que incidir sobre el cilindro formando el mismo
angulo o con la horizontal que el que queremos que forme con la placa. El
potencial complejo en el plano z serd, por tanto,

™

—i (12 gl —ia
f(z)=U (ze 4 ze,—ia) + 12—ln (ze ) ¢ (21.94)

La circulacion T se elije de forma que el homologo del borde de salida del perfil
T = 2a, dado por z = a, sea punto de remanso [Hipétesis de Kutta-Joukowski;
véanse los esquemas de la figura 21.16]. Es decir, f'(a) = 0, lo que implica que
I'=4nmaU sina. (21.95)
La velocidad conjugada en el plano z serd, por tanto,

. (12 . a
fl(z) =U | e™ — € + =2isina | , (21.96)

z z

y la velocidad conjugada en el plano T,

, —_—
G' (1) = %gé = lf (Za)—z- =U (cosa —isinai +ZZ> : (21.97)
T2
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r=0 F'=4n aUsen a s

7T

Figura 21.16: Esquemas de las lineas de corrientes en los planos z (flujo alrededor de un
cilindro circular) y 7 (alrededor de una placa plana) cuando la circulacién es nula y cuando
es la apropiada para que el borde de salida de la placa sea un punto de remanso.

Para obtener la velocidad sobre la placa, se hace z = ae', para asi recorrer
la circunferencia cuando 6 varia entre 0 y 27

. 1-—e7* 4
G'(2)|ptaca = U (cosa —isina—" ) =U (cosa + sinatan 5) ,

1+e
(21.98)
que, obviamente, es real. En términos de &, teniendo en cuenta que £ = 2a cos,
se tiene la velocidad sobre la placa

- inay22—¢
ve=U (cosa:i:sma\/2a+£> ; (21.99)

Se observa que la velocidad es infinita en el borde de ataque (¢ = —2a,0 =
m), lo cual es debido a que el borde de ataque tiene espesor nulo (ver figura
21.16). Uno se plantea entonces la cuestion de porqué se tolera una velocidad
infinita en el borde de ataque y no en el borde de salida. Fisicamente la razén
estriba en que la capa limite en el borde de ataque acaba de formarse, lleva
mucha cantidad de movimiento y es capaz de soportar con éxito los fuertes
gradientes adversos de presion que tratan de desprenderla (véase capitulo 27).
Por el contrario, en el borde de salida, la capa limite lleva ya muy poca cantidad
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(*) (b)

T

Figura 21.17: (a) Burbuja de recirculacién sobre el borde de ataque en el flujo real sobre una
placa plana con dngulo de incidencia no nulo. (b) Fuerzas de sustentacién y de succién.

de movimiento y se desprende con facilidad. Lo que realmente ocurre es que en
el estrad6s del borde de ataque se forma una burbuja con flujo recirculatorio
[ver figura 21.17(a)]. Esta burbuja es pequenia debido a que la corriente se
readhiere enseguida.

La singularidad en el borde de ataque produce una succién en la direccion
de la placa [fuerza Fr en la figura 21.17(b)] tal que sumada vectorialmente
a la resultante de las fuerzas de presién sobre la placa (Fy), la fuerza total
satisface la formula de Kutta-Joukowski, L = pUT'. Para ver esto, calculamos
la fuerza de presion sobre la placa (normal a ésta):

2a
Fv= [ (- - pa)de, (21.100)

—2a
donde p, y p_ son la presion en el estradds e intradds, respectivamente. De la
ecuacién de Bernoulli y de (21.99) se tiene

P- —p+ = %P (Ug- - v?+) = 2pU%sin a cos a %i% , (21.101)
cuya integracion da
Fn = 4mapU?sinacosa = pUT'cosa = Lcosa, (21.102)
donde
L = 4mapU?sina = pUT (21.103)

es la sustentacion dada por la formula de Kutta-Joukowski. Por tanto, Fiy es la
proyeccién de la fuerza de sustentacién L (que es normal a la corriente) sobre
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& S " 2a

Figura 21.18: Transformacién de una circunferencia en una elipse mediante (21.93).

la direccién normal a la placa [ver figura 21.17(b)]. La componente paralela a
la placa (succién) es Fyr = Lsina.

Los experimentos confirman que la sustentacién viene dada por (21.103),
cuando Re > 1 para que el flujo pueda considerarse ideal, y siempre que el
angulo de ataque a sea pequeno. Para angulos de ataque por encima de un
cierto valor, la corriente se separa en el estradds poco después del borde de
ataque, cayendo bruscamente la sustentacién (ver figura 21.20 mas adelante).
Cuando esto ocurre, la corriente ya no se parece en nada a la obtenida mediante
la teoria ideal, y el valor de L es mucho menor. Como « debe ser pequeno para
que la teoria ideal valga, la expresion de Kutta-Joukowski se suele linealizar
en a:

L ~ 4mapUa, (21.104)
de donde el coeficiente de sustentacién viene dado por

L L
1pU2%  1pU%4a

CL= ~ 27a, (21.105)

donde c es la cuerda del perfil (c = 4a en el presente caso).

21.10.2. Perfiles de Joukowski

Al conjunto de perfiles obtenidos mediante la transformacién de Joukows-
ki (21.93) aplicada a una circunferencia cualquiera del plano z se denomina
perfiles de Joukowski. El caso mas simple visto anteriormente es el de una
circunferencia centrada en el origen de radio a, que da lugar a una placa plana
de cuerda 4a. Si la circunferencia esta centrada en el origen del plano z, pero
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Figura 21.19: Perfiles de Joukowski.

su radio 7 # a, se obtiene una elipse, que serd mas esbelta cuanto menor sea
|r — a| (ver figura 21.18).

De forma mas general, si la circunferencia estd centrada en el punto z =
b = b, + ib; y tiene radio 7, el perfil obtenido mediante la transformacién
de Joukowski tiene la forma esquematizada en la figura 21.19, que sirve para
modelar el flujo alrededor de perfiles mdas realistas. La cuerda del perfil es
4a, donde a es la distancia al origen del punto de corte de la circunferencia
con el semieje real positivo. Si la parte imaginaria del centro, b;, es nula, el
perfil es simétrico en relacion al eje &; es decir, la linea media, marcada con
una linea a trazos en la figura 21.19, coincide con el eje £. Por tanto, b; o,
mas concretamente, el angulo 3, esta relacionado con la curvatura del perfil:
a mayor (3, mayor curvatura. Por otro lado, al igual que ocurre con la elipse
de la figura 21.18, el espesor del perfil esta relacionado con |r — a|, de manera
que cuanto mayor sea su valor, mayor serd el espesor del perfil.

Para una corriente uniforme con angulo a, el potencial complejo en el plano
z viene dado por [compérese con (21.94)]

r2

f(2)=U|(z—be7™+ b=

+ 1—2—2 In [(z - b)e‘io‘] :

Sin entrar en los detalles de los cdlculos, para que el borde de salida Qj,
imagen del punto P; de corte de la circunferencia con el semieje  positivo,
sea un punto de remanso, la circulacién debe ser

I = 477U sin(a + G) ,

de forma que la fuerza de sustentaciéon viene dada por
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Figura 21.20: Comparacién entre los resultados tedricos (recta a trazos) y experimentales
para el coeficiente de sustentaciéon en funcién del éngulo de ataque o en un perfil de Jou-
kowski. Los resultados experimentales fueron obtenidos por Betz (1915). También se incluye

el coeficiente de resistencia Cpy medido experimentalmente. (Figura tomada de Batchelor,
1967.)

L = 4rrpU%sin(a + B). (21.106)

Al igual que en el caso de la placa plana, la teoria potencial tiene utilidad
sblo si el dngulo a + 3 es pequeiio, pues en caso contrario la capa limite y la
corriente se separan muy cerca del borde de ataque en el estradds. Por tanto, es
costumbre utilizar la forma linealizada de (21.106) para escribir el coeficiente
de sustentacion:

CL= L = 8. sin(a + B) ~ 2n(a + B), (21.107)
3pU%c c

donde la cuerda ¢ ha sido aproximada por 47 suponiendo que tanto el espesor

como la curvatura son pequenos en relacién a la cuerda. Obsérvese que, debido

a la curvatura (8 # 0), el cocficiente de sustentacion es positivo incluso para

angulos de ataque o negativos.

En la figura 21.20 se compara (21.107) con los resultados experimenta-
les para un determinado perfil de Joukowski cuando el mimero de Reynolds
es suficientemente alto. Los valores de C;, medidos siguen la tendencia lineal
(21.107) hasta un cierto valor de a, por encima del cual la sustentacién cae
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bruscamente debido a la separacién de la corriente. Esta caida de la sustenta-
cién viene acompanada por un aumento notable del coeficiente de resistencia,
también mostrado en la figura 21.20, de forma que se suele decir que el perfil
ha entrado en pérdida. Por supuesto, el coeficiente de resistencia Cp no puede
ser obtenido mediante la teoria potencial, que predice una resistencia nula. Si
el perfil es esbelto, casi toda la fuerza de resistencia es debido a la friccién, y
suele ser muy pequena comparada con la sustentacién. Su valor se puede ob-
tener tedricamente analizando la capa limite viscosa en la pared (véase leccién
27). También se observa en la figura 21.20 que la sustentacién real se hace
negativa para un valor del angulo de ataque negativo, pero ligeramente mayor
que el valor —3 que predice la teoria potencial.

Para obtener el flujo potencial alrededor de perfiles aerodinamicos distin-
tos de la familia de Joukowski se suele utilizar el método de superposicion
comentado anteriormente. Para simplificar el dlgebra, se emplea la denomi-
nada teoria linealizada de perfiles, que consiste en aproximar linealmente las
distintas funciones alrededor de la cuerda del perfil. Para los detalles de este
método, que no va a ser discutido aqui, el alumno interesado puede consultar,
por ejemplo, Milne-Thomson (1973). Més detalles sobre la teoria de perfiles,
incluyendo los efectos de la viscosidad, pueden encontrarse, entre otros textos,
en la monografia de B. Thwaites, 1987, Incompressible aerodynamics (Dover,
Nueva York; reimpresion).
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Capitulo 22

Discontinuidades en los
movimientos de fluidos
ideales. Ondas de choque

22.1. Introduccion

Ya se comentd en la leccién 19 que las soluciones de las ecuaciones de
Euler que describen el movimiento de los fluidos ideales a veces presentan
discontinuidades. En esta leccion se consideraran las discontinuidades que se
presentan en el interior del flujo. La estructura de las discontinuidades sobre
superficies sélidas, o capas limites, seran estudiadas en la parte VIIL

Un ejemplo tipico donde se presenta una discontinuidad de las soluciones
de las ecuaciones de Euler es el flujo supersénico alrededor de un obstdculo

Mc<l V>a
V<a [ B

Figura 22.1: Flujo subsénico y supersénico alrededor de un cuerpo romo.
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(ver figura 22.1). La presencia del obstaculo se deja sentir en el movimiento
del fluido mediante la emisién continua de pequeias perturbaciones u ondas
sonoras (ver capitulo 25) que informan al fluido incidente sobre su presencia.
Esta informacién viaja a la velocidad del sonido, de forma que si el flujo es
subsé6nico (V' < a), las ondas sonoras pueden avisar a la corriente incidente
sobre la presencia del obstaculo, que asi se amolda a su presencia bastante antes
de llegar a él. Sin embargo, si la corriente incidente es supersénica (V' > a),
la informacién sobre el obstaculo no puede llegar a la corriente incidente; las
ondas sonoras emitidas por el obstaculo se agolpan a una corta distancia de
él y producen una onda de choque. Aguas arriba de la onda de choque la
corriente no percibe la presencia del obstaculo. A través de la onda de choque
el flujo pasa de supersénico a subsénico (como veremos mas adelante en este
capitulo), de forma que detras de la onda de choque la corriente se acomoda
rapidamente a la presencia del obstdculo. Otros ejemplos caracteristicos de
una corriente supersénica donde se produce una onda de choque se veran en la
lecciones siguientes. Caracteristica general de todos ellos es que el flujo debe
ser supersonico en alguna region del mismo, y pasan a subsénico a través de
una discontinuidad.

Por supuesto, las presuntas discontinuidades no son tales en la realidad,
sino que son regiones delgadas donde los gradientes de las magnitudes fluidas
son tan acusados que la hipétesis de idealidad del fluido falla. Como el espe-
sor de estas regiones tienden formalmente a cero cuando Re — 00, desde el
punto de vista de la teoria de los fluidos ideales se consideraran como disconti-
nuidades, sin importarnos su estructura interna. En lo que sigue se derivaran
relaciones cuantitativas generales de los cambios de las magnitudes fluidas a
través de estas discontinuidades.

22.2. Ecuaciones de conservacion a través de una
discontinuidad

Considérese una superficie, de forma arbitraria, a través de la cual las mag-
nitudes fluidas (U, p y p) experimentan un salto finito (ver figura 22.2). Para
derivar las relaciones que ligan las condiciones delante de la discontinuidad
(regién 1) con las existentes detrds de la misma (regién 2), aplicaremos las
leyes de conservacién de masa, cantidad de movimiento y energia a un volu-
men de control en forma de cilindro infinitesimal como el de la figura 22.2.
En él, la superficie lateral, de altura 4, cruza la discontinuidad, y las otras dos
superficies son planas, paralelas y tangentes a la discontinuidad en el punto
considerado, de normal unitaria 7i. El drea ds de estas dos superficies verifica:



CAPITULO 22. DISCONTINUIDADES EN LOS MOVIMIENTOS DE FLUIDOS
IDEALES. ONDAS DE CHOQUE 349

Figura 22.2: Salto de las propiedades fluidas a través de una discontinuidad.

(ds)'/?> 6. (22.1)

Este requisito es siempre posible ya que se trata de una discontinuidad mate-
matica y, a pesar de que ds es también infinitesimal, 6 puede hacerse tan
pequeno como se quiera. En la realidad, la discontinuidad tiene espesor finito,
pero tiende formalmente a cero en el limite Re — 00; la tnica limitacién sobre
6 es que debe ser lo suficientemente grande como para que las dos superfi-
cies frontales estén inmersas en el fluido ideal, es decir, lejos de la regién de
transicién donde los efectos disipativos son importantes.

Con la condicién (22.1) se verifica que los flujos de las magnitudes flui-
das a través de la superficie lateral del volumen de control son muy pequenos
comparados con los flujos frontales, y que los términos volumétricos de las
ecuaciones de conservacién, proporcionales a dds/t,, donde t, es un tiempo
caracteristico, son también despreciables frente a los términos convectivos so-
bre las superficies frontales, de orden v - fids. En general, la discontinuidad
serd movil y tomaremos unos ejes ligados a la misma.

Con estas condiciones, las ecuaciones de conservacion de masa, cantidad de
movimiento y energia en el volumen de control pueden escribirse en la forma
siguiente (ver figura 22.2):

p1U1 - 1ids = patp - ids (22.2)
—p1(01 - A)U1ds + p2(U2 - A)vads = (py — p2)iids (22.3)
—p1(e; +v:f/2)171 ~ﬁds+P2(eg+v%/2)ﬁ'2-fids = p1U) -Nds —pova -1ids  , (22.4)

donde se ha supuesto que no hay absorcién ni emisién de calor en la super-
ficie de discontinuidad (por radiacién o reaccién quimica). Obsérvese que las
relaciones anteriores son locales, validas para cada punto sobre la superficie
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Figura 22.3: Ejemplos de discontinuidades tangenciales.

de discontinuidad. En términos de las componentes normal y tangencial a la
discontinuidad de la velocidad, v, = v -7 y U; = v — v,7, y proyectando la
ecuacion de cantidad de movimiento en esas dos direcciones, se obtienen las
cuatro ecuaciones siguientes:

P1VUnl = P2Un2 , (22.5)

P1+ P1vjy = P2 + paviy, (22.6)
P1Un1Tp1 = P2Un2ly2 , (22.7)

prom1 (b1 +v1/2) = pavpa(he +v3/2). (22.8)

22.2.1. Discontinuidad tangencial

Hay dos tipos bésicos de discontinuidades en funcién de que haya o no
flujo masico a través de ella. Una discontinuidad tangencial es aquella en
la cual no existe flujo masico que atraviese la discontinuidad: v, = vp2 =
0. De acuerdo con esto, las relaciones (22.5), (22.7) y (22.8) se satisfacen
identicamente para cualquier salto en las magnitudes p, U3 y h. La ecuacién
(22.6) nos dice que la presién se conserva a través de la discontinuidad, p1 = P2,
lo cual es intuitivo puesto que en caso contrario existiria movimiento en la
direccién normal asociado a la diferencia de presion. Asi, en una discontinuidad
tangencial, son continuas las magnitudes fluidas v, y p (v, = 0), y discontinuas
todas las demads, las cuales pueden tomar valores arbitrarios a un lado y otro
de la discontinuidad, puesto que las ecuaciones anteriores no fijan ninguna
relacién entre ellas.

Un caso tipico de discontinuidad tangencial es la que se forma cuando
dos flujos paralelos de fluidos ideales a distinta velocidad (y, en general, con
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distinta densidad y temperatura) se ponen en contacto, como, por ejemplo,
en el borde de salida de un perfil aerodinamico o en la capa de mezcla de un
chorro que descarga en otro fluido (ver figura 22.3). El problema con estas
discontinuidades es que dejan de serlo, por lo general, muy rapidamente, ya
que son muy inestables (ver capitulo 30). Debido a esta inestabilidad se forman
torbellinos inmediatamente después del inicio de la discontinuidad tangencial,
que van impregnando de vorticidad ambos lados del flujo ideal, por lo que sélo
muy en sus comienzos puede ser considerada como una discontinuidad.

22.2.2. Discontinuidad normal. Relaciones de Rankine-Hugoniot

Discontinuidad normal es aquella en la que hay flujo masico normal, v,; #
Un2, Un1 # 0, vpe # 0. Las ecuaciones anteriores quedan:

P1Unl = P2Vn2, (22.9)
p1+ p1v2) = pa + pav2,, (22.10)
o1 = Bz, (22.11)

hy +v2,/2 = ha + v2,/2. (22.12)

Se observa que la entalpia de remanso se conserva a través de la discontinui-
dad, pero no la presiéon de remanso. Estas relaciones se suelen denominar de
Rankine-Hugoniot; formas maés ttiles de las mismas seran derivadas en las
secciones siguientes.

Aparte de las ondas de choque, de las que se han visto algunos ejemplos y
se veran algunos mas, otros ejemplos de discontinuidad normal son los frentes
de combustién: deflagraciones y detonaciones. En ellos se produce una reac-
cién quimica exotérmica [por tanto, a la ecuacién (22.12) hay que afadirle
un término de calor de reaccién] que separa una zona de gases quemados de
otra de gases reactantes. El espesor de estos frentes, aunque por supuesto fi-
nito, y generalmente bastante mayor que el de una onda de choque, suele ser
muy pequeino en relacion a las escalas de longitud del flujo ideal circundante,
pudiéndose considerar a estos frentes como discontinuidades, en primera apro-
ximacién. Aunque no vamos a entrar en detalles (el alumno interesado puede
consultar cualquier texto sobre la teoria de la combustién como, por ejemplo,
el libro de F.A. Williams, Combustion theory, 1985, Addison-Wesley, Redwood
City), para su estudio, ademas de las ecuaciones de conservacién anteriores es
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necesario considerar las ecuaciones de conservaciéon de las especies quimicas
presentes, puesto que éstas reaccionan quimicamente entre si en el interior
del frente variando su concentraciéon de un lado a otro de la discontinuidad,
ademas de modificar la ecuacion de la energia como ya se ha dicho, puesto que
las reacciones quimicas son exotérmicas. La escala de tiempo de las reaccio-
nes quimicas suele ser muy pequeiia en relacién a los tiempos caracteristicos
del movimiento fluido y por ello hablamos de un frente (discontinuidad) de
combustién. Para que estas reacciones quimicas se produzcan, la temperatu-
ra tiene que subir por encima de un cierto valor, ya que la cinética quimica
es proporcional (en un gas ideal) a exp(—FE,/RyT), donde E, es una energia
de activacién. Superada esa temperatura (de ignicién), las reacciones quimi-
cas se propagan espontaneamente debido a su exotermicidad; de esta forma,
un frente de combustién avanza hacia los gases reactantes o frescos y los va
transformando en gases quemados. En esencia, esto es lo que se denomina
una deflagracion, donde la energia liberada por la reaccién quimica (la cual
se inicia por un calentamiento externo o ignicién) calientan por conduccién
los gases reactantes circundantes, que asi reaccionan quimicamente y hacen
propagar la combustién. La velocidad de propagacion de estas ondas de defla-
gracion dependen, pues, de la velocidad de la conduccion de calor, y su valor
se determina como un autovalor de las ecuaciones que gobiernan el proceso
interno de la onda, siendo siempre menor que la del sonido (para los detalles
se puede consultar, por ejemplo, la referencia antes citada). En una detona-
cidn, el calentamiento de los gases reactantes se produce mediante una onda
de choque, que eleva brutalmente la temperatura de los mismos y los hacen
reaccionar quimicamente. Asi, aunque sea considerada como una discontinui-
dad en la escala del flujo ideal, su estructura interna consta de dos zonas mas
o menos delimitadas: una onda de choque que va calentando a los gases fres-
cos, y una segunda regién, generalmente de espesor bastante mayor, donde se
produce la reacciéon quimica, calentandose atin més el gas. Al ser una onda de
choque la que hace posible la combustién, las detonaciones se propagan su-
persénicamente (veremos en las secciones siguientes que toda onda de choque
se mueve, relativamente al fluido circundante, a una velocidad mayor que la
velocidad local del sonido).

En lo que resta de leccién nos ocuparemos sélo de las ondas de choque,
olvidandonos de otros tipos de discontinuidades normales y de las tangenciales.
En particular, consideraremos las ondas de choque en gases ideales, tanto
normales (7; = 0) como oblicuas (7; # 0), que son las tnicas que podran
aparecer en algunos de los flujos considerados en las siguientes lecciones.
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“—~—— Curva de Hugoniot
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Figura 22.4: Curva de Hugeniet.
22.3. Curva de Hugoniot
De las relaciones (22.9)-(22.12) para un gas ideal, teniendo en cuenta que

h = ;—‘l—lp/ p, se puede deducir la siguiente relacion entre los saltos de presion
y de densidad a través de una onda de choque:

a+lpe
B_xlan (22.13)
-1 ;

denominada relaciéon de Hugoniot, la cual se representa en la figura 22.4 junto
con la relacién isentrépica pa/p; = (p2/p1)”. Se observa que para una onda
de intensidad infinita, po/p1 — 00, la relaciéon de densidades tiene un valor
finito, p2/p1 — (v + 1)/(y — 1), contrariamente a una compresién isentrépica
que, en teoria, puede dar lugar a una densidad infinita, p2/p; — 00. Por otro
lado, una onda de choque débil, p2/p; ~ 1, es casi isentrépica, como se puede
comprobar facilmente desarrollando en serie la relaciéon de Hugoniot alrededor
de p2/p1 -1 1

’2=1+7(@— >+ (22.14)
Y21 P1

que concuerda con el desarrollo de la relacion isentrépica alrededor de p2/p; =
1,
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’Ez(@>7=(@-1+1>7=1+7(@— )+ (22.15)
D1 p1 p1 P1

La curva de Hugoniot representada en la figura 22.4 proviene de las ecuacio-
nes de conservacién a través de una onda de choque (22.9)-(22.12) y cualquier
punto de la misma es posible en principio. Sin embargo, el Segundo Principio
de la Termodinamica, que nos dice que debe haber un incremento de entropia
a través de la onda de choque al existir procesos disipativos en el interior de
la misma (efectos de la viscosidad y de la conduccién de calor no desprecia-
bles), excluye parte de la curva como realmente posible. En efecto; teniendo en
cuenta que para un gas ideal la entropia es proporcional a ¢, Inp/p?, el salto
de entropia a través de una onda de choque viene dado por:

1
S——2_Sl—ln&-—ln21-=ln[&(ﬁ>7]=ln 371%—1 >0
=7y

v ¥ =
1+l p2
> ps pP1 P1 \p2 (7_1 m) (5112)
(22.16)
implicando que
ytlaey, (22.17)
Yy—-17"p1 ™
es decir, una onda de choque sélo puede ser de compresion,
1<2 o | (22.18)
b1

excluyendo asi, como fisicamente imposible, la parte inferior de la curva de
Hugoniot (ver figura 22.4) correspondiente a las ondas de choque de expansion.
De estas expresiones y de (22.13) se tienen las siguientes desigualdades para
las restantes magnitudes fluidas:

nene————— — T — < .
Y+1 v p2 T Lo (22.19)
T
13%:2’—?’;—;<oo , (22.20)
M, cs IT
e A Ml S (22.21)

- ’
My, vn1 \ T2

donde M, es el nimero de Mach relativo a la componente normal de la veloci-
dad. Se tiene pues que, a través de una onda de choque, la presion, la tempe-
ratura y la densidad del gas aumentan [las dos primeras magnitudes pueden
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hacerlo indefinidamente y la densidad hasta el limite dado por (22.17)], mien-
tras que la velocidad y el numero de Mach relativos al movimiento de la onda
decrecen (tanto en sus componentes normales como en sus valores absolutos,
puesto que la componente tangencial de la velocidad se conserva). En cuanto
a las magnitudes de remanso, de las relaciones (19.26)-(19.29), se tiene:

I_)‘Z_O:IQ(I+32—M2) :@(&9&>7> (@)7 (22.22)
Po D1 (1 + :’2_—1M12)7/(7—1) p1 \pop2/) ~ \pwo/ ’ '

puesto que p2p] /p1 pa > 1de (22.16). Como la entalpia de remanso se conserva,

To=To , =220 (22.23)
Pio P10

comparando con (22.22) se llega a

y—1
(322> <1, (22.24)
P10

de donde, al ser v > 1, se deduce que tanto la densidad de remanso como la
presién de remanso disminuyen a través de una onda de choque, mientras que
la temperatura (entalpia) de remanso se conserva:

p20<pro , P0<po , I2o=To . (22.25)

El hecho de que no se conserven todas las magnitudes de remanso es con-
secuencia de que el flujo a través de una onda de choque no es isentrépico, con
lo que estas magnitudes decrecen al aumentar la entropia. Esto no incluye a
la temperatura de remanso ya que la entalpia de remanso si se conserva por
ser la onda de choque un proceso donde no se realiza ningin trabajo ni se
intercambia calor y es casi estacionario dado que el espesor es tedricamente
nulo (la entalpia de remanso no se conserva en un frente de combustién, donde
se libera calor por reaccion quimica, ni en una onda de choque que emitiera o
absorbiera energia radiante).

22.4. Ondas de choque normales en gases perfectos

Una onda de choque normal es aquella en donde las corrientes incidente
y saliente de la onda son normales a la misma: v; = 0, ¥ = v, = vi. Por
supuesto, este tipo de ondas de choque sélo se puede producir en movimientos
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unidireccionales como, por ejemplo, el flujo supersénico en un conducto (ver
capitulos 23, 26 y 33).

Las relaciones de Rankine-Hugoniot (22.9)-(22.12) se suelen escribir en
funcién del nimero de Mach de la corriente incidente:

2

v
M2 =M? = a—; (22.26)
1
Teniendo en cuenta que para un gas perfecto
v p_ a
h = , (22.27)

y=1lp -1
después de ciertas manipulaciones algébricas se llega a las siguientes expresio-
nes que relacionan los saltos de las magnitudes fluidas a través de una onda
de choque normal en funcién de M2:

U_2_ﬂ_2+(’)’—1)M12

_A L 22.28
v op2 (Y+1)ME i
P2 _ 2yMP+1-—v (22.29)
p1 y+1 ’
T, _ (2yME+1-9)2+ (v - 1)M]] (22.30)

T, (v +1)2M?

El nimero de Mach de la corriente detras de la onda es

v2 24 (y- l)M2
Mzt o1 22.31
27 @2 2yMZ+1-—4’ ( )

y la diferencia de entropia

281 _ [IQ (P_1_>’] I [%Mf +1-7 (2 +( - 1)M1">7J
Cu p1 \p2 y+1 (v + 1)M}

(22.32)
Por ltimo, teniendo en cuenta las relaciones (19.28)-(19.29), el salto en las
presiones y densidades de remanso es:

P2 _ P20 _
P1o P10

(22.33)

M12(7+ 1)(7-}-])/7 v/(v=1)
2+ (v = DME|2yME + 1 - A1/
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Figura 22.5: Propiedades detras de una onda de choque en funcién del nimero de Mach
normal de la corriente incidente para v = 1,4.

Las relaciones anteriores permiten obtener las magnitudes fluidas detras
de una onda de choque normal de un gas perfecto conocidas las magnitudes
delante de la onda de choque y el nimero de Mach incidente (y, por supuesto,
v, que depende exclusivamente del gas). Algunas de estas relaciones se repre-
sentan en la figura 22.5 para v = 14 (un gas diatémico; por ejemplo, aire).
Los valores numéricos estan tabulados en el apéndice A al final de la leccidn.

Una propiedad muy importante de las relaciones anteriores y del Segundo
Principio de la Termodinamica es que el nimero de Mach incidente es siempre
mayor o igual que la unidad, mientras que el nimero de Mach detras de la
onda es siempre menor o igual que la unidad: Mf > 1, M22 < 1. En efecto;
tomando, por ejemplo, la expresién (22.29), como p2/p; > 1 debido a que
s2 — 81 > 0, se tiene que

2yM2 +1—-y>v+1 (22.34)

que implica M? > 1; por otra parte, de (22.31), para M? — 1 (onda de
choque muy débil), M? — 1, mientras que para M? — oo (onda de choque
muy fuerte), M2 — (v —1)/2y < 1; es decir, (y —1)/2y < M2 < 1. Esto
quiere decir que a través de una onda de choque normal el movimiento del gas,
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(2) ya (b)

_
Onda de Mach limite

N~ Onda sonora

producida por el
' ! movimiento de U at
?"W-; la particula

Zona de silencio
(c)

Zona de accion

Onda de Mach

Figura 22.6: Ondas generadas por una particula que se mueve a velocidad U en un fluido en
reposo con velocidad del sonido a para los casos subsénico (a), sénico (b) y supersénico (c).

relativo a la onda de choque (no se olvide que todas las relaciones derivadas
hasta aqui son en relacién a unos ejes ligados a la onda de choque), pasa de
supersonico a subsdnico, siendo ello consecuencia del segundo principio de la
termodinamica.

22.5. Ondas de Mach y ondas de choque oblicuas
en gases perfectos

En flujos bidimensionales y tridimensionales supersénicos las ondas de cho-
que dejan de ser planos perpendiculares al movimiento del fluido y pueden
adoptar la forma de una superficie cualquiera (ver figura 22.1). En ellas la
componente tangencial de la velocidad ya no es igual a cero, ¥; # 0. En esta
seccién consideraremos ondas de choque en flujos bidimensionales supersoni-
cos; en particular, consideraremos las denominadas ondas de choque oblicuas
planas, que se forman, por ejemplo, en el movimiento sobre cunas y esquinas
(ver figura 22.9 mds adelante). Sin embargo, las relaciones que se derivaran
son localmente validas para cualquier onda de choque.
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Pero antes de considerar estas ondas de choque oblicuas, es conveniente
introducir la nocién de onda de Mach. Cuando una particula infinitesimal
se mueve en el seno de un fluido, continuamente choca con las particulas
fluidas de los alrededores, enviando hacia afuera ondas sonoras esféricas que
emanan de cada punto a lo largo de su recorrido. En la figura 22.6 se muestran
algunos de estos frentes de perturbacion esféricos. El comportamiento de estos
frentes es bastante diferente segin sea subsdnica o supersénica la velocidad
de la particula. Si la particula se mueve subsénicamente, U < a (M < 1),
las perturbaciones esféricas se alejan en todas las direcciones sin alcanzarse
unas a otras. Avanzan también por delante de la particula, porque recorren
una distancia adt en el intervalo de tiempo 4t, durante el cual la particula
s6lo ha recorrido una distancia Uét. Por tanto, cuando un cuerpo se mueve
subsOnicamente su presencia se percibe en todo el campo fluido: se puede oir o
sentir el incremento de presion debido a un cuerpo que se acerca antes de que
llegue. A la velocidad sénica, U = a [M = 1; figura 22.6(b)], las perturbaciones
se mueven a la misma velocidad que la particula y se acumulan a la izquierda
de ella formando un cierto tipo de frente que lleva el nombre de onda de
Mach! Ninguna perturbacién se desplaza aguas arriba de la particula; si nos
situamos a la izquierda de la particula, no oiremos el mévil que se acerca. En
movimiento supersénico, U > a, la falta previa de aviso del peligro es mucho
mas pronunciada. Las esferas de la perturbacién no pueden seguir el rapido
movimiento de la particula que las originé. Todas ellas son arrastradas detras
de la particula y son tangentes a una superficie conica denominada cono de
Mach. De acuerdo con la figura 22.6(c), el angulo del cono de Mach (édngulo
de Mach) es

p=sin"! % = sin~! % =sin~! ﬁ : (22.35)
Cuanto mayor es el nimero de Mach de la particula, tanto mas esbelto es el
cono de Mach; por ejemplo, £ = 30° cuando M = 2 y es 11,5° cuando M = 5.
En el caso limite de flujo sénico, M = 1, u = 90° y el cono de Mach se
convierte en un frente plano que se mueve con la particula [figura 22.6(b)].
No podriamos oir la perturbacién originada por la particula supersénica de la
figura 22.6(c) a menos que estemos en la zona de accién en el interior del cono
de Mach. No hay peligro de que las perturbaciones alcancen nuestro oido si
estamos en la zona de silencio, fuera del cono. Por tanto, un observador en el

'En honor de Ernst Mach, quien por 1887 introdujo este concepto; en particular, la
construccidn gréfica de la figura 22.6, que aparece en casi todos los libros de texto de Macénica
de Fluidos, se debe a él. En su honor también se denomina el nimero adimensional mas
importante de los movimientos compresibles.
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Figura 22.7: Geometria de una onda de choque oblicua.

suelo por debajo de un avién supersonico no oye el estampido o bang sonico
debido al cono que viaja ligado al avién hasta cierto tiempo después de haber
pasado éste.

La onda de Mach no tiene por qué ser conica. Por ejemplo, ondas de Mach
se forman en la superficie de cualquier cuerpo en movimiento supersénico
debido a las rugosidades de la misma. A diferencia de las ondas de Mach
producidas por el movimiento de una particula infinitesimal, éstas no tienen
necesariamente forma conica, sino que partiendo de los distintos puntos de la
superficie se van agolpando sobre una superficie envolvente, que constituye una
discontinuidad finita u onda de choque, generalmente no normal a la corriente
(ver figura 22.1). En lo que sigue se derivaran relaciones cuantitativas para las
propiedades de estas ondas de choque oblicuas.

Como en las relaciones de Rankine-Hugoniot (22.9)-(22.10) y (22.12) sélo
interviene la componente normal de la velocidad, las relaciones (22.28)-(22.33)
siguen siendo validas para una onda de choque oblicua si uno reemplaza v y M
por sus componentes normales v, y M,. De esta forma, sélo es necesario anadir
relaciones que nos permitan conocer M,; en funcién del Mach incidente, M, y
M2 en funcién de M,. Llamando ( al angulo que forma la corriente incidente
con el plano tangente a la onda, y 6 al angulo que forma la corriente detras
de la onda en relacién a la corriente incidente (ver figura 22.7), se tiene

Un1 = v Sin g, (22.36)

Up2 = V2 sin(,@ — 9) . (22.37)

Como 4y = 74 = Uy, se tiene ademds que

vy cos 3 = vocos(3 —0). (22.38)
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Figura 22.8: Curvas 6 — 3 — M para una onda de choque oblicua [ecuacién (22.41)] para un
gas con v = 1,4.

De estas relaciones y de (22.28) se llega a:

vn2 _ tan(8-6) 2+ (y- 1)M2

- = 22.39
Un1 tan 3 (v + )M, (22:39)
Teniendo en cuenta que, de (22.36),
]\4.,11 = M1 sinﬁ, (22.40)
se obtine, finalmente, la siguiente relacién entre 8, 3y M 12:
2.2 3
tanf = 2cot g | ML b1 (22.41)

M2(y +cos28) + 2|

El proceso de resolucion seria el siguiente: conocido M, y, por ejemplo, la
deflexién de la corriente a través de la onda de choque 6 (que normalmente
viene impuesta por restricciones externas al flujo, ver figura 22.9), de (22.41)
se obtiene 3, y de (22.40) M,;. Con M,; y el conocimiento, por ejemplo, de
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M, >l 0< M, >1

Figura 22.9: Ondas de choque en flujos sobre cufas y esquinas. Si 8 > 0maz la onda de
choque se separa.

la corriente incidente (py,p;), de (22.28)-(22.33) se obtienen las propiedades
de la corriente detras de la onda de choque, p2, p2, etc., y el nimero de Mach
normal detras de la onda, M,2. Finalmente, el nimero de Mach detras de la
onda viene dado por

My = Mng/sin(ﬁ - 9) . (22.42)

La relacién (22.41) entre 6 y 3 se representa en la figura 22.8 para varios
valores de M. De esta figura se desprenden las siguientes caracteristicas de
las ondas de choque oblicuas:

1. Para cada valor del Mach incidente existe un angulo maximo de desvia-
cién O,,.c. Si la geometria fisica es tal que 6 > 6,4, no existe solucién
para una onda de choque oblicua recta, y en su lugar se forma una onda
de choque curva separada del obstaculo (ver figura 22.9).

2. Para un 0 < 6,,,; hay dos valores posibles de 8 para cada M, corres-
pondientes a una onda de choque débil y otra fuerte. La onda de choque
fuerte da lugar a un angulo 3 mayor, puesto que, de (22.40), para un
mismo M corresponde a un M,; mayor. La onda de choque mas fuerte
suele ser inestable y no se presenta en la practica. Por ello, la solucion que
se produce fisicamente es la correspondiente al dngulo 8 menor (lineas
continuas en la figura 22.8), que corresponde a My > 1, es decir, a un
flujo supersénico detras de la onda de choque (por supuesto, My < 1,
segun vimos en la seccién anterior), excepto en una pequena franja cer-
ca de Oy, (ver figura 22.8). Las ondas de choque fuertes dan lugar a
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Figura 22.10: Ondas de choque oblicuas fuerte y débil.

M; < 1 (flujo subsénico) y no suelen producirse en la préctica, salvo
que las condiciones detras de la onda asi lo exigiese; por ejemplo, si la
presién detras de la onda de choque de la figura 22.10 fuese incrementa-
da por algin mecanismo independiente a la onda, se podria producir la
onda de choque fuerte, que aparece en la figura con linea de trazos.

3. Sif =0, 8 = /2 (correspondiente a una onda de choque normal)
o B = p (correspondiente a una onda de Mach). Es decir, una onda
de choque oblicua infinitesimal (deflexién infinitesimal de la corriente)
coincide con una onda de Mach (ver seccién 22.7), salvo en el caso de
que la onda de choque sea normal (M; < 1).

4. Para un angulo de deflexién 6 fijo, al decrecer M; incrementa el dngulo
de la onda 3 (para ondas débiles), y existe un nimero de Mach minimo
por debajo del cual no existe solucién. Este Mach minimo corresponde
a 0 = 0,42, y para nimeros de Mach menores que él la onda de choque
se separa, tal y como se ilustra en la figura 22.9.

22.6. Ondas de choque fuertes y débiles

Se obtienen a continuacién expresiones simplificadas en los limites de ondas
de choque débiles (p2/p2 — 1) y fuertes (p2/p1 > 1).

22.6.1. Ondas débiles
De (22.29) se tiene que

P2 29(ME - 1)

I~ T <1 (22.43)
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por lo que M2, — 1 < 1 para una onda de choque débil (lo cual ya sabiamos).
Llamando

m=M-1<«1 , (22.44)

de la expresion anterior y de las relaciones restantes de Rankine-Hugoniot se
tiene, desarrollando en potencias de m y reteniendo sélo los términos de mayor
orden, las relaciones siguientes:

a2 , (22.45)
Un2 P1 '7+1
P2 2y T 2(y - 1)
D1 ’7+1 T1 '7+1 ( )
S2=81 ., %Y s (22.47)

o m
Cy 3(v+1)2

Se observa que una onda de choque débil es casi isentrdpica, con errores del
orden del cubo del parametro pequeno m, lo cual ya sabiamos de la seccién 22.3
[ecuaciones (22.14) y (22.15)]. Por iltimo, de las relaciones (22.41) y (22.39)
se tiene

2m tan 3
tan f ~ 4
o (y+1)1+tan2g (22.48)
tan(B3 —0)  vn2 2m
_— =~ - — .
tan Upl v+1 Q2id)

Es decir, una onda de choque muy débil tiene un angulo de deflexion 6 muy
pequeiio, lo cual corresponde, segiin lo dicho en la seccién anterior, a 3 ~ 7/2
6 8 ~ p, dependiendo de que My < 1 o My > 1, respectivamente (para este
ultimo caso, ver seccién 22.7).

22.6.2. Ondas fuertes

En el limite p2/p; — oo se tiene, de (22.29), M; — oo. Por tanto, de las
otras relaciones de Rankine-Hugoniot y de (22.41),

P2 Un  Y+1 T, (7‘1>]/2

e e 2 — — 00 . A/I g o 3 22.50

p1 Vp2  Y-—1 T 2 2y ( )
N O (22.51)

DP1o P10
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sin24

_— 22.52
v+ cos 20 ( )

tanf —

Como p, y T> tienden a infinito, se suelen expresar en la forma:

p2_ 2 CpT2_> 2y
prvi; v+l T Wk (v+1)2 7

(22.53)

donde se ha hecho uso de las relaciones de Rankine-Hugoniot en su forma
original (22.9)-(22.12) y se han despreciado p; y h; frente a p2 y ho, respecti-
vamente.

22.7. Expansion de Prandtl-Meyer

Hasta aqui sélo se han considerado ondas de choque o de compresion, a
través de las cuales el fluido incrementa su presién, temperatura y densidad.
Existen también ondas de expansidn, aunque éstas no satisfacen las relaciones
de Rankine-Hugoniot (es decir, no son propiamente discontinuidades fluidas),
ya que en tal caso violarian, como se vio en la seccién 22.3, el segundo prin-
cipio de la termodinamica; por el contrario, las ondas de expansién son casi
isentrépicas y ocupan una region finita del flujo ideal (para mas detalles sobre
ondas de expansién y de compresién, en general, ver capitulo 26).

En esta seccion se va a considerar un tipo especial de onda de expansion
que se produce cuando un flujo supersénico tuerce una esquina convexa (ver
figura 22.11), denominada expansién de Prandtl-Meyer. Este tipo de expansién
es bastante frecuente en la practica (ver, por ejemplo, leccién siguiente), y es
la antitesis de una onda de choque oblicua sobre una esquina céncava, aunque,
como se vera, no puede ser considerada como una discontinuidad fluida, sino
que esta constituida por un abanico de ondas de Mach entre el flujo incidente
y el flujo saliente de la expansién. La regién de expansién estd asi limitada
por los dngulos p; = arcsin(1/M;) y pg = arcsin(1/Ms), donde M; y M, son
los nimeros de Mach de la corriente incidente y de la corriente aguas abajo,
respectivamente. Al estar formada la expansién por una sucesién infinita de
ondas de Mach, las lineas de corriente son continuas a lo largo de la misma,
contrariamente a lo que ocurre en una onda de choque, siendo ademas el
proceso isentropico, ya que ds ~ 0 a través de cada onda de Mach. Una onda
de expansién se produce siempre que un flujo supersénico es deflectado por una
superficie convexa. Aqui se considerarin las ondas de expansién producidas
sobre una esquina formada por dos planos que intersectan con un cierto angulo
0 = 6, — 6,. Este tipo de expansién fue originalmente estudiado por Prandtl
(1907) y posteriormente por su discipulo Meyer (1908), y de ahi su nombre.
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Lineade Mach
delantera

Lineade Mach
trasera

Figura 22.11: Expansién de Prandtl-Meyer.

Lo que se pretende calcular son las condiciones a la salida de la onda, Ma,
p2 y T, conocidas las magnitudes del flujo supersénico incidente, M, p; y 11,
asi como el dngulo de deflexién 6, (se supone que 6, = 0; ver figura 22.11).
Para ello consideraremos el cambio infinitesimal de las magnitudes fluidas a
través de una onda muy débil, u onda de Mach, producido por una deflexién
infinitesimal df de la corriente.

Como se vié en la seccién anterior, cuando § — 0, 8 — ©/2 6 § —
p1 = sin~}(1/M;), dependiendo de si el nimero de Mach detras de la onda es
menor o mayor que la unidad. Esta claro que ahora tenemos el segundo caso.
Suponiendo que la velocidad de la corriente pasa de v a v + dv al atravesar la
onda de Mach, de (22.36)-(22.38) se tiene

(v+dv)?  (vn+dv)? +v? (it dv)®/vf+1  tan®(8 —df) +1

v2 v2 + v? B vi/v?+1 T tan?B+1
(22.54)
Teniendo en cuenta que
tan g ~ t . (22.55)
anf ~tanp = ——m—= , .
= ArE =1

donde M es el nimero de Mach de la corriente incidente, y reteniendo sélo los
términos lineales en df, se llega a
dv de
—_—= 22.56
= T (22.56)

es decir,
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6= VM2 — 1— , (22.57)

que constituye una ecuacién diferencial para la deflexién de la corriente en
funcién de su velocidad.

La relacién entre las magnitudes fluidas a la entrada y a la salida de la
expansion se obtiene de la integracion de la ecuacién anterior entre los angulos
0, y 62:

62 Mo
d6 = N (22.58)
6 M, v

Para integrar el segundo miembro es preciso relacionar dv/v con el nimero de
Mach. De la definicién de este tiltimo se tiene

dv dM " da

v M a’
Particularizando para un gas perfecto, al ser el flujo adiabatico (se conserva
la entalpia de remanso), se verifica

(22.59)

2 -1/2
Qo T, =l o g ( 2>
(a) —_T—1+ 5 M , a= l+ 3 M ,  (22.60)

que diferenciada proporciona

_ _ -1
da _ _ (l—_l) M (1 + 1——11\12) M . (22.61)
a 2 2
Sustituyendo en (22.59),
d
dv _ 1_1 aM (22.62)
voo1+ M2 M
y en (22.58),
92 M, dM
h=0,-0= | Y— T (22.63)
61 My 1+ l—‘ M2 M

Se suele definir la funcién de Prandtl-Meyer

VM? -1 dM

V(M) = 1+ -’—M2 M
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‘/7_ arctan 1\/[2—1 —arctan VM2 — 1, (22.64)

de forma que (22.63) se puede escribir como

02 = v(Ms) — v(M). (22.65)

La constante de integracién en (22.64) no es importante puesto que en (22.65)
aparece una diferencia de v(M); se ha elegido ¥(M = 1) = 0. La funcién de
Prandtl-Meyer (22.64) se encuentra tabulada en el apéndice B al final de esta
leccion para v = 1,4, donde también se incluyen los valores del angulo de Mach
73

El proceso de calculo seria el siguiente: dado M, se calcularia v(M;) de
la tabla del apéndice B; conocido el dngulo de deflexién 65, de (22.65) se cal-
cularia v(M2) y, del apéndice B, M2; con Mz, y teniendo en cuenta que la
expansion es isentrépica y adiabdtica (se conservan las magnitudes de reman-
s0), se calcularfan todas las magnitudes fluidas detras de la expansién; por
ejemplo,

T 1+ 55EME

=D W it 1 22.66
T> 14 M 22.66)
14 2= pp2 v/(v=1)
Z;= —31—22] (22.67)
k 2 iMI

Al ser v(M) una funcién monétona creciente (ver apéndice B), de (22.65) se
tiene que M2 > M;(> 1); es decir, el flujo se hace mds supersdnico a través de
una expansién de Prandtl-Meyer. Por otro lado, de (22.66)-(22.67), T, < T},
p2 < p1 y p2 < p1: temperatura, presion y densidad disminuyen a través de
una onda de expansién, contrariamente a lo que ocurria en una onda de choque
o de compresion.

Referencias.
= J.D. ANDERSON, 1990. Capitulos 3 y 4.
=« HW. LIEPMANN y A. ROSHKO, 1957. Capitulo 4.
= G. MILLAN BARBANY, 1975. Capitulo II.
= F.M. WHITE, 1983. Capitulo 9.
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22.8. APENDICE A: Propiedades de una onda de
choque normal para vy =14

M p2/p1 p2/p1 T2 /T, po2/por Poz2/P1 M2
1.00 | 1.0000+00 | 1.00000 | 1.0000+00 | 1.0000+00 | 1.89293+00 | 1.0000+00
1.05 | 1.11958400 | 1.08398 | 1.03284+00 | 9.99854-01 | 2.00825+00 | 9.53125-01
1.10 | 1.24499+00 | 1.16908 | 1.06493+00 | 9.98929-01 | 2.13285+00 | 9.11770-01
1.15 | 1.37624400 | 1.25504 | 1.09657+00 | 9.96691-01 | 2.26608+00 | 8.75024-01
1.20 | 1.51333+00 | 1.34161 | 1.12799+00 | 9.92800-01 | 2.40750+00 | 8.42170-01
1.25 | 1.65624400 | 1.42857 | 1.15937+00 | 9.87058-01 | 2.55676+00 | 8.12636-01
1.30 | 1.80499+00 | 1.51569 | 1.19087+00 | 9.79375-01 | 2.71359+00 | 7.85957-01
1.35 | 1.95958400 | 1.60278 | 1.22261+00 | 9.69739-01 | 2.87781400 | 7.61753-01
1.40 | 2.11999+00 | 1.68965 | 1.25469+00 | 9.58196-01 | 3.04924+00 | 7.39709-01
1.45 | 2.28624+00 | 1.77613 | 1.28720400 | 9.44839-01 | 3.22776+00 | 7.19561-01
1.50 | 2.45832400 | 1.86206 | 1.32021400 | 9.29789-01 | 3.41328+00 | 7.01088-01
1.55 | 2.63624+00 | 1.94731 | 1.35378+00 | 9.13191-01 | 3.60571+00 | 6.84101-01
1.60 | 2.81999+00 | 2.03174 | 1.38796+00 | 8.95203-01 | 3.80498+00 | 6.68437-01
1.65 | 3.00957400 | 2.11524 | 1.42280+00 | 8.75991-01 | 4.01104+00 | 6.53958-01
1.70 | 3.20499+00 | 2.19771 | 1.45833+00 | 8.55724-01 | 4.22384+00 | 6.40543-01
1.75 | 3.40624+00 | 2.27906 | 1.49457+00 | 8.34568-01 | 4.44335+00 | 6.28088-01
1.80 | 3.61332+00 | 2.35922 | 1.53157+00 | 8.12687-01 | 4.66953+00 | 6.16501-01
1.85 | 3.82624+00 | 2.43811 | 1.56934+00 | 7.90235-01 | 4.90235+00 | 6.05700-01
1.90 | 4.04499400 | 2.51567 | 1.60791+00 | 7.67359-01 | 5.14179+00 | 5.95616-01
1.95 | 4.26957400 | 2.59187 | 1.64729400 | 7.44198-01 | 5.38784+00 | 5.86184-01
2.00 | 4.49999+00 | 2.66666 | 1.68750+00 | 7.20877-01 | 5.64046+00 | 5.77350-01
2.05 | 4.73624400 | 2.74001 | 1.72854+00 | 6.97511-01 | 5.89965+00 | 5.69062-01
2.10 | 4.97832400 | 2.81190 | 1.77045+00 | 6.74206-01 | 6.16540+00 | 5.61276-01
2.15 | 5.22624+00 | 2.88230 | 1.81321+00 | 6.51054-01 | 6.43769+00 | 5.53953-01
220 | 547999400 | 2.95121 | 1.85685+00 | 6.28139-01 | 6.71651+00 | 5.47055-01
2.25 | 5.73957+00 | 3.01863 | 1.90138+00 | 6.05532-01 | 7.00185+00 | 5.40551-01
2.30 | 6.00499+00 | 3.08454 | 1.94680+00 | 5.83297-01 | 7.29371+00 | 5.34411-01
2.35 | 6.27624+00 | 3.14896 | 1.99311+00 | 5.61487-01 | 7.59208+00 | 5.28607-01
2.40 | 6.55332400 | 3.21189 | 2.04033400 | 5.40146-01 | 7.89695+00 | 5.23117-01
2.45 | 6.83623400 | 3.27334 | 2.088454+00 | 5.19313-01 | 8.20832+00 | 5.17918-01
2.50 | 7.12498+00 | 3.33333 | 2.137504-00 | 4.99017-01 | 8.52618+00 | 5.12989-01
2.55 | 7.41957400 | 3.39187 | 2.18746+00 | 4.79282-01 | 8.85053+00 | 5.08312-01
2.60 | 7.71998+00 | 3.44897 | 2.23834+00 | 4.60125-01 | 9.18136+00 | 5.03871-01
2.65 | 8.02623+00 | 3.50467 | 2.29015+00 | 4.41559-01 | 9.51867+00 | 4.99649-01
2.70 | 8.33832400 | 3.55899 | 2.34289+00 | 4.23592-01 | 9.86245+00 | 4.95633-01
2.75 | 8.65623400 | 3.61194 | 2.39656+00 | 4.06228-01 | 1.02127+01 | 4.91810-01
2.80 | 8.97998+00 | 3.66355 | 2.45117+00 | 3.89466-01 | 1.05694+01 | 4.88167-01
2.85 | 9.30956+00 | 3.71385 | 2.50672400 | 3.73303-01 | 1.09326+01 | 4.84693-01
2.90 | 9.64498+00 | 3.76286 | 2.56320+00 | 3.57735-01 | 1.13023+01 | 4.81379-01
2.95 | 9.98623+00 | 3.81061 | 2.62063+00 | 3.42752-01 | 1.16784+01 | 4.78214-01
3.00 | 1.03333+01 | 3.85714 | 2.67901+00 | 3.28346-01 | 1.20610+01 | 4.75190-01
3.05 | 1.068624+01 | 3.90246 | 2.73833+00 | 3.14503-01 | 1.24501+01 | 4.72299-01
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Propiedades de una onda de choque normal para v = 1,4 (continua-

cién).

M p2/P1 P2/ T2/Th Po2/po Po2/p Mn2

3.10 | 1.10449+01 | 3.94661 | 2.79860+00 | 3.01213-01 1.28456+01 | 4.69533-01
3.15 | 1.14095+01 | 3.98961 | 2.85982+00 | 2.88460-01 | 1.32475+01 | 4.66885-01
3.20 | 1.17799+01 | 4.03149 | 2.92199+400 | 2.76230-01 | 1.36560+01 | 4.64348-01
3.25 | 1.21562+01 | 4.07228 | 2.98511+00 | 2.64508-01 | 1.40709+01 | 4.61917-01
3.30 | 1.25383+01 | 4.11202 | 3.04919+00 | 2.53277-01 | 1.44922+401 | 4.59585-01
3.35 | 1.29262+01 | 4.15071 | 3.11422+00 | 2.42522-01 | 1.49200+01 | 4.57348-01
3.40 | 1.33199+01 | 4.18840 | 3.18020+00 | 2.32227-01 | 1.53542+01 | 4.55200-01
3.45 | 1.37195+4+01 | 4.22511 | 3.24715+00 | 2.22374-01 | 1.57949+01 | 4.53136-01
3.50 | 1.41249+01 | 4.26086 | 3.31505+4+00 | 2.12949-01 | 1.62421+01 | 4.51153-01
3.55 | 1.45362+01 | 4.29569 | 3.38390+00 | 2.03934-01 | 1.66957+01 | 4.49247-01
3.60 | 1.49533+01 | 4.32962 | 3.45372+00 | 1.95313-01 | 1.71557+01 | 4.47412-01
3.65 | 1.53762+01 | 4.36266 | 3.52450+00 | 1.87072-01 | 1.76222+01 | 4.45647-01
3.70 | 1.58049+01 | 4.39486 | 3.59624+400 | 1.79195-01 | 1.80952+01 | 4.43947-01
3.75 | 1.62395+01 | 4.42622 | 3.66894+00 | 1.71666-01 | 1.85745+01 | 4.42310-01
3.80 | 1.66799+01 | 4.45679 | 3.74260+400 | 1.64471-01 | 1.90604+01 | 4.40731-01
3.85 | 1.71262+01 | 4.48656 | 3.81722+00 | 1.57596-01 | 1.95527+01 | 4.39210-01
3.90 | 1.75783+01 | 4.51558 | 3.89281+400 | 1.51028-01 | 2.00514+401 | 4.37742-01
3.95 | 1.80362+01 | 4.54386 | 3.96936+00 | 1.44752-01 | 2.05566+01 | 4.36326-01
4.00 | 1.84999+4-01 | 4.57142 | 4.04687+00 | 1.38757-01 | 2.10682+01 | 4.34958-01
4.05 | 1.89695+01 | 4.59829 | 4.125354+00 | 1.33029-01 | 2.15863+01 | 4.33638-01
4.10 | 1.94449+01 | 4.62448 | 4.20479+400 | 1.27557-01 | 2.21108+01 | 4.32362-01
4.15 | 1.99262+01 | 4.65001 | 4.28519+400 | 1.22329-01 | 2.26417+01 | 4.31129-01
4.20 | 2.04133+01 | 4.67491 | 4.36657+00 | 1.17334-01 | 2.31791+01 | 4.29937-01
4.25 | 2.09062+01 | 4.69918 | 4.44890+4-00 | 1.12562-01 | 2.37230+01 | 4.28784-01
4.30 | 2.14049+01 | 4.72286 | 4.53221+00 | 1.08002-01 | 2.42733+01 | 4.27669-01
4.35 | 2.19095+01 | 4.74595 | 4.61647+00 | 1.03645-01 | 2.48300+01 | 4.26589-01
4,40 | 2.24199+401 | 4.76847 | 4.70171+00 | 9.94814-02 | 2.539324-01 | 4.25544-01
4.45 | 2.293624-01 | 4.79044 | 4.78791+00 | 9.55021-02 | 2.59628+01 | 4.24532-01
4.50 | 2.34582+01 | 4.81188 | 4.87508+00 | 9.16986-02 | 2.65388+01 | 4.23551-01
4.55 | 2.39862+01 | 4.83279 | 4.96322+00 | 8.80629-02 | 2.71213+01 | 4.22601-01
4.60 | 2.45199+01 | 4.85321 | 5.05232+00 | 8.45872-02 | 2.77103+01 | 4.21680-01
4.65 | 2.50595+01 | 4.87313 | 5.14239+400 | 8.12640-02 | 2.83057+01 | 4.20786-01
4.70 | 2.56049+01 | 4.89258 | 5.23343+00 | 7.80862-02 | 2.89075+01 | 4.19919-01
4.75 | 2.61562+01 | 4.91156 | 5.32544400 | 7.50472-02 | 2.95158+01 | 4.19079-01
4.80 | 2.67132+01 | 4.93009 | 5.41841+00 | 7.21404-02 | 3.01305+01 | 4.18262-01
4.85 | 2.72762+01 | 4.94819 | 5.51235400 | 6.93597-02 | 3.07516+01 | 4.17470-01
4.90 | 2.78449+401 | 4.96587 | 5.60727+00 | 6.66992-02 | 3.13792+01 | 4.16701-01
4.95 | 2.84195401 | 4.98313 | 5.70315+00 | 6.41533-02 | 3.20133+01 | 4.15953-01
5.00 | 2.89999+01 | 5.00000 | 5.80000+00 | 6.17168-02 | 3.26537+01 | 4.15227-01
5.10 | 3.01782+01 | 5.03257 | 5.99660+00 | 5.71518-02 | 3.39540+01 | 4.13835-01
5.20 | 3.13799+401 | 5.06367 | 6.19708+00 | 5.29664-02 | 3.52800+01 | 4.12519-01
5.30 | 3.26049+01 | 5.09338 | 6.40144+00 | 4.91264-02 | 3.66318+01 | 4.11273-01
5.40 | 3.38532+01 | 5.12177 | 6.60968+00 | 4.56009-02 | 3.80094+01 | 4.10093-01
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Propiedades de una onda de choque normal para v = 1,4 (continua-

cién).

Mn P2/P1 P2/, T2/Th Po2/Po1 Poz2/P1 Ma2

5.50 | 3.51249+01 | 5.14893 | 6.82179+00 | 4.23618-02 | 3.94127+01 | 4.08974-01
5.60 | 3.64199+01 | 5.17491 | 7.03779+400 | 3.93836-02 | 4.08418+01 | 4.07911-01
5.70 | 3.77382+01 | 5.19978 | 7.25766+00 | 3.66434-02 | 4.22966+01 | 4.06902-01
5.80 | 3.90799+01 | 5.22360 | 7.48142+00 | 3.41203-02 | 4.37772+01 | 4.05943-01
5.90 | 4.04449+01 | 5.24642 | 7.70906+00 | 3.17953-02 | 4.52835+01 | 4.05030-01
6.00 | 4.18332+01 | 5.26829 | 7.94058+00 | 2.96512-02 | 4.68156+01 | 4.04161-01
6.10 | 4.32449+01 | 5.28926 | 8.17598+00 | 2.76725-02 | 4.83735+01 | 4.03333-01
6.20 | 4.46799+401 | 5.30939 | 8.41527+00 | 2.58451-02 | 4.99571+01 | 4.02543-01
6.30 | 4.61382+01 | 5.32870 | 8.65844+00 | 2.41560-02 | 5.15665+01 | 4.01789-01
6.40 | 4.76199+401 | 5.34725 | 8.90549+00 | 2.25938-02 | 5.32016+01 | 4.01069-01
6.50 | 4.91249+01 | 5.36507 | 9.15643+00 | 2.11477-02 | 5.48625+01 | 4.00381-01
6.60 | 5.06532+01 | 5.38220 | 9.41125+00 | 1.98082-02 | 5.65491+01 | 3.99723-01
6.70 | 5.22049+01 | 5.39867 | 9.66996+00 | 1.85665-02 | 5.82615+01 | 3.99093-01
6.80 | 5.37799+401 | 5.41451 | 9.93255+00 | 1.74145-02 | 5.99997+01 | 3.98491-01
6.90 | 5.53782+01 | 5.42976 | 1.01990+01 | 1.63451-02 | 6.17636+01 | 3.97913-01
7.00 | 5.69999+01 | 5.44444 | 1.04693+01 | 1.53516-02 | 6.35533+01 | 3.97359-01
7.10 | 5.86449+01 | 5.45858 | 1.07436+01 | 1.44280-02 | 6.53687+01 | 3.96828-01
7.20 | 6.03132401 | 5.47220 | 1.10217+401 | 1.35687-02 | 6.72099+01 | 3.96318-01
7.30 | 6.20049+01 | 5.48533 | 1.13037+01 | 1.27687-02 | 6.90768+01 | 3.95829-01
7.40 | 6.37198+401 | 5.49799 | 1.15896+01 | 1.20234-02 | 7.09695+01 | 3.95359-01
750 | 6.54582+4+01 | 5.51020 | 1.18794+01 | 1.13286-02 | 7.28879+01 | 3.94907-01
7.60 | 6.72198+401 | 5.52198 | 1.21731+01 | 1.06805-02 | 7.48321+01 | 3.94472-01
7.70 | 6.90048+01 | 5.53336 | 1.24707+01 | 1.00754-02 | 7.68020+01 | 3.94054-01
780 | 7.08132+01 | 5.54434 | 1.27721+01 | 9.51030-03 | 7.87977+01 | 3.93651-01
7.90 | 7.264484-01 | 5.55496 | 1.30774+01 | 8.98203-03 | 8.08192+01 | 3.93263-01
8.00 | 7.44998+01 | 5.56521 | 1.33867+01 | 8.48793-03 | 8.28664+01 | 3.92889-01
8.10 | 7.63782+01 | 5.57513 | 1.36998+01 | 8.02550-03 | 8.49393+01 | 3.92529-01
8.20 | 7.82798+01 | 5.58471 | 1.40168+01 | 7.59245-03 | 8.70380+01 | 3.92182-01
8.30 | 8.02048+01 | 5.59399 | 1.43377+01 | 7.18666-03 | 8.91625+01 | 3.91846-01
8.40 | 8.21532+401 | 5.60296 | 1.46624+01 | 6.80620-03 | 9.13127+01 | 3.91523-01
8.50 | 8.41248+01 | 5.61165 | 1.49911+01 | 6.44925-03 | 9.34887+01 | 3.91211-01
8.60 | 8.61198+01 | 5.62006 | 1.53236+01 | 6.11418-03 | 9.56904+01 | 3.90909-01
8.70 | 8.81381+01 | 5.62820 | 1.56601+01 | 5.79946-03 | 9.79179+01 | 3.90617-01
8.80 | 9.01798+-01 | 5.63609 | 1.60004+01 | 5.50370-03 | 1.00171+02 | 3.90335-01
8.90 | 9.22448+01 | 5.64374 | 1.63446+01 | 5.22558-03 | 1.02450+02 | 3.90063-01
9.00 | 9.43331+01 | 5.65116 | 1.66927+01 | 4.96391-03 | 1.04754+02 | 3.89799-01
9.10 | 9.64448+01 | 5.65835 | 1.70447+01 | 4.71760-03 | 1.07085+02 | 3.89543-01
9.20 | 9.85798+01 | 5.66532 | 1.74005+01 | 4.48560-03 | 1.09441+02 | 3.89296-01
9.30 | 1.00738+02 | 5.67209 | 1.77603+01 | 4.26698-03 | 1.11823+02 | 3.89057-01
9.40 | 1.02919+402 | 5.67866 | 1.81239+01 | 4.06085-03 | 1.14231+02 | 3.88825-01
9.50 | 1.05124+4+02 | 5.68503 | 1.84915+01 | 3.86640-03 | 1.16664+02 | 3.88600-01
9.60 | 1.07353+02 | 5.69123 | 1.88629+01 | 3.68288-03 | 1.19124+02 | 3.88383-01
9.70 | 1.09604+02 | 5.69724 | 1.92382+01 | 3.50959-03 | 1.21609+02 | 3.88171-01
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Propiedades de una onda de choque normal para v = 1,4 (continua-

cion).

Mn p2/p1 p2/m T2/Th Poz2/Pm Po2/p1 M2

9.80 | 1.11879+402 | 5.70308 | 1.96174+01 | 3.34587-03 | 1.24119+02 | 3.87967-01
9.90 | 1.14178402 | 5.70876 | 2.00005+01 | 3.19112-03 | 1.26656+02 | 3.87768-01
10.0 | 1.16499+02 | 5.71428 | 2.03875+401 | 3.04479-03 | 1.29218+02 | 3.87575-01
10.5 | 1.28458+02 | 5.73969 | 2.23806+01 | 2.42220-03 | 1.424164+02 | 3.86690-01
11.0 | 1.40999+02 | 5.76190 | 2.44710+01 | 1.94508-03 | 1.562574+02 | 3.85922-01
11.5 | 1.54124+02 | 5.78142 | 2.66586+01 | 1.57559-03 | 1.70742+02 | 3.85251-01
12.0 | 1.67833+02 | 5.79865 | 2.89434+01 | 1.28663-03 | 1.85871+02 | 3.84661-01
12.5 | 1.82124+402 | 5.81395 | 3.132554-01 | 1.05860-03 | 2.01644+02 | 3.84139-01
13.0 | 1.96999+02 | 5.82758 | 3.38047+01 | 8.77103-04 | 2.18061+4+02 | 3.83677-01
13.5 | 2.124574+02 | 5.83978 | 3.63811+01 | 7.31494-04 | 2.35121+402 | 3.83264-01
14.0 | 2.28499+02 | 5.85074 | 3.90548+01 | 6.13804-04 | 2.52825+02 | 3.82894-01
14.5 | 2.45124402 | 5.86062 | 4.18257+01 | 5.18014-04 | 2.711734+02 | 3.82562-01
15.0 | 2.62332+02 | 5.86956 | 4.46938+01 | 4.39535-04 | 2.90165+02 | 3.82262-01
15.5 | 2.80124+02 | 5.87767 | 4.76591+01 | 3.74840-04 | 3.09801+02 | 3.81990-01
16.0 | 2.98499+02 | 5.88505 | 5.07216+01 | 3.21198-04 | 3.30080+02 | 3.81744-01
16.5 | 3.17457+02 | 5.89179 | 5.38814+01 | 2.76475-04 | 3.51003+02 | 3.81519-01
17.0 | 3.36999+02 | 5.89795 | 5.71384+01 | 2.38994-04 | 3.72570+02 | 3.81314-01
17.5 | 3.571244+02 | 5.90361 | 6.04926+01 | 2.07428-04 | 3.94781+02 | 3.81126-01
18.0 | 3.77832+02 | 5.90881 | 6.39440+01 | 1.80720-04 | 4.17636+02 | 3.80953-01
18.5 | 3.99124+402 | 5.91360 | 6.74926+01 | 1.58022-04 | 4.41134+02 | 3.80794-01
19.0 | 4.20999+02 | 5.91803 | 7.11385+01 | 1.38650-04 | 4.65276+02 | 3.80648-01
19.5 | 4.43457+4+02 | 5.92212 | 7.48815+01 | 1.22052-04 | 4.90062+02 | 3.80512-01
20.0 | 4.66499+402 | 5.92592 | 7.87218+4-01 | 1.07776-04 | 5.15492+402 | 3.80387-01
20.5 | 4.90124+02 | 5.92945 | 8.26593+01 | 9.54533-05 | 5.41565+4-02 | 3.80270-01
21.0 | 5.14332402 | 5.93273 | 8.66941+01 | 8.47789-05 | 5.68283+02 | 3.80162-01
21.5 | 5.39124+02 | 5.93579 | 9.08260+01 | 7.55021-05 | 5.95644+02 | 3.80061-01
22.0 | 5.64499+02 | 5.93865 | 9.50552+01 | 6.74146-05 | 6.23649+02 | 3.79967-01
22.5 | 590457402 | 5.94132 | 9.93816+01 | 6.03426-05 | 6.52298+4-02 | 3.79879-01
23.0 | 6.16999+402 | 5.94382 | 1.03805+402 | 5.41407-05 | 6.81590+02 | 3.79797-01
23.5 | 6.44123+02 | 5.94616 | 1.08326+02 | 4.86867-05 | 7.11526+02 | 3.79720-01
24.0 | 6.71832+02 | 5.94836 | 1.12944+402 | 4.38778-05 | 7.42107+02 | 3.79648-01
24.5 | 7.00123+02 | 5.95043 | 1.17659+02 | 3.96267-05 | 7.733314+02 | 3.79580-01
25.0 | 7.28998+02 | 5.95238 | 1.22472+4+02 | 3.58596-05 | 8.05198+02 | 3.79516-01
25.5 | 7.58457+02 | 5.95421 | 1.27381+02 | 3.25135-05 | 8.37710+02 | 3.79456-01
26.0 | 7.88498+02 | 5.95594 | 1.32388+02 | 2.95346-05 | 8.70865+02 | 3.79399-01
26.5 | 8.19123402 | 595758 | 1.37492+02 | 2.68767-05 | 9.04664+402 | 3.79346-01
27.0 | 8.503314+02 | 5.95912 | 1.42694+4-02 | 2.45004-05 | 9.39107+402 | 3.79295-01
27.5 | 8.82123+402 | 5.96059 | 1.47992+02 | 2.23714-05 | 9.74194+02 | 3.79247-01
28.0 | 9.14498+402 | 5.96197 | 1.53388+02 | 2.04604-05 | 1.00992+4-03 | 3.79202-01
28.5 | 9.47456+4+02 | 5.96329 | 1.58881+02 | 1.87416-05 | 1.04629+4-03 | 3.79159-01
29.0 | 9.80998+02 | 5.96453 | 1.64472+02 | 1.71931-05 | 1.08331+4-03 | 3.79118-01
29.5 | 1.01512+403 | 5.96572 | 1.70159+02 | 1.57953-05 | 1.12097+403 | 3.79079-01
30.0 | 1.04983+03 | 5.96685 | 1.75944+402 | 1.45316-05 | 1.15928+4+03 | 3.79043-01
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Propiedades de una onda de choque normal para v = 1,4 (continua-

cién).

Mn p2/p1 p2/p T2 /T Poz/pm poz/p1 M2

30.5 | 1.08512+03 | 5.96792 | 1.81826+02 | 1.33872-05 | 1.19823+4-03 | 3.79007-01
31.0 | 1.12099+03 | 5.96894 | 1.87805+02 | 1.23490-05 | 1.23782+03 | 3.78974-01
31.5 | 1.157454+03 | 5.96991 | 1.93881+02 | 1.14060-05 | 1.27806+03 | 3.78942-01
32.0 | 1.19449+403 | 5.97084 | 2.00055+02 | 1.05479-05 | 1.31894+403 | 3.78912-01
32.5 | 1.23212+403 | 5.97173 | 2.06326+02 | 9.76612-06 | 1.36047+03 | 3.78883-01
33.0 | 1.27033+403 | 5.97257 | 2.12694+02 | 9.05274-06 | 1.40263+03 | 3.78856-01
33.5 | 1.30912+03 | 5.97338 | 2.19159+02 | 8.40093-06 | 1.44545+03 | 3.78829-01
34.0 | 1.34849+03 | 5.97416 | 2.25722+02 | 7.80458-06 | 1.48890+03 | 3.78804-01
34.5 | 1.38845+03 | 5.97490 | 2.32381+02 | 7.25827-06 | 1.53300+03 | 3.78780-01
35.0 | 1.42899+03 | 5.97560 | 2.39138+02 | 6.75717-06 | 1.57775+03 | 3.78757-01
35.5 | 1.47012+03 | 5.97628 | 2.45992+02 | 6.29699-06 | 1.62313+03 | 3.78734-01
36.0 | 1.51183+03 | 5.97694 | 2.52944+02 | 5.87387-06 | 1.66916+03 | 3.78713-01
36.5 | 1.55412+03 | 5.97756 | 2.59992+02 | 5.48439-06 | 1.71584+03 | 3.78693-01
37.0 | 1.59699+03 | 5.97816 | 2.67138+02 | 5.12547-06 | 1.76316+03 | 3.78673-01
37.5 | 1.64045+03 | 5.97874 | 2.74381+02 | 4.79435-06 | 1.81112+03 | 3.78655-01
38.0 | 1.68449+03 | 5.97929 | 2.81722+02 | 4.48855-06 | 1.85973+03 | 3.78637-01
38.5 | 1.72912+03 | 5.97982 | 2.89159+02 | 4.20584-06 | 1.90898+03 | 3.78619-01
39.0 | 1.774334+03 | 5.98034 | 2.96694+02 | 3.94422-06 | 1.95887+03 | 3.78602-01
39.5 | 1.82012+03 | 5.98083 | 3.04326+02 | 3.70187-06 | 2.00941+03 | 3.78586-01
40.0 | 1.86649+03 | 5.98130 | 3.12055+02 | 3.47716-06 | 2.06059+03 | 3.78571-01
40.5 | 1.91345+03 | 5.98176 | 3.19881+02 | 3.26861-06 | 2.11242+03 | 3.78556-01
41.0 | 1.96099+03 | 5.98220 | 3.27805+02 | 3.07488-06 | 2.16489+03 | 3.78542-01
41.5 | 2.00912+03 | 5.98263 | 3.35826+02 | 2.89477-06 | 2.21800+03 | 3.78528-01
42.0 | 2.05783+03 | 5.98304 | 3.43944+02 | 2.72715-06 | 2.27176+03 | 3.78515-01
42.5 | 2.10712403 | 5.98343 | 3.52159+02 | 2.57104-06 | 2.32616+03 | 3.78502-01
43.0 | 2.15699+03 | 5.98381 | 3.60472+02 | 2.42553-06 | 2.38120+03 | 3.78489-01
43.5 | 2.20745+03 | 598418 | 3.68881+02 | 2.28978-06 | 2.43689+03 | 3.78477-01
44,0 | 2.25849+03 | 5.98454 | 3.77388+02 | 2.16305-06 | 2.49322+03 | 3.78466-01
44.5 | 2.31012+4+03 | 5.98488 | 3.85992+02 | 2.04463-06 | 2.55020+03 | 3.78454-01
45.0 | 2.36232+403 | 5.98522 | 3.94694+02 | 1.93391-06 | 2.60782+03 | 3.78444-01
45.5 | 2.41512+03 | 5.98554 | 4.03492+02 | 1.83030-06 | 2.66608+03 | 3.78433-01
46.0 | 2.46849+03 | 5.98585 | 4.12388+02 | 1.73327-06 | 2.72499+03 | 3.78423-01
46.5 | 2.52245+03 | 598615 | 4.21381+02 | 1.64235-06 | 2.78454+03 | 3.78413-01
47.0 | 2.57699+03 | 5.98644 | 4.30472+02 | 1.55709-06 | 2.84473+03 | 3.78404-01
47.5 | 2.63212+03 | 5.98673 | 4.39659+402 | 1.47709-06 | 2.90557+03 | 3.78395-01
48.0 | 2.68782+403 | 5.98700 | 4.48944+02 | 1.40196-06 | 2.96705+03 | 3.78386-01
48.5 | 2.744124+03 | 5.98727 | 4.58326+02 | 1.33137-06 | 3.02918+03 | 3.78377-01
49.0 | 2.80099+03 | 5.98753 | 4.67805+02 | 1.26500-06 | 3.09195+03 | 3.78369-01
49.5 | 2.85845+03 | 5.98778 | 4.77381+02 | 1.20256-06 | 3.15536+-03 | 3.78360-01
50.0 | 2.91649+03 | 5.98802 | 4.87055+02 | 1.14379-06 | 3.21942+03 | 3.78353-01
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22.9. APENDICE B: Funcién de Prandtl-Meyer y
angulo de Mach para v = 1,4.

M v(®) () M v(®) n(®)
1.00 | 0.000004-00 | 9.00000+01 2.0 | 2.63797+01 | 3.00000+01
1.05 | 0.48741+400 | 7.22472+01 2.1 | 2.90970+01 | 2.84368+01
1.10 | 1.336204-00 | 6.53800+01 2.2 | 3.17324401 | 2.70356+01
1.15 | 2.38104+00 | 6.04081+01 2.3 | 3.42827+401 | 2.57714+01
1.20 | 3.558234-00 | 5.64426+-01 2.4 | 3.67465+01 | 2.46243+01
1.25 | 4.82988+400 | 5.31301+01 2.5 | 3.91235+01 | 2.35781401
1.30 | 6.17028+00 | 5.02848+-01 2.6 | 4.141474+01 | 2.26198+01
1.35 | 7.56072+00 | 4.77945+01 2.7 | 436214401 | 2.17384+01
1.40 | 8.98702+00 | 4.55846+01 2.8 | 4.57458+01 | 2.09248+01
1.45 | 1.04381+01 | 4.36028+-01 2.9 | 4.77903+01 | 2.01712+01
1.50 | 1.19052+01 | 4.18103+01 3.0 | 4.97573+01 | 1.94712401
1.55 | 1.33812+01 | 4.01777401 3.1 | 5.16497+01 | 1.88190+01
1.60 | 1.48603+01 | 3.86821+01 3.2 | 5.34703+01 | 1.82099+01
1.65 | 1.63378+01 | 3.73052+01 3.3 | 5.52219+01 | 1.76397+01
1.70 | 1.78099+01 | 3.60318+01 3.4 | 5.69075+01 | 1.71046+01
1.75 | 1.92731401 | 3.48499+01 3.5 | 5.85297+01 | 1.66015+01
1.80 | 2.07250+401 | 3.37489+01 3.6 | 6.00914+01 | 1.61276+01
1.85 | 2.21633+01 | 3.27204+01 3.7 | 6.15952+401 | 1.56803+01
1.90 | 2.35861+01 | 3.17568+-01 3.8 | 6.30437+01 | 1.52575+401
1.95 | 2.49920+01 | 3.08518+01 39 | 6.44395+01 | 1.48571+01

4.00 | 6.57848+01 | 1.44775+01 || 14.0 | 1.10179+02 | 4.09604+00
4.50 | 7.18317+01 | 1.28395+01 || 15.0 | 1.11509+02 | 3.82255+00
5.00 | 7.69202+01 | 1.15369+01 || 16.0 | 1.12675+02 | 3.58332+00
5.50 | 8.12447+01 | 1.04756+01 (| 17.0 | 1.13708+02 | 3.37228+00
6.00 | 8.49554+01 | 9.59406400 || 18.0 | 1.14627+02 | 3.18473400
6.50 | 8.81681+401 | 8.84988+00 || 19.0 | 1.15452+402 | 3.01696+00
7.00 | 9.09727+01 | 8.213214+00 || 20.0 | 1.16195+02 | 2.86598+00
7.50 | 9.34396+01 | 7.66225400 || 21.0 | 1.16868+02 | 2.72940+4-00
8.00 | 9.56246+01 | 7.18075+00 [ 22.0 | 1.174814+02 | 2.60525+00
8.50 | 9.75722+01 | 6.756324+00 || 23.0 | 1.180414+02 | 2.49190+00
9.00 | 9.93180+01 | 6.379374+00 || 24.0 | 1.185554+02 | 2.38801+00
9.50 | 1.00891+02 | 6.04232+00 || 25.0 | 1.190284-02 | 2.29244+00
10.0 | 1.023164+02 | 5.739174+00 (| 26.0 | 1.19465+02 | 2.20422+00
10.5 | 1.03612+02 | 5.46502+00 || 27.0 | 1.198704+02 | 2.12255+-00
11.0 | 1.047954+02 | 5.21590+00 || 28.0 | 1.20246+02 | 2.046714+-00
11.5 | 1.05880+02 | 4.98854+00 || 29.0 | 1.20596+-02 | 1.97610+00
12.0 | 1.06878+02 | 4.78019+00 || 30.0 | 1.20924+02 | 1.91021+400
12.5 | 1.07799+02 | 4.58856+00 || 31.0 | 1.212304+-02 | 1.84857+00
13.0 | 1.08652+02 | 4.41172+00 || 32.0 | 1.21517402 | 1.79078+400
13.5 | 1.09443402 | 4.24802+00 || 33.0 | 1.21787+02 | 1.736504-00




Capitulo 23

Movimiento de fluidos 1deales
en conductos

23.1. Ecuaciones para el movimiento casiunidirec-
cional de un fluido ideal

En esta leccién consideraremos el movimiento adiabatico de fluidos idea-
les (flujo isentrépico) en conductos de seccién lentamente variable. Es decir,
consideraremos que se verifican las siguientes hipétesis:

D/L<K1 , ReD/L>1 , PeD/L>1 (23.1)

donde D y L son un didmetro y una longitud caracteristica del conducto, res-
pectivamente. La primera condicién y la ecuaciéon de continuidad nos permite
suponer que el flujo es casi unidireccional: Vr < Vi, donde Vr y Vi, son velo-
cidades caracteristicas transversal al eje del conducto y longitudinal al mismo,
respectivamente. Ademas, de la ecuacién de cantidad de movimiento se tiene
que las variaciones transversales de presion reducida son despreciables frente a
las variaciones longitudinales, andlogamente a como ocurria en el flujo viscoso
en conductos (ver seccién 15.2):

D

(I)Q <1 . (23.2)

ATP pV721

ALP  pVE
La segunda y tercera condicién en (23.1) nos dice que los efectos viscosos y
de conduccién de calor son despreciables en las ecuaciones de cantidad de

movimiento y de energia, esto es, el fluido es ideal. Suponemos, ademas, que
no hay aportes volumétricos de calor, por lo que el flujo es isentrépico. Por
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Figura 23.1: Volumen diferencial de control.

supuesto, los efectos disipativos son importantes en una capa delgada cerca
de la pared del conducto cuyo espesor tiende a cero cuando ReD/L y PeD/L
tienden a infinito (ver leccién 27).

Al no existir efectos disipativos, las magnitudes fluidas no dependen, en
primera aproximacién (es decir, salvo en la capa limite sobre la pared antes
citada) de las coordenadas transversales al conducto, siendo asi uniformes en
cada seccién del mismo. Por ello, en las ecuaciones que se escriben a continua-
cién, se supone que las magnitudes fluidas son sé6lo funcién de la coordenada
longitudinal a lo largo del conducto z, y del tiempo t. Estas ecuaciones no las
escribiremos para el caso general, sino para dos casos particulares que son los
mas comunes en la préactica: el movimiento de liquidos y el movimiento casi
estacionario de gases.

23.1.1. Movimiento de liquidos

La ecuacién de continuidad unidireccional se obtiene aplicando la ecuaciéon
de conservacién de la masa a un volumen de control diferencial como el de la
figura 23.1. Como la densidad es constante por ser un liquido y la velocidad
es uniforme en cada seccion,

0A v OAv
Av=(A+dA)(v+dv)=(A+ gda;)(v + adz) 0 - = 0, (233)
que proporciona
A(z)v(z,t) = Q(t), (23.4)

donde @ es el caudal, constante a lo largo del conducto.

Para la ecuacién de cantidad de movimiento se supondrd que las fuerzas
masicas derivan del potencial U, que unido a las hipdtesis anteriores implica
que el flujo es irrotacional, puesto que las propiedades son uniformes en cada
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seccién; se puede asi utilizar la ecuacién (19.14), sustituyendo ! por r, ya que
todas las lineas de corriente son idénticas o, directamente, la ecuacién (20.28)
para flujos irrotacionales:

v 0 [v¥ p
=0. 23.
0 0 (1200) - -

Por 1ltimo, la ecuacién de la energia (entropia) dice que la temperatura
debe ser constante por ser el flujo isentréopico de un liquido. Pero esta ecuacion
no va a ser necesaria al estar desacoplada de las anteriores.

Escribiendo la variacién temporal de v en (23.5) en funcién del caudal e
integrando respecto a z, se tiene:

1 dQ 0 (v* »p B
:4—(;5—(1‘{4‘%(?4';*‘(])—0, (23.6)
v? p _ dQ
7+, U= -I@Z +00), (23.7)
donde
_[* dz
I(z) = A (23.8)

y C(t) es una constante de integracién. Normalmente se conocen p y U en los
extremos del conducto (z = 0y z = L) y, por supuesto, A(z). Suponiendo que
p+pU = P,(t) enx =0y p+ pU = Pr(t) en z = L, sustituyendo en (23.7),

1 Q* P, dQ
1 Q2 P, dQ .
S (D) +7——I(L)Et—+0, (23.10)

restando ambas expresiones se obtiene la siguiente ecuacién diferencial para

Q(t):

o 1] 1 1 _ Py(t)— B(t)
%Ttﬁ“z‘ A2(L) ~ A20) Qz(t)———p ; (23.11)

que habra que resolver con la condicién inicial Q(0) = Q,. Una vez conoci-
do Q(t), las ecuaciones (23.4) y (23.7) proporcionaran p(zx,t) y v(x t). Otra
variante de este problema, que a veces interesa, es calcular P (t) [0 P,(t)]
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conocido Q(t) y P,(t) [o Pr(t)]. La misma ecuacién (23.11) proporciona, ob-
viamente, la respuesta.

En el supuesto de que el flujo sea estacionario (o casi estacionario), el
primer término de (23.11) desaparece y la ecuacién anterior se simplifica no-
toriamente, puesto que deja de ser diferencial:

,  24%(L)4%(0) Py(t) — Pu(t)
C=Eo) - a1 s ’

donde se ha mantenido el tiempo, pero como un parametro, para el caso de
que sea cast estacionario.

(23.12)

23.1.2. Movimiento casi estacionario de gases

La ecucacién de conservacion de masa en el volumen de control de la figura
23.1, para el flujo casi estacionario (St < 1) de un gas, proporciona

%(va) =0 o pvA =G = constante, (23.13)

donde G es el gasto, constante a lo largo del conducto, pero que puede depender
paramétricamente del tiempo en el caso de que el flujo no sea estrictamente
estacionario. La ecuacién de cantidad de movimiento, en el supuesto de que
las fuerzas masicas sean poco importantes, como normalmente ocurre en el
flujo de gases, se puede escribir como (ecuacién de Bernoulli)

v+ o= =0. (23.14)

Como el movimiento es isentrépico,

Os

— =0 , s=s,=constante, 23.15

= ! (23.15)
la ecuacién (23.14) se puede integrar puesto que el fluido es barétropo. Ya se
vi6 que la funcién de barotropia es la entalpia, y que (23.14) es equivalente a
la conservacion de la entalpia de remanso (ver seccién 19.5):

2

h + 5 = ho = constante . (23.16)

Asi, tenemos tres primeras integrales del movimiento, (23.13), (23.15) y (23.16),
donde G, s, y h, son constantes a lo largo del conducto. Para un gas ideal
(22.15) se escribe
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Eas p—f, = constante . (23.17)
P’ po
Como ya se vi6 en la seccién 19.5, las dos ecuaciones (23.16) y (23.17), junto
con la ecuacién de estado p/p = R,T, permiten expresar las magnitudes p,
py T en funcién de las correspondientes magnitudes de remanso, p,, po, To
(que se conservan a lo largo del flujo) y el nimero de Mach en cada seccidn.
Esta es la forma habitual de utilizar esas ecuaciones, a las que hay que unir la
ecuacién de continuidad (23.13). En la seccién siguiente se aplicardn al flujo
en toberas convergentes-divergentes, de gran interés practico. Pero antes se
derivara una importante relaciéon general entre las variaciones de velocidad y
de area.
Escribiendo la ecuacién de continuidad (23.13), en su forma diferencial,
como

19p 10v  1dA
St e = =
pdr vldr Adzx
y sustituyendo dp = a%dp y la ecuacién de cantidad de movimiento (23.14) en
el primer término, se llega a:

0, (23.18)

vOov 10v 1dA

“@9 Tvor  Adr

Esta expresién se puede escribir en funcién del nimero de Mach local, M? =
v2/a?, como

(23.19)

1dA

Adz
Consecuentemente, si el flujo es subsénico (M < 1), un incremento de la sec-
cién (dA/dz > 0) implica una disminucién de la velocidad y un aumento de la
presion [de (23.14)], mientras que una disminucién de la seccién aumenta la ve-
locidad del gas y disminuye su presién. Cualitativamente esto es lo que ocurre
también en los flujos incompresibles.! Sin embargo, si el flujo es supersénico
(M > 1), ocurre todo lo contrario: un aumento de la seccién del conducto
provoca un aumento de la velocidad y una disminucién de la presién (el flujo
se hace mads supersoénico atin), mientras que una disminucién del drea da lugar
a una disminucion de la velocidad y a un aumento de la presién. Finalmente,
el flujo s6lo puede ser s6nico (M = 1) donde la seccién presente o un maximo
o un minimo (dA/dx = 0). De estas dos posibilidades la unica fisicamente

2_plov
(M? - 1)= == (23.20)

1En el limite M2 — 0, la ecuacién anterior es la ecuacién de continuidad de un liquido
[ecuacién (23.3)].
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M<1
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v aumenta v disminuye
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/\/\

Figura 23.2: Flujo en un conducto convergente-divergente.

posible es la segunda (M = 1 donde la seccién presente un minimo), como se
vera a continuacién.

De lo anterior se desprende que para expandir un gas isentrépicamente des-
de velocidad subsénica a supersoénica el flujo debe transcurrir por un conducto
convergente-divergente (ver figura 23.2). La seccién de drea minima divide al
flujo en dos partes, una subsénica aguas arriba y otra supersonica aguas aba-
jo, siendo sénica la corriente en la seccién de drea minima, que usualmente
se llama garganta. De andloga manera, para comprimir isentrépicamente un
gas desde velocidades supersénicas a subsdnicas, también debe fluir por un
conducto convergente-divergente: el flujo es supersénico en la parte conver-
gente, sénico en la garganta y subsénico en la zona divergente. Claramente se
observa que el flujo en una configuracién divergente-convergente, es decir, en
un conducto con un maximo de la seccién en vez de con un minimo o gar-
ganta, nunca puede ser sonico en la seccién de drea méaxima, puesto que si
inicialmente M < 1, M decrece, y si M > 1, M crece.

En la siguiente seccion se derivardan expresiones cuantitativas para el flujo
en conductos (o toberas) convergentes-divergentes.? Obviamente, el caso mas
interesante desde un punto de vista practico de los dos descritos anteriormente
es aquel en el que el flujo es subsénico en la seccién convergente, puesto que
permite obtener flujos supersénicos partiendo de flujos subsénicos (por ejemplo
del reposo). Este tipo de conductos se suelen denominar toberas Laval, en
honor a Carl G.P. de Laval, un ingeniero sueco que presenté la primera tobera
de este tipo en la Exposicion Universal de Chicago de 1893. Desde entonces,
el uso de estas toberas ha sido muy importante, sobre todo en el desarrollo de
la aviacién supersonica y de los vuelos espaciales.

2La ecuacién (23.20) es general, valida para gases reales, incluso si hay reaccién quimica,
siempre que el flujo permanezca isentrépico, ya que sélo se han usado ecuaciones de conser-
vacién. En la seccidn siguiente se aplicard esa y las demds ecuaciones de esta seccion al caso
de un gas perfecto, haciendo uso de las relaciones de la seccién 19.5.
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23.2. Flujo isentropico de un gas perfecto a través
de una tobera convergente-divergente

Considérese una tobera convergente-divergente de seccién A(z) conocida.
Teniendo en cuenta la ecuacién de continuidad (23.13) y las relaciones (19.26)-
(19.29) [las cuales son equivalentes a las ecuaciones de cantidad de movimiento
y de energia (23.16) y (23.17)] se pueden expresar todas las magnitudes fluidas
en cada seccidn en funcidn de las correspondientes magnitudes de remanso,
que se conservan a lo largo del flujo y vienen fijadas por las condiciones de
contorno (por ejemplo, si el gas descarga a través de la tobera de un depésito,
las magnitudes de remanso son las existentes en el interior del depédsito al ser
nula la velocidad en el mismo) y el mimero de Mach en la seccién, M(z). En
efecto, de (23.13),

G = pvA = pyuoAL L = poaoAM L2 (23.21)
Po Vo Po o
de (19.28),
— 1/(y-1)
o (1 + l—1M2> , (23.22)
p 2
e _ (ﬁ&)” _ (ﬁ)”“)” - (i H_‘le)‘”Z L (2323
Qo Po P Po 2

que sustituidas en (23.21) proporcionan una relacién entre el gasto, el drea de
la seccién, el nimero de Mach y las magnitudes de remanso:

v-1 (v+1)/2(1-7)
G = potoAM (1 + TM2> . (23.24)
Estas relaciones se completan con [ecuaciones (19.26) y (19.29)]:
T, y—1.,
— =14+ —M 23.25
T =1+ =M, (23.25)
- v/(v=1)
% = (1 + 7TlM2) . (23.26)

Dado un gasto y las magnitudes de remanso (y, por supuesto, 7, que viene
fijado por el tipo de gas), la ecuacién (23.24) proporciona el nimero de Mach
en funcion del area de la secciéon. Con este numero de Mach, las expresiones
(23.22)-(23.23) y (23.25)-(23.26) nos permiten conocer todas las magnitudes
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fluidas (la velocidad se obtendria de v = aM). Normalmente el gasto no es
dato del problema, sino que viene fijado por la condicién de contorno de la
presién a la salida de la tobera, p,. La ecuacién (23.26) permite obtener el
nimero de Mach a la salida, que sustituido en (23.24) fija el gasto y asi todas
las magnitudes en cada seccién, como se acaba de describir. Sin embargo, dada
una tobera y una presién de remanso p, (por ejemplo, la presién del depdsito
que descarga a través de la tobera en cuestién), la solucién anterior no existe
para todo valor de ps, sino sé6lo en un cierto rango y para un valor concreto.

Para ver esto expresamos las relaciones anteriores, como es costumbre, en
funcién de las denominadas magnitudes criticas, que son aquellas corres-
pondientes a M = 1. Por lo dicho en la seccién anterior, estas magnitudes, en
el caso de que realmente se den en la tobera, ocurren en la seccion de area
minima o garganta. Esta drea minima, o critica, para cada gasto y magnitudes
de remanso, se obtiene de (23.24) haciendo M = 1:

(+1)/2(7-1)
=G <7L1) . (23.27)

B Polo 2

Las restantes magnitudes criticas se obtienen de las expresiones anteriores
sustituyendo M =1 en ellas:

T =T, 2 : 2 Vo 23.28
=T77 p—po<7+1> : (23.28)
. 2 \7/(-1) . . 9 \1/2

P =DPo (m) y U =a =0 (m) . (23.29)

Como se ve, las magnitudes criticas dependen sélo de las de remanso (ademaés
de, por supuesto, 7). En el caso particular en el que las magnitudes de remanso
y el gasto sean tales que el area de la garganta coincida con el area critica,
Ay, = A*, sustituyendo (23.27) en (23.24) se obtiene una unica relacién entre
el area y el nimero de Mach en cada seccién:

A 1 2 y=1,,

E'HLH(H 2 M)
De esta forma, para una tobera dada [A(z) dada), el nimero de Mach y, por
consiguente, todas las demas magnitudes fluidas, quedan fijadas en cada sec-
cién [de (23.22)-(23.23) y (23.25)-(23.26)]. En particular, en la garganta estas
magnitudes vienen dadas por (23.28)-(23.29). El gasto (critico) vendra dado
por (23.27) y es funcién de las magnitudes de remanso, de -y y del 4rea minima

(v+1)/2(v-1)

(23.30)
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(@) (b)
A=A(x), conocida

plp,

0.528

X

Figura 23.3: Flujo isentrépico subsénico (a) y supersénico (b) en una tobera convergente-
divergente para v = 1,4.

An = A*. Una representacion cualitativa de algunas de estas magnitudes para
flujos subsénicos y supersénicos se da en la figura 23.3. Las mas importantes
de ellas estdn tabuladas (cuantitativamente) en el apéndice al final de esta
leccién.

Obviamente, fijados p, y la relacion entre las areas de salida y de la gar-
ganta, A,/A*, la solucidn isentrépica anterior con M =1 en la garganta y su-
persoénica a la salida se presenta sélo para una tnica presion de descarga, que se
obtiene de (23.26) después de sustituir el valor de M, que resulta de (23.30) con
Ay /A*. Esta presién la denominaremos ps2. Para ilustrar qué ocurre cuando
la presiéon de salida no coincide con py2, consideraremos el proceso de descar-
ga a través de una tobera convergente-divergente, de seccién A(z) conocida,
desde un depdsito que contiene un gas a presién p, a otro depdsito con presién
Pa < Po a medida que p, disminuye (ver figura 23.4).

Si p, es muy préxima a p, (puntos a y b de la figura), no se alcanzan condi-
ciones sbnicas en la garganta, siendo la solucién subsonica a través de toda la
tobera. Esta solucién se obtiene de la forma descrita tras la ecuacién (23.26):
dado p,/ps, (23.26) proporciona Mg, que sustituido en (23.24) y conocido Ag
nos da el gasto G. Con este gasto y (23.24) se puede obtener M = M(A), y
asi todas las magnitudes fluidas en cada seccidn.

Si se va disminuyendo la presién p,, llegard un momento en que se alcan-
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Figura 23.4: Efecto de la presion de descarga en el flujo de una tobera convergente-divergente
(adaptada de Liepmann y Roshko, 1957).

zaran condiciones sénicas en la garganta (M =1 en A = A,, = A*). Para esa
presién de descarga (punto ¢ de la figura), el gasto es el critico (23.27):

(v+1)/2(1-7)
7—“) , (23.31)

2

que es el gasto maximo al que se puede descargar el depdsito con la tobera
dada de drea minima A,, (= A*). Si seguimos disminuyendo p,, lo Gnico que
se modificard es el flujo en la regién divergente de la tobera (segiin veremos
a continuacién), pero no el flujo subsénico en la parte convergente, puesto
que no se puede superar la velocidad sénica en la garganta. Se suele decir
que la tobera se ha bloqueado, ya que cualquier variacién de las magnitudes
fluidas aguas abajo de la garganta no afecta al flujo aguas arriba de la misma
al ser sonica la velocidad en ella. Para la presion p, dada por el punto ¢
de la figura (p, = ps1), el flujo es subsénico e isentrépico en toda la tobera
(excepto en la garganta que es sénico) y viene dado por (23.30), (23.22) y
(23.25)-(23.26) con M < 1, tabulado en el apéndice para v = 1,4. En la
garganta se tienen las propiedades criticas dadas por (23.28)-(23.29). Para
v = 1,4 (aire, por ejemplo), p*/p, = 0,528, caso representado en la figura.
Esta solucién es la rama subsénica de la expresién (23.30). Si M > 1 en la

G* = poa,A* (
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zona, divergente de la tobera, dicha relacion fija la presion de salida pgp, como
se indicé anteriormente, y la solucién sélo serd isentrépica en toda la tobera
si pa = ps2 (punto j en la figura).

Para presiones de descarga intermedias entre ps; y ps2 (puntos d, f, ¢ y h
de la figura), la solucién no puede satisfacer las relaciones isentrépicas anterio-
res y se produce una discontinuidad u onda de choque en la solucién, dejando
de ser, por tanto, isentrépica en toda la tobera. Lo que ocurre es cualitativa-
mente similar al proceso que se describi6 en la seccién 22.1 en relacién al flujo
supersénico sobre un obstdculo: si ps; < p, < Ds2, la corriente después de
la garganta no puede adaptarse a las condiciones de descarga, puesto que es
supersonica; antes de la salida esta corriente supersénica pasa bruscamente a
subsodnica a través de una onda de choque, y asi se adapta a la presion de sali-
da. La posicion de la onda de choque se obtiene de resolver conjuntamente las
relaciones isentropicas anteriores y las expresiones para una onda de choque
obtenidas en la leccion anterior. Por ejemplo, si p, viene dado por el punto d
de la figura, se tiene una solucién isentrépica, que es sénica en la garganta y
supersoénica desde la garganta hasta un cierto punto s; en este flujo isentrépico
la presion de remanso viene dada por la presiéon de remanso del depésito, p,.
En s se forma una onda de choque normal donde aumenta la presién (punto
d') y disminuye la presién de remanso (ver leccién anterior), de forma que la
region isentrépica d’'d detras de la onda de choque tiene una presién de reman-
SO menor que p,. La posicion de la onda de choque es tal que, para el nimero
de Mach en el punto s [dado por (23.30)], el salto de las propiedades a través
de la onda de choque verifica que la solucién isentrépica subsénica que parte
del punto d’ satisface la condicién de contorno p = p, a la salida. Para obtener
la posicion de la onda de choque se suele proceder de forma iterativa: cono-
cidos p, y po, A* y el drea de salida A, se supone una posicién, es decir, un
area A; donde se encuentra la onda de choque; de las relaciones isentrépicas
anteriores se obtiene el nimero de Mach M; y demas propiedades delante de
la onda de choque, en particular p;/p,; con las ecuaciones (22.28)-(22.33) de
una onda de choque normal se determinan el nimero de Mach detras de la
onda, M, y demas propiedades detras de la onda, por ejemplo p2/p1, p./Po,
donde p/, es la nueva presién de remanso; con M, y A se obtiene, de (23.30),
el area critica correspondiente a la nueva rama isentropica subsoénica, A¥, que
junto con el area de salida, A4, proporciona el nimero de Mach a la salida,
M,; con este mimero de Mach se determina p,/p, de (23.26), que finalmente
proporciona ps, puesto que se ha calculado la presién de remanso detras de
la onda; si p; # pa, se vuelve a suponer un nuevo valor de A; y se repite el
proceso.
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Si p, viene dado por el punto f de la figura 23.4, la onda de choque
normal se produce justo a la salida de la tobera. Para p, menores (puntos g,
h) se produce ondas de choque oblicuas, ya que la intensidad del salto de las
propiedades es menos que en una onda de choque normal, para un nimero
de Mach dado. Para p, = ps2 (punto j), el flujo es isentrépico en toda la
tobera, como queda dicho, y se dice que la tobera estd adaptada (las toberas
convergente-divergente se disefian para que ocurra este tipo de flujo). A la
salida de la tobera se produce una discontinuidad tangencial que, como se dijo
en la leccién anterior, suele ser inestable. Para p, inferior a ps, (punto k de la
figura), la tobera no es capaz de expandir isentrépicamente al gas como para
que descargue a esa presion, por lo que sigue expandiéndose detras de la salida
de la tobera mediante una expansién del tipo Prandtl-Meyer (seccién 22.7).
El angulo de deflexion de la corriente se calcula a partir de las condiciones a
la salida de la tobera (p = ps2) y la presién detras de la expansion, p,.

Para terminar esta seccién es conveniente recordar que una vez que p, €s
inferior a ps; = p*, el flujo en la regién convergente de la tobera no se modifica,
por mas que se disminuya la presién de descarga, siendo sénicas (o criticas)
las condiciones en la garganta. Asi, para una tobera convergente, el flujo es
siempre subsénico e isentrépico. Para p, = ps; (ps1/po = 0,528 para aire), el
flujo es sénico en la garganta y la descarga se produce con el gasto critico,
G*. Para p, < ps1, se produce una expansién de Prandtl-Meyer a la salida de
la tobera, y el gasto permanece igual a G*. Este tipo de toberas constituyen,
por tanto, un medio eficaz de fijar el gasto. Es lo que se suele denominar un
orificio critico, que intercalado en un conducto fija el gasto a través del
mismo.

23.3. Forma semiintegral de las ecuaciones de Euler

Como complemento a los flujos de fluidos ideales en conductos, se concluye
esta leccion con la derivacién de relaciones semiintegrales para el movimiento
de un fluido ideal a través de compresores (o turbinas, o bombas) y para la
carga (o descarga) de depdsitos. Estas relaciones seran indispensables para
resolver problemas practicos de flujos en conductos, ya que éstos aparecen
invariablemente asociados a alguno, o varios, de aquellos elementos. Para ello
se utilizaran formas semiintegrales de las ecuaciones de Euler. De hecho, las
ecuaciones anteriores para el flujo en conductos también se podrian denominar
semiintegrales, puesto que, aunque son diferenciales en la direccion x, se han
integrado en cada seccién del conducto (ver figura 23.1).
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Figura 23.5: Movimiento a través de un compresor y carga de un depdsito.

23.3.1. Movimiento a través de un compresor

Consideraremos al compresor (o a la turbina, o a la bomba) como una
caja negra intercalada en un conducto por donde circula un gasto G. Antes
del compresor las magnitudes fluidas son vy, p; ¥y p1 y a la salida va, p2 y
p2 (ver figura 23.5). Lo que se pretende es relacionar esas magnitudes con la
potencia W suministrada por el compresor al fluido. Supondremos que no hay
aportes volumétricos de calor, ni conduccion de calor a través de las paredes,
por lo que la entropia se conserva a través del compresor. Como ésta también
se conserva a lo largo del conducto, en el ejemplo de la figura 22.5 la entropia
serfa igual a la atmosférica:

s = 8, = constante; p_; = p—?, = constante = p_z (23.32)
p1 P2 Pa

Normalmente el flujo no es completamente adiabéatico en el compresor y ademas
existen perdidas por friccién, por lo que la relaciéon anterior no es valida. Sin
embargo, en la préictica se suele suponer que la forma de la ecuacién (23.32)
si que es vilida, y sélo se cambia la relacion de calores especificos ¥ por un
coeficiente experimental n.

En cuanto a la entalpia de remanso, ésta no se conserva ya que el movi-
miento del fluido en el compresor es esencialmente no estacionario. De hecho,
es a través de este movimiento de las partes mdviles del compresor como se
le comunica energia al fluido mediante el trabajo de las fuerzas de presién,
aumentando su entalpia de remanso. De una forma mas precisa, si aplicamos
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la ecuacién de la energia en su forma integral al volumen de control delimitado
por las superficies de entrada y de salida del compresor, por las paredes del
conducto y compresor y por las partes méviles de este ultimo, se tiene:

2

d 2
— (e+v—)dV+/ ple+
2 Sc 2

)(G=5,)-7ids = —/ pi-iids— | pVU.-7dV,
dt Jv, Sc Ve
(23.33)
donde se han eliminado los términos de trabajo de las fuerzas de friccién
y de flujo de calor, por tratarse de un fluido ideal, y se ha supuesto que
las fuerzas masicas derivan del potencial U. El primer término de (23.33) es
normalmente nulo puesto que el movimiento de las palas del compresor suele
ser con velocidad constante y la energia total contenida en el volumen de
control permanece constante en el tiempo. El segundo término es distinto de
cero sélo en las secciones de entrada y salida, donde las magnitudes fluidas son
uniformes por la hipétesis de idealidad. El trabajo de las fuerzas de presién
en las secciones de entrada y salida puede incluirse en el término anterior,
transformando la energia interna en entalpia. El trabajo de las fuerzas masicas
generalmente se pueden despreciar en el flujo de gases. (En el caso de un
liquido, es decir, en el caso de una bomba, el término de las fuerzas masicas
también se suele incluir en el convectivo tras aplicar el teorema de Gauss
y tener en cuenta que 9p/0t = 0.) Por iltimo, el trabajo de las fuerzas de
presion sobre las paredes méviles del compresor es igual a la potencia W que
el compresor le comunica al fluido (estrictamente, W es igual al trabajo de las
fuerzas de presion y al de las fuerzas masicas menos el trabajo que se pierde
en forma de calor por friccién en las paredes moéviles que, aunque despreciable
en las otras superficies del volumen de control, no suele serlo aqui). Si G es el
gasto que circula por el conducto, la ecuacion anterior queda

Glhoo+ Uy — hoy —Uy) =W, (23.34)

donde hg es la entalpia de remanso y se ha retenido el término U; —U; para que
asi esté incluido el caso de un liquido. Si la energia cinética es despreciable,
lo cual ocurre cuando M? < 1 [recuérdese que vZ/h = (y — 1)pv?/yp =
(v = 1)v?/a? = (y — 1)M?], y U ~ Uy, se tiene, simplemente,

Glhy—h)=W . (23.35)

Frecuentemente se utilizan estas expresiones en funcién de la presién. Para
un gas, quitando las fuerzas madsicas en (23.34), utilizando la relacién isen-
trépica (23.32) y teniendo en cuenta que la entalpia de remanso se conserva a
lo largo del conducto, ho1 = hog = hg, se llega a:
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wecl 2P, ¥__7 Pa
Yy—1p2 2 ~y—1pg

=D/ -1
= Gha [(?) (1 + %M%) . 1] , (23.36)

donde M? es el nimero de Mach a la salida del compresor. Las relaciones
anteriores valdrian para el caso de una turbina sin mas que cambiarle el signo
aWw.

Para un liquido (p = constante), es decir, para una bomba, la relacién
isentrépica nos dice que To = T1 = T,, y (23.34) queda

W = Q(po2 — po1) = Q(Po2 — pa) (23.37)

donde la presién de remanso es ahora pg = p + pv?/2, @ = G/p es el caudal
que circula por la bomba y se ha despreciado la diferencia de potencial de
fuerzas masicas. En el caso de una turbina hidrdulica habria que cambiarle el
signo a W en la expresién anterior y, en ocasiones, no se puede despreciar la
diferencia de potencial de fuerzas masicas debido a la considerable diferencia
de altura entre la entrada y la salida.

23.3.2. Carga de un depésito

Las ecuaciones de conservacion de masa y de energia aplicadas a un volu-
men de control que incluye al depdsito y a la seccién de entrada (ver figura
23.5) son:

d pdV+/ pi-fids =0 | (23.38)
dt Jve Sc

d v2 v | Lo
—-/ ple+ — dV+/p e+ — v-nds=—/ pv-nids , (23.39)
dt Jve 2 Se 2 Sc

donde se supone que en S, los efectos disipativos son despreciables. Suponiendo
ademas que en el depdsito, de volumen V' constante, las propiedades fluidas
son espacialmente uniformes y que la velocidad es nula en su interior, las
ecuaciones anteriores se escriben:

&F%

=G, (23.40)
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2P _ Ghy,, (23.41)

donde p y p son la densidad y presion en el depdsito, hoe es la entalpia de
remanso en la seccién de entrada (donde se ha supuesto que las magnitudes
fluidas son uniformes), y se ha hecho uso de pe = p/(y — 1), vélida para un
gas ideal.

Si al depdsito le anadiésemos o eliminasemos un cierto calor por unidad de
tiempo @, las ecuaciones anteriores serian validas sin mas que anadir +Q)
al segundo miembro de (23.41). Por otra parte, si el volumen del depdsi-
to no fuese constante, éste apareceria dentro de las derivadas temporales,
ademads de aparecer un término adicional en (23.41) correspondiente al tra-
bajo de expansién (o compresion) realizado por las paredes del depdsito:
— Jg.pU - fids = —p [g. U - fids = —pdV /dt. Con estos dos efectos adiciona-
les, las ecuaciones quedarian:

dpV
G 23.42
dt - e

= Ghge +Q — p_V ) (23.43)

El proceso de carga de un depdsito no es isentrépico, incluso si Q@ = 0, ya
que el chorro de entrada se frena en el interior del depdsito, transformando su
energia cinética en calor (energia interna del gas en el depésito). Obviamente,
si la energia cinética de la corriente de entrada es muy pequeia en relacién a su
entalpia, este efecto se puede despreciar y el proceso de carga es practicamente
isentrépico (suponiendo que @ = 0). Esto ocurre cuando el nimero de Mach
a la entrada del depédsito es muy pequefio: hge = he + v2/2 = he[l + (v —
1)M2/2] ~ he si M2 < 1. De hecho, haciendo hoe = he = [v/(7 — 1)]pe/pe ¥
Q@ = 0 en las ecuaciones anteriores, eliminando dV/dt se llega a

%7%- = ~G Q;:—% : (23.44)

pero como la corriente de entrada es subsénica, pe = p, y al ser Me2 < 1, las
variaciones de densidad del fluido son muy pequenas, verificindose que pe >~ p
con errores del orden de M2. Asi, el segundo miembro es nulo y se satisface la
relacion isentrépica

L _ constante (23.45)
pY
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en primera aproximacién (con errores del orden de M2). Por tanto, las ecua-
ciones que gobiernan la carga de un depésito adiabatico (Q = 0) con M? « 1
se reducen a (23.42) y la relacion isentrépica (23.45).

Las ecuaciones (23.42)-(23.43) también son vélidas para describir la des-
carga de un depdsito sin mas que cambiar G por —G y hge por la entalpia de
remanso de la corriente que sale del depdsito, hgs. El proceso de descarga es
mucho mas simple que el de carga puesto que es isentrépico si @ = 0. De he-
cho, la entalpia de remanso se conserva a la salida, ya que estamos suponiendo
que el fluido es ideal (no hay friccién): hos = h = [y/(y — 1)]p/p. Utilizando el
mismo razonamiento que acabamos de ver, esto implica que p/p? = constante

(si @ =0).

Referencias.
s J.D. ANDERSON, 1990. Capitulo 5.
= HW. LIEPMANN y A. ROSHKO, 1957. Capitulo 5.
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23.4. APENDICE: Flujo isentrépico en una tobera para
vy=14

M| & 2 £
2.00-02 | 1.00028400 | 1.000204-00 | 1.00008+00 | 2.89417+01
4.00-02 | 1.00112400 | 1.00080400 | 1.00032+00 | 1.44813+01
6.00-02 | 1.00252400 | 1.00180400 | 1.00072+00 | 9.66579+00
8.00-02 | 1.00448+00 | 1.003204-00 | 1.00128+00 | 7.26152+00
1.00-01 | 1.007014+-00 | 1.00500+4-00 | 1.00200+400 | 5.82175+00
1.20-01 | 1.01011+00 | 1.007214+00 | 1.00288+00 | 4.86425+00
1.40-01 | 1.01378+00 | 1.00982+00 | 1.003924+00 | 4.18234+00
1.60-01 | 1.01803+00 | 1.01284+00 | 1.00512+00 | 3.67269+00
1.80-01 | 1.02286400 | 1.016274+00 | 1.00648400 | 3.27788+00
2.00-01 | 1.02828+400 | 1.02012+00 | 1.00800+00 | 2.96348+00
2.20-01 | 1.03429400 | 1.02437+00 | 1.00968+00 | 2.70756+00
2.40-01 | 1.04090+00 | 1.029044-00 | 1.01152+00 | 2.49553+00
2.60-01 | 1.04812+400 | 1.03414400 | 1.013524+00 | 2.31725+00
2.80-01 | 1.05596+00 | 1.03966400 | 1.01568+00 | 2.16552+00
3.00-01 | 1.06443+00 | 1.04560+4-00 | 1.01800+00 | 2.03504+00
3.20-01 | 1.073534+00 | 1.05198+00 | 1.02048+00 | 1.92182+00
3.40-01 | 1.08328+4-00 | 1.05880+00 | 1.02312+00 | 1.82285+00
3.60-01 | 1.09369+400 | 1.06606+00 | 1.02592+00 | 1.73575+00
3.80-01 | 1.10478+00 | 1.07377+00 | 1.02888400 | 1.65867+00
4.00-01 | 1.11655400 | 1.081934+00 | 1.03200+00 | 1.59012+00
4.20-01 | 1.129024+00 | 1.09054+00 | 1.03528+00 | 1.52888+00
4.40-01 | 1.14220400 | 1.09962+00 | 1.03872+00 | 1.47398+00
4.60-01 | 1.156124-00 | 1.10918400 | 1.04232+00 | 1.42461+00
4.80-01 | 1.17078400 | 1.119214+00 | 1.04608+00 | 1.38008+00
5.00-01 | 1.186214+00 | 1.12972400 | 1.050004-00 | 1.33982+00
5.20-01 | 1.202424+00 | 1.14073+00 | 1.05408+00 | 1.30337+00
5.40-01 | 1.21943400 | 1.15223+00 | 1.05832+00 | 1.27030+00
5.60-01 | 1.23727400 | 1.164254+00 | 1.06272+00 | 1.24027+00
5.80-01 | 1.255954+00 | 1.17678+00 | 1.06728+00 | 1.21299+00
6.00-01 | 1.27550400 | 1.18983+400 | 1.072004-00 | 1.18818+00
6.20-01 | 1.29594+00 | 1.203424-00 | 1.07688+00 | 1.16563+00
6.40-01 | 1.31729+400 | 1.217554+00 | 1.08192400 | 1.145134+00
6.60-01 | 1.33958+00 | 1.23223+00 | 1.08712+00 | 1.12652+00
6.80-01 | 1.36284400 | 1.24748+400 | 1.09248+00 | 1.10964+00
7.00-01 | 1.38710400 | 1.26329+00 | 1.09800+00 | 1.09435+00
7.20-01 | 1.41237+00 | 1.27969+00 | 1.103684+00 | 1.08055+00
7.40-01 | 1.43870+00 | 1.29669+00 | 1.10952+00 | 1.06813+00
7.60-01 | 1.466124+00 | 1.31429+400 | 1.115524+00 | 1.05698+00
7.80-01 | 1.49465+00 | 1.33251+00 | 1.12168+00 | 1.04704+00
8.00-01 | 1.524344-00 | 1.35136+00 | 1.12800+00 | 1.03821+00
8.20-01 | 1.555204-00 | 1.37085+00 | 1.13448+00 | 1.03045+00
8.40-01 | 1.587304-00 | 1.39100+00 | 1.14112+00 | 1.02368+00
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8.60-01 | 1.62065+00 | 1.411814-00 | 1.14792+00 | 1.01785+00
8.80-01 | 1.65530+00 | 1.433314+00 | 1.15488+00 | 1.01292+00
9.00-01 | 1.691304-00 | 1.45551400 | 1.16200+00 | 1.00885+00
9.20-01 | 1.728684-00 | 1.478414+00 | 1.16928+00 | 1.00558+00
9.40-01 | 1.76748+4-00 | 1.50204+00 | 1.17672+00 | 1.00309+00
9.60-01 | 1.80776+00 | 1.52641400 | 1.18432+00 | 1.00135+00
9.80-01 | 1.84956+00 | 1.55154+00 | 1.19208+00 | 1.00032+00
1.004+00 | 1.89292400 | 1.577444-00 | 1.20000+00 | 1.00000+-00
1.02+00 | 1.93791400 | 1.60412+00 | 1.20808+00 | 1.00031+00
1.04400 | 1.98457400 | 1.63162+00 | 1.21632+00 | 1.00129+00
1.06+00 | 2.03296400 | 1.65993+00 | 1.22472+00 | 1.00289+00
1.08+00 | 2.083124-00 | 1.68909+00 | 1.23328+00 | 1.00510+00
1.10400 | 2.13513400 | 1.719114-00 | 1.24200+00 | 1.00791+00
1.12400 | 2.189044-00 | 1.750004-00 | 1.25088+00 | 1.01129+00
1.14400 | 2.244914+00 | 1.78179+00 | 1.25992+00 | 1.01525+00
1.16400 | 2.30281400 | 1.81449+00 | 1.26912+00 | 1.01976+00
1.18400 | 2.362804-00 | 1.84813+400 | 1.27848+00 | 1.02482+00
1.20+00 | 2.42496+00 | 1.88273+00 | 1.288004-00 | 1.03042+00
1.22400 | 2.48935+00 | 1.91831+00 | 1.29768+00 | 1.03655+00
1.24400 | 2.55604+00 | 1.95488+00 | 1.30752+00 | 1.04321+00
1.26+00 | 2.62512+400 | 1.99247400 | 1.31752+00 | 1.05039+00
1.28400 | 2.69666+00 | 2.03111400 | 1.32768+00 | 1.05808+00
1.30400 | 2.770744-00 | 2.070814-00 | 1.33800+00 | 1.06629+00
1.32400 | 2.84744400 | 2.11159+00 | 1.34848+00 | 1.075004-00
1.34400 | 2.92686+00 | 2.153494-00 | 1.35912+00 | 1.08422+00
1.36+00 | 3.00907400 | 2.19653+00 | 1.36992+00 | 1.09395+00
1.38+00 | 3.094184-00 | 2.24073+00 | 1.38088+00 | 1.10417+00
1.40+00 | 3.18227+00 | 2.28611+400 | 1.392004+-00 | 1.11491+00
1.42400 | 3.273444-00 | 2.33271+00 | 1.40328+00 | 1.12614+00
1.44400 | 3.36780+00 | 2.380544-00 | 1.41472+400 | 1.13788+00
1.46400 | 3.46544+400 | 2.429644-00 | 1.42632+00 | 1.150134-00
1.48400 | 3.56648+4-00 | 2.48003+00 | 1.43808+00 | 1.16288+00
1.50400 | 3.67103+00 | 2.53174+00 | 1.45000+00 | 1.17615+00
1.52+00 | 3.77919+00 | 2.58480400 | 1.46208+00 | 1.18992+00
1.54400 | 3.89108+00 | 2.63924400 | 1.47432+00 | 1.20421+00
1.564+00 | 4.00684400 | 2.69508+4-00 | 1.48672+00 | 1.21902+00
1.584-00 | 4.126574+00 | 2.75237400 | 1.49928+00 | 1.23436+00
1.60+00 | 4.250414-00 | 2.81112400 | 1.512004+00 | 1.25022+00
1.62400 | 4.37849+400 | 2.871374+00 | 1.52488+00 | 1.26661+00
1.64+00 | 4.510954-00 | 2.93315400 | 1.53792+00 | 1.28353+00
1.66+00 | 4.64792+00 | 2.99649400 | 1.55112+00 | 1.30100+00
1.684+00 | 4.78955+00 | 3.061434+00 | 1.56448+00 | 1.31902+00
1.704-00 | 4.93599+4-00 | 3.12800+400 | 1.57800+00 | 1.33759+00
1.72400 | 5.08739+00 | 3.19624+00 | 1.59168+00 | 1.35671+00
1.74400 | 5.24390+00 | 3.26617400 | 1.60552+00 | 1.37641+-00
1.76400 | 5.40570+00 | 3.33784400 | 1.61952+00 | 1.39668+00
1.78400 | 5.57294+00 | 3.411284-00 | 1.63368+00 | 1.41752+400
1.80+00 | 5.74579400 | 3.48652+00 | 1.64800+00 | 1.43896+00

393
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1.82+400 | 5.92444+400 | 3.56361+00 | 1.66248+00 | 1.46099+00
1.844+00 | 6.10906+00 | 3.64259+00 | 1.67712+00 | 1.48363+400
1.864+00 | 6.29983+00 | 3.72348+00 | 1.691924+00 | 1.50687+00
1.88400 | 6.49696+00 | 3.80633+00 | 1.70688+00 | 1.53074+00
1.90400 | 6.70063+00 | 3.89119+00 | 1.72200+00 | 1.55523+00
1.92400 | 6.911054+00 | 3.97808+00 | 1.73728400 | 1.58037+400
1.94400 | 7.12843400 | 4.06706400 | 1.75272400 | 1.60615+00
1.96+00 | 7.35297+400 | 4.15816+400 | 1.76832+00 | 1.63259+00
1.984+00 | 7.58490+00 | 4.25143+00 | 1.78408+00 | 1.65969+00
2.00+00 | 7.82444+00 | 4.346914+00 | 1.800004+00 | 1.68747+00
2.054+00 | 8.45814+00 | 4.59557+00 | 1.84050+00 | 1.75996+00
2.10+00 | 9.14468+00 | 4.85902+00 | 1.88200400 | 1.83692+00
2.15+00 | 9.88809+00 | 5.13800+00 | 1.92450400 | 1.91852+00
2.20+400 | 1.06927+01 | 5.43328+00 | 1.968004+00 | 2.00495+00
2.254+00 | 1.156314-01 | 5.74565+00 | 2.01250+-00 | 2.09640+00
2.304+00 | 1.25042+01 | 6.07593+00 | 2.05800+00 | 2.193104-00
2.35+00 | 1.35213+01 | 6.42498+00 | 2.10450+00 | 2.29524+00
2.40+00 | 1.46200+401 | 6.79368+00 | 2.152004+00 | 2.40307+00
2.45+00 | 1.58061+01 | 7.182954+00 | 2.200504+00 | 2.51680+00
2.50+00 | 1.70859+01 | 7.59375+00 | 2.250004+-00 | 2.63668+00
2.554+00 | 1.84662+01 | 8.02704+00 | 2.30050+00 | 2.76297+00
2.604+00 | 1.99540+01 | 8.48385+00 | 2.35200+00 | 2.89594+00
2.654+00 | 2.15569+401 | 8.96524+00 | 2.40450+00 | 3.03584+00
2.704+00 | 2.32828+01 | 9.47228+00 | 2.458004+00 | 3.18297+00
2.754+00 | 2.51403+01 | 1.00061+01 | 2.51250+-00 | 3.33761+400
2.804+00 | 2.71382+401 | 1.05678+01 | 2.56800+00 | 3.50008+00
2.854+00 | 2.92862+01 | 1.11587+01 | 2.624504+00 | 3.67067+00
2.90+00 | 3.15940+401 | 1.17800+01 | 2.682004+00 | 3.84972+00
2.95400 | 3.40725401 | 1.24329+01 | 2.74050400 | 4.03755+00
3.004+00 | 3.67327+401 | 1.31188+01 | 2.80000+00 | 4.23451+400
3.054+00 | 3.95864+01 | 1.38390+01 | 2.860504+00 | 4.44096+00
3.104+00 | 4.26462+01 | 1.45948+01 | 2.92200+00 | 4.65725+00
3.154+00 | 4.59251+01 | 1.53878+01 | 2.984504+00 | 4.88377+00
3.20+00 | 4.94370+401 | 1.62194+01 | 3.04800+00 | 5.12089+00
3.25+00 | 5.31964+01 | 1.709124+01 | 3.11250+-00 | 5.36902+00
3.304+00 | 5.72187+01 | 1.80046+01 | 3.17800+400 | 5.62857+00
3.35400 | 6.15201+01 | 1.89613+01 | 3.24450+00 | 5.89996+00
3.404+00 | 6.61174+01 | 1.99630+01 | 3.31200+00 | 6.18362+00
3.45+00 | 7.10286+01 | 2.10112+01 | 3.38050+00 | 6.47999+00
3.504+00 | 7.62722+401 | 2.21079+01 | 3.45000+00 | 6.78953+00
3.55+00 | 8.18681+01 | 2.32547+01 | 3.52050+-00 | 7.11272+00
3.604+00 | 8.78369+01 | 2.44534+01 | 3.59200+00 | 7.45002+00
3.65+00 | 9.42001+01 | 2.57061+01 | 3.664504-00 | 7.80193+00
3.704+00 | 1.00980+02 | 2.70145+01 | 3.73800+00 | 8.16896+00
3.75400 | 1.08201+02 | 2.83808+01 | 3.812504+00 | 8.55163+00
3.80+00 | 1.15888+02 | 2.98068+01 | 3.888004+00 | 8.95047+00
3.854+00 | 1.24067+02 | 3.12947+01 | 3.96450+00 | 9.36603+00
3.90+00 | 1.32766+02 | 3.28466+01 | 4.042004-00 | 9.79885+00
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3.95+00
4.00+-00
4.05+00
4.10+00
4.15+00
4.20+00
4.25+00
4.30+-00
4.35+00
4.40+00
4.45+00
4.50+00
4.55+00
4.60+-00
4.65+00
4.704+00
4.75+00
4.80+00
4.85+00
4.904-00
4.95+-00
5.00+-00
5.104+00
5.204+-00
5.304+-00
5.40+00
5.50+00
5.60+00
5.704+-00
5.80+00
5.90+00
6.00+-00
6.10+00
6.20+-00
6.30+-00
6.40+00
6.50+00
6.60+00
6.704+-00
6.80+00
6.90+00
7.00+00
7.104+00
7.204-00
7.30+00
7.40+00
7.50+00

) 2]
1.42011+4-02
1.51835+02
1.62267+02
1.73340+-02
1.85088+-02
1.97547+02
2.10754+-02
2.247474+02
2.39567+02
2.55255+-02
2.71856+02
2.89414+-02
3.07977+-02
3.27594+02
3.48317+02
3.70200+-02
3.93296+-02
4.17664+02
4.43365+02
4.70459+-02
4.99011+-02
5.29089+-02
5.94102+02
6.66083+02
7.45664+02
8.33522+-02
9.30383+02
1.03702+03
1.15427+03
1.28302+-03
1.42422+03
1.57887+03
1.74806+03
1.93294+03
2.13472+03
2.35469+-03
2.59424+03
2.85483+03
3.13799+03
3.44537+-03
3.77871+03
4.13983+03
4.53068+03
4.95329+03
5.40983+-03
5.90258+-03
6.43392+03

L
3.44647+01
3.615124-01
3.79084+-01
3.97387+01
4.16444+01
4.36280+01
4.56920+-01
4.78390+01
5.00715+01
5.23923+01
5.48041+-01
5.73097+-01
5.99119+-01
6.26136+01
6.54179+-01
6.83278+01
7.13463+01
7.44766+01
7.77219+01
8.10857+01
8.45711+01
8.81816+-01
9.57920+01
1.03945+-02
1.12672+02
1.22002+-02
1.31969+02
1.42604+-02
1.53944+-02
1.66022+02
1.78877+02
1.92546+-02
2.07068+-02
2.22484+02
2.38836+-02
2.56168+-02
2.74523+-02
2.93948+4-02
3.14491+4-02
3.36200+02
3.59125+4-02
3.83318+-02
4.08832+02
4.35722+4-02
4.64045+-02
4.93857+02
5.25218+-02

T
4.12050+-00
4.20000+-00
4.28050+-00
4.36200+-00
4.44450+-00
4.528004-00
4.61250+-00
4.69800+-00

,4.78450+00
4.87200+-00
4.96050+-00
5.05000+-00
5.14050+-00
5.23200+-00
5.32450+4-00
5.41800+-00
5.51250+4-00
5.60800+-00
5.704504-00
5.80200+-00
5.90050+-00
6.00000+-00
6.20200+-00
6.40800+-00
6.61800+-00
6.83200+-00
7.05000+-00
7.272004-00
7.49800+-00
7.72800+4-00
7.96200+-00
8.20000+-00
8.44200+-00
8.68800+-00
8.93800+-00
9.19200+4-00
9.45000+-00
9.71200+-00
9.97800+-00
1.02480+-01
1.05220+-01
1.08000+-01
1.10820+-01
1.13680+01
1.16580+-01
1.19520+-01
1.22500+-01

1.02495+-01
1.07186+01
1.12067+-01
1.17145+401
1.22425+-01
1.27914+01
1.33619+01
1.39547+-01
1.45704+-01
1.52096+-01
1.58733+01
1.65619+-01
1.72764+4-01
1.80175+01
1.87860+-01
1.95825+01
2.04081+01
2.12634+01
2.21494+01
2.30668+01
2.40166+-01
2.49997+01
2.70692+-01
2.92829+-01
3.16486+-01
3.41743+01
3.68685+01
3.97397+01
4.27969+01
4.60494+-01
4.95068+-01
5.31791+01
5.70764+01
6.12094+-01
6.55890+01
7.02265+01
7.51334+01
8.03217+01
8.58038+01
9.15924+01
9.77005+-01
1.04141+4-02
1.10929+02
1.18078+-02
1.25603+-02
1.33518+-02
1.41839+02

395
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L z % =
7.604+00 | 7.006404+03 | 5.58190+02 | 1.25520+01 | 1.50583+02
7.70400 | 7.62266+03 | 5.92834+02 | 1.28580+01 | 1.59764+02
7.804+00 | 8.28551+03 | 6.29215+02 | 1.31680+01 | 1.69400+02
7.90+00 | 8.99787+03 | 6.67399+02 | 1.34820+401 | 1.79509+4-02
8.00+00 | 9.76285+03 | 7.07453+02 | 1.380004+01 | 1.90107+402
8.10+00 | 1.05836+04 | 7.49446+02 | 1.41220+01 | 2.01212+402
8.20+00 | 1.146374+04 | 7.93449+02 | 1.44480+01 | 2.12843+02
8.304+00 | 1.24066+04 | 8.39535+02 | 1.47780+401 | 2.25019+402
8.404+00 | 1.341614+04 | 8.87778+02 | 1.51120+01 | 2.37759+02
8.50+00 | 1.44960+04 | 9.38255+02 | 1.54500+01 | 2.51083+02
8.60+00 | 1.56505+04 | 9.91043+02 | 1.57920+01 | 2.65011+02
8.70+00 | 1.68839+04 | 1.04622+03 | 1.61380+01 | 2.79563+02
8.80+00 | 1.82006+04 | 1.10387+03 | 1.64880+01 | 2.947624+02
8.90+00 | 1.96054+04 | 1.16408+03 | 1.684204+01 | 3.10629+02
9.004+00 | 2.11032+04 | 1.22693+03 | 1.72000+401 | 3.27185+02
9.104+00 | 2.26991+04 | 1.292514+03 | 1.75620+01 | 3.444544-02
9.204+-00 | 2.43984+04 | 1.36091+03 | 1.79280+401 | 3.62458+02
9.304+00 | 2.62067+04 | 1.43221+03 | 1.82980+01 | 3.81222+402
9.40+00 | 2.81298+04 | 1.50652+03 | 1.86720+01 | 4.00770+02
9.504+00 | 3.01739+04 | 1.58393+03 | 1.90500+01 | 4.21126+02
9.60+00 | 3.23453+04 | 1.66453+03 | 1.94320401 | 4.42315+402
9.70400 | 3.46504+04 | 1.74843+03 | 1.98180+01 | 4.64364+02
9.80+00 | 3.70963+04 | 1.83572+03 | 2.02080+01 | 4.87298+02
9.90+00 | 3.96901+04 | 1.92651+03 | 2.060204+01 | 5.11144+02
1.00+01 | 4.24392+04 | 2.02091+03 | 2.10000+01 | 5.35931+02
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Capitulo 24

Flujos ideales de liquidos con
superficie libre

En este capitulo se trataran brevemente algunos flujos ideales de liquidos
que presentan una superficie libre con un gas. En particular, se introduciran
dos tipos de flujos muy relevantes en Mecanica de Fluidos: las ondas gravita-
cionales y capilares en la interfaz liquido-gas y el flujo ideal en canales abiertos.
El primero servira para introducir el importante tema de las ondas en fluidos,
que se complementara en los capitulos siguientes con las ondas en flujos com-
presibles. El segundo, que como se vera es matematicamente analogo al flujo
unidireccional de un gas ideal en un conducto (capitulo anterior), es la base
del flujo turbulento de liquidos en canales abiertos, tema de gran importancia
practica, pero que no se considerara aqui.!

24.1. Ondas de superficie

Considérese una capa de espesor hg de un liquido que reposa en una super-
ficie sélida horizontal e infinita. Encima del liquido existe un gas a una presién
uniforme p, con una densidad y viscosidad que supondremos despreciables en
relacién a la densidad p y la viscosidad p del liquido. La tensién superficial en
la interfaz se supone constante y de valor o.

En esta seccion se considerard el movimiento de pequenas perturbaciones
en la superficie libre. Es decir, se supondra que, debido a alguna perturbacion,
la superficie, inicialmente en reposo, se pone en movimiento y el espesor de la
capa de liquido deja de ser constante (ver figura 24.1):

'El alumno interesado puede consultar, por ejemplo, la monografia de Chaudhry, 1993.
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Figura 24.1: Geometria de las ondas de superficie.

h(Z,t) = ho + K (Z,t), |N| < ho. (24.1)

Como consecuencia, el liquido adquiere un movimiento con velocidad ¢’ y pre-
sién p que satisfacen las ecuaciones del flujo incompresible

V.-v=0, (24.2)

ov

Pot

Debido a que las perturbaciones de la superficie se suponen pequeiias, la velo-

cidad también serd pequena y, en primera aproximacion, se puede despreciar

el término no lineal p7- V¥ en (24.3). También es razonable que en este mo-

vimiento la influencia de la viscosidad sea despreciable (estas dos hipdtesis

se justificardn cuantitativamente mas adelante), por lo que (24.3) se puede
escribir

+ p¥ - Vi = p§ — Vp + pV37. (24.3)

ov
s — il — . 24 .4
p 5t pg — Vp ( )

Debido a que el flujo es no viscoso e inicialmente parte del reposo (ademas
de ser barétropo y de que las fuerzas madsicas derivan de un potencial), se
cumplen los requisitos del teorema de Kelvin y el flujo es irrotacional:

VA#=0, ¥=Vgp, (24.5)

donde ¢(Z,t) es la funcién potencial de velocidad. Sustituyendo en (24.2), se
tiene que ¢ debe satisfacer la ecuacién de Laplace:
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V26 =0. (24.6)

Una vez que esta ecuacion se resuelve con las correspondientes condiciones
de contorno (de las que se hablard mdas adelante), la presién se obtiene de
sustituir (24.5) en (24.4):

v (%‘g) - _v (%) +Y(G-7), (24.7)

que integrada proporciona

o .
p=—pg +pj- I, (24.8)

donde la constante de integracién se ha absorbido en ¢ dado que esto no afecta
av.

24.1.1. Ondas bidimensionales

Por simplicidad se va a considerar el caso en el que ¢ sélo depende de dos
coordenadas espaciales, ¢ = ¢(z, y,t). Es decir, la superficie perturbada es sélo
funcién de z y de t, ' = h'(x,t), donde el origen de y se toma en la superficie
no perturbada (ver figura 24.1). La ecuacién a resolver es, por tanto,

0% 0%

—+—=0. 249

522 T a2 (24.9)
Las condiciones de contorno para ¢ hay que imponerlas en el fondo de la capa
liquida, y = —hg y en la superficie libre, y = h'. En esta tltima se tiene que

la componente y de la velocidad viene dada por

DN oW, oW oW
- Dt ot Tor ~ ot
donde se ha despreciado, en primera aproximacién, el término no lineal v, 0h' /O

dado que es el producto de dos perturbaciones pequenas. Sustituyendo (24.5),
se tiene

vy (24.10)

o¢ ON

— = 24.11

oy Ot ( )
Por otro lado, en la superficie libre, la presion satisface la ecuacién de Young-
Laplace (ver seccién 13.3):
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0K/ Ox? N 062h'
[+ (0 /02)232 = B2’
donde se ha tenido en cuenta que uno de los radios de curvatura es infinito al

no depender k' de z, y se ha despreciado (8h'/0z)? frente a la unidad al ser
|h'| pequena frente a cualquier otra longitud caracteristica. Sustituyendo p de

(24.12)

Pa—Pp=-0V-i=0

(24.8) y teniendo en cuenta que g - & = —gh’, se tiene
0¢ ] 0N
—_ = . 24.
Patpy, +pgh’ =05 (24.13)

Derivando respecto a t y sustituyendo (24.11), se llega a la siguiente condicién
de contorno para ¢:
o 90, &

Pz ~ P95y T 7 Byoa?
Como h' es mucho menor que hg, la condicién de contorno anterior se puede
imponer en y = 0 en vez de en y = h’, en primera aproximacién. Como
condicién de contorno en la base del liquido se impone que no hay flujo a
través de esa superficie, v, = 0 en y = —h,. Es decir,

=0 en y=h(zt). (24.14)

E:O en y=—hg. (24.15)

Dado que la ecuacién (24.9) no contiene derivadas temporales y que no
hay ninguna restriccién en la direccion z, la solucién se puede escribir como
una superposicion de ondas bidimensionales de la forma

¢ = f(y)expli(kz — wt)], (24.16)

donde w es la frecuencia y k el nimero de onda, que estd relacionado con la
longitud de onda A mediante

_27r

k 24.17
: (2417)
Por simplicidad se supondra que las ondas son senoidales,
¢ = f(y)sin(kr — wt). (24.18)
Sustituyendo en (24.9), se llega a la ecuacién
d? ;
TF _y2p_g (24.19)

dy?
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cuya solucion es de la forma

f=C1e™ + Coe™™ (24.20)

f = (C1 + Cq) cosh(ky) + (C; — C) sinh(ky), (24.21)

donde C; y C; son constantes arbitrarias, que se obtienen de las condiciones
de contorno (24.14) en y = 0 y (24.15) en y = —hop:

C, -
= 4.
C. 1G tanh(khg) , (24.22)
C-C k3o

2 1 2
=—7\|gk+— | . 24.23
“ C1+C, (g 4 P ) ( )

Por tanto, f(y) se puede escribir como
f(y) = Blcosh(ky) + tanh(khg) sinh(ky)], (24.24)

donde la constante B = C) + C2 queda sin determinar, pero existe la siguiente

relacién entre la frecuencia y el nimero de onda [o la longitud de onda a través
de (24.17)):

b k3o
w® = tanh(kho) | gk + i (24.25)

que es la relacién de dispersién de la onda. Haciendo uso de (24.11) en
y ~ 0, se tiene que, salvo una constante aditiva,

h' = Acos(kz — wt), (24.26)

donde A = Bk tanh(khg)/w esla amplitud de la onda de superficie. Los valores
de la constante libre A(k) y del niimero de onda k se determinan expresando
la condicién inicial de A’ (no considerada aqui) como una serie de Fourier en
términos de (24.26).

Antes de pasar a describir los distintos tipos de ondas que la relacién de
dispersién (24.25) recoge, es interesante expresar las condiciones de validez
de la solucién obtenida. Como |h/| ~ A < hg, se tiene que v, = 9¢/0y =
Oh' [0t ~ Aw y vz ~ Avy/hg. Por tanto, el despreciar los términos convectivo
y viscoso frente al de variacion local en la ecuacién de cantidad de movimiento
(24.3) es equivalente a
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L, pwL?
s, B 24.27
! >1, = >1, ( )

donde la longitud caracteristica L. es la menor entre hg y la longitud de onda
A. La primera de estas condiciones es la hipotesis de pequenas perturbaciones
de la superficie, y la segunda nos dice que el mimero de Reynolds basado
en L. y la velocidad caracteristica V. = wL. debe ser grande. En (24.10) se
despreci6 v,0h'/Oz frente a Oh'/Ot, lo cual es valido si A/hg < 1. Por tltimo,
en (24.12) se desprecié (Oh'/0z)? frente a la unidad, que es lo mismo que
suponer que (A/)\)? < 1.

24.1.2. Ondas cortas y largas. Ondas gravitacionales y ondas
capilares

Si la profundidad de la capa de liquido es mucho menor que la longitud de
onda, hg < A = 27/k, se tiene que tanh(kho) ~ khg, con lo que la relacién de
dispersion (24.25) se puede aproximar por

4 1/2
w <gk2ho + !“—%@> . (24.28)

Este limite se suele denominar aproximacién de onda larga (o de agua poco
profunda ). El limite opuesto de onda corta (o de agua profunda ), teniendo
en cuenta que para hg > A = 27 /k, tanh(kho) ~ 1, tiene por relacién de
dispersién

3\ 1/2
w o~ (gk LR (24.29)
P
La velocidad de fase, o velocidad de propagacién, de las ondas se define
w o wA
= - = —, 24.3
¢ k27 ( 0)
Asi, para ondas largas se tiene
1/2 1/2
k%*ah 4noh,
c~ | gho + T = | gho + &20 ” (24.31)
p pA

mientras que para ondas cortas

N g ]C_O' 1/2— (gA 2770')1/2
c._(k+ p) = 27r+ A g (24.32)
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La importancia relativa entre las fuerzas gravitatorias y las de tensién
superficial en la propagacién de las ondas viene dada por un nimero de Bond
basado en la longitud de onda:

Py pgA’

o2 " o
Si B <« 1, es decir, si la longitud de la onda es mucho menor que la longitud
capilar, las fuerzas de tensién superficial son dominantes y la onda se suele
denominar onda capilar o Tizo. La velocidad de fase de una onda capilar larga
es

=B. (24.33)

1/2
4nlohy
. ( o ) , (24.34)
mientras que la velocidad de fase de una onda capilar corta se escribe
oma\ /2
~ | — ; 24.35
¢ < PA ) ( )

Finalmente, si B > 1 (longitud capilar mucho menor que la longitud de on-
da), las fuerzas gravitatorias dominan frente a las de tensién superficial y la
onda se suele denominar onda gravitatoria. La velocidad de fase de una onda
gravitatoria corta es

1/2
¢~ (9—’\> ‘ (24.36)
2

mientras que para una onda gravitatoria larga se tiene

¢~ +/gho. (24.37)

En la figura 24.2 se representan todos estos limites asintdticos en funcién de
la longitud de onda.

24.1.3. Velocidad de grupo

Con la excepcién de las ondas gravitatorias largas, todas las ondas ante-
riores son ondas dispersivas, es decir, ondas cuya velocidad de fase depende
de la longitud de onda, de forma que ondas con diferentes longitudes de onda
(distintas frecuencias) se propagan con velocidades diferentes. En este tipo
de ondas juega un papel muy importante la denominada velocidad de grupo,
definida como
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c (a) c
A\ 1/2
Lo\ 2r 1/2
(gho)
‘ '
Onda gravitatoria Onda capilar
larga corta
i7" Onda gravitatoria corta

Onda capilar larga " ’

i A
c .-+ Onda capilar
~ J < - .- -- Ondacapilar larga
" Onda gravitatoria
corta Onda gravitatoria larga
________ i
J \‘\ 2no Uk () (ghO)l/z 5
: e @
5 o an? 1/2
1 ar 1/2 Pas (4nZg
: (g;) ( pa2 )
A A

Figura 24.2: Esquemas de la velocidad de fase en funcién de la longitud de onda para (a)
ondas gravitatorias, (b) ondas capilares, (c) ondas cortas y (d) ondas largas.

dw
dk’
En una onda no dispersiva, ¢y = ¢, mientras que si la onda es dispersiva, ¢y no

tiene por qué coincidir con la velocidad de fase. En el presente caso, de (24.25)
se tiene

¢ (24.38)

cg _kdw 1[1+(30k*/pg)  2kho
c wdk 2 [ 1+ (ok2/pg) = sinh(2khg) |’

(24.39)

de forma que cg/c es igual a la unidad para una onda gravitatoria larga (no
dispersiva), y vale 1/2 para una onda gravitatoria corta, 2 para una onda
capilar larga y 3/2 para una onda capilar corta.

La importancia de la velocidad de grupo reside en que es a esa velocidad,
y no a la de fase, a la que se propaga la energia de los paquetes de onda con la
misma longitud de onda (misma frecuencia), siendo, ademas, la velocidad a la
que se tendria que mover un observador para ver ondas con la misma longitud
de onda. Para ilustrar esto 1ltimo, considérese una onda arbitraria de la forma
[compérese con (24.26)]

h(z,t) = Az, t)e?=t) (24.40)
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donde la funcién 6(z,t) es la fase de la onda. El nimero de onda local y la
frecuencia local de la onda se definen

06 00

Por tanto, de la igualdad de las derivadas cruzadas, se tiene

Ok Ow

—y =g — 4.4
ot + ox 0, (24.42)
que usando la relacién de dispersién w = w(k), se escribe
Ok  dw Ok
AT I el IR 4.4
ot T ak oz O (24.43)
Es decir,
ok ok
— k)— = 4.44
ot + Cg( )61' 0, (2 )

mostrando que el mimero de onda k(z,t) permanece constante para un ob-
servador que se mueve con la velocidad de grupo. Dicho de otra manera, la
solucién general de (24.44) se puede escribir como k = f[z — ¢4(k)t], donde
f es una funcién arbitraria, que se determina a través de la condicién inicial.
Por tanto, aunque las crestas y los valles de una onda general como (24.40) se
propagan a la velocidad de fase local c, la longitud de onda asociada a estas
crestas y estos valles va cambiando, en general, a lo largo de la propagacion
debido a que distintas longitudes de onda se propagan a velocidades de fase
diferentes. Si uno quiere seguir una determinada longitud de onda se tiene que
mover a la velocidad de grupo correspondiente a esa longitud de onda. Pare-
ce, por tanto, razonable que la energia asociada a un determinado nimero de
onda k se propague a la velocidad de grupo c4(k). La demostracién de esto es,
sin embargo, algo compleja y no se va a dar aqui [el lector puede consultar,
por ejemplo, Lighthill (1978)].

24.2. Flujo ideal en un canal bidimensional

Considérese un canal bidimensional por el que circula un liquido de densi-
dad p. Para describir el flujo se usaran las coordenadas cartesianas (z,y) de la
figura 24.3. La base del canal viene dada por S(z), que tiene una inclinacién
a(z) (tana = —dS/dx) respecto a la horizontal, y la altura vertical del liquido
es h(z,t). Las ecuaciones que gobiernan el flujo ideal del liquido son:
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oz oy =0, (24.45)

Ov, Ovg BvI _ 10p
Y +v = + Uy By pdz’ (24.46)
Ovy avy i yavy _ _16p . (24.47)

o dy p Oy

Se supondra que |Dv,/Dt| < g, lo cual es razonable siempre que tanto S
como h varien suavemente (esta hip6tesis habra que comprobarla a posteriori
para cada solucién), con lo que la ecuacién de cantidad de movimiento en la
direccién y se simplifica a:
0= 1% (24.48)
p Oy

que integrada proporciona la presién en funcién de h,

P=pPat+pg(S+h-y). (24.49)

Por otro lado, integrando la ecuacién de continuidad entre y =Sey =S+ h,

S+h av S+h 61)
—Ldy=v - = - / —dy. 24.50
/s By Y = Vyly=5+h — Vyly=5 = & B ( )
Enla base del canal, la velocidad normal es cero, es decir, vy|y=s = —vz|y=stana,

mientras que en la superficie libre vy|y=s+r = D(S + h)/Dt. Por tanto,
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Oh (S +h) S+h gy
En + Vg + Ug|y=s tana = —/S gzdy (24.51)
Derivando (24.49) respecto a z,
8p Oh
= — —t 24.52
. pg(ax ana>, (24.52)
y sustituyendo en (24.46), se tiene
Ovg ov Ovg Ooh
E—i— a; + vy— 3y g(tana—a) : (24.53)

Como el segundo miembro es independiente de y, también lo es Dv, /Dt. Lue-
go si inicialmente, o aguas arriba, el flujo parte del reposo, o proviene de una
regién donde v, no depende de y, v, permanecerd independiente de y. Su-
pondremos que éste es el caso, con lo que las ecuaciones (24.53) y (24.51),

haciendo u = v, y teniendo en cuenta que 8S5/0z = —tana , se escriben
0
e +u$u +gg: =gtana, (24.54)
Oh 6h Ou _

que constituyen un par de ecuaciones d1ferenc1ales para la altura y la compo-
nente horizontal de la velocidad.

24.2.1. Flujo estacionario

En el flujo estacionario e ideal en un canal bidimensional, la ecuacién
(24.55) se puede escribir como

O(uh)
-=0. 24.
O (24.56)
Es decir,
uh = constante = q, (24.57)

donde ¢ es el caudal por unidad de longitud transversal. Sustituyendo en
(24.54) y dividiendo por g, se llega a
Oh dS

8x(1_FT)—tana__d—x‘ (24.58)
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Fr<1 h ¢l Fr=1
Fr>l

Figura 24.4: Transicién de un flujo subcritico a otro supercritico en un méximo de S(z).
donde F'r es el nimero de Froude local,

Fr=2 = ’c‘— c=/gh, (24.59)

siendo ¢ la velocidad de propagacién de las ondas gravitatorias largas o en
aguas poco profundas.

La ecuacién anterior es muy similar a la ecuacién (23.20) que describe
el flujo unidireccional e ideal de un gas en un conducto de seccién variable,
jugando aqui el nimero de Froude el mismo papel que alli jugaba el nimero de
Mach (més concretamente M?). El flujo se denomina subcritico si Fr < 1, es
decir, si u es menor que la velocidad de propagacién de las ondas de superficie,
mientras que se denomina supercritico si Fr > 1. Si a > 0 (base del canal
inclinada hacia abajo en la direccién de la corriente), h crece (v y Fr decrecen)
si Fr < 1y h decrece (u y Fr crecen) si el flujo es supercritico. Lo contrario
ocurre si a < 0. El flujo sélo puede ser critico si a = 0, es decir en un maximo
o en un minimo local de la base del canal S(z). De acuerdo con lo anterior,
esta situacién ocurre sélo si S(x) tiene un méaximo local, pues en el caso de
un minimo, si el flujo que se aproxima al minimo (a > 0) es subcritico, Fr
disminuye, y si es supercritico, F'r crece a medida que se aproxima al minimo.
En la figura 24.4 se esquematiza la transiciéon de un flujo subcritico a otro
supercritico a través de un maximo de S(z). Como ocurria en el flujo ideal de
gases en toberas, dS/dx = 0 es condicién necesaria, pero no suficiente, para
que el flujo sea critico. Una vez que el flujo se hace supercritico, las condiciones
aguas abajo no tienen influencia alguna sobre el flujo aguas arriba.

Dado que la friccién en la base y en las paredes del canal no se puede
despreciar cuando se considera el flujo sobre distancias grandes en un canal,
las ecuaciones estacionarias anteriores se utilizan, sobre todo, para analizar
cualitativamente las transiciones en un canal producidas por cambios mas
o menos bruscos de S(z) en distancias = relativamente pequenas. Para ello se
integra (24.54) teniendo en cuenta (24.56):
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q constante

. .- Flujo subcritico

2 . -
u’ 2g ,- - - Flujo supercritico
L

E

Figura 24.5: Relacién entre energia especifica y profundidad para caudal constante.

2
_uz + h + S = constante. (24.60)
La cantidad
2 2
u q
= — =——+F X
B=g +h=g 5+h, (24.61)

que se suele denominar energia especifica, se representa en la figura 24.5
en funcién de la profundidad h para un valor del caudal ¢. El minimo de E
corresponde a las condiciones criticas:

2\ 1/3
Epin = ghca he = (%‘) y U=V ghc (Fr = 1) . (2462)

Para valores de E > E,;, existen dos soluciones, una subcritica con profundi-
dad h > h. y otra supercritica con h < h,. Un caso tipico donde se presentan
estas dos profundidades para un mismo valor de E (caudal constante con S(z)
también constante) es en el flujo bajo una compuerta (ver figura 24.6): el flu-
jo es subcritico delante de la compuerta y supercritico detras. Delante de la
compuerta la profundidad es mayor y casi toda la energia estd en la forma de
energia potencial, mientras que detras, la altura es menor y la mayor parte de
la energia esta en forma de energia cinética.
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Flu jo subcritico

~_ Flujo supercritico
-"‘—‘-—\_‘_‘___-_‘_-_-_

— _\_\__‘_‘_"‘--..‘_“\
—

Figura 24.6: Flujo bajo una compuerta.

Considérese ahora una transicién en un canal bidimensional (anchura cons-
tante) como la de la figura 24.7, donde una base horizontal (S = 0, por
ejemplo) se incrementa en una cierta altura AS. De acuerdo con (24.60),
E, = E; + AS, donde E; y E; son las energias especificas aguas arriba y
aguas abajo de la transicién, respectivamente. Si el flujo en la secciéon 1 (aguas
arriba) es subcritico, de la figura 24.5 se tiene que la altura en la seccién 2
(aguas abajo) tiene que ser menor, hy < hj, mientras que si el flujo en la
seccion 1 es supercritico, la profundidad crece, ho > h; (ver figura 24.7, donde
se ha superpuesto el diagrama F — h de la figura 24.5 en ambas secciones). Lo
contrario ocurriria si AS < 0. En ningin caso el flujo podria pasar de sub-
critico a supercritico, o de supercritico a subcritico, pues para ello tiene que
pasar por condiciones criticas Fr = 1 y, de acuerdo con (24.58), es necesario
que dS/dz = 0 en algiin punto intermedio. Este tipo de transiciones ocurriria
si la transicién desde S = 0 a S = AS no fuera monétona, sino que pasara
por un valor maximo de S, como se ilustra en la figura 24.4.

24.2.2. Solucién de semejanza para la rotura de una presa

Como ejemplo de solucién no estacionaria de (24.54)-(24.55), se conside-
rard a continuacién el problema de la rotura de una presa que, para tiempos
grandes, tiene una soluciéon analitica de semejanza. Esta solucién fue original-
mente obtenida por Ritter en 1892.

Considérese una presa como la esquematizada en la figura 24.8. En t =0
la presa desaparece, y se desea hallar la evolucion de h(z,t). Es preferible, sin
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Figura 24.7: Cambio de profundidad en la transicién de un canal bidimensional.

embargo, utilizar

c=+/gh (24.63)

como variable dependiente en vez de h, de forma que las ecuaciones (24.54)-
(24.55) se escriben (teniendo en cuenta que a = 0):

ou ou oc

a + U'a—x + ZCEE =0, (24'64)
oc Oc  Ou
2 +2“az+ca_z 0. (24.65)

Estas ecuaciones hay que resolverlas con la condicién inicial

c={ \/ ho en t=0 si <0

en t=0 si >0 u=0 en t=0. (24.66)

Se usaran las variables adimensionales

a=2, g=2<. (24.67)
co co

Como no existen ni longitud caracteristica en la direcciéon z para adimensio-
nalizar z, ni tiempo caracteristico para adimensionalizar ¢, la iinica manera de
hacer adimensionales las variables independientes es mediante una combina-
cion de ellas, por lo que el problema debe tener solucién de semejanza. Para
buscarla, se ensaya la variable

n=at’z, (24.68)
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ls

Figura 24.8: Rotura de una presa.

donde a y b son constantes desconocidas a determinar de forma que a y
sean funciones de 7 exclusivamente. Sustituyendo (24.67)-(24.68) en (24.64)-
(24.65), se llega a

lda x da ag

— Ty 49235 = 4.69
Tt e TP =0 (24.69)
2dBy2 L 909 1 5% . (24.70)

codn t dn dn

Para que a y 8 dependan sélo de 7, y no de z y de t por separado, b tiene
que ser o bien cero, lo cual corresponderia a una solucién estacionaria trivial,

o bien b = —1. Tomando b = —1, se tiene
1
co t coa

Finalmente, la constante a se elige igual a 1/co para que 7 sea adimensional:
%
= —. 24.71
n= o (24.71)
De esta manera, las ecuaciones en derivadas parciales (24.64)-(24.65) se con-
vierten en las ecuaciones diferenciales ordinarias

—n)=— 4+ 282 = .
(a 17)n+ﬂ77 0, (24.72)

2a—n)—+B~— =0. (24.73)
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Multiplicando (24.72) por 2d3/dn y (24.73) por da/dn y restando, se llega

8 [4 (%)2 - (j_‘;)ZJ =0. (24.7)

Como 3 # 0 (excepto en el frente mévil del liquido), se tiene que
ds _ ,lda
dn 2dn
De los dos signos posibles se elige el negativo dado uno espera que du/dx > 0
y O0c¢/dz < 0. Sustituyendo en (24.72), se obtiene

(24.75)

da

dﬁ( n—B) (24.76)
Dado que da/dn # 0, se tiene
a-n—-p£=0 (24.77)
y, derivando,
da dgp
= 1= = 24.
1" =0 (24.78)

que, junto con (24.75) (con signo el signo negativo), se llega a las dos ecuaciones

da 2 dg 1
Frantt _d_n__g_ (24.79)

La integracion de estas dos ecuaciones, junto con (24.77), proporciona

2 1
a=C+zn B=C1-3m, (24.80)

que en las variables fisicas se escribe

2z T
— =Cicg— — 24.81
3t T 10T g (2481)
donde C; es una constante de integracién a determinar.

Sumando y restando las ecuaciones (24.64) y (24.65), esas dos ecuaciones

se pueden escribir como

u = Cico +

—(?—(u:i:2c)+(u:tc) 0

- g (uE20) =0. (24.82)
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Esto quiere decir que las magnitudes u + 2c¢ y u — 2c¢ permanecen constantes
para observadores que se mueven con las velocidades (horizontales) u + c y
u — ¢, respectivamente. Las cantidades u £ 2c¢ se suelen denominar invariantes
de Riemann, que se conservan a lo largo de las trayectorias dadas por dz/dt =
u % ¢, que se denominan caracteristicas del sistema de ecuaciones (24.64)-
(24.65).2 Por tanto, de (24.81), el invariante de Riemann 3C)cy permanece
constante a lo largo de la caracteristica

Yt 9o+ (24.83)

donde el subindice + hace referencia a que (24.83) es la caracteristica con signo
positivo (que designaremos por C, ), correspondiente a un observador que se
mueve hacia las z crecientes. (Por supuesto, 3Cjco es constante siempre, no
sélo a lo largo de la caracteristica C4+, lo cual es una particularidad de este
problema, que tiene uno de los invariantes particularmente simple.) Por otra
parte, el otro invariante de Riemann, (4z/3t) — Cycp, es constante a lo largo
de la caracteristica C_, dada por

dr_ z_
= == 24.84
dt t ( )
De las condiciones iniciales (24.66), se tiene que c =coyu=0ent =0
para z = 0, de forma que sobre la caracteristica C; que pasa por (z =0,t = 0),

u + 2¢ = 3C1c0 = 2¢9. Es decir,
2

C, = . (24.85)
y la solucién de semejanza (24.81) se escribe
2 T 1 T
u—g(co—%?), c-§(2co—?). (24.86)

Se observa que para z = 0, y para todo valor de t, u = 2¢9/3 y ¢ = 2¢/3, lo
cual implica que la altura h en la posiciéon donde estaba la presa (z = 0) es
siempre %ho para t > 0.
Sustituyendo el valor de C) en (24.83),
dil'+ 4 x

=2, %
=30+ 5 (24.87)

2Ver capitulo 26, donde se introduce formalmente el método de las caracteristicas para
resolver el sistema hiperbdlico de ecuaciones que describe el movimiento ideal y unidireccional
de un gas.
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S : _____ h

Liquido
estacionario

Liquido en movimiento

Figura 24.9: Caracteristicas C+y C_ por (z = 0,¢ = 0) y su relacién con los limites del flujo
tras la rotura de la presa.

e integrando, se llega a

Ty = Cot'/® 4 2ot (24.88)

donde C32 es una constante de integracion, que se puede determinar sustitu-
yendo esta expresion en (24.86): sobre cualquier caracteristica Cy,

2 1
u=2co+ ;3-0215_2/3, c= —502t-2/3 : (24.89)

lo cual implica que C; = 0 para que esta solucién no se haga infinita en t = 0
(caracteristica C; que parte de t = 0). Por tanto, (24.88) y (24.89) se escriben

T4 =2cot; ulz=z4)=2c, clz=z4+)=0. (24.90)

Como h = 0y, por tanto, ¢ = 0 en el frente de avance del liquido, se tiene que
la caracteristica C; que pasa por (z = 0,t = 0) es la trayectoria del frente de
avance del liquido que, ademds, se mueve a una velocidad constante 2¢co (ver
figura 24.9).

La integracién de la ecuacién (24.84) para las caracteristicas C_ propor-
ciona

z_ = Cat, (24.91)
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donde C3 es una constante arbitraria. La caracteristica C_ que pasa por (z =
0,t = 0) tiene como invariante de Riemann u — 2¢ = —2c¢y. Sustituyendo
(24.91) en (24.86), se tiene que sobre esta caracteristica C3 = —cg, con lo que,
sobre la caracteristica

T_ = —cot (24.92)

se verifica

uz=r_)=0, clr=z_)=c¢. (24.93)

Dado que h = hg y, por consiguiente, ¢ = ¢y tanto inicialmente (¢ < 0), como
para t > 0 en la parte del liquido que todavia no ha empezado a moverse, la
caracteristica C_ (24.92) que pasa por (x = 0,¢ = 0) proporciona la trayectoria
de la posicién del limite entre la region estacionaria del liquido y la region
donde hay movimiento del liquido, que se mueve a una velocidad —cgy. Asi, para
cada tiempo t > 0, la region de liquido en movimiento estd delimitada entre
las caracteristicas Cy (24.90) y C_ (24.92), teniendo una longitud Az = 3cpt
(ver figura 24.9). La velocidad y altura del liquido en cualquier instante ¢, para
valores de z en el intervalo —cot < = < 2¢gt, se obtienen de (24.86). (También
se pueden obtener por el método de las caracteristicas, trazando caracteristicas
C4+ y C_ entre las dos caracteristicas limites dibujadas en la figura 24.9, con
valores de C; y Cj3 distintos de 0 y —cy. Pero como este método no es de
utilidad en este problema al disponerse de una soluciéon de semejanza, no va a
ser tratado aqui. Ver lecciones siguientes para un ejemplo del uso del método
de las caracteristicas.)

Para terminar esta seccion, es conveniente escribir los criterios de validez de
la solucién obtenida. En primer lugar, la suposicién de despreciar la velocidad
vertical, |Dvy/Dt| < g, no es vélida en los instantes iniciales tras la rotura
de la presa, ya que el movimiento inicial cerca de z = 0 es principalmente
hacia abajo con aceleracién g. Por otro lado, se han despreciado los efectos
de la viscosidad (Re > 1) y de la tensién superficial (B > 1). De acuerdo
con la solucién anterior, la velocidad del liquido es del orden de ¢y = v/gho.
Tomando como longitud caracteristica hy (también habria que tomar cot, que
es la longitud caracteristica en la direccion horizontal, pero esta longitud se
hace mayor que hg tras un periodo inicial de duracién ¢t = ho/co = v/ho/g,
durante el cual es dudosa la validez de la solucién de semejanza), la solucién
es valida si

3/2
_ pgl/QhO/
I3

_ pght
Re >1 y B= o >1 (t> ho/g) . (2494)
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A D

Figura 24.10: Resalto hidraulico.

Por 1ltimo, el niimero de Froude es de orden unidad, Fr ~ c3/(gho) = 1, como
corresponde a un movimiento donde existe un balance entre la inercia y las
fuerzas gravitatorias. Mas concretamente, el nimero de Froude local, Fr =
u?/c?, es exactamente igual a la unidad en z = 0, siendo el flujo subcritico
para £ < 0 y supercritico para £ > 0 [ver solucién (24.86)].

24.3. Resalto hidraulico

Ya se ha visto la equivalencia entre el flujo estacionario en un canal bidi-
mensional y el flujo compresible, unidireccional y estacionario en un conducto
de seccion variable, donde el nimero de Froude en el primer caso juega el mis-
mo papel que el nimero de Mach al cuadrado en el segundo. En este contexto,
el equivalente de una onda de choque en el flujo compresible es el denominado
resalto hidraulico, que permite que el flujo en un canal pase de supercritico
(Fr > 1) a subcritico (Fr < 1) a través de una discontinuidad donde se disi-
pa energia y, por tanto, el flujo no es ideal en su interior. En esta seccién se
derivaran las relaciones entre el flujo aguas arriba y aguas abajo del resalto
hidraulico para el caso de un canal bidimensional de fondo plano (equivalente
a las relaciones de Rankine-Hugoniot para una onda de choque normal) y se
veran algunos ejemplos. No se consideraran resaltos hidraulicos oblicuos.

En ciertas circunstancias, algunas de las cuales se discutirdn mas adelante,
el flujo en un canal bidimensional pasa bruscamente de unas condiciones de
velocidad u; y altura h; a otras dadas por us y ho (ver figura 24.10). El salto
ocurre, por supuesto, en una distancia finita, pero al ser mucho mas pequeinia
que la longitud caracteristica de variacién del flujo ideal circundante, se suele
tratar, en primera aproximacion, como una discontinuidad. Aunque el flujo
en el interior del resalto hidraulico es turbulento y, por tanto, disipativo y
complejo de describir, como ocurre en los flujos compresibles a través de una
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onda de choque, en la inmensa mayoria de las situaciones sélo interesa conocer
la relacién entre las propiedades del flujo a ambos lados de la discontinuidad,
para asi poder enlazar el flujo ideal de un lado con el del otro. Para hallar
estas relaciones se toman unos ejes estacionarios con el resalto hidraulico y
se escriben las ecuaciones de conservacién de masa, cantidad de movimiento
y energia en un volumen de control que contenga al resalto (ABCD en la
figura 24.10). La ecuacién de conservacién de la masa (por unidad de longitud
transversal) nos dice que

’U.1h1 = u2h2 =q, (24.95)

donde q es el caudal por unidad de longitud. Teniendo en cuenta que el flujo
es estacionario, que en la superficie libre superior la presion es la atmosférica,
que no hay disipacién en las secciones A) y Az al ser el flujo ideal fuera del
resalto, y despreciando la friccién del liquido tanto con el suelo como con el
aire al ser la longitud del resalto muy pequena (una discontinuidad en primera
aproximacién), la ecuaciéon de cantidad de movimiento en la direccién del
movimiento aplicada al volumen de control, por unidad de longitud transversal,
se escribe

y hy h2
—phiuf + phous = /0 (p1 — Pa)dy — /0 (p2 — Pa)dy . (24.96)

Teniendo en cuenta que la distribucion de presién en A; y A es hidrostatica,
esta ecuacion se escribe

1 1 .
Eghf + hyu? = Eghﬁ + hou? . (24.97)

Las ecuaciones (24.95) y (24.97) permiten obtener las condiciones detras
del resalto hidraulico, us y ho, en funcién de las condiciones delante, u; y hi,
y viceversa. Es conveniente introducir el niimero de Froude, Fr = u%/(gh). De
las ecuaciones (24.95) y (24.97) se llega a

u? (h1 + h2)he u? (h1 + ho)hy
F —_ 1_ = —n, F = —-——-2 = — 249
"= G 2h2 "7 Ghy 213 (24.98)
De la primera de estas ecuaciones se tiene que
B2 he
—~+ — —2Fr| = 4.
B2 + h ry =0, (24.99)

de donde, tomando el signo positivo de la raiz cuadrada, dado que las alturas
no pueden ser negativas,
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hy 1 e
e=5 (~1+ VI+8Fr) . (24.100)

De forma similar, de la segunda de las ecuaciones (24.98),

1
b ( 1+ /1 +8Fr2) (24.101)

hy

Queda por aplicar la ecuacién de la energia al volumen de control. Supo-
niendo que 7T} es practicamente igual a 7> y designando por W la potencia
disipada (por unidad de longitud) por el movimiento turbulento en la superficie
libre y en el suelo, esta ecuacion se escribe

3 3

U U 1 9
—phlgl i Ph272 = §Pg(hfu1 — hjug) — W, (24.102)

que, junto con (24.95) y (24.97), permite calcular W conocidas las propiedades
del flujo en A; o en Az. Después de sustituir (24.95) y (24.97), esta ecuacién
se puede escribir

PIN (hy — ) =W, (24.103)
4h,

Como W > 0, de esta ecuacién se deduce que

hy > hy, (24.104)
y, de (24.98),

Fri>1, Fro<l1. (24.105)

Es decir, debido a la disipacién, en un resalto hidraulico el flujo siempre pasa
de supercritico a subcritico, aumentando la altura y disminuyendo la velocidad
del liquido en el canal. Se observa, por tanto, una completa analogia con lo que
ocurre en una onda de choque. La ecuacién (24.102) también se suele escribir
en términos de la energia especifica F, definida en (24.61):

hi—hy W
2 pge’
Ejemplos tipicos de resaltos hidraulicos son los que se forman detras de

un vertedero o detrds de una compuerta (figura 24.11). En ambos casos el

flujo pasa primero de subcritico a supercritico debido al cambio brusco en la

seccién y, posteriormente, el flujo pasa de nuevo a subcritico a través de un
resalto hidrdulico para amoldarse a las condiciones que existan aguas abajo.

FEi— FEy+

(24.106)
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(a) - F

Subcritico Subcritico

-

.

Subcritico Subcritico

Supercritico Supercritico

Figura 24.11: Resaltos hidraulicos detréds de (a) un vertedero y (b) una compuerta.

Dadas las condiciones aguas abajo, la posicién del resalto hidraulico se obtiene
de las ecuaciones anteriores de forma que el flujo subcritico inmediatamente
aguas arriba del mismo estd conectado con el flujo existente aguas arriba de
la compuerta o del vertedero a través de las ecuaciones dadas en la seccién
24.2.1.

Un ejemplo de resalto hidraulico no estacionario es el que se formaria en
el problema de la rotura de una presa considerado en la seccién anterior en
el supuesto de que existiera una pared vertical a una cierta distancia x, de la
presa inicial (ver figura 24.12). Se supone que la pared es lo suficientemente
alta como para que el flujo no pueda pasar por encima. Como el frente del
liquido se mueve con velocidad 2c¢y, la pared no tiene efecto sobre el flujo
para t < x,/(2c). Para t > z,/(2¢p), el liquido se empieza a acumular en la
pared, elevandose el nivel y formdndose un resalto hidraulico que viaja hacia la
izquierda con una velocidad U = —dz,/dt, donde z, es la posicién del resalto
hidraulico considerado como una discontinuidad. Recuérdese que, de acuerdo
con (24.86), la solucién de semejanza dada en la seccién 24.2.2 es supercritica
(u > ¢) para z > 0 y subcritica para £ < 0, permaneciendo el flujo critico
en z = 0 para todo instante. Las ecuaciones (24.95) y (24.97) aplicadas a un
sistema de referencia que se mueve con la discontinuidad se escriben (ver figura
24.12)

(u1 + U)hy = (ug + U)ha, (24.107)

(ur + U)2hy — (ug + U)2h = %g(hf —h2), (24.108)

de donde

1 ho
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0 X, Xp

Figura 24.12: Resalto hidraulico tras la rotura de una presa al encontrarse el flujo con una
pared.

_ hy 1 ha
U2 = Uy (1 hg) \/2gh2 (1 + hl) 3 (24.110)

Teniendo en cuenta que u; y h; se conocen de la solucién de semejanza (24.86)
en funcién de z, en todo instante, U y la posicién del resalto hidraulico se
pueden calcular en funcién del tiempo resolviendo las ecuaciones anteriores,
junto con (24.54)-(24.55) para £ > z, y la condicién de contorno u(z = z,) =
0.
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Capitulo 25

Ondas sonoras. Acustica

25.1. [Ecuaciones para la propagacion de pequenas
perturbaciones en un fluido ideal uniforme

En esta leccién se considerara la propagacién de pequeiias perturbaciones
de las magnitudes fluidas (por ejemplo, ondas sonoras) en el seno de un fluido
ideal. Para ello se parte de las ecuaciones de Euler (19.4)-(19.6) que gobiernan
el movimiento de un fluido ideal. En ausencia de fuerzas masicas' y de aportes
volumétricos de calor, estas ecuaciones pueden escribirse como

1 Dp .
;E‘FV"U—O, (25.1)
Dv
- = 25.2
Ds
— =0. 25.

Se pretende analizar la evolucién de pequenas perturbaciones de las mag-
nitudes fluidas cuando éstas se producen en un medio que se encuentra en
reposo, (¥, = 0), con presién y densidad uniformes, p = p, y p = po.2 Es decir,
se supondra que

p(Z,t) =po+ P (Z,t), p(T,t) =po+p(L,t), ¥(F t)=0+7(Z,t), (25.4)

'La influencia de las fuerzas maésicas se considerard en la seccién 25.7.
2La propagacién de pequefias perturbaciones en un fluido no uniforme se considerara tam-
bién en la seccién 25.7.
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donde las magnitudes con prima son pequenas:

Ip'/pol < 1, 1p'/po] < 1 (25.5)

(ya se vera mas adelante en relacién a qué |v'| es pequefia). Esta situacién
se produce, por ejemplo, al hablar o al golpear un tambor, donde las ligeras
perturbaciones locales de la presién, densidad y velocidad se propagan en el
aire a una cierta velocidad (la velocidad del sonido) que, segiin veremos, viene
dada por (10.16).

De acuerdo con la ecuacién (25.3), la entropia se conserva en cada particula
fluida. Como el fluido parte de un estado uniforme inicial, esta entropia es la
misma en todas las particulas fluidas e igual a su valor inicial s,. Asi, la
ecuacién de estado s(p,p) = s, implica que el flujo es barétropo, p = p(p)
(como ya se vi6 en la seccién 18.4). Esto permite escribir las variaciones de la
presién en funcién de las variaciones de la densidad y eliminar asi la presion
en las ecuaciones (25.1)-(25.2). En efecto, expandiendo la funcién de estado
p(p, s) en serie de Taylor en el entorno de (p,, s), teniendo en cuenta que s = s,,
se tiene

op
p(p, s) = p(po, So) + (5‘) (p —Po) + - (25.6)
P/ s=s,

Utilizando (25.4), en primera aproximacién (es decir, despreciando términos
cuadraticos en las perturbaciones) se puede escribir

P =a3p, (25.7)
donde

Op
2 — ———
as = <6p)s=so (25.8)

es una propiedad termodinamica del medio no perturbado. Para un gas per-
fecto, a?, = YPo/Po = YRgT,. La ecuacién (25.7) sustituye, en primera aproxi-
macidn, a la ecuacién de la entropia (25.3).

Anilogamente, sustituyendo (25.4) y (25.7) en (25.1)-(25.2) y despreciando
los términos cuadraticos en las pequenas perturbaciones, se llega al siguiente
par de ecuaciones lineales para p’ y v':

op .
6_f;+pov.v:0, (25.9)
o

Pogy + a?vy =0, (25.10)
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donde, por simplicidad en la notacién, se ha quitado la prima en la velocidad.
Eliminando ¥ entre (25.9) y (25.10) se obtiene

o2 p’
ot?

De igual manera, eliminando p’,

- a’v?y =0. (25.11)

0%v
ot2
Una ecuacién similar para p’ se obtiene de (25.7) y (25.11). Estas ecuaciones
son del tipo denominado ecuacién de ondas y, como se vera mds adelante,
sus soluciones representan ondas que se propagan a la velocidad a,, que es asi
la velocidad de propagacién de las pequenas perturbaciones. Por ejemplo, se
verd en la seccién 25.3 que la propagacion de las ondas sonoras satisfacen las
hipétesis anteriores, y es por ello que a, se denomina velocidad del sonido.
En lugar de utilizar las ecuaciones anteriores para v, p’ y p/, es mas 1til
trabajar con el potencial de velocidad ¢. Como el flujo es isentrépico y no hay
fuerzas masicas, partiendo ademas del reposo, se sigue que el movimiento es
irrotacional (ver leccién 20), existiendo potencial de velocidad:

—avii=0. (25.12)

7=Vé. (25.13)

[Mas directamente, tomando el rotacional de (25.10) se tiene que (VAT)/dt =
0; como V A ¢ = 0 inicialmente, lo sigue siendo en todo instante posterior.]
Sustituyendo (25.13) en (25.10),

poV% +a2Vp' =0, (25.14)
de donde
Po 09
y
¢
, = —_—
P=—pop, - (25.16)

Finalmente, sustituyendo (25.13) y (25.15) en (25.9) se obtiene una ecuacién
de ondas para ¢:

¢

o a2V2¢=0. (25.17)
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De la resolucién de esta tinica ecuacién se obtiene inmediatamente v, o' y p’
de (25.13) y (25.15)-(25.16).

25.2. Ondas planas

Por simplicidad se considerara primero el caso en el que las perturbaciones
se propagan exclusivamente en la direccién z, es decir, ¢ = ¢(z,t), T = uéy =
(0¢/0z)éz. La ecuacién anterior se escribe

d? d?
53‘5 - aﬁ-(%—f =0. (25.18)

Esta ecuacién se puede resolver facilmente escribiéndola en su forma candnica
mediante el cambio de variables

E=xz—apt, n=2x+a.t, (25.19)
que transforma (25.18) en
g
0%¢ —0
noE

Integrando dos veces, la solucion general de esta ecuacién se puede escribir
como

(25.20)

¢ =f(&) +g(n) = flz - aot) + g(z + aot)., (25.21)

donde f y g son funciones arbitrarias d e sus argumentos. Utilizando u = 9¢/0z
y (25.15)-(25.16), la solucién general del problema en las variables fisicas se
escribe

u= F(z — a,t) — G(z + aot), (25.22)

/ /
P — F(z — aot) + Gz + aot) = 22| (25.23)
Polo Po

donde F = df/d€ y G = —dg/dn son funciones también arbitrarias de sus
argumentos. Obsérvese que F(z — a,t) permanece constante para un observa-
dor que se mueve con velecidad dz/dt = a, (z — a,t = constante), mientras
que G(z + a,t) permanece constante para un observador que se mueve con



CAPITULO 25. ONDAS SONORAS. ACUSTICA 429

velocidad dx/dt = —a, (z + a,t = constante).® Por tanto, esta solucién re-
presenta dos ondas planas o unidimensionales superpuestas que se propagan
hacia la izquierda y hacia la derecha con velocidad a,, que es asi la velocidad
de propagacién de las pequenas perturbaciones (por ejemplo, ondas sonoras,
siendo a, la velocidad del sonido). La forma de estas ondas, es decir, los valores
concretos de las funciones F' y G, que en principio son arbitrarias, dependen
de las condiciones iniciales o de contorno (ver los ejemplos que se describen a
continuacion).

De acuerdo con las expresiones (20.29)-(20.30), para una onda que se pro-
paga hacia la derecha (funcién F'), se tiene que

/ ! /

L_L2_27 (:p_)‘ (25.24)
Qo Po Poly YPo

y para una onda que se propaga hacia la izquierda (funcién G), se verifica

/ /
R (25.25)
o Po Poly
De estas relaciones se deduce, ademas, la condiciéon que debe cumplir la per-
turbacion de la velocidad para que la solucién anterior sea valida: u debe ser
mucho menor que la velocidad de propagacién de las perturbaciones (velocidad
del sonido) a,, puesto que, por hipétesis, p’'/p, < 1.

25.2.1. Propagaciéon de una pequena perturbacién inicial

Supongamos que perturbamos a un fluido inicialmente en reposo (u = 0)
mediante un ligero incremento local de la presién dado por p'/poa. = f(z),
siendo f(z) una funcién conocida (ver figura 25.1). De acuerdo con (25.23),
inicialmente p'a,/po = f(z). Para que en t = 0 se satisfagan las ecuaciones
(25.22) y (25.23), las funciones F' y G deben verificar

0= F(z) - G(z). (25.26)
f(z) = F(z) + G(z), (25.27)

Es decir,
F(z) =G(z) = L(;—) , (25.28)

3¢ = £ — a,t = constante y = z + a,t = constante son las caracteristicas de la ecuacién
de ondas (25.18); ver leccién 26.
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X-a8 6: constante
.

-, X+a o t=constante

1=t

1=ty
1=t
~ =
Figura 25.1: Propagacion de una pequefa perturbacién inicial.
de forma que la solucién es

p’ 1 1

= = f(x — aot) + = f(z + aot) (25.29)
Polo 2 2

1 1
o= §f(x — aot) — Ef(m +aot) - (25.30)

Tenemos pues que la perturbacion de la presién inicial se divide en dos ondas
iguales cuyas intensidades son la mitad de la perturbacién inicial, una que se
propaga hacia la derecha y otra hacia la izquierda, ambas con velocidad a,
(ver figura 25.1).

25.2.2. Pequenas perturbaciones producidas por el movimien-
to de un piston

Considérese ahora el movimiento originado en un gas en el interior de
un cilindro infinito, cuyo eje tiene la direccién del eje z, por el movimiento
oscilatorio de un pistén en torno a £ = 0 de acuerdo con la ley z = f(t)
conocida (ver figura 25.2). El fluido en contacto con el pistén adquirird una
velocidad u = df /dt = f'(t). Este movimiento se propagara al resto del gas
en forma de una onda que, si el didmetro D del cilindro es mucho mayor que
| £(t)|, puede considerarse plana (excepto en las proximidades de la pared del
cilindro) y, si | f'(t)|/a, < 1, viene dada por (25.22). En particular, para £ > 0
sblo existira una onda propagandose hacia la derecha dada por
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+ X-a o t= constante

Figura 25.2: Problema del pistdn.
i plao
u=F(z — aot) = = 4 (25.31)
Polo Po
y, para T < 0,
P’ plao
u=—-G(x+apt) = —— = — . (25.32)
Polo Po

La condicién de contorno u = f/(t) en z = f(t) fija las funciones F' y G: para
T > 0 se tiene

FIf(t) - aot] = f/(t). (25.33)

Como |f(t)| < aot por hipétesis, haciendo 7 = —a,t,

F(r) = f'(~1/as) , (25.34)

de donde se obtiene la solucion

we P % ey (25.35)
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que constituye una onda que se propaga hacia z > 0. Andlogamente, para
T < 0 se obtiene

Y plao _ o
u Dot . flt+x/ao) . (25.36)
En el caso particular en que el pistén oscile arménicamente con frecuencia
w, f(t) = Asinwt, A < D, se tiene f'(t) = Awcoswt = v,coswt, v, = Aw K
a,, y la onda que se propaga hacia la derecha, por ejemplo, vendria dada por
(ver figura 25.2)

/ /
u=-L_ =% _ v, cos|w(t — x/a,)] - (25.37)

Polo Po

25.2.3. Ondas monocromaticas

Una onda del tipo (25.37), es decir, una onda armoénica definida por una
unica frecuencia w, se suele denominar onda monocromadtica, por analogia con
las ondas electromagnéticas. A veces, se suele expresar en variable compleja
debido a que simplifica el dlgebra:

u = Real [Aei‘“(t*“’/“°)] , (25.38)

donde, en general, la amplitud A puede ser también compleja, A = ae'®, de
forma que « es el desfase de la onda:

u = acos(wt —wzx/a, + a). (25.39)

La cantidad a,/w, que tiene dimensiones de longitud, multiplicada por 2,
representa la longitud de un ciclo completo y se suele denominar longitud de
onda:
a=orde | (25.40)
w
En general, las ondas planas pueden definirse en relacién a cualquier di-
reccién de propagacion 7, o direccién unitaria normal a los frentes de onda.
En este caso, en vez de (25.38) se tendria:

u = Real [Aei(”"E'f)] . (25.41)
donde
- W, 2r
k = a—o’l = Tn 5 (2542)
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es el denominado vector de onda. La importancia de las ondas monocromati-
cas reside en el hecho de que cualquier onda (plana en este caso) puede ser
representada como una superposicién de ondas monocrométicas con distintas
frecuencias y vectores de onda mediante un desarrollo de Fourier. La super-
posicién es posible debido a que las ecuaciones que describen el movimiento
de estas ondas son lineales. Asi, una onda cualquiera se puede representar
mediante una cierta distribucién de frecuencias. Las diferentes amplitudes A,
correspondientes a cada frecuencia w se obtendrian del desarrollo de Fourier
de la condicién inicial o de contorno que origina la perturbacion. Las ondas
sonoras audibles por el oido humano, por ejemplo, estan caracterizadas por
diferentes distribuciones de frecuencias comprendidas entre 20 Hz y 20000 Hz,
aproximadamente. Componentes de una onda sonora con frecuencias mayores
o menores no son detectables por el oido humano.

25.3. Velocidad del sonido. Justificacion de las hi-
potesis

Se acaba de ver que las pequenas perturbaciones en un fluido ideal se pro-
pagan a una velocidad a, dada por la ecuacién (25.8), correspondiente a las
variaciones de presion con la densidad a entropia constante. En esta seccion
vamos a comprobar que, realmente, esta velocidad es a la que se propaga el
sonido; es decir, vamos a corroborar que, efectivamente, las pequenas per-
turbaciones perceptibles por el oido humano se propagan isentrépicamente.?
También se verd bajo qué condiciones la hipétesis de despreciar las fuerzas
gravitatorias es razonable.

Para que el fluido pueda ser considerado como ideal, las fuerzas de viscosi-
dad en la ecuacién de cantidad de movimiento, asi como la disipacién viscosa
y la conduccién de calor en la ecuacién de la energia, tienen que ser despre-
ciables frente a los términos de variacién local (los términos convectivos son
cuadréticamente pequeros):

‘Newton postulé que el sonido se propaga isotérmicamente, es decir, a una velocidad cuyo
cuadrado es a% = (Op/dp)7, que para un gas ideal es a% = p,/po. En aire atmosférico a 20°C
esto daria una velocidad de propagacién igual a 290m/s, un valor significativamente menor
que el experimental a, = 340m/s. Fue Laplace, un siglo mas tarde, quien se di6é cuenta de
que la temperatura no permanece constante, puesto que al comprimirse el fluido se produce
un trabajo que anade energia interna a las particulas fluidas, variando asi su temperatura.
Laplace correctamente postulé que las ondas sonoras se propagan isentrépicamente, siendo
el cuadrado de su velocidad a2 = (9p/dp)s, igual a vp,/po para. un gas ideal, que concuerda
muy bien con el valor experimental.
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|p0T/0t| > |V -T| , |p0e/0t|>® , |pde/dt|>|V-KVT| . (25.43)

La disipacidén viscosa es siempre muy pequena al ser cuadratica en la pertur-
bacion de la velocidad. Las otras dos condiciones proporcionan:

1
Yo«1 <1, (25.44)

wA? wA2 Pr
donde w y A son una frecuencia y una longitud (de onda) caracteristicas de
las perturbaciones.
Para los gases Pr = O(1) y ambas condiciones son equivalentes. Teniendo
en cuenta que A ~ a,/w, se tiene que verificar que

';-‘2" <1. (25.45)
o

Para el aire atmosférico a 20°C, v ~ 1,5 x 107°m?/s, a, ~ 340m/s; tomando

el caso més desfavorable de w = 20000H z, se tiene vw/a? ~ 2,6 x 10-8, que

justifica plenamente el considerar isentropica la propagacién del sonido en el

aire y, por extensién, en cualquier gas en condiciones normales.

En el caso de un liquido, aunque siempre se haya considerado p ~ constante,
ésto no es cierto para la propagacion de las ondas sonoras, puesto que una de
las condiciones de solenoidalidad que se vié en la seccién 10.2 [concretamente,
la condicién (10.21)] no se satisface: wA/a, ~ 1. Esto es obvio puesto que la
propagacion del sonido requiere la compresion local del fluido. Lo que no cabe
duda es que la velocidad del sonido en un liquido es siempre mucho mayor
que en un gas, siendo infinita en el limite formal de un liquido ideal (densidad
constante).> Como, ademds, v suele ser menor en los liquidos que en los gases
debido a la mayor densidad de aquellos (i ~ 10~5m?/s para el agua a 20°C),
la condicién (25.45) se verifica con mayor contundencia en los liquidos que en
los gases, y la hipdtesis de isentropia en la propagacién del sonido es aun maés
valida.

En la seccién 25.1 también se hizo la hipotesis de que los efectos gravitato-
rios son despreciables. La gravedad puede en principio afectar en dos niveles:
en el orden menor, a la distribucién de presion del fluido no perturbado,

5Para el agua a temperatura ambiente a, ~ 1400m/s, siendo, en orden de magnitud,
similar para la mayoria de los liquidos. Conviene decir aqui que de consideraciones puramente
termodindmicas se obtiene a2 = (9p/dp)s = Y(Op/Op)r = ~a¥. La relacién de calores
especificos v es siempre mayor que la unidad, siendo apreciablemente mayor para los gases
(y = 5/3 para gases monoatémicos y ¥ = 7/5 para los diatémicos), pero aproximadamente
igual a la unidad para los liquidos. Por tanto, aunque la velocidad del sonido en gases difiere
apreciablemente de la isotérmica postulada por Newton, no ocurre asi para los liquidos.
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O - _Vpo + pog‘, (25.46)

que ya no seria uniforme, sino que dependeria de la coordenada vertical z (ver
seccién 25.7). Por supuesto, este efecto es mucho mds importante en liquidos
que en gases. Por otro lado, en el orden lineal de las pequenas perturbacio-
nes, la ecuacién de cantidad de movimiento (25.10) quedaria modificada de la
siguiente forma;

ov

pog{

Asi, la influencia de la gravedad en la propagacién de las pequenias perturba-
ciones seria efectivamente despreciable si

+a2vp =/pg. (25.47)

gr g

~

a2 wa,

<1, (25.48)

Para el aire, tomando el caso més desfavorable de w = 20H 2, g/wa, ~ 2 x
107* <« 1. Para el agua, g/wa, ~ 5 x 1075 <« 1. Curiosamente, el efecto de
la gravedad es aiin menos importante en los liquidos que en los gases al ser la
velocidad de propagacién mucho mayor, aunque, en el fluido no perturbado,
la gravedad influye mucho maés en los liquidos que en los gases, afectando con
ello a la velocidad de propagacién a,, que dependeria de z.

En definitiva, para el caso de ondas sonoras, las soluciones de onda encon-
tradas anteriormente apenas se ven afectadas por la presencia de la gravedad,
aunque si su velocidad de propagacién, que dependerd de la coordenada z, pe-
ro en longitudes del orden de a2/g, mucho mayores que la longitud de onda A
si se cumple (25.48). Esta dependencia de a, modifica, en distancias del orden
de a2/g, la forma de las ondas (ver seccién 25.7).

25.4. Energia e intensidad acustica

Las ondas tienen la interesante propiedad de que pueden transportar energia
sin la necesidad de un transporte neto de material. En esta seccion se defi-
nird y analizard algunas de las propiedades generales de la energia acustica,
que es la parte de la energia total del fluido asociada con la presencia de ondas
sonoras, y de la intensidad acustica, que es la velocidad de transporte de la
energia acustica.

Aunque en las ecuaciones de las secciones anteriores se han linealizado las
ecuaciones de las perturbaciones, despreciando términos cuadraticos que invo-
lucran el producto de dos perturbaciones cualesquiera, debido a que la energia
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cinética es cuadratica en la velocidad, para poder tenerla en cuenta apropiada-
mente en la definicién de la energia acistica se retienen términos cuadraticos
en las perturbaciones, despreciando términos que involucran productos de tres
o mas perturbaciones. Asi, la densidad de energia cinética asociada a las pe-
quenas perturbaciones sobre un fluido en reposo y uniforme se escribe

1

5oV (25.49)

donde p,, es la densidad del medio no perturbado y v el médulo de la velocidad
de las perturbaciones. La densidad total de energia actstica serd la suma de la
densidad de energia cinética (25.49) maés la densidad de energia interna asocia-
da a la onda. Como la entropia se conserva, el incremento de energia interna
asociado a la onda es igual al trabajo de compresién del fluido producido por
el exceso de presién p’ = p — p, (el trabajo de las fuerzas de presién asociado
a la presién no perturbada p, se considerara mas adelante), que comprime al
fluido desde la densidad p, hasta p:

P 1 P p
—/ op'd (-) 'z/ P ap, (25.50)
o p Po pO

donde, como en (25.49), se han despreciado términos ciibicos en las perturba-
ciones. Haciendo uso de (25.7) y teniendo en cuenta que dp = dp’, la expresion
anterior se escribe

o / 1 /2 1 /2
2P 2P p
at—dp = —af— = —- . 25.51
-/0 ° po P 2 po 2a¢2>po ( )

La densidad de energia acistica es la suma de (25.49) y (25.51):

W=ttt 22 Lo iwey v L iag/on (25.52)
= 2PV T 3az,, T 2P a2 ’ ‘

donde se ha hecho uso de (25.13) y (25.16) para escribirla en términos de la
funcién potencial.

Para obtener la intensidad acistica es conveniente comenzar por el caso de
una onda plana que se propaga en la direccion z. La velocidad de transporte
de energia asociada a una onda que, viniendo desde la izquierda, atraviesa
cualquier plano z =constante es igual al trabajo de las fuerzas de presiéon
asociado al exceso de presién p’ = p — p,. Por tanto, la intensidad acistica, o
velocidad de transporte de energia acistica por unidad de drea, se define como

I = p/u, (2553)
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donde v = ue;. Téngase en cuenta que, de acuerdo con (25.24), I tiene el
mismo signo que u:

I = poasu?. (25.54)

Por otro lado, para el caso de una onda plana que se propaga hacia la derecha,
la densidad de energia (25.52) se puede escribir como

W = pou?, (25.55)

de donde se deduce que una onda sonora en un medio uniforme transporta la
energia a la velocidad a,, puesto que la velocidad de transporte de energia por
unidad de &rea, I, es a, veces la energia por unidad de volumen W.

En el caso tridimensional, la intensidad acustica es un vector T tal que
I representa la velocidad a la que es transportada la energia a través de un
elemento de superficie orientado segin 7i en el entorno del punto ¥, por unidad
de area. Esta velocidad de transferencia es el producto del exceso de presion
p’ por la componente v -7 de la perturbacién de la velocidad, de forma que la
intensidad acustica en un punto genérico viene dada por

L

I =p't=—p,(04/0t)Ve. (25.56)
De (25.52) y (25.56) se tiene que

ow &
= -V.I, (25.57)
que es la ecuacién de conservacion de la energia acustica: su velocidad de
cambio es igual al flujo de energia acistica por unidad de volumen (téngase
cuenta que el término ¥- VW no aparece en el lado izquierdo por ser de tercer
orden en las perturbaciones). A la vista de esta ecuacién es ahora posible
justificar porqué no se ha tenido en cuenta la presién no perturbada (ambiente)
en la energia e intensidad acustica. Definiendo
W, = ppod_p :polnﬁa I-; = pov, (25.58)
Po Po
como la energia y la intensidad asociadas a p,, respectivamente, de la ecuacion
de continuidad linealizada se tiene

ow,
ot

que es lineal en las perturbaciones, en vez de cuadréatica como (25.57) (por
ello incluye el término convectivo ¥ - VW,). Por tanto, (25.57) representa la

+7-VW,=-V I, (25.59)
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conservacién de la energia total a la que se le ha sustraido un multiplo de la
ecuacion de continuidad. Asi, el hecho de tener en cuenta el trabajo asociado
a la presion no perturbada p, no anade nada significativo a la ecuacion de la
energia acustica (25.57).

Cuando se trata de sonido, en vez de la intensidad acistica (que se mide
en W/m?), se utiliza su logaritmo, debido a que, para una frecuencia dada, el
oido percibe diferencias iguales de volumen de sonido para diferencias iguales
del logaritmo de la intensidad acustica, en vez de la intensidad misma. Por
ello se utiliza el decibelio (dB) como medida del nivel de intensidad acustica,
que se define como

120 + 10log;o[[(Wm™2)], (25.60)

donde I es el médulo de I’ (medido en Wm™2). Por ejemplo, para una frecuen-
cia relativamente alta (de 500 a 8000 Hz), la minima intensidad audible es 0
dB, aproximadamente, que equivale a I = 1072Wm™2. Para frecuencias mas
bajas o mas altas, el umbral auditivo del hombre es mayor: por ejemplo, para
200 Hz y 15000 Hz es, aproximadamente, 20 dB (I = 1071°Wm~2), mientras
que es 40 dB (I = 1078Wm™2), aproximadamente, para 100 Hz y 18000Hz.
(Recuérdese que la audicién no es posible por debajo de 20 Hz y por encirha
de 20000 Hz, aproximadamente.) Para la mayoria de las frecuencias audibles,
el sonido causa dolor en el oido por encima de 120 dB (W = 1Wm™2).

25.5. Efecto de la viscosidad

Se ha visto que en la propagacion del sonido la influencia de la viscosidad
y de la conductividad térmica son muy pequeiias; es decir, el fluido puede con-
siderarse como ideal. Pero aunque pequenos, estos efectos disipativos van ate-
nuando la intensidad de la onda hasta amortiguarla completamente si actian
sobre distancias suficientemente grandes. (En un fluido exactamente ideal, las
ondas sonoras permanecerian viajando siempre con velocidad a,, lo cual, evi-
dentemente, no ocurre en la realidad.) En esta seccién vamos a considerar éste
y otros efectos de la viscosidad.

Por simplicidad, no consideraremos el efecto de la conductividad térmica,
para que asi el flujo pueda seguir suponiéndose isentrépico en primera apro-
ximacién (la disipacién viscosa no cuenta por ser un término cuadréticamente
pequeiio). De acuerdo con (25.44), esta aproximacion sélo valdria para fluidos
con numeros de Prandtl grandes, pero que aqui utilizamos por motivos me-
ramente ilustrativos. Las ecuaciones (25.9)-(25.10), en el caso unidimensional,
se modificarian a
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op’ ou
—ét- + po% =0 , (25.61)
Ou 00 (4 0%u
Poat + a;, e = (gﬂg +ﬂ'vo) W s (2562)

donde p, y p40 son los coeficientes de viscosidad del medio no perturbado.
Eliminando la densidad entre estas dos ecuaciones se obtiene:

Pu  ,0% Ou

—_— - — = ———

a2~ "oz2 ~ "otoa7
donde, en relacién a (25.12), aparece un nuevo término, siendo 7 = (44,/3 +
Ivo)/Po una especie de viscosidad cinemdtica media. Buscamos las soluciones
armonicas de esta ecuacion. Para ello definimos la onda monocromaética

(25.63)

u = Real [uo(a))ei“’t] ; (25.64)

Si el término viscoso no apareciese, de acuerdo con (25.38) se tendria que
uo(z) = A exp(—iwz/a,). En el presente caso, u, satisface la ecuacién dife-
rencial

d?u, w?/a?

© wo=0 25.65
az T 1+ iwn/a2 " ( )

cuya solucion general es

uo(x) = c1 exp

iL/ao—]+czexp[—i&—/a—o—} . (25.66)

V1 +iwn/a2 V1 +iwn/a2

Obsérvese que wn/a? es el pardmetro pequeiio (25.45). Desarrollando en serie
alrededor de ese parametro igual a cero obtendriamos, en el orden mas bajo, la
solucién no viscosa (25.38). Los siguientes términos del desarrollo se obtendrian
de

1 l.wn 3 (wn>2
e~ 1 i = () 4. (25.67)
V1+ iwn/a2 202 8\al

Para fijar la solucién (es decir, las constantes de integracién ¢; y c¢3), supon-
dremos que la onda estd producida por el movimiento de un pistén en torno al
origen z = 0 de acuerdo con la ley arménica z,(t) = Asinwt. Este movimiento
produce un tren de ondas que, por la accion de la viscosidad, se amortiguan en
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T — Fo0o. Considerando la onda hacia la derecha (z > 0), se tiene que ¢; =0
y ¢ = Aw:

uo(z) = Awexp {—z’ﬁ <1 _3 <E—TZ)2> - lﬂﬂ‘ﬁf] : (25.68)

Qo 8

La solucion es, por tanto,

u(z,t) = Awexp [—%Z—Zﬂ] cosw [t— z (1 _1 (aﬂ>2>] : (25.69)

o Qo

Vemos que la viscosidad se deja sentir, en relacién a la solucién no viscosa
(25.37), en dos aspectos: en una amortiguacion, que tiene lugar en distancias
del orden de (a,/w)(a2/wn) ~ A(a?/wn) > A, y en una variacién de la ve-
locidad de propagacién de las ondas, que ahora depende de la frecuencia w
(aunque suavemente, puesto que wn/a? < 1). Escribiendo la fase de la on-
da (25.69) como wt — kz, la nueva velocidad de propagacién es, en primera
aproximacion,

Qo

k~ 1- (wn/a2)?/8

Como ya se comenté en la leccién anterior, cuando la velocidad de propagacion
de una onda depende de su frecuencia, como ocurre en este caso, se dice que
el medio es dispersivo, ya que al superponer ondas con diferentes frecuencias
la velocidad de fase de cada componente es distinta y la onda se distorsiona.
Afortunadamente, este efecto dispersivo de la viscosidad es muy débil en las
ondas sonoras, al ser de segundo orden en el pardmetro pequeino wn/ag; si
no fuese asi, seria imposible que nos entendiésemos al hablar, ya que ondas
con distintas frecuencias originadas en un mismo punto llegarian al oido en
distintos tiempos. Como se vié también en la leccién anterior, una onda con
una determinada frecuencia w, y la energia acustica asociada a ella, no se
propaga a la velocidad de fase, sino a la velocidad de grupo, que en este caso
vale

Aow ~ 05

1+ % (Z—gﬂ . (25.70)

1+ g (%)2] . (25.71)

‘0

_ (kT % -
= <dw> ~ 1= 3(wn/a2)f/8 = %

La distorsion debida a la dispersion viscosa es, en cualquier caso, muy po-
co significativa pues la amortiguacion de las ondas debida a la viscosidad es
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mucho mas efectiva al ser de primer orden en wn/ ag. Ademas, existe una amor-
tiguaciéon todavia mucho maés efectiva que la viscosa debida a la divergencia
esférica de las ondas sonoras, como se vera a continuacion.

25.6. Ondas esféricas

Las soluciones de la ecuacién de ondas dadas en los ejemplos anteriores
corresponden a ondas sonoras unidimensionales (planas). Evidentemente, po-
cos son los casos de interés donde esta aproximacion es valida. Por ello se
considerara a continuacién un caso mas realista como es el de las ondas sono-
ras con simetria esférica. Aunque no deja de ser también una idealizacién, toda
onda producida por una fuente mas o menos puntual llega a tener simetria
mas o menos esférica a distancias de la fuente mucho mayores que el tamafo
de ésta.

En un problema con simetria esférica, la ecuacién de ondas (25.17) se
escribe

0%¢ a2 0 ([ ,0¢

5~ 5y (M) =0 (25.72)
o, equivalentemente,

%rep o2

=y = ?’a s(r¢) =0. (25.73)

Por analogia con la ecuacién unidimensional de ondas (25.18), esta ecuacién
tiene por solucién general

r¢ = F(r — aot) + G(r + aot), (25.74)

donde F' y G son funciones arbitrarias de sus argumentos. En lo que sigue se
considerara sélo ondas que viajan en la direccién de r creciente, por lo que
se hara G = 0. Las perturbaciones de la velocidad, presién y densidad vienen
dadas por las ondas

0¢ _ F'(r—aoct) F(r—aot)

.. iy 25.75

v or T r2 ( )
/ / (e

P el Op T =y (25.76)
Polo  Po a, Ot T

Obsérvese que, a diferencia de una onda plana, v, # p'/p.a,, excepto muy
lejos del origen, r — 00, en donde la onda esférica es casi plana. Por otra
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parte, la intensidad de las ondas esféricas decae con r y tiende a cero cuando
T — 00, incluso en el supuesto presente de fluido ideal (divergencia esférica).

25.6.1. Fuente puntual

Como ejemplo simple significativo se considerara primero una onda origi-
nada por una fuente puntual de masa, de caudal conocido Q(t), en el origen de
coordenadas (esto podria simular, por ejemplo, un silbido). Por conservacién
de la masa en 7 — 0, v, — Q(t)/4wr?; es decir,  — —Q(t)/4mwr para r — 0.
Sustituyendo esta condicién de contorno en (25.74) se obtiene, teniendo en
cuenta que G = 0, F(7) = —Q(—7/a,)/4n. Es decir,

¢ =—Q(t —r/a,)/4nr, (25.77)
_Qt—r/a,)  Q'(t—r/ao)
LA 4mrr? + dmaor ' G
P pas _ Q(t—r1/a,)
Polo B Po B dma,r ) (2579)

El caudal que atraviesa la esfera de radio r es:

q(r,t) = 4rrv, = Q(t — r/a,) + aLQ’(t -r/a,), (25.80)

que, obviamente, coincide con Q(t) para T — 0.

Comparando esta solucién con la correspondiente a un flujo incompresible
para este problema (solucién de la ecuacién de Laplace V¢ = 0, en vez de la
ecuacién de ondas; ver capitulo 21),

¢ = —Q(t)/47’l’7‘ y Upr = Q(t)/47l’7‘2 ) Q(T’ t) = Q(t) ’ (2581)

se observa que el efecto de las ondas sonoras es introducir un retraso en la
transmisién de la informacién del caudal en el origen Q(t) en un lapso de
tiempo 7/a,, que es el tiempo que tarda una onda sonora en llegar a la distan-
cia 7 y transmitir la informacién del origen. Como el retraso depende de r, se
origina un término adicional en la expresion del caudal y de la velocidad. In-
dependientemente de la intensidad del caudal @, la solucién anterior es valida
para distancias r que satisfacen

1/2
U, Gmas <1 , r> (@) , (25.82)

Qo

Para una fuente armoénica, por ejemplo,
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Q(t) = Qocos(wt) , (25.83)
las expresiones (25.78) y (25.79) se escriben
t —
vy = fT‘; g - r/ao)] _ (—;%sin[w(t —r/ao)]| , (25.84)
4 _ Qow .
E R — sinfw(t — r/a,)] . (25.85)

Se observa que la onda se comporta como si fuese plana, es decir, p’/poa, =~ vy,
cuando el primer término de (25.84) es pequefio comparado con el segundo, lo
cual ocurre para distancias grandes comparadas con la longitud de onda:

a, A
—=— 25.86
> o o ( )
La intensidad del sonido emitido por una fuente puntual, de acuerdo con
(25.56), tiene direccién radial. Para distancias grandes de la fuente (comparada

con la longitud de onda del sonido emitido), su magnitud vale

I =pv ~ _LQQ(t—r/ao) == olle ( Qo )2sin2[w(t—r/ao)] , (25.87)

1672r2q, 4rra,

donde se ha incluido el caso de una fuente dada por (25.83).

25.6.2. Dipolo actustico

Otra solucién sencilla de la ecuacién de ondas con simetria esférica que
tiene interés para comprender el comportamiento del sonido producido por
fuentes mas complejas es el denominado dipolo acustico, consistente en una
fuente puntual de caudal @(¢) y un sumidero de caudal —Q(t) separados por
una distancia L. En las coordenadas esféricas de la figura 25.3, de acuerdo con
(25.79), las fluctuaciones de la presién vienen dadas por

pl(r6t) _ 1 [Qt—r/a) Q(t—1/a5)]
Polo 4ma, | T v T (25.88)

donde

' = (r? + L? — 2rL cos§)"/?. (25.89)

El sonido emitido por un dispositivo como el anterior tiene interés para dis-
tancias grandes comparadas con L. Parar > L, 7’ ~r — Lcosf y, en primera



444 MECANICA DE FLUIDOS

Q) L -Q(v) x

Figura 25.3: Dipolo actistico.

aproximacion, (25.88) se escribe (desarrollando en serie de Taylor y despre-
ciando términos cuadraticos en L/7)

P Lcost[Q(t—7/a;)  Q"(t—7/a,)] Lcosf d Q'(t—r1/a,)
(o e~ 5 —+ == E— .
Polo dma, | T a,r J 4ma, Or T
(25.90)
Para poder comparar mejor el sonido emitido por una fuente puntual de
masa (o monopolo aciistico) con el emitido por un dipolo aciistico, supéngase
que la fuente es arménica con frecuencia w [ecuacién (25.83)]. La expresién
anterior se escribe

/ LQ, 56 [si _ o o
popao = %:;:?b {Sm[w(tr r/ao)] _ a—ocos[w(t —1/ao,)| . (25.91)

Para distancias grandes comparadas con la longitud de onda, r > %2 = -, el
primer término de (25.91) es despreciable frente al segundo, teniéndose

r o LQow? cosf

Polo 4ma2r

coslw(t — r/a,)]. (25.92)

Como en este limite v, ~ p’'/p,a,, €l médulo de la intensidad acistica viene
dada por '

2 2
L
I ~ poa,cos® (%) (‘Z—o> cos?[w(t — 7/a,)] . (25.93)
Comparando con (25.87) se tiene, en primer lugar, que a diferencia del mono-
polo, el dipolo emite el sonido direccionalmente, siendo la intensidad méxima
en la direccién de z (cos@ = 1), y nula para § = +r /2. Por otra parte, si
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Lw/a, < 1 (es decir, si L es mucho menor que la longitud de onda ), la
intensidad del sonido emitido por el dipolo es mucho menor que la intensidad
sonora proporcionada por la fuente puntual (a distancias grandes comparadas
con la longitud de onda). Una fuente de sonido se dice que es actsticamente
compacta si su tamano es mucho menor que la longitud de onda del sonido
emitido. Por tanto, el sonido emitido por un dipolo acisticamente compacto
tiene mucha menos intensidad que el emitido por un monopolo con la misma
intensidad de la fuente (al menos a distancias grandes de la fuente).

25.7. Propagacién del sonido en un medio no uni-
forme. Acistica geométrica

En las secciones anteriores se ha considerado la propagaciéon de pequenas
perturbaciones en un medio ideal y uniforme. Cuando el fluido no perturbado
no es uniforme, es decir, cuando p, = po(Z) y po = Po(Z) [por ejemplo, debido
a las fuerzas gravitatorias, en cuyo caso p, y po estan relacionados mediante
(25.46) si el fluido no perturbado esta en reposo], el problema es bastante mas
complejo de resolver. Sin embargo, es bastante habitual que la longitud ca-
racteristica de variacién de las magnitudes no perturbadas sea mucho mayor
que la longitud de onda de las perturbaciones u ondas sonoras, pudiéndose
asi simplificar algo el problema, pues en primera aproximacién se puede con-
siderar el medio no perturbado como uniforme, tratandose la no uniformidad
como una correcciéon que va desviando gradualmente los frentes de onda. Este
limite, que se suele denominar acustica geométrica, es el que se va a tratar en
esta seccion.

Se considerara el caso en el que el medio no perturbado esta en reposo y
es estacionario (si p, dependiese del tiempo, por la ecuacién de continuidad el
medio no perturbado tendria velocidad no nula). Para el medio no perturbado,
la ecuacion de cantidad de movimiento se escribe

Vpo + poVU =0, (25.94)

donde U es el potencial de fuerzas masicas. Como se va a considerar el mo-
vimiento de pequefias perturbaciones, la descomposicién (25.4)-(25.5) sigue
siendo valida. Sustituyendo en las ecuaciones de continuidad (25.1) y de canti-
dad de movimiento (25.2), teniendo en cuenta (25.94) y despreciando términos
cuadraticos en las perturbaciones, se tiene

op'

E +V. poﬁ =0, (25.95)
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P v =0, (25.96)

donde el término de (25.96) asociado a las fuerzas masicas, —p'VU, se ha
despreciado de acuerdo con lo discutido en la seccién 25.3 [condicién (25.48)].
La ecuacién de la entropia (25.3) se puede escribir como

D D 0
e P e (—p) : (25.97)
Dt Dt dp/,

Despreciando términos cuadraticos en las perturbaciones, esta ecuacién se es-

cribe

/ /
66—12 + ¥ Vp, = a? (aa—/; +7- Vpo) = —a2p,V - 7, (25.98)
donde a2 = (0p/0p)s=s,(z)» y donde se ha sustituido (25.95) en el segundo
miembro.
Andalogamente a como se hizo en la seccién 25.1, se puede obtener una
ecuacién que sélo involucra a p’ restando la derivada de (25.98) respecto al
tiempo de la divergencia de (25.96) y eliminando la derivada cruzada de "

o%p’

o — a2V = B.-vy, (25.99)
donde
2
B(z) = YPe=%VPe _ gy _ g2VP (25.100)
Po Po

El primer sumando de Bse puede despreciar en (25.99) de acuerdo con (25.48).
Por otro lado, en el caso de un liquido, la densidad del medio no perturbado
se puede suponer constante (aunque, por supuesto, existirdn perturbaciones
de la densidad), con lo que (25.99) se reduce a la ecuacién de ondas tipica
de un medio uniforme, pero con velocidad de propagacion que depende de la
posicién, ao(Z). En general, para obtener B hay que conocer po(Z). Para ello,
ademas de (25.94) y la ecuacién de estado del fluido, hay que conocer alguna
relacion mas del medio no perturbado, como por ejemplo la distribucién de
temperatura (ver leccién 12).

Sabemos que en el caso de un medio uniforme (25.99) tiene soluciones que
pueden escribirse como una superposicién de ondas planas (véase §25.2.3) de
la forma
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P = AekE-wt) (25.101)

donde k es el vector de onda y w la frecuencia. Sustituyendo en la ecuacién
con a, constante, se obtiene la relacién de dispersién

w? — k%% =0, (25.102)

que relaciona la longitud de onda A = 27 /k con la velocidad de propagacién y
la frecuencia, siendo k2 = k - k. Cuando a, depende de &, la solucién (25.101)
no es valida. Sin embargo, se puede construir una solucién que en primera
aproximacion tiene esa forma en el limite de la acustica geométrica. Es decir,
cuando las variaciones de a, (y, por tanto, de p, y p,) con Z ocurren en una
longitud caracteristica ! que es mucho mayor que la longitud de onda:

2w
k

Para ello escribimos la solucién de (25.99) en la forma

A= "= <1~ |Vina,|™". (25.103)

P = A(&)efYE) (25.104)
donde, por identificacién con la solucién bésica (25.101), se define

ov

——rs
En general, A, k y w son funciones de Z y t. Sin embargo, en el presente caso
en el que el medio no perturbado no depende del tiempo, dado que la ecuacién
(25.99) tiene soluciones con variables separadas, A sélo puede depender de T
y ¥ tiene que ser suma de una funcién de £ y otra de t. Ademds, como se
corroborard més adelante, la funcién de ¢ tiene que ser tal que su derivada (w)
tiene que ser constante. Es decir, en el presente caso se tiene

E=VY, w= (25.105)

U(Z,t) = S(T) —wt, k(F)=VSEZ), (25.106)

donde w es una constante. Las ecuaciones para las funciones A y k (o S) se
obtienen de sustituir (25.104), con (25.106), en (25.99):

(a2k? — w?)A —a?V?A-B-VA=1i [2a31’5- VA+a2AV -k + Ak - B‘] ;
(25.107)

)

A2 z2 A A A
R O LT
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donde se han escrito debajo de la ecuacion los 6rdenes de magnitud relativos de
los distintos términos, suponiendo que a2k? ~ w?. Por consiguiente, en orden
mas bajo (orden relativo unidad) se tiene, formalmente, la misma ecuacién
que la relacion de dispersién (25.102) de una onda plana:

w? = k2a2, (25.108)
aunque esta relacién es ahora una ecuacion diferencial para la funcién S(Z),

2

(V)2 = 2. (25.109)

2
Q5

De esta ecuacién se desprende que, en primera aproximacién en A/l, w no
puede depender del tiempo, como se ha supuesto. En el siguiente orden (A/1),
se tiene

-

202k - VA+a?AV -k + Ak-B=0. (25.110)

Por tltimo, en orden A?/I2, se tiene

a?V?A+B-VA=0. (25.111)

Antes de pasar a resolver formalmente estas ecuaciones, conviene decir
unas palabras sobre la naturaleza fisica de la solucién que se estd buscando
y el por qué se denomina este limite aciustica geométrica. Si el medio fuese
uniforme, S(Z) = k- T, donde E, que seria constante, representa la direccién
en la que se propagan los frentes de las ondas planas con frecuencia w, cuya
fase es k - T — wt, y cuya amplitud permanece constante. Cuando el medio no
es uniforme, pero la longitud caracteristica de variacién del medio es mucho
mayor que la longitud de onda de las ondas en las que uno esta interesado,
la solucién es formalmente muy parecida, pero el vector de onda k y la am-
plitud varian suavemente a medida que la onda se propaga en el medio. La
funcién S(Z), denominada eikonal, representa, en cada instante, los frentes de
onda, de forma que k es el gradiente de S. Se vera que las ecuaciones (25.109)-
(25.110) se pueden reducir, por el método de las caracteristicas, a un conjunto
de ecuaciones diferenciales ordinarias sobre un conjunto de curvas Z(t) (lla-
madas caracteristicas), para el vector de onda k, para los frentes de onda S y
para la amplitud A. De esta forma, uno va construyendo la solucién a lo largo
de esas caracteristicas Z(t), que son tangentes en todo momento a los vectores
de onda y representan, por tanto, la direccién de propagacion de las ondas,
la cual va variando suavemente (en una escala mucho mayor que la longitud
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de onda) a medida que las ondas se propagan. En el caso de ondas electro-
magnéticas, este limite se denomina Optica geométrica, pues las caracteristicas
representan los rayos de luz que, con ecuaciones analogas a las que se veran
a continuacién, se pueden ir trazando a través del medio ligeramente no uni-
forme. Es por ello que este limite se denomina acustica geométrica. Mediante
el procedimiento que se vera a continuacion, uno puede obtener facilmente la
direccién de propagacion de los frentes de ondas (que dejan de ser planos y
de moverse paralelamente a si mismos) a medida que se va curvando por el
medio no uniforme, ademas de todos los demaés detalles de la onda, como por
ejemplo la variacion de su amplitud.

Una ecuacién en derivadas parciales de primer orden como (25.109), que
se escribira en la forma

F(S,kz)=k-K-5—==0, E=VS, (25.112)
a?(Z)

es equivalente a un sistema de ecuaciones diferenciales ordinarias sobre ciertas
curvas del espacio (caracteristicas) que, en coordenadas cartesianas, vienen
dadas por las ecuaciones®

dr . dzy _ dz3
OF/0k, ~ OF/0ky; OF/0ks’

Teniendo en cuenta que en el presente caso, de acuerdo con (25.112), 0F /0k; =
2ki, i = 1,2, 3, usando la variable auxiliar ¢ para recorrer las curvas (25.113),
las caracteristicas vienen dadas por el conjunto de ecuaciones diferenciales
ordinarias

(25.113)

9 _ k. (25.114)

dt
Se observa que, como se anuncié anteriormente, las caracteristicas son tangen-
tes a los vectores de onda, proporcionando asi la direccion de propagacién de
las ondas (perpendicular a los frentes de ondas). La variable auxiliar ¢, que
es un parametro usado para recorrer las caracteristicas, hace las veces de un
tiempo. Para poder resolver la ecuacién (25.114) hace falta conocer k sobre
las caracteristicas. Teniendo en cuenta que

dé _df _- - =
— = — . Vk =2k Vk = Vk? 25.115
dt — dt ) ( )
SVer, por ejemplo, R. Courant and D. Hilbert, 1989, Methods of Mathematical Physics
(Wiley, Nueva York; reimpresién), vol. II, capitulo I.
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§= 8@ \T

Figura 25.4: Caracteristicas que parten de un frente inicial T

de (25.112) se tiene

dk 1

Aunque no hace falta para calcular k sobre las caracteristicas, uno puede
obtener también una ecuacién para la eikonal S sobre las caracteristicas:

dS dr o WP

E_E-VS—%-k—E. (25.117)
Las ecuaciones diferenciales ordinarias (25.114), (25.116) y (25.117) son las
denominadas ecuaciones caracteristicas de la ecuacion en derivadas parciales
de primer orden, no lineal, (25.112). Conocido S = Sp(Z) sobre una cierta
superficie I'(£) = 0, estas ecuaciones permiten conocer S(Z) en todo el espacio
integrando las ecuaciones anteriores sobre las caracteristicas Z(t) que parten
de T (ver figura 25.4). Si la superficie I" representa, como es habitual, el frente
de onda inicial (que como se ve no tiene por qué ser plano) en donde S = Sp
es constante, los sucesivos frente de onda en el tiempo se propagan perpendi-
cularmente a las caracteristicas. Una ecuacién que se puede resolver por este
método de las caracteristicas, cuyas soluciones se propagan a partir de una
condicién inicial, se dice que es hiperbdlica, y a sus soluciones se le llaman
ondas.”

Paralelamente se puede obtener la amplitud de las ondas A(Z) integrando

también a lo largo de las caracteristicas:

’Se volvera sobre este tema en el capitulo siguiente.
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ﬁgd_x-VA=2E-VA=-A<V-E+B'k), (25.118)

dt ~ dt 2

ao

donde se ha hecho uso de (25.110). Para poder resolver esta ecuacién hace

falta una ecuacién para V - k a lo largo de las caracteristicas. Sin embargo, es
mas fécil obtener una ecuacién para Vk y después hallar su traza:

49k = di-vvk‘:zk‘-vvk‘;
dt dt

VVk? = V(2k - Vk) = 2Vk - Vk + 2k - VVk;

dilivE = VVk? - 2Vk - Vk = w?VV (—12-> — 2Vk - Vk. (25.119)

(o]

Asi, conocido a,(Z) y B(Z), (25.114), (25.116), (25.117), (25.118) y (25.119)
permiten obtener T, E,S, Ay vk (17 magnitudes escalares en total) a lo largo
de las caracteristicas partiendo de los valores de S y A sobre I'. Téngase
en cuenta, ademas, que todo lo anterior es para una onda monocromatica
con frecuencia w. Si la onda inicial sobre I" tiene una cierta distribucién de
frecuencias, se puede aplicar el principio de superposicién y aplicar el proceso
anterior para cada frecuencia.

La integracién de este sistema de ecuaciones a veces da lugar a superficies
donde k se anula, a partir de las cuales ya no es posible continuar de acuerdo
con (25.114). Lo que ocurre en realidad es que la aproximacién de la acistica
geométrica deja de valer antes de llegar a estas superficies (denominados cdus-
ticos), debido a que la hipétesis 27/k < | deja de ser valida. Existen métodos
aproximados (asintéticos) para resolver la ecuacién de ondas original en las
proximidades de estos causticos y asi poder seguir con la acistica geométrica
una vez saltado el escollo (ver, por ejemplo, Lighthill, 1978; formalmente es
algo parecido a lo que se hace con una onda de choque en la dindmica de
gases). Los cdusticos pueden incluso corresponder a superficies del medio no
homogeneo que el sonido emitido desde una determinada fuente no puede atra-
vesar, delimitando asi una zona de silencio. Esto puede ser de importancia,
por ejemplo, para que un submarino no pueda ser detectado por un sonar.



452 MECANICA DE FLUIDOS

Referencias.
= L.D. LANDAU y E.M. LIFSHITZ, 1987. Capitulo VIII
= HW. LIEPMANN y A. ROSHKO, 1957. Capitulo 3.
= J. LIGHTHILL, 1978. Capitulos 1 y 4.



Capitulo 26

Ondas no lineales en gases

En el capitulo anterior se analizé el movimiento de pequenas perturbacio-
nes en un fluido ideal, cuyo ejemplo més tipico son las ondas sonoras. Cuando
las amplitudes de las perturbaciones no son pequenas, es decir, cuando son
del mismo orden que las magnitudes no perturbadas, las ecuaciones lineales
utilizadas alli dejan de ser vilidas. Sin embargo, bajo la hipétesis de flujo
isentropico, las soluciones son formalmente parecidas a las obtenidas en el
problema lineal, aunque el comportamiento fisico del fluido es totalmente dis-
tinto. Mds concretamente, en el caso unidireccional que se va a considerar
a continuacion, se vera que las ecuaciones son hiperbélicas, cuyas soluciones
son, bajo ciertas condiciones, ondas que se propagan a una velocidad que es
igual a la velocidad del fluido més (o menos) la velocidad local del sonido.
Sin embargo, como esta velocidad varia de un punto a otro, las ondas se van
deformando en su propagacién, siendo asi el comportamiento fisico del fluido
muy diferente al que se tiene en una onda lineal.

26.1. Flujo unidimensional e isentrépico de un gas
ideal

Como el problema es bastante complejo en general, se abordard sélo el
caso unidimensional. Las ecuaciones que describen la evolucién de la velocidad
¥ = u(z,t)€éz, la densidad p(z,t) y la presién p(z,t) en un flujo isentrépico de
un gas ideal son [ecuaciones (19.4), (19.5) y (19.20)]:

5 tup. +ep-=0, (26.1)
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Ou Ou Op

PE‘FWg'i—g—O, (26'2)
9 o\ p _

<a +uaz) p_'Y = Oa (263)

donde v es la relacién de calores especificos. Si el fluido parte de un estado
inicial homogéneo, la entropia de todas las particulas fluidas es la misma, con
lo que uno puede eliminar la presion del problema utilizando

op 9 p
—_ = =v-, 26.4
9p " (26.4)

siendo a la velocidad local del sonido. De esta forma, las ecuaciones (26.1) y
(26.2) se pueden escribir en una forma vectorial compacta como

S

A- @+ B-i;=0, (26.5)
siendo
L (P
u_<u)’ (26.6)
=_(10 =_[u p
A(10) 3-(88) e

y donde los subindices ¢t y = representan derivacion parcial en relacién a esas
variables.

26.1.1. Método de las caracteristicas. Invariantes de Riemann

Se va a resolver la ecuacién (26.5) por el método de las caracteristicas,
que consiste en transformar dicha ecuacién en un conjunto de ecuaciones di-
ferenciales ordinarias sobre ciertas trayectorias del plano (¢, z), denominadas
caracteristicas. Para encontrarlas, tomamos un incremento arbitrario (dt,dz)
en el entorno de un punto (t, z) cualquiera. La correspondiente variacién de &
viene dada por

dii = ti;dz + Gdt . (26.8)

Despejando 4, y sustituyendo en (26.5), se tiene

— =dx - = dﬂ:_
(B—AE)~U$+A~E—O | (26.9)
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Si se multiplica esta ecuacién escalarmente por la izquierda por el vector ar-
bitrario AT = [A1, A2], el problema se reduce a un conjunto de ecuaciones
diferenciales ordinarias si

dt

Este sistema homogéneo de ecuaciones algebraicas para las componentes de
X tiene solucién si el determinante de la matriz entre paréntesis es igual a
cero, proporcionando asi dos (en este caso) direcciones dz/dt en el plano (¢, )
que son las caracteristicas del sistema de ecuaciones en derivadas parciales de
primer orden (26.5). Por tanto, las caracteristicas vienen dadas por

X s (ﬁ—ﬁd—”’) =0. (26.10)

= =d:L‘
det (B—AE-t»> —0. (26.11)

Si todas las caracteristicas son reales y distintas, el sistema se dice que es
hiperbdlico y el método de las caracteristicas se puede utilizar para hallar
soluciones reales del problema. En el presente caso, las dos caracteristicas son
siempre reales y distintas (el sistema es siempre hiperbdlico), y vienen dadas
por:

dz
dt

De acuerdo con (26.9), alo largo de estas caracteristicas # satisface la ecuacién

=uta. (26.12)

= dii
AF o s e e
dt
donde la direccién del autovector X se obtiene de (26.10). Para las dos carac-
teristicas (26.12), el cociente A1/A2 viene dado, respectivamente, por

0, (26.13)

A1
— = 26.14
AQ a 1 ( 6 )
de forma que las dos ecuaciones caracteristicas (26.13) son:
dp du dx
ol — — = 26.1
a—y +pdt 0 sobre = u+a cy) , (26.15)
dp du dr
—a—y + P = 0 sobre S -u—a 7 (26.16)

Estas dos ecuaciones diferenciales ordinarias sobre sus respectivas carac-
teristicas (que se han denominado C y C_ por simplicidad) se pueden resolver
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utilizando cualquier técnica analitica o numérica partiendo de una condicién
de contorno o inicial. En general, conocido el valor de # sobre una curva
I'(t,z) = 0 del plano (¢, z), la solucién se propaga a lo largo de las caracteristi-
cas Cy y C_. Por ello, las soluciones de un sistema hiperbdlico que parte de
una determinada condicién de contorno se suele denominar onda. Por ejem-
plo, en el caso de pequenas perturbaciones considerado en el capitulo anterior,
estas ecuaciones se escriben, teniendo en cuenta (25.4)-(25.5) y considerando
sélo los términos lineales en las pequeiias perturbaciones,

dp’ du dr
aod—!: +p°E =0 sobre i a, Cy) , (26.17)
do’ du dr "
—aod—l; + poa =0 sobre E = —Qo () . (26.18)

Por tanto, las caracteristicas son ahora rectas en el plano (¢, z) con pendientes
+a,, y representan ondas lineales (es decir, que se propagan sin deformacién)
que viajan hacia la derecha y hacia la izquierda con la velocidad del sonido
no perturbado a,. De hecho, (26.17) implica que a,p’ + pou es constante sobre
dz/dt = a,, y (26.18) que —a,p’ + pou lo es sobre dz/dt = —a,. Obviamente,
ésta es la solucién dada en la seccion 25.2 para una onda plana.

De manera andloga al caso lineal, las ecuaciones caracteristicas (26.15)-
(26.16), se pueden escribir de una forma mucho més simple haciendo uso de los
denominados invariantes de Riemann, que son funciones que se conservan
a lo largo de las caracteristicas C; y C_. Para encontrarlos, se sustituyen las
coordenadas (z,t) por coordenadas (a, ) a lo largo de las caracteristicas. Es
decir, se definen las nuevas coordenadas

a=a(c,t) (26.19)
8=08(zt) , (26.20)

de tal forma que cuando o = constante nos movemos por C_ (dz/dt = u —a),
mientras que las funciones § = constante constituyen las caracteristicas C4
(dz/dt = u + a). Asi, por definicién de a y 3,

dr B T

Z =t T izt
d

O e u—g=__I (26.22)
dt Qx tﬁ

donde las ultimas igualdades de las dos expresiones anteriores se obtienen de
dz/dt = z4/t, cuando 3 = constante, y andlogamente cuando a = constante.
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Las ecuaciones (26.15) y (26.16) junto con (26.21)-(26.22) se pueden escribir
como

aPa+ pua =0 (26.23)
—apg+pug=0 (26.24)
To = (u+a)ty, , (26.25)
zg = (u—a)tg , (26.26)

donde se ha tenido en cuenta que, sobre 3 = constante (caracteristica C ), las
variaciones de p y u son variaciones con respecto a «, y andlogamente en C_.

Buscamos funciones 7(u, p) y s(u, p) (invariantes de Riemann) que sean
constantes en C; y C_, respectivamente. Claramente, de (26.23), r = u + g,
donde

go = % , (26.27)

ya que en ese caso, 7o = 0, es decir, r = constante sobre la caracteristica C
(B = constante). Por otro lado, de (26.24), s = —u + g. Es costumbre definir
estas funciones como sigue:

2r=ut+g=u+ /p Mdp = constante sobre [ = constante (Cj)
’ (26.28)
2s=~u+g=-u+ / ’ Mdp = constante sobre « = constante (C_) |,
’ (26.29)

que es la forma habitual de definir los invariantes de Riemann r = r(a) y
s = 3(B), donde el subindice o se refiere a valores de referencia. En el caso de
un gas ideal, la funcién a(p) es

@ = ‘/72 =/vAp*~1 (26.30)
donde A = p/p” es una constante. Sustituyendo en (26.28)-(26.29) se tiene

U VAT (e % G G 26.3
= — et — = — e . 1
r 2+7_1(p Po ) 2+,y_1 ; ( )

M 7\/_171 ( pO-1/2 _ p(()’r—l)/Q) N el B (26.32)

S—_E
2 2 y-1
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Es decir, g = 3%1_(“ — a,). De estas expresiones esta claro que si se utiliza

(@, u) como variables dependientes en vez de (p, u), el problema se reduce a

g + 'y_(i_l = constante sobre Z—f =u+a (Cy) , (26.33)
¥ 8 . constantesobre E=u-a [EL) (26.34)
2 71 onstante sobre — = 35 I .

Obsérvese que en el caso de pequenas perturbaciones en torno a las condi-
ciones de referencia, los invariantes de Riemann son r = (u + aop'/ps)/2 =
[u+D'/(p0a0)]/2y s = (—utaop’/po)/2 = [~u+D'/(poas)]/2, constantes sobre
las caracteristicas dz/dt = a, y dz/dt = —a, (que ahora son rectas), respec-
tivamente, lo cual obviamente coincide con la solucion dada en el capitulo
anterior para una onda plana.

26.1.2. Ondas simples

Para tener una idea cualitativa de las propiedades de la solucién anterior,
se considerard un problema tipico de condiciones iniciales. Supéngase que se
tiene un medio (por supuesto unidimensional) que est4 inicialmente en reposo
y es uniforme (u = 0,p = p,) en todas partes excepto en una regién entre
z = —L y ¢ = L. Conocida la perturbacién inicial en —L < z < L, se quiere
saber cémo evoluciona (se propaga) la perturbacion. Para ello se dibuja en el
plano (z,t) las caracteristicas Cy (dt/dt = u + a) y C- (dz/dt = u — a) que
parten de la recta t = 0, donde se conoce u y p (ver figura 26.1). Por supuesto,
no se pueden dibujar estas curvas sin conocer previamente la solucién, pero es
posible deducir algunas de sus propiedades cualitativas.

Por ejemplo, a lo largo de curvas C_, 2s = —u + g es constante, con un
valor distinto, en general, en cada una de ellas. Sin embargo, como todas las
caracteristicas C_ que se originan en £ > L parten de una regién inicialmen-
te en reposo y uniforme (v = 0,p = p,,9 = 0), la constante de todas las
caracteristicas a la derecha de la que pasa por £ = L, CL, es nula; es decir

1] /
u=g :/ i5—)(1/)' a la derecha de CL . (26.35)

(o]

Por motivos analogos,

u=g alaizquierdade C~%, (26.36)
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L L &

Figura 26.1: Tipico problema de valor inicial.

u = —¢g a la izquierda de C':_L , (26.37)
u=—g aladerechade CZ. (26.38)

La conjuncién de (26.35) y (26.38) nos dice que u = g = 0 a la derecha de
CEL, mientras que (26.36) y (26.37) implican que u = g = 0 a la izquierda de
c-t, constituyendo estas caracteristicas los limites del medio no perturbado
a lo largo del tiempo (medio que no ha sido alcanzado por onda alguna). Por
otra parte, a partir de un cierto ¢*, correspondiente al instante en que CZ
y C’:_L intersectan, la regién que queda entre CL y Cf también cumple que
u = g = 0; es decir, se queda sin perturbar una vez que ha pasado la onda. En
otras palabras, en el periodo 0 < t < t*, las perturbaciones estan mezcladas;
cuando t > t*, las perturbaciones se separan y se propagan como dos ondas
simples, una hacia la derecha y otra hacia la izquierda, dejando una regién
sin perturbar entre ellas (ver figura 26.1).

Una onda simple se define como una solucién en la que alguno de los
invariantes de Riemann, r 6 s, es constante. Por ejemplo, en la onda que viaja
hacia la derecha entre C’;L y Cf:, a la derecha de CZ, se tiene, de (26.35), que
u = g. Por tanto, en las caracteristicas Cy deestaonda 2r = u+g = 2u = 2g =
constante. Como ¢ es constante, también lo es a, y las caracteristicas Cy de
esta onda son rectas ya que dz/dt = u + ¢ = constante (figura 26.1). Algo
analogo ocurre con las caracteristicas C_ de la onda simple que viaja hacia la
izquierda.
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u()

Figura 26.2: Problema del pistén.

26.2. Ondas simples generadas por el movimiento
de un piston. Ondas de choque

Ondas simples se producen, como se acaba de ver, en problemas de valor
inicial cuando parte del fluido estd inicialmente en reposo y con densidad
uniforme. Se caracterizan porque uno de los invariantes de Riemann, bien r
o bien s, es constante en todo el dominio (z,t) considerado, dando lugar a
caracteristicas rectilineas. Las ondas simples estdn siempre, por consiguiente,
en contacto con alguna zona en reposo del gas, y estin delimitadas por un
par de caracteristicas. Un ejemplo tipico donde se producen ondas simples es
en el movimiento de un gas en un conducto provocado por el desplazamiento
de un pistdn, si inicialmente el gas se encuentra en reposo y es uniforme. Se
utilizard este ejemplo para analizar los dos tipos basicos de ondas simples:
ondas de expansién y ondas de compresion.

Supdngase que en el interior de un cilindro, que inicialmente contiene un
gas en reposo con densidad uniforme p,, existe un pistén en £ = 0 que se
pone en movimiento en t = 0 hacia £ > 0 con velocidad U(t). No todas las
partes del gas se ven afectadas por el movimiento del piston instantaneamente,
sino que sendas ondas avanzan desde el pistén hacia ambos lados de él, y
sblo las particulas que han sido alcanzadas por el frente de estas ondas se
ven perturbadas de su estado de reposo inicial. En la regiéon del gas de la
cual se aleja el piston (regién I en la figura 26.2) se produce una onda de
expansién, cuyo frente de onda se propaga a la velocidad del sonido a, =
V/YPo/Po correspondiente al gas en reposo. En la regién hacia la cual avanza
el pistén (regién II) se produce una onda de compresién que, como se vera,
generalmente degenera en una onda de choque.
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26.2.1. Onda de expansién

Supédngase que la velocidad del pistén, que originalmente estaba en reposo,
aumenta hacia un maximo Ur < a, en un cierto tiempo 7. En un diagrama
(z,t), la trayectoria del piston seria como la que se indica en la figura 26.3: la
pendiente dx/dt del pistén iria creciendo desde cero en el origen hasta alcanzar
un maximo en el punto F), a partir del cual la trayectoria es rectilinea.

Como todas las caracteristicas C4+ que parten de £ < 0 son rectas con
pendiente a,, con el mismo invariante de Riemann r = 0, en todo el gas a
la izquierda del pistén se tiene ¢ = —u. En la regién (A) (ver figura 26.3) a
la izquierda de la caracteristica C° que pasa por el origen se tiene, ademas,
que g = u al ser s = 0 para todas las caracteristicas C_ que pasan por el eje
t = 0 para z < 0. Por tanto, en la region (A) el gas estd todavia sin perturbar:
u=9=0,p=p,. En la regién (B) entre C° y la caracteristica CI" que pasa
por el punto F, se tiene que, sobre las caracteristicas C_, —u+g = 29 = —2u =
constante; es decir, u = U, g = TET (@ — ap) = —U. Estas caracteristicas son
rectas de pendiente

d -1 1
d—f=u—a=U—ao+7 U='y+

2 2

U-ao (C-). (26.39)

Debe observarse que estas rectas nunca se cortan si U va creciendo (U > 0).
Asi, la solucidn en esta region se puede expresar en términos del parametro 7
(tiempo asociado al movimiento del pistén) de la siguiente forma:

T —zp(7) = (%l (1) - ao) (t—7), zp(r)= OT U(t)dt,  (26.40)
=U(7), (26.41)
— -1
a=ao——— (7), (26.42)
p= {p.(;"”/z _ -] ™ : (26.43)
2\/7100/93 ]
P ="po(p/po)? . (26.44)

Es decir, para cada valor de 7, que corresponde a una determinada posicién
del pistén z,(7), en el punto z correspondiente a cada instante ¢t > 7 dado por
(26.40), la velocidad, densidad y presién vienen dadas por (26.41), (26.43) y
(26.44), respectivamente.
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X=I°l

0 xF(l) xp(l) X

Figura 26.3: Caracteristicas de la onda de expansidn.

x_ (1)
I xF(I] :Pm

Figura 26.4: Esquema de los perfiles de densidad y velocidad en la onda simple de expansidn.
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Esta regién (B) constituye una onda simple de expansién que se propa-
ga hacia z < 0 con velocidad (y + 1)U/2 — a,, informando asi al fluido del
movimiento del pistén. Como cada nueva posicién del pistén se propaga a
una velocidad menor que la anterior (si U va aumentando), la informacién
no se cruza. Para cada instante t > T, la extensién espacial de esta onda es
zp(t)—x(t) (ver figuras 26.3 y 26.4), donde z (t) se obtiene de (26.40) hacien-
doU =Up,7=T,y x;(t) = —a,t es el valor de x para U =0, 7 = 0. Detrés
de esta onda [regién (C) en la figura 26.3], las expresiones (26.40)-(26.44) si-
guen siendo vélidas, pero en ellas U = Ur = constante (las caracteristicas C_
son todas paralelas a CF). Por tanto, después de pasar la onda el gas queda
con una velocidad Ug constante y con una densidad y una presiéon uniformes
dadas por (26.43)-(26.44) con U = Up. En la figura 26.4 se esquematiza la
forma de los perfiles de u(z) y p(z) para un instante t > T. Estos perfiles se
obtienen haciendo ¢t = constante (> T en este caso) en (26.40), despejando 7
y sustituyendo en (26.41)-(26.44) [ver ejemplo en la seccién 26.2.4].

26.2.2. Onda de compresion. Onda de choque

Consideremos ahora la onda de compresiéon que se produce a la derecha
del pistén. En esta zona de compresion s = 0, es decir, g = —_,3—1 (@ —ao) = u.
Existen tres regiones, (A), (B) y (C), similares a las anteriores (ver figura 12.5).
Enlaregién (A), las caracteristicas C. son rectas de pendiente a,, y en ellas el
gas estd sin perturbar. En la regién (B) se tiene que, sobre las caracteristicas
C4, u+ g = 2u = constante. Es decir, u = U, a = a, + L;lU. La pendiente

de estas caracteristicas es

dz v+1
o ute=aot —— (Cy) . (26.45)

Por tanto, opuestamente a lo que ocurre en una onda de expansién, las pen-
dientes crecen desde a, hasta a,+ %lU r y llegan a cortarse. En otras palabras,
a medida que la velocidad del piston crece, la informacidn viaja mas deprisa
y se agolpa con la que han salido antes del piston. Como el cruce de dos ca-
racteristicas implica que en un mismo punto el fluido tiene, por ejemplo, dos
velocidades distintas (le ha llegado al mismo tiempo informaciones que salie-
ron en tiempos distintos del movimiento del pistén), la situacién es fisicamente
imposible.

Lo que ocurre en realidad es que entre las dos envolventes de las carac-
teristicas que se cruzan se forma una onda de choque o discontinuidad que
separa mediante un salto finito de entropia dos regiones de flujo isentrépico.
El proceso se puede ver mds claramente si observamos la evolucién del perfil



464 MECANICA DE FLUIDOS

~ P(() C,

©

Figura 26.5: Onda de compresién. Con linea gruesa a trazos se muestra la trayectoria de la
onda de choque.

<t (a) (b)

XP XF X IP xei

Figura 26.6: Perfiles de velocidad isentrdpicos para t < t. (a) y t > t. (b).
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s~~~ Onda de choque
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Piston U ty St
© Gas-en reposo 1%

— ———— t2>tl

Figura 26.7: Onda de choque producida por el movimiento de un piston.

de velocidad. Antes de que se corten las dos primeras caracteristicas [lo cual
ocurre en el punto (¢, z.) de la figura 26.5] el perfil de velocidad tiene una
forma tal como se muestra en la figura 26.6(a), que vale U en £ = z, y se anula
en z = z . Como u permanece constante para un observador que se mueve con
velocidad u+a = a,+ (7+1)u/2, que es la velocidad de propagacién sobre las
caracteristicas, los puntos con mayor velocidad se propagan mas rapidamente,
de modo que existird un instante ¢t = t. en el que la pendiente Ou/Jzx se hace
infinita en algin punto £ = x.. A partir de ese instante, existe una regién (in-
tervalo entre T¢; y s para cadat > t. en la figura 26.5) donde la funcién u(z)
es multievaluada [ver figura 26.6(b), que corresponde a la regién de la figura
26.5 donde se cortan las caracteristicas], lo cual no es fisicamente posible. Asi,
a diferencia de una onda simple de expansion, cuyos gradientes espaciales se
van haciendo cada vez mas suaves a medida que se propaga (ver figura 26.4),
la deformacién de una onda simple de compresién es tal que los gradientes
son cada vez mas acusados, hasta que se alcanza una pendiente infinita en
algin punto. Antes de que esto ocurra, los procesos disipativos comienzan a
ser importantes en la regiéon donde se producen los maximos gradientes, y el
proceso ya no puede ser descrito por las ecuaciones isentrépicas (26.1)-(26.3)
de partida. Desde un punto de vista isentrépico, el problema se simplifica con-
siderando ese cambio brusco como una discontinuidad (onda de choque) que se
sitiia en una posicion T, entre x¢; y Ty que cumple las relaciones de Rankine-
Hugoniot (para una onda de choque débil se puede demostrar que la onda de
choque se sitia en una posicién tal que el drea a cada lado de la curva u(z)
en la regién multievaluada es la misma; véase mas adelante).

En definitiva, un proceso de compresion isentropica siempre degenera en
un problema no isentrépico donde la produccion de entropia esta restringida a
una discontinutdad u onda de choque normal. Desde el punto de vista del flujo
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isentrépico, el problema se reduce a estudiar la evolucion de la onda de choque
que, a partir del instante t., avanza en el medio en reposo no perturbado (ver
figura 26.7). Las propiedades del fluido justo detrds de la onda de choque
estan relacionadas con las magnitudes del fluido en reposo a través de las
relaciones de Rankine-Hugoniot (ver capitulo 22). Desde el pistén hasta la
onda de choque el fluido (comprimido) evoluciona segin las caracteristicas.

Se considerara primero, por simplicidad, el caso de un pistén que se mueve
con velocidad U = constante (figura 26.8). Las caracteristicas son dos conjun-
tos de rectas con pendientes a, y a, + U, respectivamente. La regién donde se
cruzan estas dos familias de caracteristicas y, por tanto, donde se encuentra
la trayectoria de la onda de choque, viene delimitada por las dos envolventes
T =aot y x = (a, + U)t, que parten ambas del origen. En este caso, la onda
de choque describe una trayectoria recta que es facil de calcular a partir de las
relaciones de Rankine-Hugoniot, ya que las magnitudes fluidas detras de la on-
da son uniformes (en particular, la velocidad del fluido es la del pistén). Si U,
es la velocidad de la onda de choque, en un sistema de referencia estacionario
con ella, la ecuacién (22.28) nos dice que

Up—U 24 (y—1)M?

= , 26.46
Uo (')’ + 1)M3 ( )
donde
U,
M, == (26.47)
Ao

es el nimero de Mach del flujo incidente a la onda de choque por la derecha
(uniforme y en reposo para un observador del laboratorio). Conocida la velo-
cidad del piston U y las magnitudes del flujo en reposo delante de la onda,
(26.46) proporciona U,:

_9+1 v+ 1\?, , U
M, = TMP+\/(T> M;+1, M,= =k (26.48)
Las magnitudes fluidas (uniformes) detrds de la onda se obtiene de las otras
relaciones de Rankine-Hugoniot una vez que M, es conocido. Por ejemplo, la
presién p; y la densidad p; se obtienen de (22.29) y (22.28):

o _O+UME o M+ 1oy (26.49)

Po 2+ (y—1)M2’ po v+1 ) '
Este dispositivo de un piston que se mueve a velocidad constante en el interior
de un conducto se suele llamar tubo de choque y, debido a que todas las
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Xp (t)=Ut

x=(a ;#+Ut

Figura 26.8: Onda de compresién para un pistén que se mueve con velocidad constante U.

propiedades del gas delante y detras de la onda de choque son uniformes y
facilmente calculables, es el que se utiliza normalmente en el laboratorio para
producir y analizar ondas de choque.

En el caso general en el que la velocidad del piston U no es constante, las
relaciones de Rankine-Hugoniot se aplican localmente en la discontinuidad.
Delante de la onda de choque, cuya trayectoria z,(t) buscamos, el gas esta en
reposo. Detréas de ella se tienen las caracteristicas dadas por (26.45),

e ao+'yT“U(T) t-7), zp(r)= /OTU(t)dt, (26.50)

con velocidad

u(r) =U(1). (26.51)

Ahora bien, de las ecuaciones de conservacién a través de la onda de choque
(relaciones de Rankine-Hugoniot), teniendo en cuenta que la velocidad del
fluido justo detras de la onda de choque es U(7), se deduce que

_ Ik
2

[esta es la misma relacién que (26.46)] de forma que la trayectoria de la onda
de choque viene dada por

g UU,—a2=0, (26.52)
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X p(l)

x (1)
(4]

Figura 26.9: Esquema de la trayectoria de la onda de choque.

2
d;t" U, = ljl’—leL(T) + ao\/l + [ +41a)U(T) . (26.53)

Dado U(7), esta ecuacién, junto con (26.50) aplicada a la posicién de la onda
de choque z,(t), proporciona ésta en funcién del tiempo. De hecho se ob-
tendria paramétricamente en funcién del parametro 7: para cada t = t,, el
par de ecuaciones anteriores permite obtener z,(7) y t,(7), que proporciona
la trayectoria de la onda de choque z,(¢,) (ver figura 26.9). Las propieda-
des del fluido entre el pistéon y la onda de choque se obtienen de acuerdo
con las caracteristicas mediante (26.50)-(26.51), junto con a = a, + :%iU(’r),

p = po+ [(v = DU(T)/(2y/1p0/ YD y p = po(p/ po)".

26.2.3. Onda de choque débil

Cuando la velocidad del pistén es pequena en relacion a la velocidad del
sonido a,, la onda de choque que se forma es débil. En este caso se puede
obtener una solucién analitica si se tiene en cuenta que U(7T) < a, implica
Zp(T) < a,T, por lo que (26.50) aplicada a la posicién de la onda de choque
T, se simplifica:

1
Zo(t) =~ |a, + l—_;—U(T) t—aor (26.54)
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[obsérvese que se ha retenido U(7) en primer orden]. Derivando,

dzx +1 +1 dr
o =g, + _’7 U(r) + [7 U(r)t — ao] —= (26.55)
y comparando con (26.53), se obtiene
y+1 [7 +1 ] dr
1 U(r) + 5 U(r)t — i 0 . (26.56)
Multiplicando por U(7), esta ecuacién se puede integrar:
1 d 1 d
Y+t o+l 1206 )—Ut =a Tl . (26.57)
4 d'r
1d
1= UAn) = aol(r) (26.58)
t, = 20 / U(+)dr' (26.59)
°TyFL U2 ‘ '

Una vez calculado t,, de (26.54) se obtiene z,. Si U(0) > 0, la onda de choque
empieza en t =0, es decir, se forma en el instante en que se empieza a mover
el pistén, estando en los instantes iniciales descrita por

4a,T
t~v——2 26.60
G+ DO0) (26.60)
y
+1
Zo(t) ~ |ao + L4— o) . (26.61)
La velocidad inicial de la onda es
9% _ oo+ 1 1y () (26.62)
a ° 4 ' ’

Sélo si U(0) = 0 la onda de choque puede no producirse en el instante inicial
(véase ejemplo siguiente).

26.2.4. Ejemplo: piston con aceleracion constante

Para ilustrar las ondas simples de compresién y de expansion analizadas
anteriormente, se considerara a continuacién el caso en el que la velocidad del
pistén es lineal en el tiempo, U = bt. Suponiendo que el pistén parte de z = 0,
la trayectoria del pistén viene dada por
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-a g1 0 bt2/2 a,t

Figura 26.10: Esquema de los perfiles de velocidad a la derecha y a la izquierda de un pist6n
que se mueve con aceleracién constante b antes de la formacién de una onda de choque en
la zona de compresidn.

z,(t) = % (26.63)

En la zona de expansion, z < z,(t), sustituyendo U(7) y zp(T) en (26.40)-
(26.41), se tiene

2
zz%_+(l;;1¢_ao)(t—r), uw=br. (26.64)

Eliminando el parametro 7, se obtiene u(t, z):

2 2
U= 1 {ao+’y—ﬂbt—\/<ao+7—j——1bt) —2b’y(z+aot)J ;, T< bL
vy 2 2 2
(26.65)
La velocidad del gas disminuye monétonamente desde u = U = bt en z =
z,(t) = bt?/2, hasta cero en z = —a,t (ver figura 26.10). Para z < —a,t, el
gas permanece sin perturbar, ya que £ = —a,t es la primera caracteristica que
sale del pistén que va informando al gas de su movimiento (ver figura 26.3).
Las demés magnitudes fluidas se obtienen de (26.42)-(26.44).
A la derecha del pistén, > z,(t) = bt?/2, antes de que se forme la
onda de choque, la velocidad del gas se obtiene de forma andloga sustituyendo
U(t) =br y zp(7) = b1%/2 en (26.50)-(26.51):

1 1 . ' bt?
%bt—ao—\/(%—bt—ao) + 2by(aot — 1) |, x>7.

(26.66)

1
v
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El gas pasa ahora de la velocidad del pistén en z = z,(t), a la velocidad
nula en £ = a,t que, como antes, es la primera caracteristica que sale del
pistén en la zona de compresién, que va informando al gas del movimiento del
mismo. Sin embargo, esto deja de ser cierto en cuanto se forma una onda de
choque, que siempre viaja a una velocidad supersénica en relacién al gas no
perturbado, dz,/dt > a,. En el presente ejemplo, el instante de formacién de
la onda de choque se puede estimar facilmente hallando du/0zx y obteniendo
el punto (t.,z.) que primero hace infinita esa derivada. Se encuentra que esto
ocurre en la parte frontal de la onda de compresion, donde u = 0, para

2a,
by +1)

Por tanto, la solucién obtenida a la derecha del piston vale parat < t.. A partir
de este instante, se forma una onda de choque cuya trayectoria z,(t) se obtiene
eliminando 7 entre (26.50), aplicada a =z = z,, y (26.53), usando la velocidad
y la trayectoria del pistén del presente ejemplo. El perfil de velocidad en la
zona del gas comprimido entre el piston y la onda de choque se obtiene igual
que antes de (26.50)-(26.51). El hecho de haber usado la relacién de Rankine-
Hugoniot (26.52) asegura que la velocidad del gas justo detras de la onda de
choque, en = z,(t), es la apropiada para que el gas pase a tener velocidad
nula delante de la onda de choque.

Tc = aot, con t,= (26.67)

26.3. Onda esférica tras una explosion intensa

Se ha visto que el movimiento unidireccional e isentrépico de un gas viene
gobernado por ecuaciones hiperbdlicas que se pueden integrar en general de
forma analitica usando el método de las caracteristicas. Particular atencién se
ha prestado a las soluciones denominadas ondas simples. En cuanto el flujo
deja de ser unidireccional, las ecuaciones isentrépicas dejan de ser hiperbdlicas,
salvo que el flujo sea supersénico, en cuyo caso también se puede aplicar el
método de las caracteristicas para obtener soluciones casi analiticas del pro-
blema (ver, por ejemplo, Anderson, 1990, capitulo 11). Otro movimiento de
interés que permite obtener soluciones analiticas (en este caso de semejanza)
es el movimiento puramente radial con simetria esférica. Como ejemplo signi-
ficativo se considerara en esta seccién el problema idealizado del movimiento
del gas tras una explosién instantdnea y puntual en la que una cantidad finita
de energia E se libera en el centro de la explosion.

Inicialmente, el gas se supone en reposo, con presion p, y densidad p,, ex-
cepto en el centro de la explosion. Las ecuaciones que gobiernan el movimiento
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puramente radial, ¥ = u(r,t)é,, son:

p  9(pu) |, pu

ot +—67'+2T =0, (26.68)
ou Ou  Op
Poe + pus" o e 0, (26.69)
0 o\ p _
(a + uzﬁ) Z 0. (26.70)

Dada la naturaleza ideal del problema, en el que una energia finita se libera
instantdneamente (en ¢ = 0) en un punto (r = 0), la solucién no puede ser
regular en ¢ = 0. Por otro lado, el flujo no puede ser isentrépico para todo r
debido a que las ondas no lineales de compresiéon generadas por la explosién
producen casi instantineamente una onda de choque que avanza supersonica-
mente sobre el medio no perturbado (en cualquier caso, la onda de choque se
forma en los instantes iniciales en los que la solucién ideal que se va buscando
no vale). Por tanto, para cada instante ¢t > 0, las ecuaciones anteriores se apli-
caradn a la regiéon 0 < 7 < R(t) limitada por una onda de choque esférica de
radio R(t) que avanza como una discontinuidad con velocidad U = dR/dt > a,
sobre el gas en reposo no perturbado. Designando con el subindice 1 a las pro-
piedades del flujo justo detrds de la onda de choque esférica [en r = R(t)~], las
relaciones de Rankine-Hugoniot, suponiendo que la onda de choque producida
por la explosién es muy intensa, proporciona (ver seccién 22.6.2):

2 ) d
= — = —. .71

_y+1 2 U

pr = 7—_—1/00, uy = m )

La condicién adicional para obtener R(t) es que la energia total del fluido en

todo instante se conserva y es igual a la energia E liberada en la explosion.

Como la energia total por unidad de volumen vale p(u?/2 + ¢,T) = p[u?/2 +
p/(v — 1)p], esta condicién se escribe

R(¢) 2 1
47r/ p = + ——21 +2dr = constante = E . (26.72)
0 2 g4-1p

Las condiciones iniciales son:

p(r,0) = po, p(r,0)=0, wu(r,0)=0 (r#£0), (26.73)

donde, dada la linealidad en la presién de las ecuaciones, se ha sustituido p
por p — p,. Por ultimo, como no puede existir flujo en el punto central después
de la explosion,
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v(0,¢)=0 (t>0). (26.74)

El analisis dimensional del problema anterior muestra que las distintas
magnitudes fluidas, p, p y u, dependen de t,7, E, p, y . El radio R de la onda
de choque depende de esos mismos parametros, excepto de r. Por tanto, el
teorema II permite reducir el mimero de variables independientes de 5 a sélo
2 variables adimensionales, que son 7y y

£ =r(Et}/po)”/5. (26.75)

Es decir, las magnitudes del problema no dependen de r y de ¢ por separado,
sino de una combinacién de ambas dada por £, que es la variable de semejanza
del problema. Como variables dependientes adimensionales se eligen P, D y
V, definidas mediante

2 -
p= Po%P(f,V)a p= poD(fa’y)a U= %V(f,’)’), (2676)

mientras que el radio de la onda de choque y su velocidad adimensionales son

R = (Et*/p,)'5¢1(7), U= §<Et—3/po>v5& : (26.77)

Por tanto, un simple andlisis dimensional proporciona la posicién en funcién
del tiempo y la velocidad de la onda de choque salvo por una constante £; que
depende de . Ademas, las magnitudes del gas comprimido dentro de la onda
de choque satisfacen un conjunto de ecuaciones diferenciales ordinarias, que
se obtienen de sustituir (26.75)-(26.76) en (26.68)-(26.70):

dv 2\ InD
ms+(V—5> _]i +3V =0, (26.78)
2\ dV  dP
z e | = P = .
(V 5>Ddln§+dln€+DV(V 1)+ P =0, (26.79)
d P\ 21-V)
L LSl R .
dln{(lnD7> V—2/5 (26.80)

Las condiciones de contorno adimensionales justo detras de la onda de choque
(26.71) se escriben:

_ 8 _ 4 _ v+1
P(€1)=m, V(§1)=5—G+—1), D({l):ﬁ. (26.81)
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Por otro lado, la condicién (26.72) se escribe

& VZ3(¢) 1 PE)| a0 _ 1
/0 D({){ . +7_1D(§)]§d§—4ﬂ, (26.82)

mientras que la condicion (26.74) se satisface idénticamente siempre que V (§ =
0) sea finita (obsérvese que la solucién de semejanza no vale para t — 0, por
lo que no se pueden imponer las condiciones iniciales).

Este problema tiene una solucién analitica que se puede expresar como
1

sigue:

&) =ow (1= 1) (v )’

( 7 = V(1 V) (37v-1) (26.83)
(5 © 3y—1_\* 5.\
p-a(3w-1) (1-21) (1-3v)" . sy

" 5 5 sk
P =C3DV (1—5V) (—2-7V—1) : (26.85)
donde
132 -7y+12  5(y—1) e 3
S By-1D(2y+1) T 2y+1 7 T 29417
T 13v2 — 7y + 12 b L
C-7By-1E2y+1)’ 2-v’
5 215(v+1)]1% (v +1\}
= |2 1
B [4(7+ )] [7—7] (7—1) ’
+1\C+e+l [5(7+1)-|d v—1
T -1) [ 7-7 ] T2

El valor de &; en funcién de < se obtiene de sustituir esta solucién en la
condicién integral (26.82). Por ejemplo, para v = 1,4 se tiene que §; ~ 1,033.

'Esta solucién de semejanza fue obtenida, independiente y simultdneamente, por Taylor
y por von Neumann en 1941. Taylor resolvié numéricamente el sistema de ecuaciones dife-
renciales ordinarias, mientras que la solucién analitica que se da a continuacién se debe a
von Neumann.
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0 0.5 /R 1

Figura 26.11: Esquema de la solucién de semejanza (26.83)-(26.85).

La solucién anterior se esquematiza en la figura 26.11, donde se representa

p(r,t)/p1(t) = (£/€1)2P(€)/P(&1), p(r,t)/p1(t) = D(€)/D(&) y u(r,t)/ur(t) =
(£/61)V(€)/V (&1) en funcién de r/R(t) = £/£,.
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TEORIA DE LA CAPA
LIMITE






Capitulo 27

Capa limite laminar
incompresible

27.1. Introduccion

Hasta principios del siglo XX las teorias que describen los flujos viscosos y
los flujos ideales se habian desarrollado practicamente por separado. En rela-
cién a esta iltima, las ecuaciones fueron establecidas por Euler hacia 1755, y
otros avances capitales fueron hechos por Helmholtz (1858) sobre la vorticidad
y por Kelvin (1869), con su teorema de la circulacién. La teoria de los fluidos
ideales tuvo un gran éxito en relacién a la descripcion de las ondas sonoras
y de los diversos tipos de ondas en liquidos, asi como en otros muchos ti-
pos flujos, como se puede apreciar, por ejemplo, en el libro Hydrodynamics de
H. Lamb, cuya primera edicién data de 1879 y en cuya quinta edicién (1924)
Lamb anadié un extenso capitulo sobre los flujos viscosos. En cambio, la teoria
ideal predice que la resistencia que un fluido ejerce sobre un cuerpo sélido en
movimiento en su seno es nula, lo cual es aproximadamente cierto para flujos
de fluidos con viscosidad pequeiia (mdas concretamente, para flujos con nime-
ros de Reynolds alto) sobre cuerpos fuselados, pero es estrepitosamente falso
para flujos sobre cuerpos romos, donde, ademas, la forma del flujo detras del
cuerpo no tiene nada que ver con las predicciones de la teoria ideal, por muy
pequena que sea la viscosidad del fluido (véase el capitulo 21 y el final de éste).

En cuanto a la teoria de los flujos viscosos, aunque ya Newton postulé una
relacién entre los esfuerzos y la velocidad de deformacion a finales del siglo
XVII, las ecuaciones del movimiento no fueron establecidas hasta los trabajos
de Navier (1822), Poisson (1829), Saint-Venant (1843) y fundamentalmente
Stokes (1845); este 1ltimo obtubo ademas muchas soluciones exactas elemen-
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tales para diversos tipos de flujos viscosos. Stokes (1851) también establecié la
teoria de lo que ahora se llama flujo a nimero de Reynolds pequeno. Otros
avances importantes fueron hechos por Hele-Shaw (1898), quien realizé nota-
bles experimentos con lineas de corriente que se asemejan a las de los flujos
irrotacionales, y por Reynolds (1883), con sus magnificos experimentos sobre
la transicion turbulenta.

Detras de toda esta disyuntiva entre los flujos viscosos y los flujos idea-
les subyacia el problema de la condicién de contorno de no deslizamiento de
un fluido sobre superficies sélidas. Stokes habia postulado esta condicién de
contorno y, tras los experimentos de Hagen (1839) y Poiseuille (1840) y los tra-
bajos tedricos del propio Stokes y de Hagenbach y Neumann (1859), no cabia
duda de que esta hipdtesis era cierta, al menos para flujos lentos o reptan-
tes. Sin embargo, para los flujos de fluidos con pequeria viscosidad alrededor
de cuerpos, todavia a principios del siglo XX existia incertidumbre sobre la
validez de esta hipdtesis y no era ni mucho menos aceptada, a pesar de que
los flujos predichos (y sobre todo la resistencia) por la teoria ideal no tenian
nada que ver con los resultados experimentales en la mayoria de las ocasiones.
A esta incertidumbre contribuyeron dos factores principales. Por un lado, las
ecuaciones de los fluidos ideales (ecuaciones de Euler), a diferencia de las de
Navier-Stokes, no permitian imponer la condicién de contorno de no desliza-
miento del fluido sobre superficies sélidas (si la superficie era impermeable,
sobre ellas se suponia simplemente que la componente de la velocidad normal
a la misma era cero), ya que en las ecuaciones de Euler no aparecen los térmi-
nos viscosos con derivadas de segundo orden en la velocidad; dado el éxito de
las ecuaciones de Euler en describir algunos flujos reales, no parecia que esta
condicién fuese necesaria. Por otra parte, era conocido que cuando la teoria
ideal predecia una presion absoluta negativa en algun punto de un liquido,
como ocurre, por ejemplo, en el flujo detras de una esquina pronunciada de
una superficie sélida,! en realidad se formaban burbujas de vapor, el liquido
cavitaba; de esta forma se explicaba porqué el flujo de un liquido después de un
cambio brusco en la superficie de un sélido se parecia tan poco al predicho por
la teoria ideal: la cavitacién era la responsable de la separacién del flujo. Asi,
en el caso mas evidente en que la teoria ideal fallaba, habia una explicacién
sencilla del motivo. Esta explicacién (que, por cierto, no podia ser vélida para
gases) oscurecia el panorama y retrasé la explicacion viscosa de la separacién
del flujo.

No fue hasta que Prandtl, en un cortisimo articulo de menos de ocho pagi-

1Detras de estas esquinas la teoria ideal predice una velocidad infinita y, de acuerdo con
el teorema de Bernoulli, la presién es infinitamente negativa (ver capitulo 21).
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nas que presenté en un congreso celebrado en Heidelberg en 1904, introdujo
el concepto de capa limite, que estas paradojas no se resolvieron. Prandtl
establecié que cerca de las paredes sélidas los efectos viscosos son siempre
importantes, por muy pequena que sea la viscosidad del fluido, y son los res-
ponsables de que se cumpla la condicién de no deslizamiento del fluido sobre
la superficie sélida. Asi, los flujos de fluidos con viscosidad pequena (flujos
a numero de Reynolds grande dirfamos ahora) constan de dos regiones dife-
renciadas: una erterna donde el fluido se puede considerar como ideal, y una
capa limite delgada, alrededor de las superfices sélidas, donde los efectos vis-
cosos son importantes, no porque la viscosidad sea mayor alli, sino porque el
gradiente de la velocidad normal a la superficie es muy acusado al ser una
capa muy delgada. De esta forma, Prandtl esclareci6 el panorama, unificando
las hasta entonces dos inconexas ciencias de los fluidos ideales y de los flui-
dos viscosos, y por ello se le considera el padre de la moderna Mecanica de
Fluidos. En su cortisimo pero intenso articulo, Prandtl no sélo introdujo el
concepto de capa limite, sino que predijo su espesor (proporcional a la raiz
cuadrada de la viscosidad y que, por tanto, tiende a cero cuando pu — 0; de
hecho Prandtl predijo cuantitativamente el espesor de la capa limite sobre una
placa plana; ver secciones siguientes), introdujo la variable de semejanza para
la capa limite sobre una placa plana e integré numéricamente la ecuacién di-
ferencial ordinaria resultante (solucién de Blasius que se verd mas adelante),
obteniendo una expresién para la resistencia, etc. También explicé (cualitati-
vamente) el fenomeno de la separacién de la capa limite, comentando como
el flujo de un fluido de viscosidad practicamente nula podria ser totalmente
distinto al predicho por la teoria ideal debido a este fendmeno de la separacion
de la corriente (ver seccién 27.5). A pesar de lo fundamental del articulo, sus
ideas no fueron conocidas hasta bastantes anos mas tarde fuera de su grupo,
debido, sobre todo, a lo condensado y escondido de la publicacién. A medida
que estas ideas se fueron entendiendo y difundiendo, la Mecanica de Fluidos
avanzé de forma considerable, no sélo desde el punto de vista tedrico, sino,
sobre todo, en sus aspectos mas practicos y tecnolégicos.

La idea de la capa limite estd ahora muy extendida y se aplica en muchos
problemas en casi todas las ramas de la ciencia, ya que desde un punto de
vista matemadtico surge como consecuencia de cualquier simplificacién de las
ecuaciones diferenciales que gobiernan un determinado proceso que elimina
los términos con derivadas de mayor orden; lejos del contorno las ecuaciones
simplificadas son vélidas, pero cerca del contorno (al menos en parte de él)
hay que retener los términos despreciados para poder imponer todas las con-
diciones de contorno. A pesar de ello, el problema es mucho mas simple que el
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original puesto que las ecuaciones completas (con el término que es pequeiio
fuera del contorno) sélo son necesarias en una capa limite muy delgada en las
proximidades del contorno, que ademas se simplifican debido a la delgadez del
dominio (en las secciones 14.1.4 y 14.1.5 se vieron dos ejemplos sencillos de
capa limite). En esta leccion se considerara sélo la capa limite laminar (la tur-
bulenta serd considerada mas adelante) y estacionaria de un fluido incompre-
sible. Se veran algunas de las soluciones mas simples y se discutira brevemente
el fenémeno de la separacién de la capa limite y su influencia en la resisten-
cia. En la leccién siguiente se tratard, de forma muy concisa, la capa limite
térmica,? también para un fluido incompresible, mas que nada para introducir
la importante analogia de Reynolds. El lector interesado en otros aspectos de
la teoria de la capa limite puede consultar, por ejemplo, las monografias de
Rosenhead (1988) y de Schlichting y Gersten (2000).

27.2. Ecuaciones y condiciones de contorno

Las ecuaciones en el interior de la capa limite se simplifican, principalmen-
te, por el hecho de que el espesor de la misma (cuyo orden de magnitud se
designard por 4) es mucho menor que cualquier otra escala de longitud del pro-
blema, como, por ejemplo, la longitud caracteristica que define el movimiento
a lo largo de la superficie, L, o el radio de la curvatura caracteristico de la
superficie, R. Suponiendo que el movimiento es bidimensional, esta ultima
condicién (6 < R) nos permite utilizar coordenadas cartesianas (z,y), donde
z es la coordenada (no necesariamente rectilinea) a lo largo de la superficie e
y es la coordenada normal a la misma(ver figura 27.1).3

Considerando sdélo el problema de la capa limite viscosa o de velocidad,
es decir, considerando sélo las ecuaciones de continuidad y cantidad de movi-
miento, que se suponen desacopladas de la ecuacién de la energia (flujo con
propiedades constantes), las ecuaciones de partida son:

Qu O _y (27.1)
or Oy

2El fenémeno es anslogo al de la capa limite viscosa: cuando Pe > 1, al eliminar el término
de conduccién de calor de la ecuacién de la energia, no se puede imponer la condicién de
contorno de la temperatura sobre una superficie sélida, por lo que existe una capa limite
térmica donde el efecto de la conduccién es importante, permitiendo satisfacer la condicién
de contorno. Esta capa limite permite calcular el flujo de calor intercambiado entre el fluido
y la pared sdlida, que de acuerdo con la teoria ideal seria nulo.

3A este resultado se puede llegar rigurosamente tomando coordenadas curvilineas a lo
largo de la superficie sdlida y aplicando la simplificaciéon de capa limite; pero es bastante
evidente y no merece la pena tomarse la molestia.




CAPITULO 27. CAPA LIMITE LAMINAR INCOMPRESIBLE 483

Figura 27.1: Capa limite bidimensional sobre una superficie.

Ou  Ou\  9p u 0%
ov ov\  Op v 0%
(45 +vay) ——55”“”(@*372) * (27.3)

donde ¥ = ué; + vé€y. Si, como se ha dicho, § y L son las longitudes carac-
teristicas en las direcciones y y z, respectivamente, y V, y U, las velocidades
caracteristicas en esas mismas direcciones, de la ecuacién de continuidad se
tiene

Vo ~ %Uo <U, , (27.4)

por lo que el movimiento en la capa limite es casi unidireccional. Por otro
lado, las derivadas con respecto a x en los términos viscosos de las ecuaciones
son claramente despreciables frente a las otras derivadas con respecto a y, con
errores de orden (6/L)? < 1. Por iiltimo, la variacién transversal de la presién
en la capa limite es también despreciable frente a la variacion longitudinal de
la misma:

A V2 6\?
Azz N ZUoz N (.L.) <1, (27.5)

De esta forma, la ecuacién de cantidad de movimiento en la direccién y es
practicamente irrelevante y puede sustituirse por dp/8y = 0; es decir, p es
sélo funcién de z y viene dada por el movimiento (ideal) externo a la capa
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limite. Suponiendo que u = U,(x) lejos de la superficie (en la escala § de la
capa limite), la ecuacién de Bernoulli proporciona

dp dp dU,

—_— — = _pUE

Or dx dr
Con todas estas simplificaciones, las ecuaciones que gobiernan el movimiento

en el interior de una capa limite bidimensional, incompresible y estacionaria
son:

(27.6)

Ou Ov
9z + 6_y =0, (27.7)
2
w20y e O (27.8)

——— + V— S
dr  dy dr = 8y
que son las ecuaciones que escribié Prandtl en su articulo antes mencionado
(por supuesto, sin deducirlas alli, pues el reducido espacio del mismo no daba
para tanto). Como condiciones de contorno hay que imponer la condicién de
no deslizamiento en la pared,
u(z,0) = v(z,0) =0, (27.9)

la condicion de acople con la solucién ideal exterior,

u(z,y) = Uesz) , y/d— o0, (27.10)

y una condicién inicial para u,

(o, Y) = uo(y) - (27.11)

De la ecuacion de cantidad de movimiento en la direccién T se puede de-
ducir el orden de magnitud del espesor de la capa limite sin mas que comparar
los términos convectivos y de fuerzas viscosas, que deben ser del mismo orden
por la propia definicién de capa limite:

Ou Ou U_g % WU,

ua—x ~ ’Ua—y ~ I ~ 1/6—y2 ~ 6_2’ (2712)
] v \/? 1
2~ (U9L> = (27.13)

Asi, §/L — 0 cuando Re — 00, como ya sabiamos. De esta forma, a pesar
de que v es muy pequeno, la rdpida variacion de u en una distancia § tan
pequena (proporcial a v/ 2) es suficiente para que el término viscoso no sea
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despreciable. Debe observarse también que el acoplamiento con la solucién
exterior [condicién (27.10)] no es para y — oo, sino y/v}/2 — oo; es decir,
para y muy grande en relacién a la escala de la capa limite, pero pequeiio en
relacién a la escala exterior L.

El proceso de resolucién de un problema en la aproximacién de capa limite
seria el siguiente (para el caso presente de un flujo estacionario, bidimensional
e incompresible alrededor de un cuerpo): dado el contorno del cuerpo y las
condiciones aguas arriba (Peo,¥00), las ecuaciones de Euler proporcionarian
los campos de velocidad y de presién (y de temperatura dada T, pero de
momento nos olvidamos de ella) ideales o solucién externa. En particular, esta
solucién nos daria la presién p(z) y la velocidad Ue(z) a lo largo de la su-
perficie del cuerpo, donde U, no cumple la condicién de no deslizamiento, en
general. Conocido Ue(z), las ecuaciones y condiciones de contorno de la capa
limite (27.7)-(27.11) proporcionarian el campo de velocidad en las proximida-
des de la superficie, con lo que quedaria resuelto el problema completo. Esta
solucion nos permite calcular, por ejemplo, la fuerza de friccion que el fluido
ejerce sobre el cuerpo, que, por unidad de area, serfa 7y = pdu/0y|y—o. La
fuerza de presion viene directamente dada por la solucién ideal p(z), puesto
que la presién permanece practicamente constante a través de la capa limite
(esto 1ltimo no serfa cierto si la capa limite se separase, ver secciones 27.5 y
27.6). Se observa que este proceso de solucién aproximado es mucho més sim-
ple que el de resolver las ecuaciones completas de Navier-Stokes, pues tanto
las ecuaciones para flujos ideales de Euler, como las de capa limite de Prandtl,
son bastante mas simples; los errores cometidos serian del orden del espesor
de la capa limite, §/L ~ Re 12 « 1 (en el supuesto de que no se separe la
capa limite). En general, para una forma arbitraria de la superficie [es decir,
para una forma arbitraria de Ue(z)], las ecuaciones de la capa limite se tienen
que resolver numéricamente. Sin embargo, existen varios casos sencillos, que
tienen también bastante importancia practica, en los que se puede reducir el
sistema de ecuaciones en derivadas parciales (27.7)-(27.8) a una tnica ecua-
cién diferencial ordinaria, por lo que la velocidad en la capa limite se obtiene
de forma casi analitica. A estos casos particulares se dedicaran las dos seccio-
nes siguientes, cuyos resultados tienen, como se vera, una trascendencia mas
alld de esos meros problemas particulares. También existen métodos aproxima-
dos (integrales) de solucién de las ecuaciones de capa limite para una funcién
Ue(z) arbitraria que son muy precisos y faciles de implementar, pero que no
seran tratados aqui (ver referencias).
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Figura 27.2: Capa limite sobre una placa plana con éngulo de incidencia nulo.

27.3. Capa limite sobre una placa plana. Solucién
de Blasius

Considérese el problema de una corriente sobre una placa plana semiinfinita

con angulo de incidencia nulo, de forma que la velocidad del fluido ideal no se

ve afectado por ella: U, = constante = U. Las ecuaciones para la capa limite
(27.7)-(27.8) se reducen a

Ou Ov

—+t =0, 27.14
Oz Oy 0 ( )
Ou Ou 0%u

U~ + V= =V . 27.15
az oy~ o i

De (27.9)-(27.11), las condiciones de contorno son:
u=v=0y=0 uv—Uy/d—o00; u=Uz=0. (27.16)

Este problema tiene solucién de semejanza: u/U no es una funcién de
T y de y por separado, sino de una cierta combinaciéon de ambas variables
independientes. Fisicamente, la semejanza de la solucién estd basada en el
hecho de que no hay ninguna longitud caracteristica definida en el problema,
por lo que u/U debe ser una funcién de y/é(x), donde, de acuerdo con la
discusién de la seccién anterior, d(z)/T ~ /v/Uz, es decir, §(z) ~ /vz/U.
Desde un punto de vista matematico, la solucién de semejanza esta basada
en la invariancia del problema frente a algin tipo de transformacion de las
variables. Para encontrarla, lo primero que se debe hacer es escribir el problema
en forma adimensional, definiendo las variables (las cuales provienen de un
simple analisis dimensional ):

E=460, =60, (27.17)
£= @, ¢= Uy (27.18)
v v
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Sustituyendo en (27.14)-(27.16), se tiene

Opr  O¢a
6_£ + a—c =0, (27.19)
01 Opr 8¢y
é1 o + ¢ ac = B (27.20)
$1(0,¢) = ¢1(§,00) =1  ¢1(£,0) = $2(£,0) =0. (27.21)

Se puede comprobar que si [¢1(€,(), #2(&,¢)] es una solucion del problema,
[61(a?€,a), aL¢o(a?€, a¢)] también lo es, para cualquier valor del nimero
real a. Es decir, el problema es invariante frente al grupo de transformaciones
£ = a?%¢, ¢* = af, ¢} = ¢1, ¢5 = o~ ¢z, que contiene un dnico pardmetro
a. Esta invariancia sugiere el uso de las siguientes variables de semejanza
(eliminando « en las transformaciones anteriores):

¢ y

1= E= e (27.22)
g =é1, 92:(n)=Viss. (27.23)

Con estas variables, (27.19)-(27.21) se convierte en un problema de ecuaciones
diferenciales ordinarias:

92— 5191 =0, (27.24)

1
g +3M9:191 — 9201 = 0, (27.25)
g1(0) =1, ¢i1(0) = g2(0) =0, (27.26)

donde las primas significan derivadas con respecto a 7.
Antes de seguir, es conveniente utilizar la funcién de corriente 1,

u=08y/dy , v=—-0/dr, (27.27)

en términos de la cual la ecuacién de continuidad (27.14) se satisface idéntica-
mente. También es conveniente, para simplificar la ecuacién que resultara al
final, redefinir la variable de semejanza 7 dividiendo (27.22) por v/2:

=Y __ (27.28)

"= Ve
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De (27.27)-(27.28), junto con (27.17) y (27.23), se tiene

P = /udy—/ Ug(n 2u:c/Ud7), (27.29)

por lo que es conveniente definir

Y / g
= = dn. 27.30
En términos de f, las componentes de la velocidad son:
== £, (27.31)

v=- ‘Z,’f [\/2va 1—\/> (—f+nf). (27.32)

Es decir,

a=F q= %[—f +fl. (27.33)

Sustituyendo en (27.24)-(27.26), teniendo en cuenta la redefinicién de 5, se
llega a

f”l + fllf — 0, (2734)
fO)=f0)=0 , f(o0)=1. (27.35)
Esta es la llamada ecuacién de Blasius, un discipulo de Prandtl que la derivo y
resolvi6 en 1908. Obsérvese que las dos iltimas condiciones de contorno (27.16)
se reducen a la tltima (27.35). La solucién numérica de este problema para
f'(n) = u/U se muestra en la figura 27.3. En ella se aprecia que u/U tiende a
la unidad para 7 de orden unidad, lo cual corrobora que el espesor de la capa
limite es del orden de \/vz/U. De hecho, la integracién numérica nos dice que
u/U = 0,97 para n = 3, e igual a 0,999936 para = 5. Normalmente se define
el espesor §(z) de la capa limite como el valor de y para el cual u/U = 0,99,
que corresponde a 1 ~ 3,5; es decir,

6(r) ~4,95\/va/U. (27.36)

Conviene decir aqui algunas palabras sobre la integracién numeérica de
la ecuacion de Blasius. Esta se puede hacer por el método del disparo: se
parte del origen n = 0 con f(0) = f/(0) = 0, y con un determinado valor
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Figura 27.3: Perfil de la velocidad en la capa limite sobre una placa plana.

de f"(0) = q; utilizando cualquier algoritmo numeérico, se integra la ecuacién
hasta n — o0; el valor de a se va variando hasta que se cumple la otra condicién
de contorno f’(n — oo) — 1. Sin embargo, la integracién se puede hacer de
una manera mas elegante aprovechando dos invariancias mas del problema
que reducen (27.34) a una ecuacién diferencial ordinaria de primer orden. La
primera invariancia es frente a cualquier traslacién de 7, pues en (27.34) no
aparece explicitamente la variable independiente 7). Esto permite reducir el
orden de la ecuacién definiendo

w=Y (27.37)
dn
que transforma (27.34)-(27.35) en
d*w dw\? . dw
— — e — 27.38
w(0) =0, w(oo)=1. (27.39)

Un segundo grupo de transformaciones que dejan invariante (27.38)-(27.39) es
w* = 2w, f* = Bf, para cualquier 5. Eliminando 3, se obtienen las nuevas
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variables

t=—-—, 8=— (27.40)
que transforman (27.38) en

dt  t(s+t+1)

ds ~ s(2s— 1) (@741)

La solucién que interesa es la que viniendo del infinito (s — oo,t — 00), que
corresponde a la superficie de la placa n = 0, llega al origen (s = 0,¢t = 0), que
corresponde a n — 00. Obsérvese que ambos son puntos singulares de (27.41),
que hay que analizar previamente para poder salir numéricamente de ellos.

A veces en lugar del espesor (27.36) se utiliza el denominado espesor de
desplazamiento de la capa limite, 4, (z), definido como el espesor que hay que
desplazar de la superficie la corriente exterior uniforme para que proporcione
el mismo caudal:

(o ] 00 o o] 2 [o o]
/ udy = f Udy; 6= / (1 - 3) dy = 1/ﬂ/ (1= f'(n))dn.
0 o1 0 U U 0
(27.42)
De los resultados numéricos se obtiene

6~ 1,72 /ve/U 4 (27.43)

El esfuerzo de friccion sobre la placa es

(Y oy [T
Tf—u(ay+ax)y=0_u<ay>y=0—uU 2uzf (0). (27.44)

De la integracién numérica se obtiene f”(0) = 0,4696, quedando

U3
7, ~ 0,332 2 (27.45)
T

Este resultado se puede usar para calcular de forma aproximada la resistencia
que ofrece un fluido de densidad p y viscosidad i al movimiento con velocidad

4Se suelen definir otros espesores de capa limite muy ttiles para la resolucién aproximada
por métodos integrales, que no vamos a dar aqui (ver, por ejemplo, Schlichting y Gersten,
2000).
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U de una placa plana de longitud L con dngulo de ataque nulo, siempre que L
sea muy grande en relacién a §(L) ~ \/vL]U (o, lo que es lo mismo, Re'/? > 1,
donde Re estd basado en L). Por unidad de longitud transversal al movimiento,
y teniendo en cuenta las dos caras de la placa, se tiene la fuerza de resistencia:

L
F= 2/ rrde ~ 1,328/ puLU3. 97.46
L pp ( )

Se suele definir el coeficiente de friccion

C ~ 2,656Re~1/2 Re= —, (27.47)

7= pU?L)2 ‘ v

Este resultado se puede incluso utilizar para estimar la resistencia de cuer-
pos fuselados, siempre que la capa limite no se separe (ver seccién 27.5). Es
interesante notar que la fuerza de resistencia es proporcional a U%/2, ley po-
tencial intermedia entre la lineal para flujos muy viscosos (ley de Stokes) y la
cuadrética para flujos turbulentos desarrollados (ver mas adelante).

27.4. Otras soluciones de semejanza. Solucion de
Falkner-Skan

Se ha visto que las ecuaciones de capa limite (27.7)-(27.8) se reducen a
una sola ecuacién diferencial ordinaria cuando Ue(x) = constante, correspon-
diente a la capa limite sobre una placa plana con dngulo de incidencia nulo.
Esta simplificacién se produce también para ciertos tipos de funciones U.(z),
correspondientes a diversos flujos externos. De hecho, la bisqueda de formas de
Ue(x) que permiten una solucién en términos de una unica variable n = y/g(z),
donde, obviamente, g(x) depende de U,(z), se puede hacer de una forma sis-
tematica y rigurosa. Aqui se resume s6lo un grupo de ellas, correspondientes
a un flujo externo dado por

Ue(z) = Uy(z/L)™, (27.48)

que modelan el flujo ideal sobre una cu#ia bidimensional de dngulo 73, donde
3 vale

B=2m/(m+1), (27.49)

siendo U, la velocidad aguas arriba de la cuna (figura 27.4; ver seccién 21.6.5).
Por un procedimiento andlogo al de la seccion anterior (cuyo desarrollo se deja
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Figura 27.4: Esquema de la capa limite sobre una cusia bidimensional.

como ejercicio al alumno), se llega a las siguientes variables de semejanza y

ecuaciones:
_ m+1u0‘ (m—1)/2
n=1yy/ 57 z , (27.50)
_ [ (m+1))2
v= \/ e GmHDL2f(y), (27.51)
w = Ue(x)f(n), (27.52)
fn/ + ff” +6(1 _ f12) =0, (27.53)
f(0)=f(0)=0, f(0)=1, (27.54)
donde u, = U,/L™. Esta solucién de semejanza de capa limite fue encontrada

por Falkner y Skan en 1930. Obsérvese que para m = 0 (8 = 0) equivale a la
capa limite sobre una placa plana de la seccién anterior. Otro limite interesante
es m = 1, correspondiente a la capa limite sobre una placa plana normal al
movimiento (dngulo de la cufia igual a w). En la figura 27.5 se representan
algunas soluciones.

27.5. Separacion de la capa limite

En la capa limite sobre la superficie de un cuerpo con forma arbitraria la
presion no es constante, como ocurre en la placa plana, sino que, al existir una
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Figura 27.5: Algunos perfiles de velocidad en la capa limite sobre una cuna bidimensional
(figura tomada de Schlichting y Gersten, 2000).

velocidad externa a la capa limite que depende de z, U.(z), existen gradientes
de presion a lo largo de la capa limite. La resolucién de las ecuaciones (27.7)-
(27.8) con un término dp/dx = —pU.dU./dz arbitrario se suele hacer por
métodos integrales aproximados, que no se van a tratar aqui, o por integracion
numeérica directa de las ecuaciones. Lo que si se vera a continuacién es, de forma
cualitativa, el fendmeno del desprendimiento o separacién de la capa limite y
su relacion con los gradientes adversos de presion.

Considérese, por ejemplo, el flujo alrededor de un cuerpo a Re > 1 (figura
27.6). Si no existiese separacién de la corriente, habria dos puntos de remanso
en el flujo, uno en el borde de ataque (R; en figura 27.6) y otro en el lado
opuesto (R2). En estos puntos la velocidad es cero y la presién, de acuerdo
con el teorema de Bernoulli, p + pv?/2 = constante, serfa maxima. En los
puntos de anchura méaxima del cuerpo en relacién a la corriente incidente
(puntos marcados con A en la figura), la velocidad es maxima y la presién es
minima. Por tanto, la presién p(z) en la capa limite decrece desde R; hasta
A y vuelve a crecer desde A hasta R,.5 Sin embargo, en la zona donde la
presion crece, la capa limite no siempre permanece adherida al cuerpo y se
puede producir el fenémeno de separacion de la capa limite; en otras palabras,
cuando existe un gradiente adverso de presiéon, puede ocurrir que la suma de las
fuerzas de friccién en la pared y de presién adversa contrarresten la cantidad

5Si la teoria ideal fuese correcta esto daria lugar a una resistencia de presién igual a cero,
lo que constituye la llamada paradoja de D’Alambert (ver capitulo 21).
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Figura 27.6: Separacién de la capa limite. (a) Flujo alrededor de un cuerpo con separacion.
(b) Forma de las lineas de corriente cerca del punto de separacién. (c) Perfiles de velocidad
cerca del punto de separacién (PI = punto de inflexién).

de movimiento del fluido, llegando a provocar una corriente invertida cerca de
la pared, separando la capa limite de la misma. Para analizar este fenémeno
se escribe la ecuacién de cantidad de movimiento de la capa limite (27.8) justo
en la pared (y = 0), donde u = v = 0:

8%u
" (5&3>y=0 - 0. (27.55)

Si se produce la separacién de la capa limite (inversién del movimiento cerca
de la pared), su inicio o punto de separacién viene definido por (Qu/0y)y=o = 0
(ver figura 27.6); es decir, el esfuerzo de friccién debe ser nulo en ese punto.
Cuando el gradiente de presién es favorable (dp/dz < 0), de la ecuacién an-
terior se tiene que (0%u/0y?)y=o < 0, implicando que 9?u/dy? < 0 en toda la
capa limite, y no se puede producir un punto de separacién (ver figura 27.7).
Sin embargo, si el gradiente de presién es adverso (dp/dz > 0), como 8%u/0y?
debe ser negativo lejos de la pared, existe un punto de inflexién (8%u/dy? = 0)
en el perfil de velocidad en la capa limite (figura 27.7); este punto de inflexién
no implica que se produzca el punto de separacion de la capa limite, pero si
es una condicién necesaria para ello. La existencia de un gradiente adverso de
presion es, por tanto, condicién necesaria, pero no suficiente, para la separa-
ci6n de la capa limite. Generalmente, si dp/dz > 0 la separacién ocurre. El
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y y y y
u
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u Ou/0y 0%u/0y? u du/dy 0%u/0y?
dp/dz < 0 dp/dz >0

Figura 27.7: Perfil de velocidad en la capa limite con dp/dz < 0 y dp/dx > 0.

que lo haga mucho antes del punto R2 o muy cerca de él depende de cémo de
intenso sea el gradiente adverso de presién, es decir, de la forma del cuerpo.
Por tanto, la fuerza de resistencia de un cuerpo depende mucho de su forma
(lo cual es bastante intuitivo; ver seccién siguiente).

Como se aprecia en el esquema de la figura 27.8, la separacién de la capa
limite no sdlo se produce en flujos externos alrededor de cuerpos, sino también
en flujos internos en conductos, siempre que exista un gradiente adverso de
presion, es decir, una zona divergente del conducto.

27.6. Resistencias de friccion y de presion

Como se apunté en la secciéon 17.1 la fuerza de resistencia que un de-
terminado fluido ejerce sobre un cuerpo que se mueve en su seno se suele
descomponer en dos sumandos, uno correspondiente a las fuerzas viscosas y
otro a las fuerzas de presion sobre la superficie del cuerpo:

P = / = . iids —./pdfids =P+ F, . (27.56)
S S

Ya se vié (leccion 17) que para Re < 1, estas fuerzas son proporcionales a la
velocidad relativa del cuerpo. Para el caso de una esfera la fuerza total viene
dada por la ley de Stokes [ecuacién (17.45)], donde 2/3 de la resistencia es
debida a la viscosidad y el tercio restante es resistencia de presion.

Para fluidos ideales (Re — 00), no existe resistencia de friccién y la re-
sistencia de presion se demostra que es nula (ver capitulo 21), por lo que la
fuerza de resistencia de un cuerpo que se mueve (estacionariamente) en un flui-
do ideal es cero. Evidentemente, esto no es cierto para flujos reales, por muy
grande que sea el nimero de Reynolds. Por un lado siempre existe una resis-
tencia de friccién asociada a la condicién de no deslizamiento entre el fluido y
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Figura 27.8: Separacién de la capa limite en una tobera convergente-divergente.

la pared sélida. Esta resistencia se calcula resolviendo la capa limite viscosa
adyacente a la superficie del cuerpo, de la que ya hemos visto el caso de una
placa plana con dngulo de incidencia nulo, cuya resistencia viscosa [ecuacién
(27.46)] se puede utizar aproximadamente para cuerpos fuselados, donde los
gradientes de presién son pequenos. Por otra parte, aunque la presién en la
capa limite coincide practicamente (cuando Re > 1) con la presién exterior
dada por la teoria ideal, la resistencia de presién no es nula, como predice di-
cha teoria, puesto que la capa limite se desprende en el movimiento alrededor
de un cuerpo cerrado. Por consiguiente, en la parte posterior del cuerpo la
corriente se separa y los efectos viscosos dejan de estar confinados en una capa
delgada, para afectar a una fracciéon importante del fluido, formandose lo que
se denomina una estela (ver, por ejemplo, la figura 21.12). Cuando el cuerpo
es fuselado (ver, por ejemplo, la figura 21.8), los gradientes de presién son
muy suaves y la corriente se separa casi al final del cuerpo, siendo asi muy
pequeiia la resistencia de presién en relacion a la de friccion. En estos casos la
corriente exterior predicha por la teoria ideal se aproxima bastante a la real, y
la Unica correccion necesaria a esa teoria es la resistencia de friccion calculada
por la teoria de capa limite. Por el contrario, cuando el cuerpo es romo, los
gradientes de presién son tan acusados que la capa limite se separa en cuanto
éstos comienzan a ser adversos (puntos de maxima velocidad A de la figura
27.6) o incluso antes, como ocurre en el caso de un cilindro circular (ver figura
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Figura 27.9: Resistencia de un cuerpo bidimensional fuselado a Re = 10°. (a) Efecto del
espesor relativo en el porcentaje de la resistencia de friccién. (b) Coeficiente de resistencia
total basado en dos dreas diferentes, frontal y de planta (tomada de White, 1983).

21.13). Detras del punto de separacién el flujo no es irrotacional, sino que la
viscosidad afecta a todo el fluido, y se forma una estela que suele ser turbulen-
ta. En ella la presién es practicamente constante y aproximadamente igual a la
presion del punto de separacion, que, por otra parte, coincide practicamente
con la presién minima que se alcanza en los puntos A. Por consiguiente, la
diferencia entre las presiones en las partes frontal y trasera del cuerpo es bas-
tante grande, dando lugar a una fuerza de presién que suele ser mucho mayor
que la resistencia de friccién. A la resistencia de presion también se le suele
llamar de forma puesto que, como se acaba ver, depende casi exclusivamente
de la forma del cuerpo.

Resumiendo, en un cuerpo fuselado la resistencia suele ser pequefia y es una,
resistencia de friccion casi exclusivamente. En un cuerpo romo la resistencia
suele ser grande debido a que la resistencia de presiéon es mucho mayor que la
de friccién. Esto se aprecia muy bien en la figura 27.9, donde se representa el
coeficiente de friccién Cp, definido por
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Figura 27.10: Coeficiente de resistencia para un cilindro circular y una esfera en funcién
del niimero de Reynolds. La linea de trazos representa el coeficiente Cp; debido sélo a la
resistencia de friccién para un cilindro circular. (Figura tomada de Roy, 1988).

F
Cp = %Pﬁ =Cps+Cpp , (27.57)

donde A es un area caracteristica, para el flujo alrededor de un perfil bidi-
mensional con diferentes relaciones entre el espesor ¢ y la cuerda c. Mediante
analisis dimensional se puede demostrar facilmente que Cp es funcién exclu-
sivamente del nimero de Reynolds para un fluido incompresible (los datos de
la figura estan tomados para Re = 10%). Se observa que el porcentaje de la
resistencia de presién crece desde el cero por ciento para t/c — 0 (placa plana)
hasta el 97 por ciento para t/c = 1 (cilindro circular). Se observa también que
Cp (basado en el area longitudinal, definida por el producto de la cuerda y la
envergadura) es mucho menor para la placa plana que para el cilindro circular.
En la figura 27.10 se representa el coeficiente Cp para un cilindro circular

y una esfera en funcién del nimero de Reynolds. Para Re pequeno, Cp viene
dado por las expresiones (17.47) y (17.79), para esfera y cilindro, respectiva-
mente. A medida que Re aumenta, la importancia de la resistencia de forma
va creciendo, como se aprecia comparando con la curva de trazos, que repre-
senta exclusivamente la resistencia de friccion para el cilindro circular. Para
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Re alto (Re > 103, aproximadamente), Cp permanece practicamente constan-
te e igual a 0,4 para la esfera y entre 1 y 1.2 para el cilindro.® Sin embargo,
para Re ~ 2 x 10%, la resistencia cae bruscamente. Este paradégico efecto es
debido a que se produce la transicién de la capa limite laminar [gobernada por
las ecuaciones (27.7)-(27.8)] a la turbulenta (que se considerard en lecciones
posteriores). Aunque, como se verd, la resistencia de friccion de la capa limite
turbulenta es mucho mayor que la de la capa limite laminar, la cantidad de
movimiento en la capa limite turbulenta es mayor cerca de la pared, con lo que
se retrasa la separacion de la capa limite para un mismo gradiente adverso de
presién (una misma forma del cuerpo; en la figura 21.13 se aprecia muy bien
este efecto). En otras palabras, en una capa limite turbulenta es necesario un
gradiente adverso de presién mas acusado para que se separe la corriente, en
relacién a la capa limite laminar, ya que la cantidad de movimiento que tiene
que vencer es mayor. Como la resistencia es mayormente de forma, el efecto
global de la transicién de capa limite laminar a turbulenta es una disminucién
de la resistencia total.”
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SEsta constancia era previsible dimensionalmente, puesto que Cp = Cp(Re) deja de
depender de la viscosidad para Re > 1.

"Esta es la razén por la cual las pelotas de golf no tienen la superficie lisa: las rugosidades
(hoyuelos) facilitan la transicion a la turbulencia, reduciendo la resistencia a la cuarta parte,
aproximadamente.






Capitulo 28

Capa limite térmica
incompresible

28.1. Introduccion

En esta breve leccion se tratara la capa limite térmica en el limite en que
los efectos de compresibilidad y de disipacién viscosa son muy pequenos. El
objetivo principal es introducir la importante analogia de Reynolds. También
se vera la solucién de semejanza de la capa limite térmica correspondiente a la
capa limite viscosa considerada en la seccién 27.4, que incluye la capa limite
sobre una placa plana como caso particular. Por dltimo, se discutira cualita-
tivamente la generalizacion de la analogia de Reynolds en flujos compresibles.

Como ya se vio en la leccién 19, los efectos de conduccién de calor son
despreciables en la ecuacion de la energia cuando el nimero de Peclet, Pe =
RePr = UL/a, es mucho mayor que la unidad. Sin embargo, cerca de las
superficies sélidas la conduccién de calor debe ser importante en orden a que
se pueda imponer la condicién de contorno de igualdad de temperatura entre
la pared y el fluido inmediatamente adyacente. Por ello existe una capa limite
térmica, de espesor 4T pequeiio comparado con la longitud caracteristica L,
donde la conduccién de calor es tan importante como la conveccion de energia.
Esta condiciéon nos da el orden de magnitud del espesor de la capa limite
térmica:

AT KAT

T

donde AT es una diferencia de temperatura caracteristica entre la pared y la
corriente exterior. Se tiene asi que
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57 K 1
LI - 1 (Pe>1) . 28.2
L~ \plgu ~ pan <! (Pe>1) (28.2)

Comparando este espesor con el de la capa limite viscosa, d,/L ~ Re™1/2 se
obtiene

or 1

5, P
Asi, para la mayoria de los fluidos (los gases, el agua y otros liquidos comunes)
en los que Pr = O(1), ér ~ §,. Para liquidos muy viscosos (aceites, glicerina,
etc.) cuyo nimero de Prandtl es muy alto, la capa limite térmica es mucho més
delgada que la viscosa. Por el contrario, para los metales liquidos (Pr < 1),
el espesor de la capa limite térmica es mucho mayor que el de la viscosa.

La importancia del estudio de la capa limite térmica reside en el hecho
de que es esencial para calcular el intercambio de calor entre un sélido y un
fluido que circula por su superficie (cuando Pe >> 1). Como se veréd, en algunas
ocasiones las ecuaciones de la capa limite térmica son semejantes a las de la
capa limite mecanica o de velocidad tratada en la leccién anterior y las solu-
ciones para la velocidad (friccién) se pueden extrapolar para la temperatura
(conduccién de calor).

(28.3)

28.2. Ecuaciones y condiciones de contorno

Suponiendo que la capa limite es bidimensional y estacionaria, y utilizando
la misma notacién y las mismas aproximaciones que se consideraron en la
leccién anterior, las ecuaciones que gobiernan el flujo de un fluido compresible
en la capa limite son:

d(pw) | 0(pv) _ (28.4)
or oy
ou Ou\ dp O ou
Oh  Oh\ dp 8 ( OT Ou\?
p (“a—x N @) =Y% T 5y (K8_y> R <<9_y) - (288

Estas ecuaciones estan sujetas a las siguientes condiciones de contorno:

y=0, u=v=0, T=T,(z); (28.7)
W60, u=Upz), T=T); (288)



CAPITULO 28. CAPA LIMITE TERMICA INCOMPRESIBLE 503

p=0, u=uly), T=Tiy); (28.9)

donde Ty(z) es la temperatura de la pared y T, y U, son la temperatura y
velocidad en el borde exterior de la capa limite. Estas tultimas magnitudes
estan relacionadas con la presién exterior p(z) (que como se sabe coincide con
la presién en la capa limite al ser despreciable su variacién transversal en el
interior de la misma) mediante las ecuaciones de Euler:

dU, dp

dhe ___ dp B
pUed—.’t = Ued_:r y he = CpTe . (2811)

En el caso de un fluido incompresible con viscosidad constante, la ecuacion
de la energia (28.6) estd desacoplada de las ecuaciones mecénicas y se puede
resolver una vez que se tiene la solucién de la capa limite de velocidad. En las
secciones siguientes se considerara este limite en el caso en que, ademas, los
términos de trabajo de presién y de disipacién viscosa son despreciables.

28.3. Capa limite térmica incompresible. Analogia
de Reynolds

Los términos udp/dx y p(0u/0y)? son despreciables frente a pudh/0z en
la ecuacién (28.6) si

2
e <1, (28.12)

cplTp — T
donde se ha hecho uso de 8,/L ~ Re~1/2. Para los liquidos, dado que la capa-
cidad calorifica suele ser muy alta, la condicién anterior se satisface practica-
mente siempre. Para los gases ideales se puede escribir en la forma

T, — Te
(7 - 1)Te ’
donde M? = U2/yR,T. es el niimero de Mach de la corriente exterior. Si se
verifica ademas que

M2« (28.13)

Ty — Tel/Te = O(1), (28.14)

0 menor, se tiene que M? < 1 y el gas se puede considerar incompresible. Con
estas condiciones, las ecuaciones (28.4)-(28.6) se simplifican a:
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3oy =" (28.15)
ou ou dU, 0%u
’U,a—z Ua UeE l/a—yz, (2816)
2
u£+va—T PR s (28.17)

donde se ha supuesto, ademds, que u, K y ¢, son constantes.

Se observa que la ecuacién de la energia es igual que la ecuacién de cantidad
de movimiento (intercambiando u por T') si Pr =1 y si U, = constante = U
(placa plana). Para que esta analogia sea completa deben ser también iguales
las condiciones de contorno. Esto se puede conseguir utilizando las variables
adimensionales

7 = — Rel/? T=

. - — Y Rel/2
U U ! T,-T, ' ¢ n=phe

_ T

T = T )

(28.18)

suponiendo que T, y T, al igual que U, son constantes, donde Re = UL/v.

En efecto, en términos de esas variables y con las hipdtesis anteriores, las

ecuaciones de cantidad de movimiento y energia y sus respectivas condiciones
de contorno quedan

— - o
AN (28.19)

) 9% + eyl (28.20)
n=0 , u=v=0 , T=0 , (28.21)
n—oo , w=1, T=1, (28.22)
E=0 , ©=1 4 T=1 , (28.23)

donde se ha supuesto, ademas, queenz =0u =U y T = T,. Asi, conocida la
solucién de la capa limite viscosa (que en este caso viene dada por la solucién
de semejanza de Blasius) automadticamente se tiene la solucién de la capa
limite térmica sin mas que igualar 7 = T. Esta es la denominada analogia de
Reynolds, que como se ve es estrictamente valida para un fluido con Pr =1
en una capa limite estacionaria sobre una placa plana con T;, y T, constantes y
que verifican (28.12)-(28.14). En estos supuestos, se puede deducir el flujo de
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calor en funcién del esfuerzo de friccién en la pared. Para ello se suele definir
el denominado niimero de Stanton ,

dp
Sta = ———, 28.24
pUecp(Te — Tp) ( )

que relaciona el flujo de calor conducido desde la pared al fluido,

or

qp = — (—) , 28.25
P ay y=0 ( )

con el convectado por la corriente. Teniendo en cuenta que % = T, se tiene

=K oT _ _ KRe/* (T, - T.) (0T
9y y=0 L \677 /n=0

_ _KRVAT,-T,) (om\ _ K(T,-T.) (0w _KT-T,)
/5 \an) =0 U \dy/ y=0 nU h
(28.26)

donde 75 = p1(Ou/0y)y=o es el esfuerzo de friccién. Definiendo el coeficiente de
friccién local

Tf
Cy = : 28.27
T (2820

y teniendo en cuenta que Pr =1, se llega a la expresion habitual maés simple
de la analogia de Reynolds

Sta = Cy/2. (28.28)

Esta expresion es local, es decir, tanto Sta como Cy dependen de z. Si uno
usa el resultado (27.45),

pUex

Cj ~0664Re;'/?, Re, = = (28.29)
la analogia de Reynolds (28.28) se escribe
Sta ~ 0,332Re; /2. (28.30)

También, de forma aproximada se puede usar para hallar el flujo de calor total
intercambiado por el fluido con una placa plana de longitud L. Definiendo

St —2/LSt PR * S Q:2/L i (28.31)
U=Th T Uy (T —Tp) - L)y * ‘
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donde Q@ es el calor intercambiado (por ambas caras de la placa) por unidad
de longitud, y usando (27.47), se llega a

Stay ~1,328Re™"/2| Re = "({;L . (28.32)

A veces, en lugar del nimero de Stanton, se utiliza el niimero de Nusselt
como parametro adimensional relacionado con el flujo de calor, que para una
placa de longitud L se define como

_Q
K(Te—Tp)
._rL

Para el caso Pr =1 que se esta considerando aqui, la analogia de Reynolds se
escribiria

Nu = = PrReStay, . (28.33)

1
Nu = >ReCy~1,328VRe. (28.34)

Obviamente, esta analogia no seria muy 1til si sélo sirviese para fluidos
con Pr = 1. Por ello, en la siguiente seccién, se generalizard para cualquier
valor de Pr. Para que el resultado sea algo mas general, se usara el ejemplo
considerado en la seccién 27.4, que incluye la capa limite de Blasius sobre una
placa plana como caso particular y tiene soluciéon de semejanza.

28.4. Analogia de Reynolds para cualquier Pr

Considérese el flujo potencial sobre una cuna bidimensional (27.48) (ver
figura 27.4):

T m
Uslz) = Uy (f) = uox™. (28.35)
Si la temperatura T, de la pared y la temperatura exterior T, son constantes’
y se cumple la condicién (28.12) de capa limite térmica incompresible, usando
las definiciones (27.50)-(27.51) junto con

_L-T

0(n) =
(n) Tp _ Te ’

(28.36)

!Los resultados que se dan a continuacién se generalizan sin mucha dificultad al caso en
el que T, y T, son, como U,, funciones potenciales de z, con potencias en general distintas
a m, pues el problema también admite solucién de semejanza. Ver, por ejemplo, Schlichting
y Gersten (2000).
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las ecuaciones (28.15)-(28.17) y sus correspondientes condiciones de contorno
tienen solucién de semejanza gobernada por las siguientes ecuaciones diferen-
ciales ordinarias y condiciones de contorno:

"+ "+ 81~ f%=0, B= = (28.37)
9" + Prfo =0, (28.38)
f(0)=f(0)=0, f(c0)=1, (28.39)

8(0) =0, 6(c0)=1. (28.40)

La ecuacién (28.37) esta desacoplada de (28.38) y su solucién esta representada
en la figura 27.5 para algunos valores de m. Una vez que f(7) es conocida, la
ecuacion (28.38) se puede integrar formalmente:

6’ = 6'(0)exp (—Pr /077 fd17> . (28.41)

6 =¢(0) /0 e (—Pr /0 K fdn> dn. (28.42)

Como aqui sélo nos interesa la analogia de Reynolds entre el flujo de calor
y el esfuerzo de friccién, de la solucién anterior sélo se necesita 6'(0), junto
con f”(0). En efecto, de las expresiones para 7¢ y g, se tiene:

) 1
in(®) (T, e
y= (3
. oT _ (m+1) ,
g = —K (5§>y=0 = K(T - T\t 0). (28.44)

Sustituyendo en las definiciones de Cy y Sta (28.27) y (28.24), se obtiene una
generalizacién de la analogia de Reynolds para el presente caso:

0'(0)
f(0)°

El valor de 6'(0) se obtiene de (28.42) sustituyendo la condicién de contorno
6(o0) = 1:

(28.45)

Sta = %Pr‘1
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0'(0)]" = /0 " a%p (—-Pr /0 ! fdn> an, (28.46)

El cociente §’(0)/ f"(0) es una funcién del nimero de Prandtl y de 3 que se
puede obtener numéricamente. Sin embargo, es posible obtener una relacién
explicita aproximada suponiendo que la contribucién principal de la integral
(28.46) proviene de las proximidades de 7 = 0, con lo que se puede utilizar el
primer término del desarrollo de Taylor de f(7),

fn) = %f”(O)n2 +. (28.47)

Esta aproximacion es razonable debido a que la exponencial en (28.46) decae
muy rapidamente a medida que 7 crece. En todo caso, es tanto mas exacta
cuanto mayor sea el nimero de Prandtl [recuérdese que si Pr > 1, de acuerdo
con (28.3), la capa limite térmica es mucho mas delgada que la capa limite
viscosa, por lo que sélo valores pequenos de 7 son necesarios para hallar 6(7n),
lo cual es evidente en (28.42)]. Sustituyendo (28.47) en (28.46) se llega a

e /
[01(0)]—1 _,!/(; e——PTf"(O)ﬂa/Gd'q = F(]é/B) [PT;SII(O)]I ’ , (2848)

donde T’ es la funcién Gamma. Por tanto,

CyPr=23 (28.49)

" -2/3
Sta ~ Cl 2 f (O)]

3 T73675 [£"(0)]~2/3Pr2/3 ~ [m

donde f”(0) sélo depende de (. En el caso de una placa plana (es decir,
B = 0), se vié que f”(0) ~ 0,47, por lo que se recupera, aproximadamente, la
analogia de Reynolds (28.28), pero incluyendo la dependencia explicita con Pr.
No coincide exactamente porque se ha supuesto que Pr > 1. Sin embargo, se
observa que aproximadamente vale incluso para Pr = 1. Por ello, es costumbre
escribir la analogia de Reynolds como

17
Sta = [m,?—] CfPT'_2/3, (2850)

que es aproximadamente valida para cualquier valor de Pr. Para una placa
plana, si uno usa (28.29), se tiene

Sta ~ 0,332Re; /2 Pr—2/3 (28.51)
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Por 1ltimo, (28.34) se convierte en

Nu ~ 1,328Re!/2Pr!/3 (28.52)

Aunque las expresiones anteriores sélo valen cuando T, y T, son constan-
tes, se suelen usar aproximadamente cuando Ue(z), Tp(z) y Te(z) son funciones
suaves de z. Por otra parte, la analogia de Reynolds se puede generalizar, sin
complicarla demasiado (por supuesto, de forma aproximada), a capas limites
no incompresibles [cuando no se verifican las hip6tesis (28.12)-(28.14)]. Sin en-
trar en detalles (el alumno interesado puede consultar, por ejemplo, Schlichting
y Gersten, 2000, capitulo XIII), las expresiones anteriores para la analogia de
Reynolds son aproximadamente vélidas si se redefine el mimero de Stanton
como

— 9
Sta = pUeCP(T;o - TP) (28.53)

donde T, es una especie de temperatura de remanso,

U?
— €
Tpo =T + Uyl (28.54)
siendo 7 el denominado factor de recuperacién, que es igual a Pr'/? para una

capa limite laminar e igual a Pr!/3 para una capa limite turbulenta (de las que

se hablard mas adelante). De esta forma, existe transferencia de calor desde
la pared al fluido (por ejemplo) si T, es mayor, no que T, sino que Tp,, que
por ello se denomina la temperatura adiabdtica de la pared.

Para terminar es conveniente senalar que el uso de analogias es muy fre-
cuente en los cdlculos ingenieriles, no sélo entre la transferencia de calor y la
friccién, sino también con respecto a la transferencia de masa. Una recopila-
cién de muchas de ellas se pueden encontrar, por ejemplo, en Bird, Stewart y
Lightfoot (1960).

Referencias.
= H. SCHLICHTING y K. GERSTEN, 2000. Capitulos XII y XIII.
= C.S. YIH, 1988. Capitulo 8.






Parte IX

FLUJOS TURBULENTOS






Capitulo 29

Introduccion a la turbulencia

29.1. Propiedades de los flujos turbulentos

La mayoria de los flujos que se presentan en la Naturaleza y en las apli-
caciones ingenieriles y tecnoldgicas son turbulentos. Desde las corrientes de
agua en rios y canales hasta casi todos los flujos que se producen en la indus-
tria quimica, donde la eficacia de la mezcla fluida es un requisito importante,
pasando por innumerables tipos de flujos. El flujo laminar es la excepcion,
no la regla; sélo se produce para altas viscosidades, dimensiones pequenas o
pequenas velocidades (Re < 1).

Es dificil dar una definicién precisa de la turbulencia. Sin embargo, cual-
quiera que haya observado el humo que emana de un cigarrillo o la estela que
se forma detras de un objeto interpuesto en la corriente de un rio tiene una
idea més o menos clara de lo que es un flujo turbulento. Por ello, la mejor
forma de introducir los flujos turbulentos, antes de pasar a una descripcion
m4és precisa, es enumerar las propiedades fundamentales que los caracteriza.

Irregularidad y aletoriedad. Los flujos turbulentos son irregulares,
cadticos, si se utiliza el término mas de moda. De aqui la imposibilidad (o, en
cualquier caso, la ineficacia) de un tratamiento determinista para su descrip-
cién; en su lugar se recurre a métodos estadisticos (ver capitulo 31).

Difusividad. Los flujos turbulentos son muy efectivos en difundir cantidad
de movimiento, masa y energia. Un flujo con aspecto irregular, pero en el
que esa irregularidad no venga acompanada de una difusién efectiva, no es
turbulento. Este aspecto de la difusidn es el que hace a los flujos turbulentos
maés atractivos en muchas aplicaciones tecnoldgicas. Es el responsable, entre
otros ejemplos, de la mezcla efectiva y rapida de las diferentes especies quimicas
requerida para que las reacciones quimicas se produzcan maés rapidamente;
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retrasa o previene la separacion de la capa limite, disminuyendo la resistencia
aerodinamica; aumenta la resistencia de los flujos en conductos en relacion
al flujo laminar; incrementa la velocidad de transmisién de calor entre una
pared sdlida y un fluido en cualquier maquina que utilice un fluido; etc. Para
tener una idea aproximada del incremento de la difusividad turbulenta en
relacién a la difusividad molecular (la cual es la tnica que aparece en los
flujos laminares), es interesante estimar, por ejemplo, el orden de magnitud
del tiempo necesario para que un incremento de temperatura AT se propague
a todo el fluido contenido en un volumen de longitud caracteristica L (por
ejemplo, para que el aire de una habitacién cubica de lado L se caliente desde
la temperatura inicial T a la temperatura T + AT de una de sus paredes).
Si la difusién es puramente molecular, de la ecuacién de la energia se tiene
que pc,0T /0t ~ KV?T, es decir, t; ~ L?Pr/v. En cambio, si el flujo es
turbulento (por ejemplo, si la pared con mayor temperatura es la inferior y se
produce una conveccién natural debido a las fuerzas de flotabilidad), se tiene
que |p0- V| ~ |gAp|, donde Ap es la disminucién de la densidad del aire cerca
de la pared con temperatura T + AT, en relacién a la densidad del aire del
resto de la habitacién, p. Suponiendo que AT < T, que la presién permanece
practicamente constante y que el gas es ideal, de la ecuacién de estado se tiene
que |Ap| ~ pAT/T, de donde la velocidad de conveccién natural es del orden
de V ~ (LgAT/T)'/2. Asi, para aire a T = 293°K (v ~ 10~5m?2/s, Pr ~ 0,7)
en una habitacion de longitud caracteristica L = 5m y AT = 10°C, se tiene
que t; ~ L/V ~ 4s, muchisimo menor que el tiempo caracteristico de difusién
laminar, t; ~ 20 dias.

Numero de Reynolds grande. Los flujos turbulentos ocurren siempre a
altos nimeros de Reynolds, ya que, normalmente, la turbulencia ocurre como
consecuencia de inestabilidades de los flujos laminares cuando el nimero de
Reynolds supera un cierto valor critico, que suele ser grande (ver leccién si-
guiente). Por encima de este nimero de Reynolds existe una interaccién entre
los términos viscoso e inercial no lineal de la ecuacién de cantidad de mo-
vimiento, dando lugar a inestabilidades que desembocan en un movimiento
cadtico, imposible de predecir deterministicamente. La dificultad matemati-
ca de predecir los flujos turbulentos estd asi asociada a la no linealidad de
las ecuaciones, y muchos de los iltimos avances que se han hecho en el pro-
blema de la turbulencia provienen del estudio de los sistemas dindmicos no
lineales que, incluso con un reducido nimero de grados de libertad, producen
movimientos caoticos.

Tridimensionalidad y rotacionalidad. La turbulencia se caracteriza
por las fluctuaciones, no sélo de la velocidad, sino también de la vorticidad.
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Es decir, los flujos turbulentos no son nunca irrotacionales, sino que se ca-
racterizan por niveles muy altos de las fluctuaciones de la vorticidad. Estas
fluctuaciones no se podrian mantener en un flujo bidimensional ya que, como
se vio en la leccién 20, el principal mecanismo que genera vorticidad es el es-
tiramiento de los vértices (vortex stretching) proporcional al término & - Vv
en la ecuacién 20.2, que es nulo para flujos bidimensionales. Por esta razon,
la dindmica de la vorticidad es muy importante en la descripcion de los flujos
turbulentos (ver leccién 31). A veces se visualiza a la turbulencia como una
coleccion de tubos de vorticidad que por la accién de las fluctuaciones de la
velocidad se van estirando, aumentando asi su vorticidad, que de esta forma va
realimentando este mecanismo, generando cada vez fluctuaciones mas fuertes
de la velocidad, que dan lugar a mas vorticidad..., hasta que la escala es tal
que la viscosidad actia disipando la vorticidad (ver seccion siguiente). Todo
esto no podria ocurrir en flujos con fluctuaciones bidimensionales.

Disipacién. Los flujos turbulentos son siempre disipativos, propiedad re-
lacionada con la difusividad. El trabajo de deformacién de los esfuerzos de
viscosidad incrementa la energia interna a costa de la energia cinética de las
fluctuaciones turbulentas. Por ello, las corrientes turbulentas necesitan un su-
ministro continuo de energia para vencer la disipacion viscosa. Sin este sumi-
nistro las fluctuaciones turbulentas decaerian por viscosidad y el movimiento
dejaria paulatinamente de ser turbulento. Por la misma razén, un movimiento
(irregular) en donde no se produzcan esfuerzos viscosos que disipen las fluc-
tuaciones no seria turbulento. Esta es, por ejemplo, la distincion fundamental
entre algunos tipos de ondas con movimiento muy irregular, donde no hay
disipacion, y los movimientos turbulentos, que son esencialmente disipativos.
El mecanismo por el cual la energia se transfiere desde las fluctuaciones de
mayor tamaiio, donde no existe disipacién (Re > 1), hasta fluctuaciones con
escalas mucho menores donde se produce la disipacion, esencial en los flujos
turbulentos, se describe cualitativamente en la seccién siguiente.

Medio continuo. Se vera también en la siguiente seccién que las escalas
mas pequenas de las fluctuaciones turbulentas son generalmente mucho mayo-
res que las escalas de los movimientos moleculares, por lo que las fluctuaciones
de las propiedades del fluido son las de un medio continuo, gobernadas por
las ecuaciones de Navier-Stokes. Esto no quiere decir que se puedan encon-
trar soluciones de estas ecuaciones ya que, como se dijo antes, las soluciones
son cadticas (irregulares y aleatorias), haciéndose necesaria una descripcién
estadistica del movimiento, pero tomando como base de partida las ecuacio-
nes de Navier-Stokes (ver leccién 31). Por otra parte, al ser la turbulencia una
consecuencia casi exclusiva de la estructura de las ecuaciones del movimiento
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(no linealidad) y no del fluido en si (de la estructura molecular), la mayoria de
las propiedades dinamicas de los movimientos turbulentos son las mismas pa-
ra todos los fluidos, independientemente de que sean gases o liquidos, siempre
que el nimero de Reynolds sea suficientemente grande. Esto hace que, desde
un punto de vista estadistico, el estudio de la turbulencia se pueda hacer en
general.

29.2. Escalas de la turbulencia. Cascada de energia.
Microescala de Kolmogorov

Se ha dicho que los flujos turbulentos se caracterizan por la disipacion
viscosa y porque el nimero de Reynolds es grande. Estas dos caracteristicas
podrian parecer contradictorias, pero no lo son debido a que en la turbulencia
existen muchas escalas espaciales y temporales.

Las inestabilidades hidrodinamicas, que constituyen el origen de los flujos
turbulentos (ver leccién siguiente), dan primeramente lugar a fluctuaciones
con un tamano que, en la mayoria de los casos, es del mismo orden que la
longitud caracteristica del flujo laminar original, L. Bajo ciertas condiciones,
estas grandes fluctuaciones son a su vez inestables, dando lugar a fluctuaciones
y torbellinos cada vez de menor tamaio. El mecanismo fundamental de esta
transferencia de energia desde los torbellinos de escala mayor a torbellinos
mas pequenios (lo que se suele denominar como cascada de energia) es el esti-
ramiento de los vortices, ya que el nimero de Reynolds asociado a estas escalas
grandes es elevado (requisito indispensable para que pueda existir turbulen-
cia) y el flujo se puede considerar ideal, no existiendo disipacion viscosa en esa
escala. Con el estiramiento aumenta la vorticidad haciéndose mas inestable el
movimiento, dando lugar a torbellinos mas pequenos, y asi sucesivamente. Este
proceso continia hasta que la escala es tan pequefia que la disipacién viscosa
actia, difundiendo y disipando la vorticidad. De acuerdo con este proceso, la
turbulencia no se puede mantener a si misma, dependiendo de su entorno para
obtener energia. Como se verd en la leccion siguiente, las fuentes externas de
energia pueden ser debidas a fuerzas de flotabilidad, fuerzas centrifugas, etc.
Paradédjicamente, la fuente mas comun es la difusién transversal de cantidad
de movimiento debido a la viscosidad, que aparece en los flujos denominados
de cortadura, de los cuales los ejemplos mas significativos son los flujos en
conductos y en capas limites. Si la turbulencia llega a una regiéon donde no
exista ningin mecanismo que la mantenga, decae por la disipacion viscosa y
el flujo vuelve a ser laminar. Un ejemplo tipico es la turbulencia formada en el
flujo normal a una rejilla (una red metdlica, por ejemplo): detras de la rejilla
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el flujo se hace turbulento debido las inestabilidades originadas por la difusién
de cantidad de movimiento como consecuencia de los gradientes transversales
(cortadura) que la rejilla produce en la corriente principal. Pero si no existe
ninguna fuente de cortadura aguas abajo, la turbulencia se disipa y el flujo
vuelve a ser laminar.

Obviamente, la escala de los torbellinos mas pequenos donde se disipa la
energia es tal que el nimero de Reynolds asociado a ellos es de orden unidad.
Esto da un criterio para estimar el orden de magnitud de la escala espacial y
temporal mas pequena de la turbulencia, denominada microescala de Kol-
mogorov. La generacién de esta escala pequenia de las fluctuaciones es debida
a los términos no lineales de la ecuacién del movimiento (inestabilidades y es-
tiramiento de vértices), pero los términos viscosos impiden que las escalas sean
infinitamente pequeias, ya que disipan su energia en calor. Por tanto, la escala
mas pequena se autoajusta automaticamente al valor de la viscosidad v, que
es pequefio (mas precisamente, Re~! es pequeno). Como las fluctuaciones con
escala de longitud pequena tienen también una escala temporal pequena, se
puede suponer que estas fluctuaciones son estadisticamente independientes de
las fluctuaciones mucho mas lentas de la escala grande y del flujo medio. Es
decir, la escala mas pequena a la que se disipa la energia turbulenta tiene que
ser universal, en el sentido de que no depende de las particularidades de los
grandes torbellinos ni del movimiento medio de cada flujo turbulento, depen-
diendo asi, exclusivamente, de la viscosidad cinemadtica v y de la velocidad de
transferencia de energia e desde las grandes escalas a la escala pequena, que
es también la velocidad a la que se disipa la energia en la escala pequenia,
transforméandose en calor. Esta es la llamada teoria de equilibrio universal
de Kolmogorov, cuyos resultados concuerdan muy bien con las observaciones
experimentales. Como e tiene dimensiones de [L)%[t|™3 y [v] = [L)?[t]™!, los
ordenes de magnitud de las escalas espaciales, temporales y de velocidad a los
que se disipa la energia turbulenta viene dada por

1/4
l:<u_3> ’ 72(3)1/2’ v= (o), (29.1)

€ €

que constituyen la microescala de Kolmogorov, también llamada escala in-
terna de la turbulencia. Obviamente, el nimero de Reynolds asociado a esta
microescala es de orden unidad: lv/v = 1.

Para tener una idea mas precisa de la microescala de Kolmogorov habria
que relacionar la velocidad de disipacién de energia € con la longitud y la velo-
cidad caracteristicas de las escalas grandes de la turbulencia (que en muchas
ocasiones coinciden con las del flujo medio). Si V es la velocidad caracteristica
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de las fluctuaciones mayores, la energia cinética por unidad de masa asociada
a ellas serd de orden de V2. Suponiendo que esta energia se transfiere a las
escalas menores en un tiempo caracteristico del orden de L/V, donde L es el
tamaifo caracteristico de estas fluctuaciones, se tiene que la energia se trans-
fiere a una velocidad V3/L, que es también la velocidad de energia disipada
en la microescala,

e~V3/L. (29.2)

Esta estimacion implica que una fluctuacién o torbellino pierde una fracciéon
importante de su energia cinética, proporcional a V2, en el tiempo que da
una vuelta. Esto no quiere decir que en ese tiempo se disipe esa energia, sino
que se transfiere a una escala mas pequena, hasta que al final del proceso se
disipa en la microescala. Sustituyendo (29.2) en (29.1) se tienen las siguientes
relaciones:

-3/4
~1/2
C
-1/4
%N(.V_VI:) = Re1/1, (29.5)

donde Re = (VL/v) > 1 esel nimero de Reynolds de la escala grande. Estas
relaciones nos indican que las escalas de longitud, tiempo y velocidad de los
torbellinos mas pequenos son mucho menores que las de los grandes torbellinos.
A medida que el mimero de Reynolds aumenta, la separacion entre las escalas
también aumenta, por lo que la independencia estadistica de la microescala
de Kolmogorov sera mas evidente a grandes nimeros de Reynolds.

Para terminar esta seccién se comprobara que la microescala de Kolmogo-
rov es, en general, mucho mayor que la escala del movimiento molecular, por lo
que la turbulencia es realmente un fenémeno del fluido como medio continuo
(y en equilibrio termodindmico local). Para ello se toma el caso mds desfavo-
rable de un gas, donde el recorrido libre medio entre colisiones moleculares es
del orden de A ~ v/a (ver ecuaciones 8.4, 9.20 y 9.61), donde a es la velocidad
del sonido. Comparando con (29.3) se tiene

% v/a M (29.6)

~ LRe-3/4 ~ Rel/a’
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donde M = V/a es el nimero de Mach. Como Re > 1y M es alo sumo de or-
den unidad en la mayoria de las ocasiones, se tiene que A < [.! Andlogamente,
el tiempo caracteristico entre colisiones es del orden 7. ~ A/a, de donde

Te M?
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Capitulo 30

Inestabilidades y transicién a
la turbulencia

30.1. Introduccion

Los flujos laminares pasan a ser turbulentos como consecuencia de inesta-
bilidades que se producen, tipicamente, cuando el nimero de Reynolds supera
un cierto valor critico. El ejemplo mas representativo es el flujo en conductos,
que pasa de laminar a turbulento para numeros de Reynolds, Re = VD/v (V
esla velocidad media y D el didmetro), por encima de un valor critico. En par-
ticular, experimentalmente se comprueba que por debajo de Re ~ 2300, el flujo
es siempre laminar. Si Re > 2300 el flujo puede ser laminar si se pone un cui-
dado exquisito en evitar perturbaciones en el flujo. Pero, si éstas se producen,
por encima de un valor Re. > 2300 (que depende béasicamente de la amplitud
inicial de las perturbaciones; ver figura 30.1) crecen aguas abajo, destruyendo
el flujo laminar y dando lugar a un flujo turbulento. Otro ejemplo caracteristi-
co es la capa limite laminar sobre una placa plana con angulo de ataque nulo
(gradiente de presién igual a cero), que pasa a ser turbulenta cuando el niimero
de Reynolds basado en el espesor de desplazamiento, Re = U{; /v, es mayor
que aproximadamente 3000, en este caso independientemente de la amplitud
inicial de las perturbaciones. Como &; ~ 1,72(vz/U)Y? (ver seccién 27.3), a
una distancia del borde de ataque igual a 3 x 108/ /U, aproximadamente, se
produce siempre la transicién de capa limite laminar a turbulenta. Esta capa
limite turbulenta tiene un espesor considerablemente mayor y da lugar a una
friccién también mayor (ver leccién 32). La transicién de capa limite laminar
a turbulenta no es brusca, sino que existe una regién de transicién donde el
flujo es muy complejo, con zonas intermitentemente laminares y turbulentas
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Inestable

Estgble

2300 Re

Figura 30.1: Esquema del nimero de Reynolds critico en funcién de la amplitud de las
perturbaciones en el flujo en un conducto circular.

(ver seccién 30.5 més abajo).

En este capitulo se pretende dar una breve introduccién a la teoria de
las inestabilidades hidrodinamicas. Primeramente se formulard el problema
matematico para flujos incompresibles y se definiran los conceptos basicos
de la teoria. A continuacién se consideraran algunos ejemplos significativos,
prestando especial atencion al origen fisico de las inestabilidades. Por ultimo,
se tratara la estabilidad de los flujos casi unidireccionales en general, y de la
capalimite sobre una placa plana en particular, y se describird muy brevemente
el problema de la transicion a la turbulencia en este tipo de flujos.

30.2. Conceptos basicos de la teoria lineal de la es-
tabilidad hidrodinamica

Por simplicidad se considerara un flujo incompresible con propiedades cons-

tantes. Las ecuaciones de continuidad y cantidad de movimiento que gobiernan
la evolucién de la velocidad 7' y la presion p son:

V.-7=0, (30.1)

<y

1 -
+17-V17=—;Vp+fm+uV217. (30.2)

RIS
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Supdngase que uno esta interesado en saber si un determinado flujo estacio-
nario (V, P), denominado flujo base, que estd gobernado por las ecuaciones

V.-V=0, (30.3)

V.V = —%VP + fon+ 02V, (30.4)

y sus correspondientes condiciones de contorno, es o no estable. Para ello, lo
que se suele hacer es perturbar este flujo base y estudiar la evolucién temporal
y/o espacial de las perturbaciones. Es decir, el flujo perturbado se descompone
en la forma

T(&,t) = V(Z) + 7(&,1), (30.5)

p(&,t) = P(¥) +p/(Z,1), (30.6)

donde las magnitudes con primas son las perturbaciones. En la denominada
teoria lineal de estabilidad, que es la que se va a considerar aqui, se supone
que las perturbaciones son pequenas:

17| < V|, p<P. (30.7)

Con esta premisa, la sustitucién de (30.5)-(30.6) en (30.1)-(30.2), teniendo en
cuenta (30.3)-(30.4) y despreciando los términos cuadraticos en las pequefias
perturbaciones, proporciona las siguientes ecuaciones linealizadas para las per-
turbaciones:

V-9 =0, (30.8)

86’ 7 — — 7 1 / 29
E+V~Vv+v-VV=-;Vp+qu. (30.9)

Obviamente, estas ecuaciones son mas simples que las ecuaciones no lineales
originales (30.1)-(30.2). En particular, dada la linealidad de las ecuaciones y
la independencia temporal del flujo base, las soluciones se pueden escribir en
la forma!

§(z,t) = < f; ) = §(&)e ™1, (30.10)

1Como las perturbaciones puede ser arbitrarias, en principio uno no tiene en cuenta
ningun tipo especial de condicién inicial para las mismas.
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donde w es, en general, una constante compleja:

W= wp + w; . (30.11)

El problema (30.8)-(30.10), junto con sus correspondientes condiciones de con-
torno, suele constituir un problema de autovalores, donde la constante w no
puede tomar un valor cualquiera, sino sélo aquellos compatibles con las condi-
ciones de contorno. Si todos los valores admisibles de w tienen la parte imagina-
ria negativa (w; < 0), el flujo base es estable, pues toda posible perturbacién
decae en el tiempo. Sin embargo, basta que tan solo uno de los autovalores
tenga la parte imaginaria positiva para que el flujo base sea inestable, pues
ese modo, que en principio puede estar presente en el flujo como cualquier otra
perturbacién infinitesimal, crecerd indefinidamente en el tiempo, destruyendo
la estructura del flujo base.

30.2.1. Modos normales. Flujos unidireccionales

Para concretar algo mas, se considerara el caso simple en el que flujo base
es unidireccional. Por ejemplo, supdngase que, en coordenadas cartesianas, el
flujo base viene dado por

V=U(ye:, (30.12)

con las restantes componentes de la velocidad nulas y el gradiente de presion
reducida constante (ver seccién 14.1). En este caso, los coeficientes de las
ecuaciones lineales de estabilidad (30.8)-(30.9) sélo dependen de la coordenada
¥, por lo que la solucién se puede escribir como una superposicién de modos
normales:

-# — -
§(Z,t) = ( ;, ) = S(y)eilozthz-wt) (30.13)

donde a y 3 son los mimeros de onda en las direcciones x y z, respectivamente,
y w es la frecuencia. En general, @ y w son nimeros complejos, mientras que el
numero de onda en la direcciéon perpendicular al movimiento, 3, suele ser real.
La sustitucion de esta solucién normal en las ecuaciones lineales de estabilidad
adimensionalizadas con sus respectivas condiciones de contorno da lugar a un
problema de autovalores, que se puede escribir en la forma

pN|

.§=o, (30.14)
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donde el operador lineal A contiene derivadas primeras y segundas respecto
a y (ver ejemplos en las secciones siguientes). Este problema homogéneo sélo
tiene solucién para una cierta combinacién de los parametros dada por una
relacion del tipo

D(a, B, w; Re,...) =0, (30.15)

denominada relaciéon de dispersion. Todos sus argumentos son adimensio-
nales, aunque se haya utilizado los mismos simbolos para los mimeros de onda
a 'y By para la frecuencia w. Ademas del nimero de Reynolds Re, en (30.15)
apareceran también todos los demas parametros adimensionales que definen el
flujo base cuya estabilidad se esté analizando (Re suele ser el parametro mas
relevante). Cualquier perturbacién del flujo base puede ser considerada como
una cierta superposicién de los (en general) infinitos modos normales que son
solucién de (30.14)-(30.15).

30.2.2. Estabilidad temporal y espacial

La relaciéon de dispersién (que en la inmensa mayoria de los casos hay que
determinarla numéricamente) es la ecuacién bésica que contiene toda la infor-
macién sobre la estabilidad lineal del flujo. Es decir, nos dice si ondas del tipo
(30.13), caracterizadas por los autovalores «, 3 y w, son estables o inestables
en el flujo considerado para los distintos valores de los parametros. Tradicio-
nalmente, se han considerado dos tipos de analisis estabilidad, constituyendo
cada uno de ellos un conjunto de soluciones particulares de la relacién de dis-
persion: la estabilidad temporal y la estabilidad espacial. En la estabilidad
temporal se supone que el nimero de onda a es real (como se comenté, (3
suele ser siempre real), y se buscan los autovalores complejos w = w, + iw;
que satisfacen (30.15). Es decir, se pretende saber si perturbaciones del tipo
eilaz+Bz—wrt) que son ondas cuya velocidad de fase en la direccién z viene
dada por ¢ = w;/a, crecen o decrecen en el tiempo, comportamiento que viene
fijado por el signo de la parte imaginaria de w. Estos son los denominados mo-
dos temporales. Para cada valor de Re (y de los demés pardmetros), el flujo
es temporalmente estable si w; < 0 para todos los valores de a y # (cualquier
perturbacién decae exponencialmente en el tiempo). Por el contrario, el flujo
sera inestable si w; > 0 para algin valor de a y 3, pues perturbaciones con esos
valores de los nimeros de onda, que en principio pueden estar presentes en el
flujo, crecen exponencialmente en el tiempo. A w; se le suele denominar, por
tanto, factor de amplificacién de la onda. La transicion de estable a inestable
tipicamente viene dada por un valor critico del mimero de Reynolds (o de otro
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@, o Re‘

Inestable

Re

Figura 30.2: Esquema tipico de la parte real e imaginaria de w en funcién de « para un cierto
valor de B y tres valores del nimero de Reynolds. Para Re; el flujo es estable, mientras que
es inestable para Re;. El valor Re. para el cual wi se anula en un solo punto a. es el
nimero de Reynods critico de estabilidad para el valor de (8 considerado (normalmente,
Rez < Rec < Rey).

parametro adimensional que caracterize al flujo base), para el que w; se anula
para un cierto valor de a y 8 (ver figura 30.2).

En la estabilidad espacial se supone que w es real y se buscan solucio-
nes (autovalores) de la relacién de dispersién con a = a, + ia; complejo. Este
tipo de analisis de estabilidad se suele utilizar principalmente en flujos casi-
unidireccionales (o estrictamente unidireccionales como el ejemplo presente),
pues experimentalmente es mas facil excitar con una determinada frecuencia w
un determinado punto del flujo y comprobar si perturbaciones con esa frecuen-
cia crecen o no aguas abajo del flujo. Es decir, una perturbaciéon ondulatoria
del tipo ei(arztBz—wt) (denominado modo espacial al ser w real) serd espacial-
mente estable para un determinado valor de Re si la parte imaginaria de o
es positiva, pues la amplitud de la perturbacién decaera a medida que ésta se
mueve con el flujo en la direccién = (con velocidad de fase ¢ = w/a;). El flujo
sera espacialmente estable para ese valor de Re si a; > 0 para todo w y (3. Por
el contrario, el flujo serd espacialmente inestable si a; < 0 para al menos un
valor de w y de 3. En la estabilidad espacial, «; es el factor de amplificacion.

Obviamente, si un flujo es inestable temporalmente, debe serlo también
espacialmente, por lo que las transiciones de estable a inestable desde un pun-
to de vista temporal deben coincidir, en principio, con las transiciones desde
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un punto de vista espacial, y viceversa.? Para verlo, considérese el caso gene-
ral de modos espacio-temporales, en los que tanto a como w son complejos.
Supéngase que para un determinado valor de 8 y de los parametros adimen-
sionales del flujo, la relacién de dispersién (30.15) se puede escribir como una
funcién analitica entre esas dos variables complejas:

w = w(a; B, Re,...). (30.16)
De las relaciones de Cauchy-Riemann se tiene

Ow,. 3&),’ (')w,. Owi
En el caso temporal, que se designara con (T'), se tiene que ai(T) = O,
a=0a(T)y w = w(T) + iwi(T); es decir, en el plano complejo de a nos
moveriamos a lo largo del eje real. Por otro lado, en el caso espacial, que se
designard mediante (E), wi(E) =0, a = ar(T) + iai(E) y w = wr(E), lo cual
quiere decir que nos moveriamos en el eje real del plano w. Si se integran las
relaciones (30.17) con respecto a a; desde un estado (T') [en donde a;(T") = 0]
hasta un estado (F) [en el que w;i(E) = 0] manteniendo a,= constante =

ar(T), se llega a

a;(E) awr
w(T) =~ /O o do. (30.18)
ai(E) Ow;
we(E) — wp(T) = — /0 o dos. (30.19)

Como a; es constante entre (T') y (E), se tiene que a,(T') = a,(F). Supéngase
que los parametros adimensionales del flujo y 3 son tales que estamos en las
proximidades de la transicién de estable a inestable desde un punto de vista
temporal; es decir, que |w;(T)| << 1. Justo en el punto de la transicién, la
curva w; = w;(a;) tiene un maximo (ver figura 30.2), por lo que dw;/0a, = 0.
En las proximidades de este punto, esta derivada es un infinitésimo de segundo
orden en relacién a |w;(T')|. Por tanto, de (30.19) se tiene que w,(E) ~ w,(T),
con errores que tienden a cero cuadraticamente con w;(T) — 0. Expandiendo
ahora Ow,/Oc, en (30.18) en el entorno de un punto o entre 0 y a;(E), se
tiene

82w,
Oa, 0o

Dese
Oa,

2Se vera méds adelante que esto no siempre es asi.

wi(T) = —ai(E) (af) + .... (30.20)

(3

(07) - [502(B) - au(B)ag
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Haciendo uso de las relaciones de Cauchy-Riemann, 0w, /0a; = —0w;/0a, =
O(w?), por lo que el segundo término en el lado derecho de (30.20) es de
segundo orden en |w;|, y se puede despreciar en el limite w;(T) — 0. Se llega
pues a que, en primera aproximacion,

wi(T) = Owr _ B ‘ R
oi(B) ~ Oay = cg para wi(T)—0, (30.21)
junto con
a,(T) =oar(E), wr(F)=w(T) para wi(T)—0. (30.22)

Estas relaciones fueron obtenidas por Gaster (1962), siendo ¢4 la velocidad
de grupo de las ondas (ver, por ejemplo, seccién 24.1.3). Por tanto, para un
paquete de ondas que se propagan con el flujo base hacia « crecientes (¢ > 0),
si el flujo se hace inestable desde un punto de vista temporal, es decir, si w;(T")
pasa de negativo a positivo [siendo, por tanto, |w;(T')| < 1], también se hace
inestable desde un punto de vista espacial, pues a;(E) pasa de positivo a
negativo [obsérvese que |a;i(E)| es, por tanto, también pequefio, por lo que
los términos despreciados en la deduccién anterior son aiin mdas pequenos de
lo que se ha supuesto]. Es interesante observar que los pequefos factores de
amplificacion espaciales y temporales estan relacionados entre si no con la
velocidad de fase ¢ = wr./a;, sino con la velocidad de grupo ¢, de las ondas.
Lo cual no es de extranar si se tiene en cuenta que para un conjunto de ondas
con diferentes frecuencias w, la velocidad a la que se mueve un paquete de
ondas que mantienen la frecuencia constante no es la velocidad de fase, sino la
velocidad de grupo (ver seccién 24.1.3). Es por ello que si uno quiere relacionar
la amplificacion espacial de ondas con una determinada frecuencia w con la
amplificacién temporal para un cierto valor del mimero de onda a, la velocidad
relevante que se debe tomar no es c sino ¢4 [de acuerdo con (30.22), o, y wy
coinciden en ambos casos en el limite de pequenas amplificaciones].

30.2.3. Estabilidad convectiva y absoluta

El hecho de que una transicion de estabilidad temporal coincida con una
transicién de estabilidad espacial sélo si ¢g > 0 (los paquetes de onda se mue-
ven en la misma direccién que el flujo base) tiene que ver con la naturaleza
convectiva o absoluta de la inestabilidad. Para ilustrar estos nuevos conceptos,
supéngase que en un determinado instante (¢ = 0, por ejemplo) uno introduce
una perturbacién infinitesimal (tanto en amplitud como en extensién espacial
y temporal) en el origen de coordenadas en un flujo con U > 0. Si el flujo es
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(a) (b)

Figura 30.3: Inestabilidad convectiva (a) y absoluta (b).

inestable desde el punto de vista temporal, la amplitud de esa perturbacion
crecera a medida que transcurre el tiempo. La perturbacién puntual inicial
también se ira extendiendo espacialmente. El flujo se dice que es convecti-
vamente inestable si los limites espaciales de la perturbacién se mantienen
siempre en £ > 0 y se desplazan hacia las z crecientes [en la misma direccién
del flujo base; ver figura 30.3(a)]; es decir, la perturbacién, aunque crece expo-
nencialmente en amplitud, es convectada por el flujo. Transcurrido un cierto
tiempo, la perturbacién original sale fuera del dominio del flujo, que vuelve a
su estado original no perturbado. Por tanto, aunque el flujo es inestable para
el tipo de perturbaciones considerado, realmente se comporta como un ampli-
ficador de ruido, volviendo a su estado original poco después de que cesa la
fuente de perturbaciones.

Por el contrario, el flujo se dice que es absolutamente inestable si la
perturbacion inicial, ademas de crecer su amplitud con el tiempo, se extiende
tanto para valores de x positivos como negativos. En este caso, la perturbacion
se propaga también corriente arriba, modificando de una forma permanente
el flujo base original, que tras la inestabilidad pasa a tener una estructura
diferente, aunque la fuente de la perturbacién haya cesado. En otras palabras,
la perturbacidn inicial no sélo crece en amplitud, sino que se extiende a todo
el flujo. La diferencia basica entre ambos tipos de inestabilidades es que, en el
primer caso, la velocidad de grupo de las perturbaciones inestables es siempre
positiva (tiene el mismo sentido que el flujo base), mientras que la velocidad de
grupo de las perturbaciones que son inestables absolutamente son nulas o nega-
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tivas para algunos modos (para algunos valores de la frecuencia). Esta claro,
por tanto, que la equivalencia entre crecimiento espacial hacia z > 0 (ines-
tabilidad espacial) para una determinada frecuencia de las perturbaciones y
crecimiento (inestabilidad) temporal sélo tiene sentido cuando ¢4 > 0, es decir,
para perturbaciones cuyos paquetes de onda se mueven en la misma direccién
del flujo. En cuanto ¢4 se hace nula o negativa, esta equivalencia se rompe y
ya no tiene sentido analizar la inestabilidad espacial del flujo (aunque si la
temporal).

Normalmente, un flujo que se hace inestable al ir aumentando algin para-
metro adimensional que lo caracteriza (el mimero de Reynolds Re, por ejem-
plo), primero pasa de estable a convectivamente inestable para un cierto va-
lor critico Re. (para algin valor del nimero de onda y de la frecuencia de
las perturbaciones). Al seguir aumentando Re, puede que ocurra una segun-
da transicion desde convectivamente inestable a absolutamente inestable para
otro valor critico Re; > Re. (generalmente para otros valores del nimero de
onda y de la frecuencia). Esta segunda transicion, en el caso de que ocurra,
hay que buscarla haciendo un andlisis de estabilidad espacio-temporal. El valor
Re; se alcanza cuando alguna perturbacién que sea convectivamente inestable
(cg > 0) llega a un estado en el cual la velocidad de grupo se anula.

30.3. Algunos ejemplos de inestabilidades fisicamen-
te relevantes

En esta seccion se consideraran brevemente algunas inestabilidades hidro-
dindmicas clasicas con el objetivo principal de presentar algunos de los me-
canismos fisicos mas representativos responsables de que un flujo se haga
inestable. Por ello, aunque se vera también la formulacién matemadtica cuan-
titativa, se prestara atencion a los aspectos fisicos desde un punto de vista
cualitativo. Algunas de estas inestabilidades pueden no dan lugar a un flujo
turbulento. En la seccion siguiente se vera un ejemplo sencillo de inestabilidad
que siempre da lugar a un flujo turbulento, y que es muy relevante desde un
punto de vista ingenieril: las inestabilidades que se producen en los flujos casi
unidireccionales en general, y en la capa limite de Blasius en particular.

30.3.1. Inestabilidad térmica

De forma general se puede decir que las inestabilidades hidrodindmicas
ocurren cuando se produce un desequilibrio entre las fuerzas que actian sobre
el fluido: fuerzas externas, fuerzas de inercia, fuerzas de presion y fuerzas
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T,

Figura 30.4: Fluido en reposo entre dos placas paralelas.

viscosas. Entre las fuerzas externas de interés estan las fuerzas de flotabilidad
en un fluido con densidad variable, las fuerzas de tensién superficial, las fuerzas
centrifugas y de Coriolis cuando hay una rotacién del sistema en el que el
fluido se mueve y las fuerzas magnetohidrodindmicas. Uno de los ejemplos
mas simples de inestabilidad es la que se produce en un fluido estacionario
estratificado con densidad variable p = p(z) que aumenta con la altura z.
Sobre cada particula fluida actian dos fuerzas, la gravedad y la fuerza de
presion, que da lugar a la fuerza de flotabilidad de Arquimedes. Si el fluido
estd en reposo, estas dos fuerzas estan equilibradas. Supdéngase que, como
consecuencia de una perturbacién, una particula fluida se desplaza desde el
nivel z al nivel z + h. Si p(z) decrece con z, para h > 0 la particula tendera a
bajar debido a la fuerza de la gravedad, y para h < 0 tendera a subir debido a la
accion de la fuerza de flotabilidad, siendo, por tanto, el equilibrio estable. Por
el contrario, si la densidad crece con la altura, para cualquier desplazamiento h
de la particula fluida, ésta tenderd a alejarse mds y mas de su posicion original,
siendo el equilibrio inestable. Por supuesto, para que el equilibrio sea realmente
inestable hay que tener en cuenta las fuerzas de viscosidad que se oponen a las
fuerzas (netas) de flotabilidad y tienden a estabilizar la solucién de equilibrio
fluidostatico. La inestabilidad se producird cuando el cociente entre la fuerza de
flotabilidad neta desestabilizadora y la fuerza viscosa estatabilizadora supera
un cierto valor critico que se calcula resolviendo el problema matematico de
las pequenas perturbaciones alrededor de la solucion de equilibrio.

Como ejemplo sencillo, considérese un fluido en reposo confinado entre dos
placas paralelas e infinitas que se mantienen a distinta temperatura, 71 y T3,
constantes (figura 30.4). Si el fluido fuese aire, este problema simularia una ca-
pa atmosférica (por ejemplo la troposfera), pero por simplicidad supondremos
que se trata de un fluido incompresible (de un liquido).

El flujo base seria la solucién fluidostdtica, que se designara con el subindice
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. T T
Te =0, pPe=po, Pe=DPo— P92, Te= 2h 2+ T, (30.23)

donde p, y p, son constantes y h es la separacién entre placas. Para averi-
guar cuando esta solucion de equilibrio deja de ser estable, se perturba dicha
solucién:

!
G=d.+57=7, p=pet+p, P=petp, T=Te+T. (30.24)

Sustituyendo en las ecuaciones de Navier-Stokes para un fluido incompresible
y reteniendo sélo los términos lineales en las perturbaciones, se llega a:

V.7 =0, (30.25)
14 v '
66—‘; = —f(j"eTt){’) — 98, + vV, (30.26)
o
!
% + 9. VT, = aV?T’, (30.27)

donde, por simplicidad, se ha supuesto que las propiedades del fluido son
constantes y la densidad se ha considerado constante e igual a p, en todos los
términos excepto en las fuerzas de presion, puesto que este término propor-
ciona la fuerza de flotabilidad responsable de las posibles inestabilidades del
problema. Desarrollando dicho término, y reteniendo sélo el primer orden, se
tiene

/ /

Vp

o

\% NV '
_Vet+p) pe+p_2vpe_Vp

/

L P
~ = g€, + —Vpe —
po+p' Po P Po foopr e

(30.28)

La densidad se supone que sélo varia con la temperatura, teniéndose, en pri-
mera aproximacion,

p = (%) T = —p,BT', (30.29)
P

siendo [ el coeficiente de expansién térmica del liquido [ecuacién (10.28)]. Sus-
tituyendo (30.28) y (30.29) en la ecuacién de cantidad de movimiento (30.26)
se llega a:
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— /
8_v = _Vp + BT g€, + vV27 . (30.30)
ot Po

La aproximacién anterior de suponer que la densidad sélo varia con la tempe-

ratura y afecta sélo a las fuerzas de flotabilidad se denomina aproximacién

de Boussinesq, siendo la aproximacion habitual en la conveccién libre o

natural.

Para ver qué parametros adimensionales gobierna el problema, se definen
las variables adimensionales

S

T o o
= —_— — R t—-
=T, VM Tl

==, OD=-_, ¢ (30.31)
P

\%4
donde V y t. son una velocidad caracteristica y un tiempo caracteristico, res-
pectivamente, de las perturbaciones, que se elegiran de forma que simplifiquen
al maximo las ecuaciones (obsérvese que, para simplificar la notacién, se han
tomado las mismas letras t y £ para designar las variables independientes adi-
mensionales). Tomando V = v/h y t. = h?/v, las ecuaciones (30.25), (30.30)
y (30.27) quedan

V-i=0, (30.32)

% = —VII +Gréé, + V2, (30.33)
06 s

5% =5V, (30.34)

donde u, es la componente de 4 segin el eje z. Los tinicos parametros adimen-
sionales que gobiernan el problema de estabilidad son el nimero de Prandtl,
Pr =v/a, y el nimero de Grashof,

_ Bgh¥3(Th — Tz)
=

Gr , (30.35)

que relaciona las fuerzas de flotabilidad con las fuerzas viscosas, siendo, por
tanto, el parametro adimensional que relaciona las dos fuerzas contrapuestas
cuyo desequilibrio puede provocar la inestabilidad térmica. En realidad, los
resultados muestran que el parametro adimensional relevante es el producto del
numero de Grashof y el niimero de Prandtl, llamado mimero de Rayleigh,

Boh®(Ty — T»)
va '

Ra = GrPr = (30.36)



534 MECANICA DE FLUIDOS

Las ecuaciones (30.32)-(30.34) se deben resolver con las condiciones de con-
torno

0=0, wu=0 en z=0 y z2=1. (30.37)

Como se describié en la seccién anterior, el paso siguiente es escribir las
perturbaciones como una superposicion de modos normales. Previamente, es
conveniente eliminar la presion, ya que no se dispone de condiciones de con-
torno para ella. Tomando el rotacional de (30.33), se llega a la ecuacién (ver
seccién 7.4)

0

== GrVOné, + V33, (30.38)

donde & = V At es la vorticidad adimensional de las perturbaciones. Tomando
nuevamente el rotacional y teniendo en cuenta que VA& = VV - @& — V2@ =
—V2i, se tiene
2 2

%v“’uz =Grv30+ V2V, Vi= % + aa—yz :
que junto con (30.34) constituye un sistema de dos ecuaciones diferenciales
para las variables u, y 6. En las paredes z = 0 y z = 1, ademas de 6 =
u, = 0, hacen falta dos condiciones de contorno mas para u,, pues (30.39)
contiene derivadas cuartas. Para obtenerlas, se tiene en cuenta que todas las
componentes de la velocidad son nulas sobre esas paredes, por loque Ou, /0z =
Ouy /Oy = 0 sobre z =0y z = 1. De la ecuacién de continuidad se tiene, por
tanto, que Ou,/0z = 0. Asi, las condiciones de contorno para (30.39) y (30.34)
son;

(30.39)

_ Ou,
T 0z

La solucién de este sistema se puede escribir como una superposicion de
modos normales en la forma

=0 en 2=0 y z2=1. (3040)

0=mu,

u, = W(z)eH@eztovy)—iwt (30.41)

0 = O(z)e'(@=ztoyy)—iwt (30.42)

donde a; y ay son los numeros de onda en las direcciones z e y, respecti-
vamente, y w es la frecuencia. La sustitucién en (30.34), (30.39) y (30.40)
proporciona
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2n/a

Figura 30.5: Esquema de las celdas de conveccién producidas tras la inestabilidad térmica.

DAW + iwD2W — o?Gre =0, (30.43)
1 5 .

—D;0+iwO+W =0, (30.44)
Pr

aw

W=7;=9=0 en 2=0 y Z=1, (3045)
donde

a2=a2+a2 1)2_6{2 2

= ol o C= - —a“. (30.46)

Para cada valor de los parametros Pr y Gr, y para cada valor real de
a,® (30.43)-(30.45) constituye un problema de autovalores que sélo tiene so-
luciéon para determinados valores complejos de w = w; + tw;. De hecho, las
variables dependientes e independientes se pueden reescalar de forma que el
numero de Prandtl desaparece del problema, que asi sélo viene gobernado por
un parametro adimensional que es el nimero de Rayleigh (30.36) (ver, por
ejemplo, Chandrasekhar, 1981). Se encuentra que el flujo se hace inestable pa-
ra Ra = Ra. ~ 1708. Es decir, para Ra < Ra., w; < 0 para todos los valores
de a. Para, Ra = Ra, w; se anula para un cierto valor de o = a,, que resulta
ser a. ~ 3,117. Para Ra > Rac, el flujo es inestable, existiendo un rango de
valores de a, que depende de Ra, para los que w; > 0. Se tiene, por tanto, que
la solucién correspondiente al equilibrio mecéanico es inestable si Ra > 1708,
produciéndose entonces un movimiento (conveccién natural) entre las placas.
Este movimiento tiene una periodicidad en los planos zy cuya longitud de on-
da viene dada, aproximadamente, por el valor de a mds inestable (w; mayor)

3En un problema como este en donde el flujo base estd en reposo no tiene mucho sentido
analizar la estabilidad espacial, siendo mds conveniente hacer un analisis de estabilidad
temporal.
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correspondiente al valor de Ra dado. Asi, cuando el flujo se hace inestable
justo por encima de Ra, la periodicidad en zy de la conveccién natural pro-
ducida tiene una longitud de onda aproximadamente igual a 27/a. ~ 2,016
(ver figura 30.5). En la practica, se producen celdas de conveccién hexagona-
les cuyo lado es inversamente proporcional al valor de a mas inestable (ver,
por ejemplo, Chandrasekhar, 1981). Estas celdas se suelen denominar celdas
de Bénard, y al movimiento en si conveccién de Bénard, quien en 1900 las
observé experimentalmente en una capa de liquido calentada por debajo, pero
con la superficie superior libre.4

Desde un punto de vista fisico, a medida que el nimero de Grashof (o
el nimero de Rayleigh) aumenta, las fuerzas de flotabilidad se van haciendo
mas importantes en relacion a las fuerzas viscosas. Superado un cierto valor
critico, dado analiticamente por Ra. ~ 1708, las fuerzas desestabilizadoras
de flotabilidad pueden mas que las fuerzas viscosas estabilizadoras, y se pro-
duce una corriente que tiende a igualar las temperaturas, desestabilizando la
solucién correspondiente al equilibrio mecanico. En otras palabras, dado un
fluido y fijado A, la solucién estatica es posible si la diferencia de temperatu-
ras entre las placas, 71 — T, es menor que un cierto valor critico dado por
T\ — T» ~ 1708va/(Bgh3) (obsérvese que si T — T, es negativo, la solucién
estatica es siempre estable). Para T} — T, mayor que ese valor, aunque la solu-
cién estatica sigue siendo solucion de las ecuaciones y condiciones de contorno,
es inestable y no se da en la practica (si la viscosidad fuese cero, la solucién
seria inestable para cualquier diferencia 77 — T3 positiva, lo cual esta de acuer-
do con el argumento no viscoso cualitativo dado al principio de esta seccién).
Una vez producida la inestabilidad, el movimiento resultante tiene la forma de
celdas convectivas, cuya periodicidad viene dada por h2w/a (ver figura 30.5).

30.3.2. Inestabilidad centrifuga

Otro ejemplo simple donde una fuerza externa tiende a desestabilizar, y
las fuerzas viscosas a estabilizar, es el flujo de Couette entre dos cilindros que
giran coaxialmente [seccién 14.2.2; ver figura 30.6(a)]. Histéricamente, este
ejemplo ha tenido mucha importancia en la teoria de las inestabilidades hidro-
dindmicas. Uno de los primeros que la consideraron fue Rayleigh en 1916, quien

4El problema con una superficie libre superior, en vez de limitada por una pared sélida,
es matemadticamente muy similar al considerado aqui, cambiando sélo una condicién de
contorno en z = 1. En particular, en z = 1 se tiene que d2VV/dz2 =0, en vez de dW/dz = 0.
Los correspondientes valores criticos resultan ser Ra. ~ 1101 y c. ~ 2,682, que da lugar a
celdas de conveccién con una longitud de onda algo mayores, 27/« ~ 2,34 (ver, por ejemplo,
Drazin y Reid, 1981).
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Figura 30.6: (a) Geometria del flujo de Couette entre dos cilindros coaxiales que giran. (b)
Esquema de los vértices de Taylor que se forman tras la inestabilidad del flujo base.

desarrollé un criterio de inestabilidad no viscosa mediante argumentos fisicos
que se vera a continuacion. Las fuerzas viscosas fueron tenidas en cuenta por
primera vez por Taylor en 1923. Pero la importancia de su trabajo reside, sobre
todo, en que fue el primero que comparé de forma cuantitativa los resultados
de un andlisis de estabilidad con resultados experimentales (experimentos que
él mismo realizd), prediciendo de forma muy precisa las transiciones que se
producian en el flujo. Se puede decir que este trabajo asenté de forma defi-
nitiva la teoria de las inestabilidades hidrodindmicas, que asi dejé de ser una
mera especulacion tedrica.

En el movimiento laminar estacionario, las fuerzas centrifugas que actian
sobre cada particula fluida estan equilibradas con las fuerzas de presién radia-
les, de manera que las particulas fluidas no se mueven radialmente, sino sélo
circunferencialmente. Asi, en coordenadas cilindricas, el campo de velocidad
del flujo base es V = V(r)éy, donde (ver seccién 14.2.2)

1—pn
1—n2’

2
p—n
==L 47
Cr=ii—z  (3047)

Vir)= % +Cor, Ci=MWR?
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2 R,
L= — E— 30.48
HES- ¥ nEp (30.48)
dos parametros adimensionales que caracterizan el flujo. La presion del flujo
base se obtiene de la ecuacién de cantidad de movimiento radial que, como se
acaba de decir, expresa un balance entre las fuerzas centrifugas y las fuerzas
de presion radiales

2

V. _10FP (30.49)
r p Or

Supdngase que una particula fluida se mueve, por accién de cualquier per-
turbacién, desde una posicién 7, a otra r > 7,. En ausencia de fuerzas vis-
cosas, la ecuacién de cantidad de movimiento azimutal se puede escribir co-
mo D(rV)/Dt = 0, es decir, el momento angular (por unidad de masa) se
conserva: T,V (r,) = rV(r). Asi, la nueva velocidad de la particula fluida es
roV(r0)/r, siendo la fuerza centrifuga (por unidad de masa) que actia sobre
ella 72V2(r,)/r3. El equilibrio sera inestable si esta fuerza es mayor que la
fuerza de presion (por unidad de masa) en la distancia r que, de acuerdo con
(30.49), es igual a la magnitud de la fuerza centrifuga del fluido no perturba-
do, V2(r) /7. De esta forma, el criterio de inestabilidad (Rayleigh, 1916) se
escribe

r2V3(r,) > r2V3(r) para T >7,. (30.50)

Es decir

%(TV)"’ <0. (30.51)

Teniendo en cuenta (30.47), la condicién anterior se puede escribir (2R3 —
Q1 R?)V < 0. Si los cilindros giran en sentidos opuestos, V debe anularse en
algin punto entre ellos y el movimiento es siempre inestable. Si ambos cilindros
giran en el mismo sentido, V' es positivo (suponiendo que €; > 0 y Q2 > 0),
por lo que el criterio de inestabilidad de Rayleigh se escribe

Q2 R1\? 2
22 —L o) <n°. .5
o <(m) © w<n (30.52)
Es decir, el movimiento es inestable si la velocidad angular del cilindro interior
supera en (Ry/R;)? veces la del cilindro exterior. Si 2, = 0, el movimiento es
siempre inestable.
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El criterio de inestabilidad no viscoso (30.51) es andlogo al del ejemplo
de la seccién anterior, dp/dz > 0, en el sentido de que no tiene en cuenta el
efecto estabilizador de la viscosidad. Para tener en cuenta este efecto hay que
analizar la evolucién de las pequefias perturbaciones considerando la accién
de la viscosidad, de forma analoga a como se ha hecho en la seccién anterior.
Para ello, se perturba el flujo base (30.47)-(30.49) en la forma (30.5)-(30.6),
y se sustituye en las ecuaciones linealizadas (30.8)-(30.9). Estas ecuaciones se
adimensionalizan tomando R; como longitud caracteristica, Ql_l como tiempo
caracteristico y §2; Ry como velocidad caracteristica. Aparece asi el nimero de
Reynolds

) R?

Re = % , (30.53)
donde v es la viscosidad cinematica, como parametro adimensional, que junto
con los definidos en (30.48) caracterizan el flujo base. Los coeficientes de las
ecuaciones resultantes s6lo dependen de r, por lo que se puede hacer una

descomposicién en modos normales de las perturbaciones:

u: iF(r)
§= Z), = Geiloztnf—wt) = & — g((’;)) , (30.54)
v \ I(r)

donde ¥' = v'é, + v'ép + W'E,, a es el nimero de onda axial, n el nimero de
onda azimutal y w la frecuencia. Los parametros a y w son en general nimeros
complejos, mientras que n debe ser un nimero entero para que las perturba-
ciones no sean funciones multievaluadas de 6. El valor n = 0 corresponde a
perturbaciones axilsimétricas, mientras que las perturbaciones no axilsimétri-
cas, o helicoidales, vienen caracterizadas por n = £1,+2,.... La amplitud de
la perturbacién u’ se ha multiplicado por i por conveniencia.

Como se comenté en la seccién 30.2.1, la sustitucién de (30.53) en las
ecuaciones linealizadas y sus condiciones de contorno da lugar a un problema
de autovalores que proporciona la amplitud de las perturbaciones S como
autofunciones y w (0 a) como autovalores. En el presente caso, estas ecuaciones
se pueden escribir como:

1 =
B .55
ReAl ) (30 )

N
|

'§=0, =i0+

donde
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—1 (j‘;+%) i «a 0
. n |4 d
=] " (w0 - 2¥) ; 0 ol (30.56)
%‘%4.% —1 (w— %) 0 i
0 0 -1 (w—%) (¢
0 0 0 0
= _ —DZ+"2r+l+a? 2_?31 0 0
P —2ni —D? + 2l 4 0 0
0 0 —D2+ % +a® 0
(30.57)
> 1d
D?= 3t (30.58)

y V viene dado por (30.47), adimensionalizando la velocidad con Q;R; y r
con R;.% Las condiciones de contorno son:
F(1)=G1)=H(Q1)=F(n ")=G(n")=H(n™") =0. (30.59)

Se considerard primero el limite no viscoso (Re — oo) para perturba-
ciones axilsimétricas (n = 0). Las ecuaciones anteriores se escriben

F 4+ § YaH=0, (30.60)

wF — gc +IF =0, (30.61)

—iwG +i (ﬂ+ ﬁ) F=o0, (30.62)
dr T

—iwH +iall =0, (30.63)

donde las primas significan derivadas con respecto a r. Estas ecuaciones se
pueden reducir a una sola ecuacién diferencial de segundo orden para F'. Para
ello se despeja I, G y H de (30.63), (30.61) y (30.60), respectivamente,

SRealmente estas ecuaciones son viélidas para cualquier flujo que en coordenadas cilindri-
cas sdlo tiene componente azimutal de la velocidad dada por V(7).
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2 s . FY\
WAF + 2(F+T>+ F=0, (30.65)
donde
— 1d 2

es el denominado discriminante de Rayleigh. Si se hace ¢ = rF, se tiene un
problema de Sturm-Liouville (ver, por ejemplo, Butkov, 1968):

T a? o?
%[%3—?]+(A$—7)¢=0, A==, (30.67)
$(1)=o(n~")=0. (30.68)

El problema tiene infinitos autovalores A, que son reales puesto que a?/r es
positivo (fijado a real en un problema de estabilidad temporal). Si ®(r) > 0
en el intervalo (1,77 !), todos los autovalores son positivos, por lo que w es
real (positivo y negativo) y el flujo es estable. Si ®(r) es negativo, o cambia de
signo en el intervalo (1,177!), algunos autovalores pueden ser negativos, con lo
que w puede ser imaginario puro, y algunas perturbaciones pueden crecer con
el tiempo, siendo el flujo inestable. Luego la condicién necesaria y suficiente
para que un flujo puramente circunferencial, con velocidad azimutal V = V (1),
sea estable desde un punto de vista no viscoso frente a perturbaciones
axilsimétricas es

®(r) >0, (30.69)

en el dominio de definicién de V. Este resultado, que fue obtenido por Singe
en 1933, incluye el obtenido por Rayleigh con argumentos mas fisicos y vale
para cualquier flujo puramente circunferencial, no sélo para el flujo de Couette
entre dos cilindros circulares que se esta considerando aqui.

Si se tiene en cuenta la viscosidad, el criterio de Rayleigh es una condicién
necesaria, pero no sufuciente, de estabilidad, pues la viscosidad puede amor-
tiguar las perturbaciones que las fuerzas centrifugas hacen inestables. Dados
7, ky, Ny a, el flujo serd inestable (w; > 0) por encima de un cierto nimero
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Figura 30.7: Esquema de una curva de estabilidad neutra.

de Reynolds critico. En vez del nimero de Reynolds, es costumbre utilizar el
denominado nimero de Taylor:

A0R] 0 —p (1-7)\*
v2 1-n2\ g J°

Fijados n, n y u, el nimero de Taylor critico, por encima del cual el flujo es
inestable, es una funcion de o, pero en su lugar se suele utilizar

T

(30.70)

a=a(nt-1). (30.71)

En la figura 30.7 se representa la forma tipica de una curva neutra de estabi-
lidad T'(a), es decir, una curva para la que w; = 0. El menor valor de a es el
nimero de onda critico a., que proporcionaré la longitud de onda 27/a. de la
perturbacién que primero se hace inestable a medida que el numero de Taylor
aumenta y se hace mayor que un valor critico T¢(n,n, ). Estos valores criti-
cos hay que obtenerlos, en general, resolviendo numéricamente el problema de
autovalores. Hay, sin embargo, ciertos limites en los que se puede obtener una
solucién analitica. Por ejemplo, para perturbaciones axilsimétricas (n = 0)
en el limite en el que el espacio entre cilindros es muy pequeno (p — 1), se
tiene (este y otros resultados se pueden encontrar, por ejemplo, en Drazin y
Reid, 1987)
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= _1 1—p\?
T.= -1+ p)T, ~1707,76 [1 — 7,61 x 1073 (_ﬂ) +..0, 1-pl <1,
2 14+ u
(30.72)
2r
O 2 3,12, — ~2,014. (30.73)

ac

Obsérvese que estos valores coinciden con los del mimero de Rayleigh critico y
de la longitud de onda critica dados en la seccién anterior para la inestabilidad
térmica. De hecho, cuando 7 — 1 ambos problemas de estabilidad coinciden
matematicamente si se usa el nimero de Taylor modificado T y a en lugar de
a (ver, por ejemplo, la referencia anteriormente citada). Aunque esta aproxi-
macién es valida para |1 — | < 1, da buenos resultados para cualquier valor
de pu en el intervalo 1 > u > 0.

Cuando T > T, el flujo puramente circunferencial entre los dos cilindros
deja de presentarse en la practica y en su lugar se producen unos vortices
toroidales perpendiculares al eje de los cilindros que giran opuestamente en
celdas adyacentes, llamados vértices de Taylor, superpuestos al flujo base ori-
ginal [ver esquema en figura 30.6(b); estos vértices de Taylor son andlogos a
las celdas de Bénard que se producen como consecuencia de la inestabilidad
térmica; fotografias de ambos fenémenos pueden verse, por ejemplo, en van
Dyke, 1982, paginas 76 y 83 y en Koschmieder, 1993]. La aparicién experimen-
tal de estos vortices coincide exactamente con el nimero de Taylor critico que
predice la teoria de estabilidad hidrodindmica, como fue comprobado por pri-
mera vez por el propio Taylor [ver figura 30.8(a)]. Para u < —0,78, el flujo se
hace inestable con valores menores de T, para perturbaciones no axilsimétri-
cas (n # 1). Esto quiere decir que los vértices que se forman tras la primera
inestabilidad no son axilsimétricos, sino que presentan ondulaciones en la di-
reccion azimutal. El mimero de estas ondulaciones depende del niimero n que
primero se hace inestable. A medida que el mimero de Taylor sigue crecien-
do por encima de T, otros modos con distintos valores de n pueden hacerse
mas inestables. Asi, por ejemplo, un flujo que primero se hace inestable con
n = 0, produciéndose vortices de Taylor axilsimétricos para T > T, puede
experimentar otra transiciéon para T > T,; > T, hacia un flujo con vértices no
axilsimétricos, que a su vez puede ir cambiando su nimero de ondulaciones
n a medida que T crece. En 1ltimo caso, si se sigue aumentando T, el flujo
se convierte, para la mayoria de los casos, en un flujo turbulento. Un diagra-
ma experimental de las distintas transiciones se presenta en la figura 30.8(b),
donde se observa la gran complejidad paramétrica del problema.
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Figura 30.8: (a) Curva neutra de estabilidad tedrica y experimental para R; = 3,55cm y
R2 = 4,035¢m en el plano (22,9;) (tomada del trabajo original de Taylor, 1923). La linea
discontinua representa el criterio no viscoso de Rayleigh (de acuerdo con este criterio, el flujo
es inestable a la izquierda de esa recta). (b) Diagrama experimental de estabilidad en el plano
(R, = Q2R%/v, Ri = Q1 R?/v). [Tomada de Koschmieder (1993), que a su vez reproduce los
resultados de Andereck, Liu y Swinney (1986).]
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30.4. Inestabilidades en flujos casi-unidireccionales

Se ha visto que la viscosidad juega un papel estabilizador frente a ciertas
fuerzas externas (como las de flotabilidad o centrifugas) que tienden a producir
inestabilidades en el flujo; el efecto de la viscosidad en estos casos es disipar la
energia de cualquier perturbacion, estabilizando el flujo. Esta es la razén por
la cual cualquier flujo confinado es estable si la viscosidad es suficientemente
alta. Sin embargo, la viscosidad también tiene el efecto de difundir cantidad
de movimiento, por lo que puede ser el origen de inestabilidades en ciertos
flujos, principalmente en flujos unidireccionales o casi-unidireccionales en los
que existe un gradiente de la velocidad en la direccién transversal a la di-
reccién del flujo. Como se ha visto en los capitulos precedentes, estos flujos
son muy importantes desde el punto de vista ingenieril pues describen, mas
o menos aproximadamente, muchos flujos de interés préactico. Ejemplos son el
flujo de Couette y de Poiseuille entre dos placas, el flujo de Poiseuille en un
conducto, el flujo en una capa limite bidimensional, chorros bidimensionales
o axilsimétricos, capas de mezcla, etc. Se vera a continuacién que desde un
punto de vista no viscoso, muchos de estos flujos son estables. Sin embargo,
si se tiene en cuenta la viscosidad en el analisis de estabilidad, se encuentra
que estos perfiles de velocidad son inestables en un cierto intervalo del nime-
ro de Reynolds, que depende del tipo de flujo y de las caracteristicas de las
perturbaciones. Es decir, las fuerzas viscosas juegan un doble papel: son las
responsables de la inestabilidad (el flujo se hace inestable por debajo de un
nimero de Reynolds critico superior), y también amortiguan las perturbacio-
nes (el flujo se vuelve a hacer estable por debajo de otro mimero de Reynolds
critico inferior).

Considérese el flujo bidimensional, casi unidireccional en la direccién z,
V = U(z,y)é; + V(z,y)éy, con V K« Uy 8U/dx <« 8U/dy, y el campo de
presién P = P(z,y). Supéngase que todas las variables han sido adimensiona-
lizadas utilizando una velocidad caracteristica U,, una longitud caracteristica
L y la densidad p (el flujo es incompresible). La introduccién de pequeiias per-
turbaciones (¢ = u'é; + v'é, + w'é, , p’) da lugar a las ecuaciones linealizadas
(30.8)-(30.9) adimensionales [es decir, en (30.9) la densidad no aparece y en
lugar de v el término viscoso viene multiplicado por 1/Re, donde Re = U,L /v
es el mimero de Reynolds del flujo base]. Si ademaés se desprecian los términos
proporcionales a V y a 8U/dz (lo que se suele denominar aproximacién de
flujo casi-paralelo), la solucién se puede descomponer en modos normales
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ol F(y)
o = Z/ — Geilaztfz—wt) ’ S = ggl/; ‘ (30.74)
P I(y)

donde a y (3 son los niimeros de onda en las direcciones z y z, respectivamente
y w es la frecuencia. Con esta descomposicion, las ecuaciones lineales de las
perturbaciones se pueden escribir como:

1=

4.5= A=Ag+-—A .
A4.-§=0, A Ao+ oA (30.75)
donde
i ad— 10 0
= i(aU — w) a 0 ia |
Ay = 4y I (30.76)
0 i(aU — w) 0 %
0 0 i(aU —w) i
0 0 0 0
- o? + 32 — 45 0 0 0
A= T .
! 0 o+ - 4 0 0 (30.77)
0 0 a? + 32— %, 0

En general, uno tiene que considerar la estabilidad de perturbaciones tri-
dimensionales, con 8 # 0. Sin embargo, si se hace la transformacién

w w
a*=\/a2+ﬁ2, — ¥
« «

*

o*F*=aF+0H, G*=G, %zg, a*Re* = aRe, (30.78)
en las ecuaciones anteriores, las ecuaciones con asterisco resultantes son for-
malmente idénticas, pero con 3 = 0y H = 0. Es decir, cualquier solucién para
una perturbacién bidimensional (con asterisco) se puede usar para describir
una perturbacién tridimensional equivalente haciendo uso de la transformacion
(30.78). Ademas, dada una perturbacién tridimensional con a, 8y w = wy+iw;
(estabilidad temporal), como a* = /a2 + 32 > a, la perturbacién bidimen-
sional equivalente es mds inestable, puesto que w; = (a*/a)w; > w;, y ocurre
a un nimero de Reynolds menor, Re* = (a/a*)Re. Por tanto, si uno quiere
obtener el nimero de Reynolds critico por encima del cual el flujo se hace
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inestable, es suficiente con considerar sélo las perturbaciones bidimensionales,
pues éstas son las primeras que se hacen inestables. Por otro lado, para cada
perturbacion tridimensional, existe otra bidimensional equivalente que es mas
inestable (o menos estable). Todo esto hace que sélo se tenga que considerar
el problema con perturbaciones bidimensionales (3 = 0, H = 0), que es lo que
se hard en lo que sigue. Esta notable simplificacién del problema se debe a
Squire, quien en 1933 introdujo la transformacién (30.78), que ahora lleva su
nombre.

30.4.1. Estabilidad no viscosa. Criterio de Rayleigh

En el limite Re — o0, las ecuaciones (30.75)-(30.77) con 8 = H = 0 se
pueden reducir a una tunica ecuacién para G:

F = —iaG', T'=-i(aU -w)G, (30.79)

" '
G"'-G <a2 =2l ) =0, (30.80)
alU —w

donde las primas representan derivadas con respecto a y. La ecuacién (30.80)
se suele denominar ecuacién de Rayleigh que, junto con unas condiciones de
contorno en dos valores de y, da lugar a un problema de autovalores (en este
caso un problema clasico de Sturm-Liouville). Por simplicidad se supondra que
G(0) = G(1) = 0, lo cual corresponde al flujo entre dos placas paralelas
separadas por una distancia L. La solucion del problema depende de la forma
particular del perfil de velocidad U(y). Sin embargo, es posible obtener un
criterio general de estabilidad sin mas que multiplicar la ecuacién de Rayleigh
por el complejo conjugado de G, que se designara por G', e integrar en todo
el dominio 0 < y < 1. Integrando por partes el primer término, aplicando las
condiciones de contorno y teniendo en cuenta que GGT = |G|?, se llega a

LI L sig g aU"
—/ |G'|*dy — / |G| (a + ————) dy=0. (30.81)
0 0 alU —w

Si se considera la estabilidad temporal (a real y w = w, + iw;), la parte
imaginaria de la expresion anterior se puede escribir como

/|G\2 . dy=0. (30.82)
laU — w|?

Por tanto, para que el flujo pueda ser inestable (w; > 0) es necesario que
U” se anule en algin punto del intervalo 0 < y < 1; es decir, el perfil de
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(a) (b)

(c) d)

Figura 30.9: (a) y (b): Perfiles de velocidad estables de acuerdo con el criterio de Rayleigh.
(c): Perfil potencialmente inestable de acuerdo con el criterio de Rayleigh, pero estable de
acuerdo con el criterio de Fjortoft. (d): Perfil potencialmente inestable de acuerdo con el
criterio de Fjortoft.

velocidad U(y) debe tener algin punto de inflexién. Esta condicién necesaria,
pero no suficiente, de inestabilidad se suele denominar criterio del punto de
inflexion de Rayleigh, quien la derivé en 1880. De acuerdo con ella, perfiles
de velocidad como los de Couette, Poiseuille y Blasius son estables desde un
punto de vista no viscoso, pues no tienen punto de inflexién, mientras que los
perfiles de velocidad en un chorro, en una capa de mezcla o en una capa limite
con gradiente adverso de presion son inestables. Una condicién mas fuerte de
inestabilidad fue derivada por Fjgrtoft en 1950:% Si y, es la posicién del punto
de inflexién de U [U”(y,) = 0] y U, = U(y,), una condicién necesaria, pero
no suficiente, para que el flujo sea inestable es que U”(U — U,) < 0 en algin
punto del flujo. De acuerdo con este criterio, algunos perfiles de velocidad con
un punto de inflexién son siempre estables (ver figura 30.9).

30.4.2. Estabilidad viscosa. Ecuacién de Orr-Sommerfeld

Los resultados anteriores muestran que flujos como el de Poiseuille entre
dos placas paralelas o la capa limite de Blasius son estables para Re — oc.
Sin embargo, los experimentos muestran que ambos flujos son inestables, y de

%Ver, por ejemplo, Godréche y Manneville, 1998, donde ademas de la derivacién ma-
tematica se pueden encontrar las interpretaciones fisicas de los dos criterios, el de Rayleigh,
que estd relacionado con la conservacién de cantidad de movimiento, y el de Fjortoft, que se
relaciona con la conservacion de la energia cinética.



CAPITULO 30. INESTABILIDADES Y TRANSICION A LA TURBULENCIA 549

hecho se hacen turbulentos, por encima de ciertos valores criticos del niimero de
Reynolds. Esto quiere decir que, a diferencia de los ejemplos dados en la seccion
anterior, donde flujos que eran inestables desde el punto de vista no viscoso
se hacian estables debido a las fuerzas viscosas por debajo de un nimero de
Reynolds critico, la viscosidad juega aqui el papel de fuerza desestabilizadora
como difusora de cantidad de movimiento en la direccién transversal al flujo
principal, haciendo inestable un flujo estable desde el punto de vista no viscoso,
ademas de su papel estabilizador por debajo de un nimero de Reynolds critico.
Por ello, en este tipo de flujos es esencial el analisis viscoso de estabilidad.
Las ecuaciones (30.75)-(30.77) para perturbaciones bidimensionales (w’ =
0) también se pueden reducir a una inica ecuacién diferencial ordinaria para
Re finito si uno utiliza como variable la funcién de corriente asociada a las
perturbaciones (las primas ahora denotan perturbaciones, no derivadas):

o o
oy’ oz’
que satisface idénticamente la ecuacion de continuidad de las perturbaciones,

V - ¢ = 0. La descomposicién normal de las perturbaciones se escribe ahora
(con 8 =0)

(30.83)

1/)/ — ¢(y)ei(az—wt) , (3084)
de donde

Cdp

= @, G = —iag. (30.85)

Sustituyendo en (30.75)-(30.77) y eliminando la perturbacién de la presién
I1(y), se llega a una dnica ecuacién para ¢(y):

, 2¢ L\ U 1 (& )
i(aU —w) (d—y§ -« (,b) - zaqu—y2 = R \a? o’ | @, (30.86)

que es la denominada ecuacién de Orr-Sommerfeld, quienes las derivaron por
separado en 1907 y 1908, respectivamente. Esta ecuacién necesita 4 condiciones
de contorno para ¢, que se obtienen de las dos condiciones de contorno para
cada una de las componentes de la velocidad u’ y v’. En el caso de paredes
rigidaseny=0e y =1, serfan ¢ =d¢/dy=0eny=0ey = 1.

Si uno estd interesado, como es mas habitual, en la estabilidad temporal
del flujo base U(y), dados el mimero de onda «a y el nimero de Reynolds Re,
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Figura 30.10: Esquema de la curva neutra de estabilidad para el flujo de Poiseuille entre
dos placas planas paralelas. Re = U,L/v, donde L es la distancia entre placas y U, es la
velocidad méxima. Re. ~ 5772 y a. ~ 1,02. Estos resultados concuerdan muy bien con las
observaciones experimentales. El flujo es estable para Re — o0o.

la ecuacion anterior junto con sus respectivas condiciones de contorno propor-
cionan los autovalores w = w,+ iw;. Normalmente los resultados se resumen en
la forma de una curva neutra de estabilidad, que es la curva correspondiente a
wi(a, Re) = 0 (ver figura 30.10 para el flujo de Poiseuille entre dos placas pa-
ralelas). Es decir, para cada tipo de perturbacién infinitesimal (cada valor de
a), a medida que se va incrementando el nimero de Reynolds existird un valor
Rej (@) por encima del cual el flujo se hace inestable, pasando w; de negativo
a positivo. Si el flujo es estable desde un punto de vista no viscoso (como es
el caso de la figura 30.10), existird ademds un segundo valor Rez(a) > Re
por encima del cual el flujo se vuelve a hacer estable, pasando el valor de w;
a ser negativo de nuevo. En el caso de la figura 30.10, el flujo es estable para
todo valor de a cuando Re — 00, pero es sélo neutralmente estable (w; = 0)
en este limite si @ — 0, lo cual es una caracteristica comun en casi todos los
flujos que son estables desde el punto de vista no viscoso. El menor valor del
numero de Reynolds para el que w; = 0 es el numero de Reynolds critico, Re.,
por encima del cual el flujo se hace inestable para al menos algin valor del
niumero de onda de las perturbaciones. El correspondiente valor del nimero de
onda, a., es el nimero de onda critico. Para el flujo de Poiseuille de la figura
30.10, Re, ~ 5772 y a. ~ 1,02, donde U, es la velocidad maxima en y = 1/2
y L es la separacién entre placas.

En la figura 30.11 se representa la curva neutra de estabilidad para U(y) =
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Figura 30.11: (a): Perfil de velocidad en una capa de mezcla. (b) Esquema de la curva neutra
de estabilidad para el flujo en una capa de mezcla dado por U(y) = 1 + tanh(y). El flujo es
inestable para Re — oo.

1+ tanhy, que modela el perfil de velocidad en una capa de mezcla, producida
inmediatamente aguas abajo de una discontinuidad tangencial correspondiente
a un flujo uniforme se pone en contacto con un fluido en reposo [figura 30.11(a);
en este caso la velocidad caracteristica U, es la velocidad de la corriente uni-
forme, y la longitud L(z) es un espesor caracteristico de la capa de mezcla
en cada posicién z]. De acuerdo con el criterio no viscoso de Rayleigh y de
Fjortoft, esta capa de mezcla puede ser inestable para Re — oo, y de hecho
los resultados numéricos muestran que asi es para 0 < a < 1. Los resultados
viscosos [figura 30.11(b)] muestran que este flujo es siempre inestable: Re. = 0.
Sin embargo, para Re muy pequeno, sélo son inestables las perturbaciones con
nimero de onda muy pequeiio (longitud de onda muy grande), para las que
la validez de la aproximacién de flujo casi paralelo (OU/0z = 0) hecha en esta
seccién es dudosa.” Un resultado similar se obtiene para un chorro bidimensio-
nal: es linealmente inestable para Re — 0o, y el nimero de Reynolds critico,
aunque no cero, es muy pequeiio (Re; ~ 4, a, ~ 0,2).

30.5. Capa limite de Blasius: inestabilidades y tran-
siciéon a la turbulencia

Dada su relevancia practica, combinada con su relativa sencillez, la capa
limite sobre una placa plana (solucién de Blasius, ver seccién 27.3) fue uno de
los primeros ejemplos para el que se resolvié la ecuacién de Orr-Sommerfeld.

"Resultados de estabilidad teniendo en cuenta que el flujo base no es estrictamente para-
lelo se veran en la siguiente seccién para la capa limite de Blasius.
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Figura 30.12: Curva neutra de estabilidad en el plano frecuencia-Re de la capa limite de
Blasius. (a): Resultados numéricos de Schlichting (1933; curva discontinua) y Shen (1954;
curva continua), y experimentales de Schubauer y Skramstad (1947; circulos); Q = w/Re,
Re = U6, /v (figura tomada de Panton, 1996). (b): Resultados numéricos teniendo en cuenta
la variacién del flujo base con ¥ obtenidos por Bertolotti, Herbert y Spalart (1992; curva
continua), junto con los resultados de la ecuacién de Orr-Sommerfeld (curva discontinua) y
diversos resultados experimentales [los circulos son los mismos que en (a), mientras los otros
simbolos corresponden a resultados experimentales mds recientes]; F* = 10° ox R = \/ m
(figura tomada de Bertolotti, Herbert y Spalart, 1992).
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Ac ~ 65

Figura 30.13: Esquema de las ondas de Tollmien-Schlichting.

La figura 30.12(a) muestra los primeros resultados aproximados de Schlichting
(1933) y la mejora de Shen (1954), junto con resultados experimentales. A dife-
rencia de los resultados mostrados en las figuras anteriores, en la figura 30.12
se representa la curva neutra de estabilidad para un anadlisis de estabilidad
espacial,® que es mas facil de reproducir experimentalmente al ser mas facil
excitar una frecuencia temporal que un nimero de onda espacial. Obviamen-
te, el nimero de Reynolds critico de ambos analisis, el espacial y el temporal,
coinciden. En la figura se observa que hay un acuerdo bastante bueno entre
experimentos y teoria. Sin embargo, a pesar de que los calculos numéricos de
la ecuacion de Orr-Sommerfeld se han ido refinando con el tiempo, a medida
que se ha tenido acceso a computadoras méas potentes, el nimero de Reynolds
critico [en la figura 30.12(a) se utiliza Re = Ué1/v, donde 6; es el espesor de
desplazamiento de la capa limite (27.43)] calculado con esta ecuacién resulta
ser Re. ~ 520, bastante superior al valor experimental Re. ~ 450. Para in-
tentar resolver esta discrepancia, se han tenido en cuenta los efectos que en
el andlisis de estabilidad tiene el hecho de que el perfil de velocidad no sdlo
depende de y, sino también de z (es decir, que el espesor de la capa limite
crece aguas abajo), lo cual da lugar a ecuaciones bastante mas complejas que
la de Orr-Sommerfeld. Algunos resultados relativamente recientes se presen-
tan en la figura 30.12(b). Aunque la consideracién de los efectos relacionados
con el hecho de que el flujo base no es paralelo mejora algo los resultados,
la discrepancia entre el Re. tedrico y experimental ain permanece como una
cuestion sin resolver completamente.

Cuando Re > Re. [es decir, T > (Re./1,72)?v/U], el flujo de Blasius se

8Es decir, tomando frecuencias w reales y niimeros de onda o complejos, estando la curva
neutra definida por a:(Re,w) = 0.
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hace inestable, produciéndose en ese valor de = las denominadas ondas de
Tollmien-Schlichting (TS para abreviar). Estas ondas bidimensionales son si-
milares a los vortices de Taylor considerados en la seccién anterior, con una
longitud de onda dada por el valor a. (figura 30.13). A medida que el flujo
avanza (el nimero de Reynolds aumenta), el flujo base combinacién del flujo
de Blasius y las ondas de TS se hace a su vez inestable frente a perturbaciones
tridimensionales 3 # 0, produciéndose un flujo que también es ondulado en la
direccién 2. A partir de aqui, el flujo experimenta una serie de transiciones de
inestabilidad mas o menos complejas, hasta que se hace completamente turbu-
lento (completamente irregular e impredecible) cuando el mimero de Reynolds
basado en 4, es aproximadamente 3000. Para simular estas transformaciones
del flujo hay que hacer uso de la teoria de estabilidad no lineal, es decir, no
se pueden usar las ecuaciones linealizadas de las perturbaciones, pues éstas
ya han crecido lo suficiente como para que la teoria de la estabilidad lineal
deje de ser valida. Las ecuaciones no lineales son lo suficientemente complejas
como para que ain hoy no se tenga una pintura detallada de los complica-
dos fenémenos que se producen en la transicién a la turbulencia de la capa
limite de Blasius, que es posiblemente el ejemplo relevante mas sencillo de
transicion a la turbulencia. Un esquema cualitativo de lo que se observa ex-
perimentalmente se muestra en la figura 30.14: Tras el flujo laminar inicial
(a), se producen las ondas bidimensionales de TS para Re > Re. (b); estas
ondas se hacen inestables, dando lugar a ondas de TS tridimensionales (c);
las ondas de TS tridimensionales van teniendo cada vez gradientes mas im-
portantes en la direccién 2, formandose vortices periédicos con forma de A (a
veces denominados de Kebanov), intensificindose la vorticidad en los vérti-
ces; en estos puntos de vorticidad intensa se producen de manera intermitente
erupciones de flujo turbulento (d), que da lugar a puntos turbulentos (e) con
fluctuaciones muy intensas de la velocidad; finalmente, la coalescencia de todos
estos puntos turbulentos da lugar a la capa limite turbulenta completamente
desarrollada (f), cuya descripcién matemadtica se dara en el capitulo 32. La
simulacién numeérica directa de las ecuaciones de Navier-Stokes para el flujo
de capa limite, que ha sido posible sdlo recientemente con el uso de poten-
tes ordenadores, ha permitido la identificacién y explicaciéon cuantitativa de
algunas de las estructuras anteriores, habiéndose propuesto ademds diversas
alternativas al esquema clasico anterior, pero quedando ain algunos puntos
sin explicar adecuadamente (para mas detalles, el alumno interesado puede
consultar, por ejemplo, Sherman, 1990 y Schlichting y Gersten, 2000).

En el capitulo 32, ademas de la estructura de la capa limite turbulenta, se
vera también la estructura del flujo turbulento en un conducto circular, que
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Figura 30.14: Esquema idealizado de la zona de transicién a la turbulencia en una capa limite
sobre una placa plana. Descripcién en el texto. (Figura adaptada de White, 1991.)

es quiza el flujo turbulento simple mas relevante desde el punto de vista in-
genieril. Conviene comentar aqui que la transicién desde el flujo de Poiseuille
en un conducto al correspondiente flujo turbulento tiene cierto parecido a la
que se acaba de describir para la capa limite, al menos en las iltimas etapas.
La diferencia fundamental estriba en que el flujo de Poiseuille en un conduc-
to es linealmente estable frente a todo tipo de perturbaciones infinitesimales
(no existe un Re. en el sentido que se ha discutido mds arriba). El flujo es
inestable frente a perturbaciones de amplitud finita, por lo que el analisis de
estabilidad (no lineal) es mucho mas complejo. Los experimentos y las simu-
laciones directas de las ecuaciones de Navier-Stokes (mds recientes) muestran
que el nimero de Reynolds critico depende de la amplitud de las perturba-
ciones, aumentando a medida que la amplitud disminuye (ver figura 30.1). El
flujo es incondicionalmente estable por debajo de Re =~ 2300, mientras que
si no se introduce ninguna perturbacion en el flujo (lo cual es practicamente
imposible tanto numérica como experimentalmente), el flujo permanece lami-
nar para cualquier nimero de Reynolds. En su experimento original, Reynolds
(1883) consiguié que el flujo fuese laminar hasta Re ~ 13000. Actualmente,
mejorando las condiciones de entrada, se han conseguido flujos de Poiseuille
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con nimeros de Reynolds mayores de 10°. Por iiltimo indicar que, obviamente,
las rugosidades de la superficie sélida favorecen la transicién a la turbulencia
(tanto en la capa limite como en el flujo en un conducto). Si la rugosidad rela-
tiva de la superficie es suficientemente grande, algunas de las etapas iniciales
de la transiciéon desaparecen.
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Capitulo 31

Descripcion matematica de
los flujos turbulentos

31.1. Descripcion determinista y estadistica de la
turbulencia

Se ha visto en la leccién 29 que incluso las fluctuaciones mas pequeiias de
la turbulencia ocurren en una escala (microescala de Kolmogorov) mucho ma-
yor que la escala del movimiento molecular. Experimentalmente se comprueba
que esto es cierto incluso en flujos hipersénicos, hasta niimeros de Mach del
orden de 15 [ver ecuacién (29.6)]. Por tanto, excepto en casos muy extremos
(M > 15), los flujos turbulentos pueden ser descritos apropiadamente por las
ecuaciones de-Navier-Stokes. Estas ecuaciones son deterministas, en el sentido
de que dadas la posicién y la velocidad de todas las particulas fluidas (en to-
das las escalas) en un instante t,, en principio existe solucién de las ecuaciones
para cada t > t,. Es decir, la turbulencia es un fenémeno deterrninista, a pe-
sar de lo intrincado e irregular de los movimientos turbulentos. Con el avance
espectacular en la capacidad y velocidad de los ordenadores, no parece tan le-
jano el que se pueda simular numéricamente cualquier movimiento turbulento.
Sin embargo, este panorama tan prometedor es algo engafioso ya que, debido
a la no linealidad de las ecuaciones, origen de las inestabilidades, cualquier
perturbacién infinitesimal de las condiciones iniciales da lugar a una solucién
sustancialmente diferente. Esto no sélo afecta a la computacién numérica, en
el sentido de que es imposible conocer con precision absoluta las condiciones
iniciales, sino que es algo mas profundo, relacionado con el indeterminismo
intrinseco y, por tanto, la impredecibilidad, de ciertos sistemas dindmicos no
lineales, como el movimiento de un fluido, en algunos rangos paramétricos. No
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obstante, la simulaciéon numérica directa esta dando resultados cada vez mas
interesantes en flujos con nimero de Reynolds moderado. Para altos nime-
ros de Reynolds, la simulacién sélo puede tratar las escalas mayores del flujo
[recuérdese que la microescala de Kolmogorov decrece a medida que aumen-
ta Re, ver ecuaciones (29.3)-(29.5)], y estos resultados estdn proporcionando
informacién muy valiosa sobre la estructura de la turbulencia. Pero la impre-
cisién asociada a las pequenas escalas y a las condiciones iniciales, amplificada
por la no linealidad de las ecuaciones, da lugar a que después de un cierto pe-
riodo de tiempo el flujo turbulento simulado difiera significativamente del flujo
real. Como lo expresé Lorenz (1963) en relacién a la prediccién atmosférica,
aunque podamos simular numéricamente el movimiento en las escalas grandes
y medianas (borrascas, huracanes, etc.), la imposibilidad de simular las pe-
quenas escalas hace que cualquier perturbacién pequeiia (como la producida
por el vuelo de una mariposa) cambie el comportamiento del flujo, de forma
que las predicciones atmosféricas no pueden ir mas alld de unos pocos dias.
Precisamente fue el meteorélogo Lorenz quien, en su famoso articulo de 1963,
encontrd caos en un sistema dinamico no lineal muy simple, con tan solo tres
grados de libertad y gobernado por un sistema de tres ecuaciones diferencia-
les ordinarias aparentemente muy sencillas, revolucionando asi la fisica de los
sistemas dindmicos no lineales.!

De lo anterior se desprende la conveniencia (y también la necesidad) de usar
métodos estadisticos para tratar la turbulencia, de los cuales nos ocuparemos
exclusivamente en lo que sigue. De hecho, el estudio estadistico de la turbulen-
cia es el mas antiguo (las ecuaciones de Reynolds que veremos mas adelante
datan de 1895). Obviamente, la simulacién numérica no ha sido posible hasta
el desarrollo de los potentes ordenadores modernos, y, ain asi, de acuerdo con
lo dicho anteriormente, hay que utilizar hipodtesis estadisticas para modelar las
escalas mas pequenas de la turbulencia si se quiere simular flujos con nime-
ros de Reynolds moderados y altos. Estas hipotesis introducen ruido de fondo
en la simulacién numérica, haciéndolas poco (o nada) precisas para tiempos
grandes. Por ello, a pesar de que, como se dijo antes, la simulacién numérica
estd proporcionando resultados muy interesantes, el tratamiento clasico es-
tadistico, complementado con hipétesis semiempiricas o fenomenoldgicas, ha
sido, y sigue siendo, muy util para resolver problemas ingenieriles, sobre todo
para aquellos problemas relacionados con flujos turbulentos en las inmediacio-
nes de paredes sdlidas, que son los inicos que se abordaran en las lecciones
siguientes.

La no integrabilidad de ciertos problemas dindmicos simples, como el problema de tres
cuerpos, era conocida, sin embargo, desde el siglo XIX.
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31.2. Movimiento medio y fluctuaciones

En el tratamiento estadistico clasico de la turbulencia las magnitudes flui-
das se descomponen en dos partes, un valor medio y una fluctuacién con media
nula. Asi, por ejemplo, la velocidad ¥(Z,t) se descompone en un valor medio
V(%) y una fluctuacién 7 (&, t),

T=V+, (31.1)
de forma que
. 1 t+-ty
V = Iim —/ adt (31.2)
to—00 Uy Jt

Las magnitudes medias (promediadas en el tiempo) se designardan mediante
una barra encima. Para simplificar la notacién, no se utilizaran vectores, sino
sus componentes. Obviamente el valor medio de las fluctuaciones es nulo,

t+to
vl = lim —/ (v; = Vi)dt=0 . (31.3)
o Jt

El uso de promedios temporales es la situacién usual que se presenta cuando
se hacen medidas experimentales, ya que éstas se realizan en un punto fijo
del espacio y en un medio estadisticamente estacionario pero normalmente
no homogéneo espacialmente. En un medio no homogeneo no seria apropiado
usar promedios espaciales, ya que éstos variarian de punto a punto. Por otro
lado, para que el promedio temporal tenga sentido, la integral (31.2) debe ser
independiente de t,; es decir, el flujo medio V; debe ser estacionario.?

Anélogamente a la descomposicion de la velocidad se hard para las demas
magnitudes fluidas. Por ejemplo la presién y la temperatura (se conside-
rard que el flujo es incompresible, con lo que la densidad es constante):

T=60+T , p=P+Yp, (31.4)

T'=p=0 a (31.5)

El valor medio de la derivada espacial de una variable es igual a la de-
rivada del valor medio, ya que el promediado se realiza integrando sobre un

periodo largo de tiempo, pudiéndose intercambiar la derivada espacial con la
integracién temporal. Por ejemplo,

2 Aunque sélo se considerararan en lo que sigue flujos cuyas propiedades medias son esta-
cionarias, la descomposiciéon de Reynolds también se puede usar para describir flujos turbu-
lentos cuyas medias no son estacionarias, siempre que el tiempo caracteristico de variacion
t. sea mucho mayor que el tiempo ¢, en el que se promedian las magnitudes fluidodindmicas.
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v _ OV dv; _ 9]
5z; Oz, ' Bm; Om O (31.6)

El promedio del producto de dos variables, como por ejemplo de dos compo-
nentes de la velocidad, seria:

wwy = (Vi + o) (V; + ) = ViV + o] (31.7)

Los términos producto de una fluctuacién y un valor medio desaparecen al ser
constante el valor medio y nulo el promedio de la fluctuacién. Si vgv;- # 0 se

dice que v] y vg estan correlacionadas, y si Tv; = 0, son estadisticamente in-
dependientes o no correlacionadas. Para que v} y v} estén correlacionadas, las
fluctuaciones de v} y v3 en el tiempo no pueden ser independientes estadisti-
camente, sino que, por ejemplo, durante el tiempo que una es positiva, la otra
tiene también que serlo durante la mayor parte de ese tiempo, y viceversa. Una
medida del grado de correlacién entre dos fluctuaciones v} y vg viene dada por

el coeficiente de correlacion

Cij = vl /(R (31.8)

que vale la unidad cuando v{ = v}, y cero si v; y v} no estdn correlacionadas.

Las cantidades 'v;_? y v_f son las wvariancias de las respectivas fluctuaciones.
Sus raices cuadradas son las desviaciones tipicas de las fluctuaciones y nor-
malmente se usan como velocidad caracteristica de fluctuacién de un flujo
turbulento.

31.3. Ecuaciones de Reynolds. Esfuerzos aparentes
de Reynolds

La descomposicién de las magnitudes fluidas en valores medios y fluctua-
ciones fue hecha por Reynolds (1895) con el objetivo de obtener ecuaciones
para las magnitudes medias. De esta forma, en vez de utilizar las ecuaciones
de Navier-Stokes para las magnitudes fluidas en cada punto y en cada instan-
te, que no serian integrables para un flujo turbulento en el sentido descrito en
la seccion 31.1, se utilizan las ecuaciones para los valores medios, las cuales,
con ciertas hipdtesis semiempiricas que veremos mas adelante, proporcionan
una informacién muy 1til sobre el flujo, sobre todo desde un punto de vista
ingenieril.
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Suponiendo, por simplicidad, que el flujo es incompresible, tomando el
valor medio de la ecuacién de continuidad V - ¥ y utilizando las definiciones y
resultados de la seccién anterior, se tiene que el flujo medio es incompresible:

ovi _
(')xi_

Restando esta ecuacién de Ov;/0z; = 0, se tiene que las fluctuaciones son
también solenoidales:

(31.9)

'
ng = 0. (31.10)

Anélogamente, tomando valores medios de la ecuacién de cantidad de movi-
miento (en ausencia de fuerzas masicas) se tiene

ov;  oP o aV; -
pVJ@Ij T om - o (“axj pvi”j) ’ (31.11)

donde, aparte de suponer que p = constante, se ha tenido en cuenta que el
flujo medio es estacionario y que

Ovi _,0Vi  Ov _ OVi O
Ufa_xj_"famj U]axj_VJazj'*'a () (31.12)

siendo la iltima igualdad consecuencia de (31.10). La ecuacién (31.11) para
el flujo medio es andloga a la ecuacién de cantidad de movimiento para el
flujo local, pero con un término adicional proveniente de la covenccién de la
cantidad de movimiento de las fluctuaciones de la velocidad. Este término se
ha escrito como la divergencia del tensor — pv{v;-, por lo que esta magnitud hace
las veces de un esfuerzo, similar al esfuerzo viscoso 19V;/0z;, pero que en vez
de ser consecuencia del transporte molecular de cantidad de movimiento, es
consecuencia del transporte de cantidad de movimiento por las fluctuaciones
turbulentas de la velocidad. Por ello se suele definir el tensor de esfuerzos
aparentes, o turbulentos, de Reynolds como

Ttij = —pUjv; . (31.13)

Los elementos diagonales de 7, son los esfuerzos normales (presiones) turbu-
lentos: —pvf?, —pvf? y pv3 , que suelen ser muy pequenos en la mayoria de
los flujos. Por el contrario, los elementos fuera de la diagonal, —pv] ;, i # 7,
es decir, los esfuerzos tangenciales turbulentos, suelen ser mucho maés impor-
tantes que los correspondientes esfuerzos tangenciales viscosos, pues, como se
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comenté en la leccion 29, el transporte turbulento es mucho mas efectivo que
el molecular.

La ecuacién de la energia, suponiendo por simplicidad que el flujo es in-
compresible, que ¢, y K son constantes (a = K/pc, = constante) y que no
hay disipacién viscosa ni aportes externos de calor, se escribe:

ot Jazj - 8xjaa:j ’

(31.14)

Utilizando la descomposicién (31.4) para la temperatura y promediando, se
llega a:

0 _ o[ 08

El vector cuya componente j es —pcpm es el denominado vector de flujo
de calor turbulento. Asi, desde el punto de vista de las magnitudes medias, el
flujo de calor es la suma de la contribucién del movimiento molecular y de las
fluctuaciones turbulentas:

00
g = —Ko—

oz; + pepU T . (31.16)

31.4. El problema del cierre

La descomposicién del flujo en un flujo medio y sus fluctuaciones ha sepa-
rado los efectos de las fluctuaciones en las ecuaciones d del flujo medio, apare-
ciendo un tensor de esfuerzos turbulento, 7¢;; = —pvjv J, y un vector flujo de

calor turbulento, q;; = pcpw, en las ecuaciones de cantidad de movimiento
y de energia. Estas magnitudes son desconocidas, por lo que el problema no
estd cerrado. Se podrian escribir ecuaciones para esas magnitudes, pero apa-
recerfan nuevas incégnitas del tipo v/v’ vk y v T ’, y asi sucesivamente. Por
ello, la forma habitual de cerrar el problerna sobre todo si uno quiere resol-
ver problemas practicos en los que ocurren flujos turbulentos, es mediante el
uso de hipdtesis fenomenoldgicas o semiempiricas para el tensor de esfuerzos
y el vector flujo de calor turbulentos. Existen diversas aproximaciones mas o
menos adecuadas para describir distintos tipos de problemas (ver referencias).
A continuacion se vera sélo una aproximacién relacionada con la denominada
longitud de mezcla de Prandtl, que sobre todo tiene utilidad para describir
flujos turbulentos casi unidireccionales.
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31.4.1. Longitud de mezcla

La longitud de mezcla en flujos turbulentos es un concepto que proviene
de la analogia formal entre la descomposicién de Reynolds (31.1) y la des-
composicion de la velocidad molecular que se hace en la teoria cinética de
gases (ver leccién 9) en una velocidad media o macroscépica y la velocidad de
fluctuacién molecular [ecuacién (9.6)]. Ahora la molécula es sustituida por la
particula fluida fluctuante. El concepto equivalente a la longitud de mezcla es
el camino libre medio molecular entre colisiones A. La analogia se puede hacer
de una forma rigurosa, pero aqui se presentard brevemente de una forma in-
tuitiva (para un desarrollo mucho mas detallado ver, por ejemplo, Schlichting
y Gersten, 2000).

Como el concepto de longitud de mezcla encuentra sobre todo aplicacién
en los flujos casi unidireccionales (capa limite, flujo en conductos, chorros,
etc.) que, por otra parte, son los tinicos flujos turbulentos que se consideraran
con algin detalle, se supondra que movimiento medio es, en primera appro-
ximacién, V ~ U(y)é;. La viscosidad cinemaética turbulenta v; se define
como

— ou
7= —pu'v = puta—y , (31.17)

donde u’ y v’ son las componentes de la velocidad de fluctuacién en las di-
recciones T e y, respectivamente. A diferencia de v, que depende sdlo de las
propiedades del fluido, v; depende mayormente del flujo y, por tanto, de la
posicién de la particula fluida. Pero, andlogamente a la viscosidad cinematica
molecular, que para un gas es del orden del producto del camino libre medio
entre colisiones y la velocidad de agitacién molecular, v ~ Aer [ver ecuacio-
nes (8.4) y (9.61); cr es del mismo orden que la velocidad del sonido a], se
supone que v; es del orden del producto de una longitud de mezcla, [,,,
o longitud que recorre una particula fluida fluctuante antes de que pierda su
identidad mezclandose con las particulas fluidas de su entorno, y una velocidad
caracteristica de fluctuaciones u*,

v ~ lpu® . (31.18)
De esta forma se tiene que
., OU
Tt = pu lm@ . (3119)

Prandtl relacioné la velocidad fluctuante v* con el médulo del grﬁiiente de
velocidad, u* ~ 1,,,|0U /8y| (lo cual se obtiene de (31.17) haciendo [u/v/| ~ u*?),
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llegando a la expresion:

oU | oU
9y | Oy

La utilidad de esta expresién depende, obviamente, del grado de precision
con que se evalie la longitud de mezcla (que es en si un concepto algo impre-
ciso) en cada tipo de flujo. Para movimientos turbulentos cerca de una pared
sélida (capa limite turbulenta) se vera en la leccién siguiente que l,, ~ Ky,
donde y es la distancia perpendicular a la pared y « es una constante que
se obtiene experimentalmente. Para una capa de mezcla, para un chorrro o
para una estela, bidimensionales, de anchura b(z), I,» ~ K1b, donde k; es otra
constante a determinar experimentalmente. Ambas constantes, K y k; son
universales, en el sentido de que no dependen ni del fluido ni de la intensidad
turbulenta. Como la longitud de mezcla es también una longitud caracteristica
de las fluctuaciones turbulentas (de mayor escala), de estos ejemplos se sigue
que los torbellinos en una capa limite crecen de tamano a medida que se alejan
de la pared, mientras que su tamano no depende de la coordenada transversal
para capas de mezcla, chorros o estelas.

T, = —puv’ = pl?, (31.20)

31.4.2. Analogia de Reynolds

Para determinar el flujo de calor turbulento también se puede hacer uso
del concepto de longitud de mezcla. Para el flujo de calor transversal en un
movimiento casi unidireccional, se tiene

ou | 99 (31.21)

12
oy | oy’

g = pepu'T! = —pcpat@ = —pcp'ulm@ = —pcpln,
oy oy

donde a; es la difusividad térmica turbulenta. Sin embargo, en el problema
que se estudiard en las leccion siguiente de la capa limite turbulenta, se suele
utilizar la analogia de Reynolds y expresar el flujo de calor en funcién del
esfuerzo turbulento.

Esta analogia ya se considerd en el capitulo 28 en relacién a la capa limite
laminar. Se vié que, estrictamente, era valida para el flujo sobre una placa
plana (gradiente de presién nulo), con temperatura de la pared constante, para
un fluido con Pr = 1. Esta tltima condicién es muy restrictiva en los flujos
laminares (transporte exclusivamente molecular), pero no en los turbulentos,
ya que las difusividades moleculares (de cantidad de movimiento y energia)
son despreciables frente a las turbulentas, y al ser el transporte turbulento
debido a las fluctuaciones de la velocidad, con igual intensidad se transporta
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cantidad de movimiento y energia. Por tanto, el nimero de Prandtl turbulento
es practicamente igual a la unidad siempre. De hecho, comparando (31.20) con
(31.21) se tiene

o ~ul, , Pri=—=1 . (31.22)

Asi, teniendo en cuenta que en la mayoria de las ocasiones v < v; y a < oy,
las ecuaciones y condiciones de contorno de la capa limite turbulenta sobre
una placa plana se escriben (V = Ué; + Ve, |V| < |U]):

ou oV
5 Ty =0 (31.23)
ou ou 0 ou 0 ou
UBar +V8y _G_y(V_H/t) Oy _3_y(yt 8y) ’ (81.24)
00 o6 0 00 0 00 0 00
U% + Vé_:l; = ‘@(a‘*‘ at)b_y = 8_3/ (ata—y) 5 a—y (Vta—y> ) (3125)

y=0, 0=0, U=V=0 y/d>00, U=U, 06=0. (31.26)

Las ecuaciones y condiciones de contorno para U y para 6 son analogos, veri-
ficandose U.(00/0y)y—0 = (6p — 6e)(0U /By)y=0. Utilizando la terminologia de
la seccion 28.3, se tiene

i ~ _qi_ — _ (ae/ay)y=0 . Sta pCpUe(ee — ep) (31 27)
T T (0U /0y)y=0 CpU2/2 ' '
Es decir,
Sta=Cy/2 (31.28)

donde ahora Sta y Cy son el nimero de Stanton y el coeficiente de friccién
basados en el flujo de calor y esfuerzo turbulentos.

La analogia anterior no tiene la restriccion del nimero de Prandtl que tenia
en el caso laminar. Sin embargo, la hipdtesis hecha de que las difusividades
turbulentas son mucho mayores que las moleculares, aunque valida en casi la
totalidad de la capa limite turbulenta, no lo es en una capa muy delgada (en
relacién al espesor de la capa limite) en las proximidades de la pared (deno-
minada subcapa laminar, ver leccién siguiente), donde el transporte molecular
puede ser muy importante y las fluctuaciones turbulentas muy pequenas, por
lo que v y a pueden ser del mismo orden, o incluso mayores, que v; y o4.
Afortunadamente, esta subcapa es tan delgada que en muchas ocasiones su
espesor es del mismo orden que el tamaino de las rugosidades de la superficie,
no existiendo en tales casos. Cuando la subcapa laminar existe, la analogia de
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Reynolds anterior deja de ser estrictamente valida, siendo necesario corregirla
mediante otras aproximaciones.

31.5. Vorticidad en los flujos turbulentos

31.5.1. Vorticidad y esfuerzos de Reynolds

Antes de pasar a escribir la ecuacion de la vorticidad para flujos turbulentos
utilizando la descomposicion de Reynolds,

wi=Q+uw , W =0, (31.29)

es interesante relacionar los esfuerzos de Reynolds con la vorticidad. Para ello
la ecuacién de cantidad de movimiento se escribe en la forma (como en toda
esta leccion se supone que el flujo es incompresible y no se consideran las
fuerzas masicas):

% = —le—Vv2/2+17/\cTJ+VV217 . (31.30)

ot p
El término ¥ A & es crucial para los flujos turbulentos, representando una
fuerza de vorticidad andloga a una fuerza de Coriolis debida al propio giro
de las particulas fluidas (el factor 2 no aparece puesto que & es dos veces la
velocidad angular de giro de una particula fluida centrada en el punto &, ver
seccién 4.2). Sustituyendo (31.1) y (31.29) en la ecuacién anterior y tomando
valores medios, suponiendo, como se ha hecho antes, que el flujo medio es
estacionario, se llega a la ecuacién (se pasa a notacién con subindices):

0%V,

_— 31
6xj8zj (31 3 )

0= —% (I; +=V;V; + 2vJv]) + €ijk (V]Qk +W) +v
Comparando con (31.11) se observa que el término de los esfuerzos de Rey-
nolds se descompone en dos términos, un gradiente de la presién dindmica de
las fluctuaciones, 1 '2 y un término de interaccién entre las fluctuaciones de la
velocidad y de la vort1c1dad eukv ‘w;,. Como se dijo anterlormente la contri-
bucién turbulenta a la presién dindmica suele ser insignificante, 1 3 J éVf,
por lo que las fuerzas originadas por los esfuerzos de Reynolds estan asocia-
das, principalmente, a la‘interaccion entre vorticidad y velocidad. Para ver
mas facilmente esta interaccidn, se considerard, como en las secciones prece-
dentes, un flujo medio bidimensional casi unidireccional (V; > V,,V3 = 0)
con derivadas espaciales a lo largo del movimiento despreciables frente a las
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transversales (9/0x1 < 0/0z3). Con estas hipétesis la inica componente no
nula de la vorticidad es Q3 = dVo/dx1 — OV, /0y ~ —OV; /Oxs.

En la componente segin la direccién z; de la ecuacién (31.31), los términos
que contienen productos de la vorticidad media son V223 y —V3Q,. El segundo
es nulo (V3 = Q3 = 0), mientras que el primero vale —V,0V) /02 + V20V, /0.
Por otro lado, =0 (§V;V;) /0a1 = —Vi0V1 /021 ~V20Vs/dz1. Asi, los segundos
sumandos se cancelan, quedando la ecuacién

Vi g‘/ + Va gz; = —%gﬁ + vhwh — viwy . (31.32)
Comparando esta ecuacién con la componente segin z; de (31.11) y teniendo
en cuenta que 61}1 /0x1 < O(vivh)/Oz2, se tiene la siguiente expresién para la
componente —uvjvs del esfuerzo de Reynolds:

0
Ft
Z2
Para tener una idea del significado de cada uno de los dos términos invo-

lucrados, se puede hacer uso de la teoria de la longitud de mezcla, apropiada
para estos flujos casi unidireccionales, y suponer, de acuerdo con (31.19), que

—vvh) = vhwh — viwh . (31.33)

—vvh ~ ul,,OVi /02, 31.34
142

donde la longitud de mezcla [,,, es un tamano caracteristico de las fluctuaciones
(vértices) y u una velocidad caracteristica de las fluctuaciones, que normal-
mente depende muy poco de la coordenada transversal z. Asi,

- 2 )
(_v/lvé) ~ Ulmﬂ +u 6l_8_V1_ o “‘Ulma o uﬂsal_m,

—_— 1.
8.1:% (9172 0xq 02 0o S

Ozy

donde se ha hecho uso de Q3 ~ —9V;/dzx,. Por otra parte, por analogia con
(31.34), se puede escribir

iy ~ —ulym O3 /01 , (31.36)

no existiendo expresién andloga para viwj puesto que Q2 = 0. De esta for-
ma, salvo constantes numéricas que no se estan considerando, comparando las
expresiones anteriores se tiene que

Olm

B (31.37)

vhwh ~ ufl3——
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Es decir, la fuerza originada por los esfuerzos de Reynolds se puede descompo-
ner en dos partes: una debida al transporte de vorticidad [ecuacién (31.36)] y
otra cuyo origen es el estiramiento de los vortices, que al incrementar la vorti-
cidad de los mismos aumentan la velocidad de fluctuacién [ecuacién (31.37)].
En algunos flujos como los chorros, estelas y capas de mezcla, I, ~ constante
a través del flujo, por lo que la fuerza correspondiente al estiramiento de los
vértices es despreciable y la fuerza dada por el gradiente de los esfuerzos de
Reynolds se puede interpretar como exclusivamente debida al transporte de
vorticidad. Por el contrario, para los flujos casi unidireccionales en las proximi-
dades de una pared sdlida, que son los que se consideraran con mas detalle en
la leccién siguiente, la longitud caracteristica de los vértices [, varia transver-
salmente (linealmente con la distancia a la pared), y el esfuerzo de Reynolds no
es exclusivamente debido al transporte de vorticidad, sino que hay una contri-
bucién importante debida al estiramiento de los vortices. Se vera en la leccién
siguiente que el esfuerzo de Reynolds permanece practicamente constante a
través de gran parte de la capa limite turbulenta, por lo que la vorticidad
media 23 también es constante. De acuerdo con lo visto anteriormente, para
que esto ocurra, la ganancia de vorticidad media debida al transporte neto de
vorticidad tiene que compensarse con la pérdida de vorticidad media debida
al transporte de vorticidad originado por el estiramiento de los vértices por
las fluctuaciones de la velocidad. Todo esto quiza se vea mas claro a partir de
la ecuacion de la vorticidad, que se considera a continuacion.

31.5.2. Ecuacion de la vorticidad en flujos turbulentos
Para un flujo incompresible, la ecuacion de la vorticidad se escribe:

B RE
Ya se describié en la leccién 20 el significado fisico de los dos términos del se-
gundo miembro: generacién de vorticidad debido al estiramiento de los vortices
producido por el gradiente de velocidad y difusién de la vorticidad por viscosi-
dad. El primero de estos dos términos es el responsable, como ya se comentoé en
la leccién 29, de la cascada de energia entre las escalas turbulentas mas gran-
des y escalas cada vez mas pequenas, hasta que los vortices son tan pequenos
que el término viscoso ya no es despreciable y disipa la vorticidad. El efecto
de éste término & - V¥, aunque ya se discutié con detalle en el capitulo 20
cuando se consideraron los teoremas de Helmholtz, puede quiza hacerse aun
mas claro si se tiene en cuenta la descomposicion de V¥ en su parte simétrica y
antisimétrica hecha en la leccién 4, V& = 5+-£, donde la parte simétrica 5 es el

G- Vi +vVis. (31.38)
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tensor de velocidad de deformacion y la parte antisimétrica € est4 relacionada
con la vorticidad & mediante G- € = & A @ [ecucién (4.7)] para cualquier vector
a@. Por tanto, - £ =0y & - V¥ = & - ¥, de donde queda claro que este térmi-
no representa la generacién (o destruccién) de vorticidad por estiramiento (o
acortamiento) de los vértices producida por el campo de velocidad.

Sustituyendo la descomposicién de Reynolds para ¥ y & en (31.38) y to-
mando valores medios se tiene

o O, v, o 820,
'75?3‘ J 8 8 wj ailfj + V@mjaxj ! (3139)

donde, como anterlormente, se ha supuesto que el flujo medio es estacionario y
se ha utilizado la notacién de subindices. Como V -& = 0, se tiene que tanto Q
como &' son también solenoidales. De la ecuacién de continuidad, ¥ también
lo es, de donde

ow! 0 —
— — — (v
V5 9z, = Bz (viw;) (31.40)
, Ov]

w; oz, &vj = (wjvg) . (31.41)
El término dado por (31.40) es andlogo al término de los esfuerzos de Rey-
nolds en la ecuacién para V;, y es debido al transporte medio de w! a través
de su interaccién con las fluctuaciones de la velocidad v; en la direccién de
los gradientes 8/0x;. Por supuesto, este término cambia la vorticidad media
Q,; sélo si W cambia en la direccién zj, de forma andloga a un transpor-
te molecular. El término (31.41) representa la produccién (o eliminacién) de
vorticidad media €2; debido al estiramiento de los vértices fluctuantes causado
por las fluctuaciones del tensor de velocidad de deformacién.

Para comparar estos términos con lo visto en la seccién anterior, se supone
un flujo casi unidireccional como el alli considerado: V3 = Q; = Qy = 0,
0/0z3 = 0,0/0z1 < 8/0x3. Los términos (31.40) y (31.41) correspondientes
a la ecuacién para (23 son, en primera aproximacion,

EX —
1273 ~ (vl 4
% (91']' - 6.732 (”zws)a (31 2)
2% 2 o (31.43)

j (?x] " Oxa
Los productos vhwy y véwz estdan relacionados con el gradiente del esfuerzo
de Reynolds mediante (31.33): vyws se interpretaba como la fuerza originada
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por el transporte de w§ por v5 en un gradiente medio 0923/0z2, mientras que
vgwy era interpretado como la fuerza asociada a los cambios de tamaiio de
los torbellinos en un flujo con una variacién de la escala de longitud. Esta
ultima fuerza, que se dijo era consecuencia del estiramiento de los vortices, ve
confirmada esta interpretacion por (31.43), ya que su gradiente transversal es
una fuente (o sumidero) de vorticidad media.
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Capitulo 32

Turbulencia en presencia de
paredes

32.1. Capa limite turbulenta

La tunica aplicacién practica de un flujo turbulento que se va a considerar
en este curso es el flujo turbulento en conductos. En particular, se calculara el
esfuerzo de friccién que la pared de un conducto ejerce sobre un fluido en
movimiento turbulento completamente desarrollado en su interior, cuyo cono-
cimiento es esencial para calcular la potencia necesaria para vehicular dicho
fluido por el conducto. El intercambio de calor entre la pared del conducto y
el fluido se calculara mediante la analogia de Reynolds una vez conocida la
friccién. Pero antes de pasar a considerar este problema es conveniente tener
una idea previa sobre la capa limite turbulenta.

Las ecuaciones para la capa limite bidimensional e incompresible sobre una
placa plana (gradiente de presién nulo) ya se escribieron en la seccién 31.4.2.
La capa limite de velocidad esta gobernada por las ecuaciones siguientes:

ou oV
ey al¥ (32.1)
ou ou _ @ (U —
U8x+V6y_8_y(U8y uv), (32.2)
y=0 , U=V=0 ; y/ld—ooo , U=U,. (32.3)

Para resolver este problema, tradicionalmente se suele utilizar un modelo mul-
ticapa debido a Prandtl y von Karmén, entre otros. Segin este modelo, la
estructura de la capa limite turbulenta se divide en tres regiones mas o menos
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diferenciadas, en cada una de las cuales alguno (o varios) de los términos de
la ecuacién de cantidad de movimiento (32.2) es despreciable, simplificindose
su solucién. Estas soluciones mas simples en cada capa acoplan unas con otras
asintéticamente y dan lugar a la estructura completa de la capa limite.

Para definir las distintas escalas, se define una velocidad caracteristica u*
asociada al esfuerzo de friccién en la pared 7,

oUu
u* = (n/p)'? , m=u (———) . (32.4)
dy y=0
Se supondra que u* es el orden de magnitud de la velocidad de las fluctuaciones
de mayor tamano; es decir,

| — w'V'| ~ u*?, (32.5)

lo cual se comprobard a posteriori. Ya se dijo en la seccién 31.5.1 que los
experimentos muestran que esta velocidad caracteristica apenas depende de
la coordenada transversal y. Comparando el primer y segundo miembro de la
ecuacién de cantidad de movimiento (32.2) se tiene que

U2 u* 0
77 a”\[ﬁ“’ (32.6)

donde L es la longitud caracteristica a lo largo del movimiento y 6 es el espesor
caracteristico de la capa limite.

Muy cerca de la pared (y — 0) es obvio que el término de esfuerzos viscosos
es dominante en la ecuacién (32.2), de donde

0 [ oU
— ~0. 32.7
Ay (U 8y) (827)
Es decir,
v~ ~ constante = 2 = u*2, (32.8)
Jy p
Teniendo en cuenta la condicién de contorno U(y = 0) = 0, se obtiene el perfil

lineal de velocidad

=—7 (32.9)

U uy
u*

que se suele escribir como

+
I

g
+

IS
|
<
S

I

U
= yt=2Y, (32.10)



CAPITULO 32. TURBULENCIA EN PRESENCIA DE PAREDES 573

Esta solucién es vilida hasta una distancia a la pared y del orden de v/u*,
puesto que para y ~ v/u*, U ~ u*, y el término de esfuerzos aparentes de
Reynolds se hace tan importante como el de esfuerzos viscosos:

V@U vu*
Oy v/u*

Asi, la solucién lineal (32.9) [0 (32.10)] es vdlida para y < v/u* (y* < 1). Esta
regién del flujo cerca de la pared donde los esfuerzos viscosos son dominantes y
la velocidad media viene dada por (32.9) se suele denominar subcapa viscosa
o subcapa laminar. Su espesor, del orden de v/u*, constituye una fraccién
muy pequena del espesor total de la capa limite:

w?~ | —u| . (32.11)

v

u*é

Para v/u* € y < 6, de (32.2) se desprende que los esfuerzos aparentes

de Reynolds son dominantes frente a los esfuerzos viscosos y, por otra parte,

también son dominantes frente a la convecciéon de cantidad de movimiento

media, puesto que |0(—u/v)/0y| ~ u*?/y > u*?/5 ~ U%/L ~ |UBU /dz|. Por
tanto, la ecuacién de cantidad de movimiento se simplifica a

<1 . (32.12)

—a —
%- =0, —u'v' ~ constante, (32.13)

donde la constante vale 7,/p = u*? para que acople con la solucién en la
subcapa viscosa cuando y — v/u*. Es decir,

—uh ~u*?, (32.14)

lo cual corrobora la hipétesis (32.5). Se observa que el esfuerzo es constante
cerca de la pared, lo cual fue introducido como hipdtesis por Prandtl, per-
mitiendo asi obtener la solucidon universal del perfil de velocidad turbulenta
cerca de la pared que estamos considerando. Para ello, Prandtl hizo uso de
su concepto de longitud de mezcla, suponiendo que, cerca de la pared, dicha
longitud es proporcional a la distancia a la misma:

v = It = kyu®, (32.15)

donde k es una constante universal. Sustituyendo en (32.14),

—ul = utg—g = h:u*yé;—g = u*?, (32.16)

proporciona un perfil logaritmico para la velocidad:
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v 1
ut = — =-lny+C. (32.17)
u K
Esta expresion se suele escribir
+_ 1 +
vt =—Ilny" + B, (32.18)
K

donde tanto C como B = C + (Inv/u*)/k son constantes en principio arbi-
trarias, al igual que k. La comparacion con datos experimentales cerca de la
pared demuestran que k ~ 0,41 y B ~ 4,9 [ver figura 32.1(a)]. La constante
se suele denominar constante de von Karman, quien obtubo (32.18) inde-
pendientemente de Prandtl por otro procedimiento. A esta regién de la capa
limite se le suele denominar subcapa intermedia o subcapa logaritmica.

Se podria haber obtenido directamente una solucién valida tanto para la
subcapa laminar como para la intermedia sin mas que suponer y < 4, en cuyo
caso el primer miembro de (32.2) es despreciable frente al segundo, teniéndose

o —
I/@ — u/v' = constante = 7,/p = u*? (32.19)
Sustituyendo (32.15), se llega a
ou™t
+ —
cuya integracién con la condicién u*(y* = 0) = 0 proporciona
ut = %ln(l +ryt) . (32.21)

Para yt < 1 (y < v/u") esta expresién tiene como limite la ley lineal (32.10),
mientras que para y* > 1 (y > v/u't), ut = In(ky*)/k. La constante ex-
perimental B ~ 4,9 en (32.18) no coincide con el valor (Ink)/x dado por la
expresion anterior debido a que al ser k¥ una constante pequena, la aproxima-
cién In(1 + kyt) ~ In(ky™) no es demasiado correcta [aparte de que (32.15)
no es una ley exacta, sino una aproximacion, y los experimentos ajustan las
constantes k y B por separado, no conjuntamente].

Para y ~ 4, el movimiento viene gobernado por un balance entre la convec-
cién de cantidad de movimiento exterior y los esfuerzos turbulentos originados
en el interior. La ecuacién que habria que resolver seria (32.2) pero sin el
término de esfuerzos viscosos (recuérdese que la capa limite laminar se hace
turbulenta para Ued/v > 600, aproximadamente; al ser un nimero de Rey-
nolds muy grande, los esfuerzos viscosos son despreciables a distancias de la
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Figura 32.1: (a): Perfil de velocidad en un flujo turbulento cerca de una pared lisa [ecuaciones
(32.10) y (32.18)] y comparacién con los experimentos (puntos). La expresién potencial u* =
8,3 (y*)l/ 7 se obtiene a justando los resultados experimentales para las subcapas intermedia
y externa (figura tomada de Hinze, 1975). (b): Valores experimentales de la velocidad en
una capa limite turbulenta sobre una placa plana, donde se aprecia que la ley de defecto de
velocidad se satisface. Obsérvese que la ley de defecto de velocidad es valida incluso para
superficies rugosas (cuadrados, tridngulos y rombos), ya que la rugosidad sélo afecta a la
solucién muy cerca de la pared (figura tomada de Monin y Yaglom, 1971).
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pared del orden de §). Esta ecuacién no se puede resolver analiticamente debi-
do a que la aproximacién para los esfuerzos de Reynolds (32.16) no vale lejos
de la pared, y no existe ninguna correlacién simple para ellos. Por tanto, la
solucién en esta region exterior, que constituye la mayor parte de la capa
limite, se debe obtener experimentalmente. Los experimentos, sin embargo, se
simplifican notoriamente debido a que el perfil de velocidad en esta region (de
forma mas precisa, U — U,) no depende de la viscosidad. Asf,!

U-U,=F(@u*,6y,U.), (32.22)

que en forma adimensional se escribe

U_Ue_ g Ue
- _f<5, u*> . (32.23)

Como U, /u* > 1 [ecuacién (32.6)] se puede eliminar la dependencia de (U —
U.)/u* con Ue/u* en primera aproximacion [de hecho, si se escribe (32.1)-(32.3)
en términos de U — U, U, desaparece del problema), quedando

U_Ue
u*

~ f (%) . para y=O0(), (32.24)

que es la denominada ley de defecto de velocidad. Esta ley esta amplia-
mente corroborada por los experimentos [ver figura 32.1(b)].

Resumiendo, la estructura de la capa limite turbulenta sobre una placa
plana lisa se puede dividir en tres regiones diferenciadas:

(a) Subcapa laminar o viscosa, donde la velocidad satisface la ley lineal
ut~yt, ¢yt <5, (32.25)
(b) Subcapa intermedia o logaritmica,
1
u+zzlny++B, 5<yt <30. (32.26)

(c) Regioén exterior,

U-U,

u*

~f (%) . yt>30. (32.27)

'Obsérvese que la densidad p no aparece en el problema (32.1)-(32.3).
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Los valores limites de y* para los que son vélidos los distintos perfiles
de velocidad anteriores estan sacados de resultados experimentales [ver figura
32.1(a)]. Obsérvese que el rango de validez del perfil lineal (32.25) se extiende
mucho més alld de y* < 1. Obsérvese también que el espesor de las dos
primeras subcapas, y* ~ 30, constituye una fraccién muy pequeiia del total
del espesor de la capa limite [como se puede apreciar en la figura 32.1(b)],
puesto que es equivalente a y/é = 30v/du*, siendo du*/v > 1. Concretamente,
este espesor suele constituir alrededor de un 10 por ciento del total. Esto no
quiere decir que la solucién en esas subcapas no sea importante, ya que, como
se vera en la seccion siguiente, permite obtener la friccién que la pared ejerce
sobre el fluido (recuérdese que 7, = pu*?) en funcién de la velocidad exterior.
Ma4s concretamente, el coeficiente de fricciéon Cy en funcién del nimero de
Reynolds. De hecho, las leyes (32.25) y (32.26) son universales, puesto que no
dependen de lo que ocurre fuera de la capa limite. Por ello también valen para
el perfil de velocidad cerca de la pared en el flujo turbulento en un conducto.
Sin embargo, este ejercicio de hallar el coeficiente de fricciéon a partir del perfil
de velocidad sélo se hara para el caso del flujo turbulento en un conducto
circular (seccién siguiente), ya que es el caso mas interesante desde un punto
de vista ingenieril (para el calculo del coeficiente de friccién en una placa plana,
y otras capas limites, se puede consultar, por ejemplo, Schlichting y Gersten,
2000).

Para terminar esta seccion se debe comentar que trabajos maés recientes
[ver, por ejemplo, Barenblatt (1996) y Pope (2000)] han demostrado que la
ley logaritmica (32.26) se puede considerar como una aproximacién de una
expresién mas general en la que ut depende, no sélo de y*, sino también del
nimero de Reynolds U.4/v. En particular, (32.26) constituye una envolvente
aproximada de las distintas curvas u* (y*) para los distintos nimeros de Rey-
nolds. La teoria subyacente a esta expresion maés general proporciona, ademas,
la constante de von Karman de forma tedrica como & = 2/(v/3e). Sin embar-
go, como la expresion logaritmica universal (32.26) ha proporcionado buenos
resultados desde un punto de vista ingenieril desde los tiempos de Prandtl y
von Karman, no se considerara aqui esa expresion mas general, pues es mucho
mas complicada y, ademads, todavia no esta exenta de controversia algunas de
las hipétesis que utiliza.

32.2. Flujo turbulento en un conducto circular

En esta seccion aplicaremos los conceptos y soluciones anteriores sobre la
turbulencia en las proximidades de paredes sélidas para hallar una expresion
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que nos relacione la friccién en un flujo turbulento en el interior de un conducto
con el caudal que circula por él.

Suponiendo que el flujo medio es puramente axial, V = Ué,, donde z es
la coordenada a lo largo del conducto, y siendo %' = u'é; + v'é, + w'éy el
vector de velocidad de fluctuacion, las ecuaciones de Reynolds de continuidad
y cantidad de movimiento en las direcciones €; y €, se escriben (por supuesto
en coordenadas cilindricas, suponiendo que el fluido es incompresible):

oUu
— =0, (32.28)
_ 1P 190 oU o
Sk o (a— ‘““’) ' (32.29)
w’2 _ 13P 1 8 2
_T__;W_;E(rv ). (32.30)

Como hay simetria azimutal, la primera ecuacién nos dice que la velocidad
media es funcién sélo de r, U = U(r), hecho que se ha utilizado en las otras
dos ecuaciones para anular idénticamente la conveccion de cantidad de movi-
miento. La ecuaciéon de cantidad de movimiento en la direcciéon radial puede
integrarse con respecto a 7:

R /2 _ ,UT2

P-Pp+pﬁ—p/ ——dr=0, (32.31)
T

donde F, esla presién en 7 = R (pared del conducto). Para un flujo turbulento
completamente desarrollado, las fluctuaciones no dependen de la coordenada
axial z, y de la ecuacién anterior se tiene que

OP 0P,

dr Oz
Es decir, la variacién de P con z es la misma para cualquier 7. Sustituyendo en
la ecuacién de cantidad de movimiento en la direccién axial e integrando con
respecto a r una vez, se obtiene (multiplicando previamente dicha ecuacién
por 1):

(32.32)

o3 or + vros = ru'v’ = constante = 0, (32.33)

siendo la constante de integracion nula puesto que para r = 0 lo es el primer
miembro de la ecuacion.

Para utilizar los resultados de la seccién anterior es conveniente usar la
distancia a la pared, y = R — r, en vez de r. La ecuacién (32.33) se escribe
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ua—g +u + —="2 -0, (32.34)

Particularizando esta ecuacién en y = 0,

oU R 0P, 2
e = u*2, 32.3
v %yy-_—o 2p Oz “ ( 2

donde u* = |/7p/p es la velocidad caracteristica de fluctuacién asociada al
esfuerzo de friccién en la pared. Sustituyendo en (32.34),

Tp
p

uZ—Z +u'v = u*? (1—{%% : (32.36)

Para escribir esto en forma adimensional se define
_y +-U 32.37
77 — R 3 u - U k] ( © )

llegandose a

—, (32.38)

donde

- (32.39)

es el nimero de Reynolds asociado a la velocidad de fluctuacién, que es mucho
mayor que la unidad debido a que la longitud caracteristica donde los efectos
de la viscosidad molecular son importantes, v/u*, es mucho menor que el radio
del conducto.

El hecho de que Re* > 1 permite resolver la ecuacién (32.38) en dos re-
giones bien diferenciadas, andlogamente a como se hizo en la seccién anterior
para la capa limite: una capa delgada cerca de la pared, donde n ~ v/u*R <« 1
(y ~ v/u*), y la regi6n externa donde n ~ 1 (y ~ R). La primera de ellas
incluye la subcapa viscosa y la region logaritmica intermedia considerada an-
teriormente, mientras que la segunda es andloga a la regién externa gobernada
por una ley de defecto de velocidad.

Para la capa préxima a la pared (n ~ 1/Re* < 1), el segundo miembro
de (32.38) se reduce a la unidad, en primera aproximacién. Reescalando la
variable  mediante
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nt =nRe* =Y~ (32.40)

14

que es de orden unidad en esta capa, la ecuaciéon queda,

dut  uv
dnt  u*?

=1 (32.41)

Si ahora se utiliza la hipétesis de longitud de mezcla de Prandtl [obsérvese
que y tiene direccién opuesta a r, y por ello el cambio de signo en relacién a
(32.16)]

- ou . OU 2 4 out
v = Vt(—,?—y— = KU ygy— = Ku*“n o (32.42)
se tiene,
du*
1 H)— = .
(1+ Ky )d7;+ 1, (32.43)

que debe resolverse con la condicién de contorno
wnT =l==0 , (32.44)
obteniéndose la ley logaritmica
+_ 1 +
ut =~ In(1+kn™). (32.45)

Para nt < 1 (y < v/u*), esta expresion se reduce a la ley lineal de la subcapa
laminar:

+

U +_ Yyu
w o=

u (32.46)

En la regién externa, n = O(1), la ecuacién (32.38) se reduce a u/v /u*? ~
1—n, pero ahora la aproximacién de Prandtl (32.42) no es vélida. Sin embargo,
analogamente a como se hizo en la seccién anterior, el analisis dimensional nos
dice que se debe verificar una ley de defecto de velocidad del tipo

U-U,

u*

= F(n) , (3247)

donde U, es la velocidad en el eje (que es la maxima). Esta ley tiene que, por
un lado, satisfacer la condicién F (7 = 1) = 0 y, por otra parte, acoplar con
la solucién (32.45) para n < 1, cuando en (32.45) se hace n* > 1 (acople
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asintético de las dos soluciones). Esta tltima condicién nos dice que, para
n—0,

U, 1 1 1 1
F(n)+ =} = =lnkn* = —lnn+ —InRe* + —Ink . (32.48)
u K K K K
Es decir,
1
F(n) —» —Ilnn+ B, (32.49)
con
1
Z,‘j = -InRe*+ A, (32.50)
u K

donde A y B son constantes arbitrarias, pero que verifican A + B = (Ink)/k.
Estas constantes, al igual que x (=~ 0,41), se determinan experimentalmente. Se
encuentra que B ~ 5,5 [obsérvese que (32.49) es andloga a la ley logaritmica
(32.26); la pequena diferencia en la constante se debe a que a medida que
nos alejamos de la pared el flujo en un conducto se parece menos al flujo
sobre una placa plana), de donde A ~ 7,7. Los experimentos demuestran que
la ley lineal (32.46) vale para nt < 5, de forma anéloga a la capa limite
sobre una placa plana. La ley logaritmica (32.45), que incluye a la anterior,
es aproximadamente valida para n* < 70, mientras que para n* > 70 la ley
de defecto de velocidad se puede aproximar por ut =~ 11,57!/10 [ver figura
32.2(a)].

En realidad, para el propdsito de hallar una relacién entre la friccién y el
caudal, no interesa tanto los detalles del perfil de velocidad como la relacién
(32.50). De hecho, debido a que el perfil de velocidad turbulento resultante
de las expresiones anteriores es mucho mas plano que el correspondiente al
flujo laminar de Poiseuille (ver figura 32.3), se puede aproximar la velocidad
media V por la velocidad méxima en el eje U, [la diferencia se absorbera en
las constantes empiricas de las expresiones anteriores|, de forma que el caudal
viene dado por

Q = 7R*V ~ nR?U,. (32.51)

Definiendo, como de costumbre, el nimero de Reynolds basado en la velocidad
media y el didmetro,

2RV  2RU, 2U,
Re = ~ R = Re*

v v u*

, (32.52)
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Figura 32.2: (a): Distribucién de velocidad en un conducto de pared lisa y su comparacién
con medidas experimentales de Nikuradse y Reichardt. Téngase en cuenta que la abcisa es
el logaritmo decimal de n* (figura tomada de Schlichting, 1987). (b): Coeficiente de friccién
A en funcién del nimero de Reynolds. La curva 1 es la correspondiente al flujo laminar,
A = 64/ Re; la curva 2 es la ecuacién (32.57) y la 3 corresponde a la aproximacién de Blasius
(32.59) (figura tomada de Monin y Yaglom, 1971).
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Flujo de Poiseuille
parabolico

——e Flujo turbulento

Figura 32.3: Comparacién entre el perfil de velocidad laminar y turbulento en un conducto
circular por el que circula el mismo caudal (misma velocidad media V).

asi como el coeficiente de friccién

*\ 2
_ T o Tp (U
Cr= g~ T =2 <U> | (32.53)

la expresion (32.50) proporciona la siguiente relacién entre Cy y Re:

i:llnRe—{-lln‘/gf--{—A—ln? , (32.54)
Cy & K 2

La constante libre A no coincide con el valor dado anteriormente ya que U, no
es exactamente igual a V. Experimentalmente se encuentra que para un flujo
turbulento completamente desarrollado en un conducto circular de pared lisa
se tiene:

\/_ﬁ ~1,761n(Re/Cy) - 0,7. (32.55)

Normalmente se suele utilizar, en vez de Cy, el denominado factor de fric-
cién de Fanning (también llamado de Darcy-Weisbach en la literatura
hidrdulica )

8,
A= =—". 2.5
% ~ 0,88 In(Rev/)) — 0,8. (32.57)

Esta expresién permite calcular, para cada Re, la friccion turbulenta y, por
tanto, la caida de presién en el conducto debida a la friccién [ecuacién (32.35)
o (15.7)]
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AP,nR? = 2nRLt, | % = %% (32.58)
Asi, dado un caudal y un didmetro, que defienen Re, las expresiones (32.57)
y (32.58) proporcionan el incremento de presién necesario (en general presién
reducida) para mover ese caudal.

La expresion (32.57), junto con la correspondiente para un flujo laminar,
A = 64/ Re [ecuacién (15.11)] y resultados experimentales, se representan en la
figura 32.2(b). La expresién laminar vale hasta el nimero de Reynolds critico
(aproximadamente 2300; ver capitulo anterior). Desde Re ~ 2300 hasta Re
aproximadamente igual a 4000 no existe ninguna expresién analitica, y los
valores del coeficiente de friccién A fluctiian bastante. A partir de Re ~ 4000,
la expresién (32.57) es valida para un conducto de pared lisa (ver seccién
siguiente para una definicién precisa de pared hidrodindmicamente lisa). Es-
ta expresion se puede simplificar en ciertos rangos del nimero de Reynolds
mediante férmulas aproximadas semiempiricas. Por ejemplo, Blasius (1911)

introdujo la simplificacién

A~ 0,316Re"/*, 4000 < Re < 10°, (32.59)

que también se representa en la figura 32.2(b). Otra correlacién simplificada
debida a White (1974), que tiene un rango de validez mayor [practicamente la
misma que la ecuacién (32.57)], es

A ~ 1,02(log Re) 2%, (32.60)

donde log representa el logaritmo decimal.

32.3. Efecto de la rugosidad de la pared

La rugosidad de la pared del conducto apenas afecta a la friccion cuando el
flujo es laminar (flujo de Poiseuille). Sin embargo, cuando el flujo es turbulento,
su efecto es muy importante: las rugosidades promueven la turbulencia y, sobre
todo, pueden llegar a destruir la subcapa laminar, cambiando completamente
el perfil de velocidad y, por tanto, la friccién.

Es evidente que las rugosidades aumentan la friccién en relaciéon a un con-
ducto liso. Pero la cuantificacion de este efecto no se puede hacer de una forma
analitica como se ha hecho antes para un conducto de pared lisa, teniéndo-
se que recurrir a la experimentacién. Por supuesto, esta experimentacion se
hace guiada por el analisis dinmensional y la semejanza fisica. En relacion al
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problema considerado anteriormente del conducto liso, aparece una longitud
caracteristica adicional que es la altura media de las rugosidades, €. Asi, el
problema tiene tres longitudes caracteristicas: el espesor de la subcapa lami-
nar o distancia a la pared hasta donde se deja sentir la viscosidad molecular,
v/u*; el radio del conducto, R, y la altura media de las rugosidades, €. En la
solucion cerca de la pared el radio del conducto no cuenta y se tiene

U=U(v,u"¢vy), (32.61)
que mediante andlisis dimensional se simplifica a
ut = LJ_ = (y“ , i) = f(nt,e"). (32.62)
U v v

Es decir, ademas de la variable adimensional 7 que aparecia en la solucién
para un conducto liso, se tiene que u* depende de la rugosidad a través del
pardmetro adimensional et = eu*/v. Este simple andlisis dimensional nos
proporciona un criterio para saber cuando un conducto se puede considerar
hidrdulicamente liso: el efecto de la rugosidad es despreciable cuando

*

e = 1% <1 . (32.63)

En otras palabras, el conducto (la superficie sélida en general) se puede con-
siderar liso a efectos hidrodindmicos cuando la altura de las rugosidades es
mucho menor que el espesor de la subcapa laminar. Cuando esto ocurre, la
viscosidad se encarga de disipar cualquier perturbacién del movimiento origi-
nada por la rugosidad, no dejandose sentir su efecto en el resto del flujo.
Aunque analiticamente no se puede conocer la expresién (32.62), lo que
si se sabe es que debe acoplar con la ley de defecto de la velocidad (27.49)
para nt > 1, ya que ésta no depende de la rugosidad si ¢/ R < 1, lo cual
ocurre siempre (en caso contrario no seria un conducto de seccién circular).
Es decir, para nt > 1, se tiene
wt == hnt 4 f(e) (32.64)
donde f, es una funcién que tiende asintéticamente a la constante B definida
en (32.49) (que es aproximadamente igual a 5,5) para et — 0. Esta funcién se
determina experimentalmente, siendo la unica informacién adicional requerida
para hallar la friccién en un conducto rugoso en relacién a uno liso.2 Se en-
cuentra que f, ~ 5,5 para ¢t < 5, aproximadamente. Es decir, la aproximacién

2El alumno podrd apreciar con este ejemplo la potencia del andlisis dimensional. Un
problema aparentemente tan complejo como es el cédlculo de la fricciéon en un conducto
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de tubo liso va mucho mas alld de la condicién encontrada dimensionalmente,
et <« 1. Por ello se suele escribir

1
y = - Innt+B-AB (32.65)

donde AB, que es una funcién de €, mide el efecto de la rugosidad sobre la
velocidad, valiendo cero para et < 5, aproximadamente. En el limite opuesto
de un conducto completamente rugoso , €t > 1, los datos experimentales se
ajustan a la expresién

1
AB =~ —In et -35 (32.66)

que aproximadamente es valida para et > 70. Para valores intermedios de e*
(5 < €t < 70), los datos experimentales estan algo més dispersos.

Una vez conocido el perfil de velocidad, por un procedimiento analogo al
descrito anteriormente para un conducto liso, se puede hallar una expresién
para el coeficiente de friccion A, que ahora dependera del mimero de Reynolds
y de la rugosidad relativa, ¢/ D. Una expresién que recoge los datos experimen-
tales tanto para conductos lisos como rugosos dada por Colebrook y corregida
por White es

1
= —20log [6/ Dol ] . (32.67)

ey
\/X 3s7 }ze\/X

Normalmente toda la informacién A = A(Re,e/D), tanto para flujo laminar
como para flujo turbulento en conductos lisos y rugosos, se suele dar en forma
de un diagrama denominado diagrama de Moody (1944), que se representa
en la figura 32.4.

Una particularidad importante de la relacién A = A(Re,e/D) es que deja
de ser funcién del mimero de Reynolds para conductos completamente rugosos
(et = eu* /v > 70, aproximadamente). De acuerdo con la expresién (32.67),
esto ocurre para €/ D mayor que, aproximadamente, 9,3/ ReV/A. El valor de Re,
para cada valor de la rugosidad relativa €/ D, a partir del cual A sélo depende de
esta ultima se representa en la figura 32.4 mediante una linea discontinua. En
estos casos los cédlculos se simplifican muchisimo al no depender el coeficiente
de friccién del mimero de Reynolds (ver leccién siguiente).

Para terminar, es conveniente senalar que el valor del factor de friccién
dado por el diagrama de Moody se suele también utilizar de forma aproximada

rugoso se reduce (por supuesto una vez introducidas las hipétesis sobre los esfuerzos de
Reynolds de Prandtl y von Kdrmaén) al cdlculo experimental de una constante y una tinica
funcién que depende sélo de la altura media de las rugosidades.
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en los casos en que el conducto no sea circular, siempre que se utilice, en el
lugar del diametro D del conducto circular, un diametro equivalente obtenido
en funcién del denominado radio hidraulico, definido como el cociente entre
la seccién A del conducto dividida por el perimetro mojado I1:

Th==. (32.68)

Para un conducto circular, 7, = #D?/4nD = D/4. Asi, se utiliza el diagrama
de Moody sustituyendo D (en el nimero de Reynolds y en la rugosidad relati-
va) por 4r,. En cuanto a la velocidad que aparece en el nimero de Reynolds,
se toma la velocidad media, Q/A.
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Capitulo 33

Flujo turbulento en conductos

33.1. Ecuaciones, condiciones iniciales y de contor-
no

En esta leccion se considerara el movimiento turbulento, tanto de gases
como de liquidos, en conductos de seccién lentamente variable, teniendo en
cuenta la friccién en la pared y el posible intercambio de calor del fluido con
la pared. Para derivar las ecuaciones se seguira un procedimiento analogo al
utilizado en la leccion 23, aplicando los principios de conservacion de masa,
cantidad de movimiento y energia a un volumen de control como el de la
figura 23.1, pero teniendo en cuenta los resultados sobre la friccién turbulenta
derivados en la leccién anterior y el flujo de calor, para el que se utilizara la
analogia de Reynolds.

En primer lugar se supondra que no hay variaciones bruscas de la seccion
ni de la direccién a lo largo del conducto (el efecto de cambios bruscos en la
seccién y en la direccion se tendra en cuenta al final de esta leccién). Es decir,
si 71, es el radio hidrdulico del conducto [ecuacién (27.68)], el cual depender4,
en general, de la coordenada axial a lo largo del conducto z, se supondra que

drp,

2| <1 (<L), <R, (33.1)

donde L y R, son una longitud axial y un radio de curvatura caracteristicos.
De la ecuacién de continuidad, la primera condicién (33.1) implica que el
movimiento en el conducto es aproximadamente unidireccional:

Vi, ~ V% <V, (33.2)



590 MECANICA DE FLUIDOS

donde V' y Vp son velocidades caracteristicas en las direcciones axial y trans-
versal al eje del conducto, respectivamente. Por otro lado, se supondré que el
flujo es turbulento completamente desarrollado y, de acuerdo con la seccién
32.2 (figura 32.3), en primera aproximacién se puede suponer que el perfil
de velocidad en cada seccion es practicamente plano. Es decir, la velocidad
turbulenta media, ¥ ~ ve;,! sera funcién sélo de la coordenada axial = y del
tiempo t, v ~ v(z,t). El efecto de la friccién queda asi relegado a la pared,
y se tendrd en cuenta de forma global utilizando las expresiones de la leccién
anterior. Para ello se definird un esfuerzo de friccién medio 7, en cada seccion

o= /H rdl, (33.3)

donde I1(z) y A(z) son el perimetro y la seccién; 7,(z, t) se calculard mediante
el coeficiente de friccién A,

To = %)\pvz, (33.4)
donde A\ es una funcién del nimero de Reynolds, Re = 4vrp /v, y de la rugo-
sidad relativa, €/4rp, representada en la figura 32.4.

En cuanto a la presiéon media, también se considerara que es una funcién
de z y de t solamente, p = p(z,t), puesto que la hipétesis (33.1) implica,
como ya se vid en la seccidn 23.1, que las variaciones transversales de la pre-
sién son mucho maés pequenas que las longitudinales a lo largo del conducto:
Arp/Arp ~ (rn/L)* < 1. (Lo mismo ocurre para el potencial de fuerzas
masicas, por lo que en la expresién anterior se puede sustituir p por la presion
reducida; ver seccién 23.1.)

Por 1dltimo, se supondra también que la temperatura media es sélo funcion
de x y de t, T = T(x,t). La justificacién de esta hipdtesis es andloga a la de
suponer que la velocidad media es practicamente constante en cada seccién:
la turbulencia es muy efectiva transportando calor, como lo es transportan-
do cantidad de movimiento y masa, por lo que el perfil de temperatura en
cada seccion es practicamente plano, excepto muy cerca de la pared, donde
la temperatura varia desde aproximadamente el valor medio de cada seccion
hasta la temperatura de la pared. Esta variacion se tendra en cuenta de forma,
global analogamente a como se hara con la friccion, mediante el flujo de calor
gs intercambiado entre la pared y el fluido, el cual se modelara por la analogia
de Reynolds.

1Como en lo que sigue no apareceran magnitudes de fluctuacién, no se utilizaran letras
mayusculas para designar los valores medios.
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En definitiva, se supondra que el flujo turbulento completamente desarro-
llado en un conducto de seccion y curvatura lentamente variables estd definido
por las magnitudes turbulentas medias, no sélo en relacion a las fluctuaciones
turbulentas, sino también en cada seccion,

’U(IL‘,t), p(l‘,t), T(E»t),2 (335)

para las cuales se derivaran ecuaciones y se fijaran condiciones iniciales y de
contorno a continuacion.

33.1.1. Ecuaciones del movimiento

Aplicando el principio de conservacion de la masa al volumen de control
de la figura 33.1, despreciando términos de orden (dz)? y dividiendo por dz se
tiene

dp O(pvA)
A—F— =0. .
5 o 0 (33.6)

Anélogamente, la ecuacién de cantidad de movimiento en la direccién z se
escribe
Opv  O(pv2A) A oU

Op

donde se ha supuesto que las fuerzas masicas derivan del potencial U y se
ha utilizado el esfuerzo de fricciéon medio (33.3). Para obtener el término de
fuerzas de presién se ha tenido en cuenta también la fuerza de presion que en
la direccién z las paredes ejercen sobre el fluido, la cual, despreciando términos
de orden (dr)?, es igual a p(0A/0x)dz. Utilizando la ecuacién de continuidad
y (33.4), la ecuacién anterior se escribe como

A, (33.7)

212 10 ou v?
ov 81}/+ 9 . M

— - —_— = —— 33.8
8t oz Tpor oz 8’ (33.8)
donde el factor de fricciéon
drpv €
A=A ——, — 33.9
( v’ 47‘11) ( )

viene dado por la figura 32.4. Se observa que la unica diferencia entre esta
ecuacién y la correspondiente a un fluido ideal es el término de friccién (di-
ferencia formal; conceptualmente son muy distintas puesto que en un fluido

2Como consecuencia de que p y T sélo dependen de 2 y t, p = p(z,t), de acuerdo con la
ecuacion de estado.
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Figura 33.1: Volumen diferencial de control.

ideal el primer miembro es igual a cero a lo largo de cada linea de corriente
y, puesto que todas las lineas de corriente parten de la misma region unifor-
me, se cumple para toda la seccién; aqui es un promedio aproximado en cada
seccién). Si comparamos el término de friccién con el convectivo, el primero
serd importante si AL/rp, > O(1). Para AL/r;, < 1, el término de friccién
desaparece y se tiene la misma ecuacion que para un fluido ideal.
La ecuacion de la energia total aplicada al volumen de control de la figura
33.1, dividiendo por dz, se escribe
vA+ QSﬁ +ar,
Th

0 v? v?
5 [pA (e + —2> prA <e + 3)
(33.10)

donde g; es el calor intercambiado entre el fluido y la pared por unidad de area
y gr es el calor liberado por las reacciones quimicas o absorbido por radiacién,
por unidad de longitud del conducto (por supuesto, son valores promedios).3
Esta ecuacion se puede escribir en términos de la entalpia, desapareciendo asi
el término de trabajo de las fuerzas de presion, pero apareciendo un nuevo
término de variacién de p con el tiempo:
vA + qsé + qr
Th

0 v2 5, v?
(33.11)

Teniendo en cuenta la ecuacion de continuidad y dividiendo por A, estas dos
ecuaciones se escriben

0 d(pvA) ou
t oz 5z "oz

Jdp oUu

=A% e

30bsérvese que las fuerzas de friccién que la pared ejerce sobre el fluido no realizan trabajo
alguno ya que la velocidad es cero en la pared.
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v? 0 v2 16(va) BU g, 9r
D (h+Z) + 2 (h+Zetu —6”+q—s+2 (33.13)
P ot 2 ) TPz 2 ~ ot A '

Desde un punto de vista practico la tultima ecuacién es mucho mas 1til. De
hecho, en el caso bastante frecuente de un flujo estacionario y adiabatico, la
cantidad h + v?/2 + U, que en el flujo de un gas es aproximadamente igual a
la entalpia de remanso, h + v2/ 2, se conserva.

En algunas ocasiones es interesante utilizar la ecuaciéon de la entropia.
Restandole a la ecuacién (33.13) la energia mecédnica, que se obtiene multi-
plicando la ecuacién de cantidad de movimiento (33.7) por v, y teniendo en
cuenta que dh = Tds + dp/p, se llega a:

3
Do AV Lo, & (D 0 6) (33.14)

Dt 8r,  prh + pA 5t "oz
Obviamente, la entropia aumenta solamente como consecuencia de la friccién
(disipacién viscosa) y de la adicién de calor. Normalmente, el efecto de la
disipacién viscosa es muy pequeinio. Comparando este término con el de con-
veccién de entropia, para un liquido (T'As ~ cAT), se tiene que el parametro

que mide su importancia relativa es

2L
rhe(AT)
Dado que la capacidad calorifica ¢ de los liquidos suele ser muy alta, sélo en
condiciones muy extremas de velocidades muy altas la disipacién viscosa ten-
dria algunaimportancia para los liquidos. En cuanto a los gases, la importancia
relativa de la disipacion viscosa viene dada por

(33.15)

AL
M2 ATT (33.16)

Asi, la disipacién viscosa serd desprec1able si el nimero de Mach satisface la
condiciody
AT (AL\7!
M? <« == (—> : (33.17)
T \rp
Por tanto, puede ocurrir (como de hecho ocurre en muchas ocasiones) que la
friccion sea importante en la ecuacién de cantidad de movimiento [AL/rp >
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O(1)], pero su efecto en la ecuacién de la energia (disipacién viscosa) sea
despreciable al no ser el nimero de Mach suficientemente alto.

Para evaluar el flujo de calor entre la pared del conducto y el fluido se
utilizara la analogia de Reynolds:

Sta = (33.18)

€ Cy 1 1, A
pv(hy —h—v2/2) 2 ~ 2m?/2 8"
En la expresion anterior se ha tenido en cuenta el efecto de la compresibilidad
y de la disipacién viscosa mediante la redefinicion del nimero de Stanton en
términos de la entalpia de remanso (en realidad, de la temperatura adiabatica
de la pared; ver seccién 28.4), con un factor de recuperacién igual a la unidad
(puesto que el mimero de Prandtl turbulento es aproximadamente igual a uno).
Para un liquido, estos efectos son practicamente despreciables:

Apuc v Apvc
g = 2P [TP~T-—]2 ’; = —T) (33.19)
ya que v?/cT suele ser muy pequeio, como se comenté anteriormente. Para
un gas ideal se tiene:

_ 2oveT [T (=1 ,02] .

qs——S—[T—l——2——M] : (33.20)
es decir, los efectos de la disipacién viscosa y la compresibilidad son despre-
ciables si M? < 1. De lo anterior se desprende que existirda un flujo neto de
calor desde la pared al fluido si T, > T+ (y — 1) M2T'/2; y viceversa, habr4 un
flujo de calor desde el fluido a la pared si T, < T + (v — 1)M 2T /2. Esto quiere
decir que, debido a los efectos de compresibilidad y de disipacién viscosa, el
gas se calienta cerca de la pared y el flujo de calor puede ser desde el fluido a
la pared incluso si T, > T [siempre que T, < T +~y(y — 1)M2T/2).

En cualquiera de las situaciones anteriores, la analogia de Reynolds permite
calcular ¢s en funcién del nimero de Reynolds y de la rugosidad relativa a
partir del coeficiente de friccién. Como se comentd en la seccién 31.4.2, esta
analogia es mas fiable a medida que la pared del conducto es mas rugosa,
debido a que la subcapa laminar falsea la analogia, siendo més precisa cuando
A sOlo depende de la rugosidad relativa.

33.1.2. Condiciones iniciales y de contorno

De acuerdo con las ecuaciones anteriores [por ejemplo (33.6), (33.8) y
(33.13)], en general se necesitan tres condiciones iniciales y tres condiciones
de contorno para su resolucién. Por ejemplo,
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v(z,0), p(z,0), T(z,0); (33.21)
w(0,¢), p(0,8), T(0,¢). (33.22)

Sin embargo, la forma de dar estas condiciones varian mucho de unas situa-
ciones a otras.

Asi, para un liquido (p = constante), desaparece una condicién inicial, ya
que la ecuacién de continuidad (33.6) se escribe

pvA=G(t) , (33.23)

donde el gasto G no depende de z. Como

G(t)

v(z,t) ; (33.24)
dado A(z) y el valor de v en un punto para cada instante, por ejemplo v(0,t),
automaticamente se conoce v(z,t) para todo z y t. Por tanto, tampoco hace
falta condicién inicial para la velocidad, y sélo hace falta una condicién inicial
para la temperatura, T(z,0), que permitira integrar la ecuacién de la energfa.
En cuanto a las condiciones de contorno, no se suele especificar v(0, t), sino dos
condiciones de contorno para la presion, ademdas de una para la temperatura:
p(0,t),p(L,t) y T(0,¢).

Para los gases, en general hacen falta tres condiciones iniciales y tres con-
diciones de contorno. En la situacién bastante habitual en la que el flujo en el
conducto es consecuencia de la descarga de un depésito, p(0,t) y T(0,t) son
en principio desconocidas y se deben relacionar con las magnitudes de reman-
so en el depésito. Por otro lado, en vez de v(0,t), que tampoco se conoce en
principio, se especifica p(L, t), que es igual a la presién de descarga si el flujo
es subsénico. Este problema se considerara con detalle mas adelante.

33.2. Flujo casi estacionario de liquidos

Este es el caso en que las ecuaciones anteriores son mas sencillas. Para que
el movimiento sea casi estacionario se debe verificar que el nimero de Strouhal
sea muy pequeno:

L
Si=— <1 , (33.25)
vt,

lo cual asegura que los efectos no estacionarios son pequenos frente a los con-
vectivos. Si la friccién es muy importante, mucho mas que la conveccién de
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cantidad de movimiento, es decir, si AL/, > 1, la condicién anterior se relaja
a

AL
Se< (> 1), (33.26)
h

ya que es suficiente con que el término no estacionario sea despreciable frente
al término de friccidn.
Las ecuaciones serfan [(33.6), (33.8) y (33.14)]:

va=2_0, (33.27)
p

0 (v p 2
— gt = - 33.28
8:r(2+p+U) 8y’ ( )
oT A qr
bl — 2
Oxr  8rp (L-T)+ pcvA’ (83.29)

donde se ha tenido en cuenta que p = constante, que T'ds = c¢dT, se ha utilizado
la analogia de Reynolds y se ha despreciado la disipacién viscosa. Sustituyendo
(33.27) en (33.28) e integrando, teniendo en cuenta que ) es constante (a lo
sumo depende paramétricamente del tiempo a través de las condiciones de
contorno) se tiene que

Q2(1 1

2 \A2  A2(0)

p —p(0) _ @t
. )+ ! +U-UO =% [ Zpde . (3330)

8

Para un conducto de seccién y rugosidad constantes, la ecuacién anterior se
reduce a

p—p0) . _ A
+U-U(0) = 87'hA2x , (33.31)
de forma que el caudal para un conducto de longitud L viene dado por
8rp A2
Q* = == [p(0) + pU(0) — p(L) — pU(L)].. (33.32)

pAL

Como A depende del nimero de Reynolds y, por tanto, de Q (para un 7, y
un A dados), la ecuacién anterior se suele resolver iterativamente utilizando
el diagrama de la figura 32.4: dadas la diferencia de presién reducida entre la
entrada y la salida del conducto y la geometria del mismo, se supone un caudal
y se calcula ); mediante la ecuacion anterior se obtiene un nuevo caudal que
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se utiliza para recalcular A, y asi sucesivamente hasta que el proceso converja.
En el limite en el que la pared del conducto sea completamente rugosa, A
es sblo funcién de la rugosidad relativa, y la ecuacién anterior proporciona
explicitamente el caudal.

En cuanto a la temperatura, suponiendo el caso mas simple en el que
g¢- = 0, y que tanto T, como A son constantes, viene dada por

T =T, + [T(0) — Tp) exp[—Az/8ry] (33.33)

que nos dice que la temperatura del liquido se aproxima a la de la pared
exponencialmente en una longitud del orden de r/\.

33.3. Movimiento casi estacionario de un gas en un
conducto aislado térmicamente

Los flujos de gases en conductos son mucho maés complicados de resolver
que los de liquidos. Incluso en el limite casi estacionario, las ecuaciones son lo
suficientemente complejas como para que no se puedan resolver analiticamente.
Por ello, se consideraran los efectos de la friccién y de la adicién de calor por
separado en un conducto de seccién constante (el efecto de la variacién de la
seccién del conducto ya se considerd en la leccién 23 para un gas ideal).

En el supuesto en que el flujo sea casi estacionario y adiabético (¢s = ¢, =
0), y la seccién del conducto sea constante, las ecuaciones (33.6), (33.8) y
(33.13) se escriben

OpvA

=0, (33.34)
ov%/2 10p 0OU Av?
0 v?
%(h-k?-i-U) =0 . (33.36)

Normalmente, las fuerzas masicas son despreciables en el flujo de gases, por
lo que estas ecuaciones, integrando la primera y ltima, se reducen a

pv = G/A = constante, (33.37)

ov%/2 10p Av?
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2

h + % = ho, = constante; (33.39)

es decir, tanto el gasto como la entalpia de remanso se conservan a lo largo
del conducto.

La ecuaci6n (33.38) también es posible integrarla analiticamente. Para ello
suponemos que el gas es ideal. Teniendo en cuenta que h = ~p/(y — 1)p,
derivando (33.39) se tiene

e [1@ _ gée] 0v’/2 _
y—1 or

Eliminando 8p/8z mediante la ecuacién de continuidad, sustituyendo en (33.38)
y utilizando la definicién del nimero de Mach, se llega a

0 . (33.40)

1 1\ 6v?/2 Av?
~y < M 2) Oox 874 Gax L)
Por otro lado, de (33.39), M? es sélo funcién de v?:
2 2 2
M= =_"__ ? . 33.42
@ " R,T - (v =1)(hy = 2/2) ERa)
Asi, se tiene que
1 (v =D (ho —v%/2)| DV?/2  Xo?
5 [1 2 B B (33.43)
Esta ecuacion se integra facilmente:
v? 2(y—1)ho [1 1 o )
l o —_—— — — — —d y .44
RO PR ey [v2 v(O)"’] G rT ), ot (3340

siendo el segundo miembro lineal con x cuando A es independiente del niimero
de Reynolds. Esta ecuacién, junto con pv = G/Ay h+v?/2 = 4p/(y = 1)p +
v%/2 = h,, determinan v(z), p(z) y p(z) en funcién de v(0), h, y G y de las
condiciones p(0) y p(0). La ecuacién de estado proporcionard T(x).
La ecuacién (33.41), junto con la ecuacién de la entropia,

0s v?

_—=— 33.45

or 87‘hT ( )
permiten describir cualitativamente el movimiento en funciéon del nimero de
Mach. Para ello se utiliza (33.41) y el cociente entre (33.45) y (33.41),
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Os 1 M2-1

e laa eyl (33.46)

que expresa la variacién de la entropia con la energia cinética (por unidad
de masa). De acuerdo con (33.41), para un flujo subsénico, es decir, un flujo
con M(0) < 1, la velocidad aumenta a lo largo del conducto y, de acuerdo
con (33.42), también lo hace el nimero de Mach. La ecuacién (33.46) dice
que, obviamente, la entropia aumenta. A medida que la longitud del conducto
aumenta, asi lo hace el nimero de Mach a la salida, hasta que M(L) = 1, el
cual no puede ser superado ya que un numero de Mach mayor que la unidad
implicaria, de acuerdo con (33.46), una disminucién de la entropia. A partir
de aqui el flujo en el conducto se bloquea y un aumento de su longitud no
cambiaria la condicién M (L) = 1, con lo que las condiciones en £ = 0 ten-
drian que cambiar para adaptarse a la nueva longitud, lo cual generalmente
impide que la condicién de contorno de la presiéon a la salida del conducto
se satisfaga, habiendo una expansién posterior fuera del conducto (expansion
Prandtl-Meyer) donde la presién se adapta a la ambiente.

Por el contrario, si el flujo es supersénico [M(0) > 1], tanto la velocidad
como el nimero de Mach disminuyen a lo largo del conducto, y la entropia
aumenta. Pero al igual que antes, el nimero de Mach no puede atravesar
el limite sénico, al menos de una forma continua, ya que ello implicaria, de
acuerdo con (33.46), una disminucién de la entropia. La diferencia con el caso
subsénico es que ahora existe la posibilidad de una onda de choque. Asi, antes
de que se llegue a M (L) = 1, se produce una onda de choque en el interior del
conducto en la posicién apropiada para que el movimiento subsénico posterior
se adapte a las condiciones ambientales a la salida del conducto.

La forma mads conveniente de obtener la evolucién de las distintas magni-
tudes fluidas a lo largo del conducto es en funcién del nimero de Mach:

dM? o1+ M? A

e - M T (33.47)
dp  dv yM? A

p v 21— M?) 4rhdz’ (33.48)
dp o1+ IFAM2 N

dI’'  ~v(y-— M A

ar _ _ Aeir 33.50
T 21— M?) 4ry " (33.50)
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o _ 0o _ _1 32 Ay (33.51)
Do Po 2 4ry

donde para la tltima expresién se ha hecho también uso de (19.26)-(19.29).
En todas las relaciones anteriores (excepto para las magnitudes de remanso)
aparece el factor 1—M? en el denominador, de modo que las magnitudes fluidas
tienen evoluciones opuestas a lo largo del conducto dependiendo de que el flujo
sea subsénico o supersénico (las magnitudes de remanso siempre disminuyen,
del mismo modo que la entropia siempre aumenta, al ser la friccién un proceso
disipativo). Estas evoluciones, a la vista de las ecuaciones anteriores, se pueden
resumir en la tabla siguiente:

Propiedad | Subsénico | Supersoénico

M aumenta disminuye

p disminuye aumenta
v aumenta | disminuye

D disminuye aumenta

T disminuye aumenta
DosPo disminuye | disminuye

s aumenta aumenta

De acuerdo con lo dicho anteriormente, la friccion siempre hace tender el
numero de Mach hacia la unidad, acelerando los flujos subsénicos y decelerando
los supersénicos. En la figura 33.2 se representa la evolucién del nimero de
Mach en funcién de Az/4r, resultado de la integracién de (33.47) (suponiendo
que A es constante),

1 1+ 232M2%2 M2(0 1 1 Ax
v+ In _12 (2 )\ + _ S = i , (33.52)
2y 1+ 51M20) M2 ) T AM20) M2 4my

para un flujo subsénico que parte de M(0) = 0,1 [figura 33.2(a)] y un flujo
supersénico que parte de M (0) = 10 [figura 33.2(b)].* Se observa que, com-
parativamente, hace falta un conducto mucho mas corto para decelerar un
flujo supersénico que para acelerar un flujo subsénico [excepto si Af(0) es muy
préximo a la unidad]. Como se comenté antes, para cada nimero de Mach a la
entrada del conducto existe una longitud critica , L*(M(0)), correspondiente

‘Estas figuras proporcionan también M = M(\r/dry) para M(0) > 0,1 y M(0) < 10,
respectivamente, sin maés que trasladar el origen de las abcisas.
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(a) - (b)
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Figura 33.2: Niumero de Mach en funcién de Az/4r), [ecuacién (33.52)] para un flujo subsénico
con M(0) = 0,1 (a) y un flujo supersénico con M(0) = 10 (b). v = 1,4.

a M(L*) =1 [en la figura 33.2, AL*(0,1)/4ry ~ 67 y AL*(10)/4rp ~ 0,78].
Para un flujo subsénico, si L > L*, el flujo se ajusta para que M(L) = 1,
disminuyendo el nimero de Mach a la entrada y, por tanto, el gasto que cir-
cula por el conducto. Normalmente esto implica que la presiéon a la salida
del conducto no es igual a la existente en el exterior del conducto (ver mas
adelante), y se produce una expansién de Prandtl-Meyer en la descarga. Para
un flujo supersénico, si L > L*, la curva dada por la figura 33.2(b) es vélida
hasta una cierta longitud L., donde se produce una onda de choque normal,
de tal forma que la intensidad de la onda de choque correspondiente a M (L)
es la apropiada para que la evolucién subsénica posterior [dada por la figura
33.2(a)] ajuste la presi6n de salida a la existente en la descarga.

Usualmente, es conveniente integrar las relaciones anteriores expresando el
resultado en funcion de las condiciones de remanso en vez de las condiciones a
la entrada del conducto. Esto es particularmente til cuando se desea estudiar
la descarga de un depdsito a través de un conducto, ya que las condiciones de
remanso, Do, Po ¥ Tp, coinciden con las existentes en el depédsito. A este pro-
blema se dedicard lo que resta de esta seccion. De la ecuacién de continuidad,
p(0)v(0) = p(L)v(L) y de a? = yp/p, eliminando la densidad, se tiene
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p(0) _ a*(0) v(L) _ M(L)a(0) _ M(L) |T(0)

= = = : 33.53
all) ~ (L) v(0) - M) (L)~ M)\ T(L) (35.%)
como la entalpia de remanso se conserva en el conducto,
T(O) T(0)/T, 1+ ML
(D)~ T(L)/To 1+ 52M%(0)
donde se ha hecho uso de (19.26); por tanto,
1=1pr2 1/2
p(0) _ M(L) [1+ FMA(L) 3355)
p(L)  M(0) | 1+ 252 M?(0) '

Por otra parte, como p(L) = p,, donde p, es la presién exterior a la que
descarga el conducto, usando (19.29),

o . (1 + 1'2—'—1M2(0) , (33.56)

v/(y-1)
p(0) )

se llega a

1/2

Po _ Do p(0) _ M(L) Y1, 0\ [1+ 5 MA(L)]
m—WMU_WWO+2A“® luéwmn

(33.57)
Otra relacién entre M(0) y M (L) se obtiene de (33.52):
L 1+ L M3(L) M?(0) 1 1 A (33.58)
2y 1+ 31Mm2(0) M2(L)| " yM2(0) yM2(L) ~ 4ry’ '

donde se ha supuesto que ) es constante. Asi, dada la relacién entre la presion
del depésito y la de descarga, po/pa, y dado AL/4ry,, mediante (33.57) y (33.58)
se obtiene M (0) y M(L), los cuales estdn representados en la figura 33.3.
[Para AL/4r, — O la relacién entre M(0) y po/pe viene dada, obviamente,
por (33.56).] Con M(0) y las condiciones de remanso se obtiene el gasto que
circula por el conducto:

G = p(0)v(0)A = poaoA@ a(0)

o aO

=1 4, ]0+I/E1-)
= pPoaoAM(0) (1 + —2—M (0) ; (33.59)

M(0)
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Figura 33.3: Descarga de un depdsito a través de un conducto aislado térmicamente. v = 1,4.

Si se define G* como el gasto correspondiente a M(0) = 1 (por supuesto, este
gasto no se alcanza nunca, pues si el flujo llega a ser sénico lo es a la salida
del conducto),

y+1 ) (v+1)/2(1-7)
2 1

la cantidad adimensional G/G* s6lo depende de M (0),

(1+1)/2(1-1) i (1+1)/2(1-)
& % M(0) [1 + 7TM2(0)] . (3361)

G* = poa A ( (33.60)

G*

la cual se representa en la figura 33.4 para v = 14.

Con M(0) queda también definida la evolucién de todas las magnitudes
fluidas a lo largo del conducto sin mas que integrar las ecuaciones (33.47)-
(33.51). En el caso en que la longitud del conducto exceda la longitud critica,
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Figura 33.4: Gasto adimensional (33.61) en funcién de M(0) para v = 1,4.

la expresion (33.58) sigue siendo valida con M(L) = 1, proporcionando M (0),
el gasto (que serd menor al ser M (0) més pequefio) y la evolucién de todas las
magnitudes fluidas a lo largo del conducto. Sin embargo, la presién a la salida,
p(L), no coincide con p,. Su valor se obtiene de (33.57) haciendo M(L) = 1
[que es la condicién de contorno que sustituye a p(L) = p,; por supuesto, p(L)
serd mayor que p, al ser menor el valor de M(0) que el correspondiente a
P(L) = pg). Detras del conducto se producira una expansién del tipo Prandtl-
Meyer desde p(L) hasta p,.

33.3.1. Limite de friccién dominante

Un caso particular interesante en el cual el flujo estacionario, adiabatico y
con friccién de un gas en un conducto, no necesariamente de seccién constante,
se simplifica enormemente, es el correspondiente a AL/rp > 1 (friccién muy
importante).

De la ecuacién (33.38) se tiene que las variaciones de presion a lo largo del
conducto son del orden de

Ap ~ pv? (1 + AL/7y). (33.62)

Es decir,
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A AL
2P oM (1 + -—) . (33.63)
p Th

Si AL/ri, > 1, Ap/p ~ M2\L/ry. Si, ademds, Ap/p es, a lo sumo, de orden
unidad, se tiene que M? < 1. Mas concretamente, si AL/, > 1y

-1
@<&> <1, (33.64)
p \rh

la relacién (33.63) implica que M? < 1. Por ejemplo, en el caso de la descarga
de un depésito a través de un conducto, se tiene que M? < 1 si, ademds de
AL/rh > 1, se verifica [(po — pa)/Po)[AL/Th) ' < 1.

Como la entalpia de remanso se conserva, M? < 1 implica que la entalpia
y, por tanto, la temperatura, también se conserva. Es decir, friccién dominante
y (33.64) implican que el flujo a través del conducto es isotermo. La condicién
AL/rp > 1 implica, ademds, que el primer término de (33.38) es despreciable
frente al tercero, teniéndose

10p v?

—_— 33.65
p O 8rh ( )

Sustituyendo p = p/R,T con T = constante y la ecuacién de continuidad
pvA = G = constante (A no necesariamente constante) se tiene

dp* _ MG*R,T,
dz 4rp A2

ecuacién que se puede integrar directamente proporcionando p en funcién del
gasto (y de T y la geometria del conducto). La constante de integracién que-
daria fijada por la condicién de contorno a la entrada, p(0) ~ p,, puesto de
M?(0) < 1. La condicién de contorno a la salida, p(L) = p,, fija el gasto.
La distribucién de densidad, p(z), vendria dada por la ecuacién de estado,
mientras que la ecuacién de continuidad fijaria v(z), quedando resuelto el pro-
blema. Una vez resuelto, se debe comprobar que M?(L) < 1, es decir, que la
condicién (33.64) realmente se satisface. Hay que observar que, a pesar de que
M? « 1, el flujo no se puede considerar incompresible, pues

(33.66)

Bo B2 ppeAL

p p Th
que no necesariamente es pequefio (la primera parte de la relacién anterior pro-
viene de Ap ~ a?Ap, al ser el flujo practicamente isentrépico por ser adiabatico

y no contar la disipacién viscosa debido a que M? < 1).

; (33.67)
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33.4. Movimiento casi estacionario de un gas sin
friccién y con adicion de calor

Suponiendo que la friccién es despreciable, es decir, AL/r, < 1, las ecua-
ciones que describen el movimiento estacionario de un gas en un conducto de
seccion constante son:

pv = G/A = constante (33.68)
ov Op
ﬁ‘va—m' + a =0 ¥ (3369)
0 v? gs A gr
— A =) == 28 .70
8m(+2> rhG+G Eell)

Si Q(z) es el calor total afiadido al fluido por unidad de masa desde la entrada
del conducto hasta la seccion x,

A [= 1 [z
Q(x) = E’:L Qsd$+5/0 grdr (33.71)

las ecuaciones anteriores se escriben

pv = p(0)v(0) = G/A, (33.72)
pv® +p = p(0)v*(0) + p(0), (33.73)
h+ % = h(0) + ”22(0) +Q(z). (33.74)

Estas expresiones proporcionan las magnitudes fluidas en cada seccién del
conducto y el gasto en funcién de las condiciones a la entrada y Q(z).

Como se hizo en la seccién, es conveniente expresar estas relaciones en
funcién del nimero de Mach. Teniendo en cuenta que a? = vp/p y h =

vp/(v — 1)p = a?/(y — 1), se obtiene
p _ 1+yM?*0)

R et v (33.75)
h T 14 32M?0)+ Q(x)/h(0)
r(0)  T(0) ; 1+ M2 ‘ (33.76)
p_v(0) _M*0)p(0) M?0) 1+yM? (33.77)

p(O)= v M2 p M2 1+yM20)’
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Figura 33.5: Funcién F (M) para v = 1,4 [ecuacion (33.79)].

Asi, conocidas las condiciones en £ = 0, Q(z) y el nimero de Mach en cada
seccién, se obtienen las distintas magnitudes fluidas en cada seccién. Como,
por otra parte, se tiene que verificar la ecuacion de estado, p/ pT = constante,
se puede obtener una relacién adicional que proporciona el nimero de Mach
en cada seccién en funcién de las condiciones a la entrada y Q(z), quedando
asi cerrado el problema:

FA(M) Q(z)/h(0)
FEMO) 1+ =1ar2(0) (33.78)

donde, por comodidad, se ha definido la funcién

F(M) M (1 + AL_JW) 2 , (33.79)

que se representa en la figura 33.5.

El comportamiento cualitativo del flujo a lo largo del conducto se pue-
de obtener considerando las expresiones anteriores con la ayuda de la figura
33.5. En esta figura se observa que F(M) alcanza un maximo para M = 1.
Por tanto, dependiendo de si el flujo es subsénico o supersénico, la adicién
de calor tiene un efecto opuesto en el mismo, andlogamente a como ocurria
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en el movimiento considerado en la seccién anterior. Si el flujo es subsoni-
co, [M(0) < 1], una adicién de calor incrementa la funcién F(M) [ecuacién
(33.78)] y, por consiguiente, el nimero de Mach aumenta de acuerdo con la
figura 33.5. Por el contrario, si el flujo es supersénico [M(0) > 1], una adicién
de calor disminuye el nimero de Mach ya que F(M) también debe aumen-
tar. Lo contrario ocurriria si se elimina calor del fluido. De acuerdo con las
expresiones (33.75)-(33.77) y con

Po _ P Pop(0) _ 1+4M*(0) [ 1421 M7 e (33.80)
Po(0) — p(0) p po(0)  14+vM? |1+ ZFM2(0) '
T, (1+9M20)\° M2 1421pp (33.81)
7,000 \ 1+7M2% | M2(0) 1+ 21 Mm2(0) '
la evolucién de las diferentes magnitudes fluidas es la siguiente:
Propiedad | Calentamiento | Calentamiento | Enfriamiento | Enfriamiento
subsonico supersonico subsénico supersonico
M crece decrece decrece crece
P decrece crece crece decrece
P decrece crece crece decrece
v crece decrece decrece crece
T crece decrece
T, crece crece decrece decrece
Do decrece decrece crece crece
s crece crece decrece decrece

Se observa que la temperatura de remanso crece cuando se calienta el gas y

decrece cuando se enfria, independientemente de que sea subsénico o supersoni-
co, ya que la adicién de calor aumenta la entalpia de remanso, mientras que
la sustracion la disminuye. En cuanto a la temperatura, en un calentamiento
subsénico crece hasta M = y~1/2 y decrece desde M = 4~ /2 hasta M = 1,
mientras que en enfriamiento subsénico decrece cuando M < y~'/2 y crece si
2 < M <.

La adicién de calor siempre hace tender el nimero de Mach hacia la uni-
dad, andlogamente al efecto de la friccion considerado anteriormente. Por el
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contrario, el enfriamiento del gas siempre aleja el nimero de Mach de la uni-
dad. Si el flujo es inicialmente subsénico, dadas unas condiciones de entrada
en el conducto, no se le puede anadir al gas una cantidad de calor por encima
del valor méximo correspondiente a M (L) = 1 [ecuacién (33.78)]:

[1— M*0))?
2(y + 1)M%(0)’

Si el calor anadido es mayor, las condiciones a la entrada deben modificarse,
disminuyendo M (0) y, por tanto, el gasto que circula por el conducto. Esto
implicaria que la presién a la salida del conducto, p(L), no coincide con la
presién externa a la cual descarga (ver mas adelante para un ejemplo concreto).

Q(L)maz = h(O) (3382)

Si el flujo es supersénico, la expresion (33.82) proporciona también el calor
maximo que se le puede anadir al gas para unas condiciones de entrada fijas,
correspondiente a M (L) = 1, si el flujo permanece supersénico en todo el
conducto. Sin embargo, en este caso se puede anadir mas calor al gas sin
modificar las condiciones de entrada, ya que existe la posibilidad de que se
produzca una onda de choque en el conducto, que se situard en la posicién
apropiada para que el flujo subsénico posterior se adapte a las condiciones de
descarga, sin necesidad de que se modifique M (0).

En el caso frecuente en que el conducto sirve de descarga de un depdsito
desde la presién p, (entalpia de remanso h,) hasta la presién exterior p,, es
posible, analogamente al caso considerado en la seccién anterior, escribir un
par de relaciones que proporcionen M(0) y M(L) en funcién de la relacién
de presiones p,/p, y el calor anadido Q(L)/h,. Estas relaciones se obtienen
directamente de (33.75) y (33.76) teniendo en cuenta que p(L) = p, y las
relaciones p,/p(0) y ho/h(0) = T,/T(0) dadas por (19.29) y (19.26) en funcién
de M (0):

Pa _ 1 +~vM2(0)
Po  [L+yM(L)][1+ 22 M2(0)/(-D) (33.83)
QL) _ M*(L) 1 +yM*(0)]* 1+ ML) . -

ho — M2(0) [L +yM2(L)]? 1+ 5L M2(0)

En la figura 33.6 se representan estas relaciones. El gasto adimensional, G/G*,
es funcién sélo de M(0) y viene dado por (33.61), representado en la figura
33.4. Si Q(L)/h, supera el valor maximo,

Q(L)mazx _ y—1_. =1 [~ ]WQ(O)P
“h 1+ TAIZ(O) 3y + )M2(0) (33.85)



610 MECANICA DE FLUIDOS

M(L)=1
~14 0.95

0.9

0.8

- 0.7

0.6

05
0.4

0.3

0.2
0.1

Q(LIm,

Figura 33.6: Descarga de un depdsito a través de un conducto sin friccién y con adicién de
calor (y = 1,4).

la condicién de contorno a la salida deja de ser p(L) = p,, para ser M(L) =1,
disminuyendo M (0) y, por tanto, el gasto. Detrds de la salida se producird una
expansion desde p(L) hasta p,.

33.5. Pérdidas localizadas en tuberias

Los sitemas de tuberias suelen tener cambios bruscos en la seccién de los
conductos (vélvulas, ensanchamientos y contracciones, etc.) asi como cambios
repentinos de la direccién de los mismos (codos, tes, etc.). La caida de presién
de remanso en estas regiones suele ser relativamente importante, a pesar de
lo reducido de las dimensiones espaciales de estos accesorios en comparacion
con la longitud de los conductos, y a veces puede superar con creces la caida
de presion originada por la friccién en las paredes de los conductos. Por ello
la importancia de su cuantificacion. Estas pérdidas localizadas de la presion
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de remanso se deben, fundamentalmente, a la formacién de torbellinos como
consecuencia de la separacién de la corriente y a la produccién de corrientes
secundarias en relacién a la corriente pricipal en los conductos. Estos movi-
mientos suelen ser muy complicados, por lo que la cuantificacion tedrica de
estas pérdidas es, salvo excepciones, practicamente imposible. Por ello se re-
curre a la experimentacion (guiada, por supuesto, por el analisis dimensional
y la semejanza fisica). En esta seccién se comentaran muy brevemente algunas
de las pérdidas localizadas mas significativas.

En el caso de flujos turbulentos incompresibles, que seran los tnicos que
se consideraran aqui, es practica habitual expresar la pérdida de la presién de
remanso en términos de un coeficiente adimensional ¢ que relaciona la caida de
la presién de remanso con la energia cinética del flujo por unidad de volumen:

1
(AP)ioc = ¢ pv*. (33.86)

Para cada tipo de accesorio en donde se produce la caida localizada de pre-
sién, ¢ depende de los diferentes parametros geométricos adimensionalizados
y, si la friccién es también importante, del mimero de Reynolds. En ocasiones
también se suelen expresar las pérdidas localizadas en términos de la longitud
equivalente de tuberia que por friccion originaria la misma caida en la presion
de remanso, pero es menos usual.

A continuacién se consideraran brevemente los tipos mas basicos de situa-
ciones donde se producen pérdidas localizadas, comenzando con el ensancha-
miento brusco, que es el inico caso para el que es posible obtener ( tedrica-
mente. Informacién exhaustiva sobre pérdidas localizadas puede encontrarse,
por ejemplo, en la monografia de Idelchik (1986).

33.5.1. Ensanchamiento brusco

Considérese un cambio brusco en la seccién de una tuberia como el es-
quematizado en la figura 33.7. La caida de presiéon de remanso es debida a
la separacion de la corriente y la consequente formacién de torbellinos, y se
puede obtener sin mas que aplicar las ecuaciones de conservacién de masa y
cantidad de movimiento aplicadas al volumen de control de la figura:

’U1A1 = U2A2 = Q y (3387)

pPQ(v2 —v1) = (p2 —p1)A2 . (33.88)

Dividiendo esta ltima ecuacién por pA, y utilizando la primera, se obtiene
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T Az p2

\

2 2 .2
pPL Vi _p2 V3 A1\ vg
AL S B 3 f1-21) &, 33.8
S G= B g e1-2)3 (33.89)
Asi,
A 2
Cens. = (hﬁ) . (33.90)

En el limite As > Aj, (ens. =~ 1, perdiéndose, como es légico, toda la
energia cinética del fluido que entra en el ensanchamiento, (Ap)ens, ~ pv?/2.
Como en este limite v < vy, la ecuacién (33.89) se reduce a p; = ps. Esta
situacion ocurre, por ejemplo, cuando un conducto descarga en un depdsito,
siendo la presién del liquido en la descarga del conducto practicamente igual
a la del liquido en el depésito en el punto de descarga.

33.5.2. Ensanchamiento gradual. Difusor

Sea el ensanchamiento gradual desde una secccién A; a otra A; > A;
mediante un tramo conico de semiangulo 6 de la figura 33.8. Las pérdidas en
este caso son debidas tanto a la separacion de la corriente como a la friccién
en la pared cénica:

(Ap)dif. = (Ap)f + (Ap)ens, . (3391)



CAPITULO 33. FLUJO TURBULENTO EN CONDUCTOS 613

Figura 33.9: Pérdidas de friccién en un difusor cénico.

Las pérdidas por fricciéon se pueden estimar mediante el coeficiente de
fricciéon A para conductos circulares:

dl v? dr i\ v?
= Ap—simim N\ e | 2k 92
(dp)f Ap?r 2 p2rsin0 (r > 2 GRER)
Suponiendo A constante,
Ao vE 4 [r2dr Ap Ap\?] o?
Ap)f = —= —=—|1-(— - . 9
(AP = Sgng2 ™ /,1 5 = Bsinf || <A3> 2 (33.93)

Las pérdidas por separacion de la corriente se suelen expresar como una
fraccion de las correspondientes a un ensanchamiento brusco:

2 2
(Ap)ens. = K(a) <1 - %) P% ’ (3394)

siendo K (#) una constante empirica. Para 6 < 20°, se tiene, aproximadamente,

K(6) ~ 3,2(tan8)%/4. (33.95)

Sumando las dos pérdidas,

vf
(Ap)ais. = Cdif.p5 (33.96)
A Ar\? A\ ?

Es decir, (4is. depende del nimero de Reynolds y de la rugosidad relativa (a
través de A), del dngulo 0 y de la relacién de dreas n = Az /A;. Informacién
detallada sobre (g;¢. en funcién de todos estos parametros (y no sélo para en-
sanchamientos cénicos) puede encontrarse en la referencia antes citada. Como
comentario general se puede decir que a medida que # aumenta (para n y
A constantes), las pérdidas por rozamiento disminuyen puesto que el difusor
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opt.

e T

Figura 33.10: Difusor escalonado.

es mas corto, pero aumentan las pérdidas por separacion, y al contrario si 6
disminuye. Por tanto, para cada n y A, (giy. tiene un minimo correspondiente
a un angulo 0 6ptimo, que aproximadamente vale

1 . In+1A As
9optzmo = 5 arcsim pr— Z , n= A_1 . (3398)

Como A suele estar entre 0,015 y 0,025, y n no suele superar 3 6 4, el angulo
6ptimo suele ser muy pequeiio, lo cual obliga a que el difusor tenga que ser muy
largo, con el consecuente mayor coste de tuberia. Por ello se suele utilizar una
solucién intermedia como la esquematizada en le figura 33.10. El ensancha-
miento brusco posterior al difusor cénico no introduce pérdidas importantes
ya que la velocidad es ya bastante menor que a la entrada. La eleccion de
la longitud del difusor es por tanto una cuestion de optimizacion pérdidas de
presion-coste. Otra solucidon que se suele tomar es el uso de difusores no céni-
cos que minimizan las pérdidas por separacién buscando que el gradiente de
presion en la pared sea lo menos adverso posible.

33.5.3. Contraccion brusca

En una contracciéon brusca como la de la figura 33.11, la corriente se separa
antes y después de la misma, produciéndose un estrechamiento de la vena
liquida despues de la contraccién. A pesar de ello, las pérdidas suelen ser
bastante menores que en un ensanchamiento brusco de la misma relacion de
areas. Definiendo

2

(¥
(Ap)con. = Cconp?2 ) (33.99)

el coeficiente (.0n. no se puede determinar teéricamente como en el caso de un
ensanchamiento brusco puesto que A,,;, es desconocida, y hay que recurrir a
la experimentacion. Aproximadamente se tiene
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Figura 33.11: Contraccién brusca.
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Figura 33.12: Coeficiente de pérdida de presion de remanso a la entrada de un conducto
(tomada de White, 1983).

Coon. = K (1 - %) ., K=04-05 . (33.100)
1

Si A2/A; < 1, lo cual corresponderia, por ejemplo, a la descarga de un depdsi-
to a través de un conducto, (sn. ~ K. Como se observa en la figura 33.12,
el coeficiente K puede reducirse apreciablemente redondeando los bordes de
la entrada del conducto. Asi, cuando los bordes estan suficientemente redon-
deados, las pérdidas son despreciables y puede suponerse que la presiéon de
remanso se conserva a la entrada del conducto.

33.5.4. Contraccién gradual

En una contraccién gradual cénica sélo se produce separacion de la corrien-
te a la salida de la misma, ya que el gradiente de presion es favorable en la
contraccion. Esta separacién puede a su vez evitarse redondeando los bordes,
de forma que las pérdidas son exclusivamente debidas a la friccién. Suponiendo
A constante, estas pérdidas vienen dadas por (ver seccién 33.5.3.):
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Figura 33.13: Contraccién gradual.

Figura 33.14: Esquema de la corriente en un codo.

_ X A3\ v3

(cg depende, por tanto, de A2/A;, de 6, del Reynolds y de la rugosidad relativa.

33.5.5. Codos

En los cambios bruscos de la direccién del flujo en un conducto, la pérdida
de presion de remanso se produce por tres mecanismos: por separacion de la
corriente, por friccién en la pared y por la formacién de flujos secundarios (ver
figura 33.14). Estos tltimos son debidos a la accién de las fuerzas centrifugas,
y se superponen a la corriente principal.

El coeficiente de perdidas depende, para un conducto circular, del angulo
del codo (), de la relacién entre el radio de curvatura y el didmetro del con-
ducto (R./D), de la rugosidad relativa y del nimero de Reynolds (estos dos
ultimos a través del coeficiente de friccion A). Si la seccién no es circular, hay
que anadir ademas algin parametro geométrico adimensional que caracterice
a la seccién. Por ejemplo, para un conducto de seccién rectangular, depende
ademas la relacion entre los lados del rectangulo. Para un conducto de seccién
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Figura 33.15: Coeficiente de pérdida de presién en un codo de seccién circular, segin la
expresion (33.102), en funcién de R./D (datos tomados de Idelchik, 1986).

-

circular, se puede utilizar la expresién (valida para R./D > 3, aproximada-
mente)

R,
D
donde el dngulo 4§ viene dado en grados y A\. = A¢(R./D, Re). Valores experi-
mentales de A, en funcién de R./D para dos niimeros de Reynolds se muestran
en la figura 33.15. Los resultados se pueden extrapolar a secciones no circulares
si uno usa 4ry en vez de D.

Ccodo = 0,0175)\c 4] ) (33102)

7 fff

Figura 33.16: Codo con aletas.
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Se debe observar que, aunque las pérdidas por separacién de la corriente
disminuyen a medida que aumenta R./D, las pérdidas por friccién aumentan,
pues el codo es mas largo. Por ello (.4, tiene un minimo para un valor éptimo
de R./D que depende del nimero de Reynolds, de delta y de la forma de
la seccién. Las pérdidas debidas al flujo secundario apenas se ven afectadas
por R./D, pero dependen mucho de la forma de la seccién. Son minimas en
conductos de seccién rectangular con un lado aproximadamente el doble que
el otro, pues los gradientes de velocidad transversal a la corriente correspon-
dientes al flujo secundario son menores (véase figura 33.14). Sin embargo, las
pérdidas por friccién y por separaciéon son mayores en los conductos rectan-
gulares pues la superficie de contacto sélido - fluido es mayor para una misma
seccién. Por ello, en flujo de gases, donde la friccién es relativamente menos
importante que en flujo de liquidos, se suelen usar, si las pérdidas son criticas,
conducciénes rectangulares, para que asi las pérdidas originadas por los flu-
jos secundarios en los codos sean las menores posibles. Cuando la seccién es
grande se anaden ademads aletas que guian a la corriente, disminuyendo asi las
pérdidas por separacién y por formacién de flujos secundarios (figura 33.16).
Para liquidos se suelen utilizar conducciones circulares pues las pérdidas por
friccién son relativamente mas importantes.
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Este libro es una introduccién a la Mecdnica de Fluidos, principalmente enfo-
cada a los estudiantes de Ingenieria. El contenido estd pensado para que sea
cubierto durante dos cursos: uno mas bésico, donde se introducen los funda-
mentos y se estudian las principales aplicaciones ingenieriles de la Mecanica de
Fluidos (con la importante excepcién de las Maquinas Hidrdulicas, que no se
consideran aqui porque suele constituir un curso aparte en algunas ramas de
la Ingenieria, existiendo muy buenos textos en espartiol), y otro mas avanzado
donde, el alumno interesado, puede atisbar otros aspectos interesantes de la
Mecénica de Fluidos.
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