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Editor’s foreword

Did Galileo actually do all
the experiments he talked about ?

A
lexander Koyré, was the first historian to suggest that

Galileo Galilei had not actually done all the experiments
he claimed to have done. However, many other historians

have since said that Koyré’s statement was just his own personal
opinion and not based on facts.

Our author, Juan Luis, will show that Galileo did in
fact perform the experiment of the sphere falling

on an inclined plane, repeating the same
experiment and highlighting the inaccuracies.

In this book, our author makes a detailed dynamic analysis of a
sphere falling down an inclined plane and explains how Galileo
put experiments into practice. He also talks about the many stu-
dents who helped him when he was a Physics teacher at high
school. Juan Luis makes us enjoy the observation of physical
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phenomena and teaches us how we can manage with few tech-
nical resources to obtain reliable data capable of supporting a
whole theory.

We move in time and mentality. We repeat Galileo’s briefly de-
scribed original experiments; we obtainmeasurements, we fill in
the gaps in Galileo’s pre-scientific documentation. This leads us
to see details that Galileo himself missed when measuring dis-
tances. But above all we come to only one possible conclusion:
the results that Galileo scribbled on his parchments could not
have been deduced or invented, they are numerical results that
can only correspond to real experiments.

The author of our book passionately defends not only Galileo’s
word, but also infects that healthy experimental spirit that ob-
jective observers have. Galileo’s physical setups are accessible,
they can easily be repeated in first person. Themain consequence
of Galileo’s and Juan Luis’ numbers is the natural phenomenon
that the velocity of the sphere increases continuously with the
time of fall. If the velocity were constant, the space travelled
would be directly proportional to the time. As the velocity in-
creases linearly, the space increases with the square of the time.
This is the first physical law of dynamics, which gave rise to all
subsequent physical science. This analysis was made by a 16th
century thinker, in a world dominated by religious beliefs and
Aristotelian physics created and closed 200 years before Christ.
To understand Galileo’s analysis, one must, with him, analyse
details and adopt that humble attitude, free of prejudice, which
undoubtedly made Galileo the first scientist, the first in history,
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whohad the courage to defendwhat one can see for oneself against
imposed inherited ideas.

This book will leave that aftertaste in the reader: it will turn us
into observers of details, it will teach us to analyse and measure
them, it will make us deepen our respect for nature, not based on
the blind admiration of the authority of the one who describes it,
but on the personal discovery of its surprising laws and connec-
tions. Connections and laws that Galileo was passionate about
throughout his life. Galileo broke with the pre-scientific dogma
and opened the doors to the age of science. Not that of techno-
logy, which always existed, and to which he also sold his know-
ledge, but that of scientific observation. Galileo, then, and Juan
Luis, now, open the doors to the beauty of the almost magical
behaviour of nature, of the behaviour that can be communic-
ated and experienced objectively without added interests or in-
terpretations, of the knowledge that comes from our senses.

Our author, Juan Luis, agrees with Professor José Romo [10], al-
though he never knew it, in the theoretical analysis of the data
we have from Galileo; but Juan Luis also checks them and even
sees themistakesmade in the original experimental setups. Juan
Luis taught his students, among whom I count myself, to per-
form this type of experiments throughout a brilliant career as a
high school teacher.

‘The stimulating power of experiment’ as Juan Luis calls it, is
motivation enough for any curious researcher to try to test with
reality what theories can predict, and in Galileo’s case, it would
have been strange indeed for him to combat the prejudices of his
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time without experimental basis. He made many observations
with his improved telescope, and it was much easier to meas-
ure times and lengths to verify revolutionary dynamical theories
that anyone could test for themselves.

On the problem of the credibility of the experiments

Interestingly, and I think it sums up the situation rather well,
Naylor’s opinion of the importance Galileo attached to the accur-
acy and predictability of his experiments is expressed here:’ [9]:

‘Historians have attempted to determine in which situ-
ations Galileo offered an experiment as a didactic device
and in which he regarded the experiment as crucial evid-
ence. As this has hitherto been attemptedwithout any clear
knowledge of which experiments were actual and which
were imaginary, it is hardly surprising that there exists
such a vast spectrum of opinion on the subject. It has even
resulted in a widely accepted view that Galileo had little
interest in actual experiment at all. This is largely a result
of the influence of Alexandre Koyré, who argued very per-
suasively that good physics is made a priori. Though there
is much to support this thesis, it is becoming increasingly
clear that Koyré’s philosophical predisposition led him to
underestimate the role of experiment in Galileo’s mechan-
ics.’

In some of the texts, and even series of texts, by some authors,
replications of experiments are detailed. However, the lack of
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specifications of the original experiments has made the replica-
tion of themmore of an art than anymeticulous procedure based
on following a series of steps. Let us remember that we are in the
16th century. Our author reasons what angles and lengths Ga-
lileo must have used. He manages to put himself in the place of
the first experimenter with a level of precision that most histor-
ians have not achieved. Throughout this text different forms of
experiments are repeated, presenting their results and compar-
ing themwith those ofGalileo. The final conclusion is inevitable.

In particular, the hardness of Koyré is surprising, who goes so
far as to deny the realization of the experiments and, with it, part
of Galileo’s genius and who, for some mysterious reason, gives
more merit to characters born much later and who had access
to the work, approaches and conclusions of the previous charac-
ters. Precisely this historical order of characters, in which many
geniuses from many countries participated, would place Galileo
at the top of a mountain to which the bravest ones ascended,
those who confronted the most deeply rooted prevailing preju-
dices. From him, the path was already laid. In Florence, not far
from the museum of Leonardo da Vinci, the museum dedicated
to Galileo represents a tribute not only to the great genius, but
to the birth of science itself. Many books have been dedicated to
Galileo. One of the most complete and exhaustive books is the
recent one by Caffarelli [1], in which all his work is meticulously
detailed. This museum can only dedicate one room to the few
instruments that Galileo used, the other many rooms are full of
devices such as telescopes, microscopes, scales, etc, of so many
other characters of the time, reflecting how the birth of science
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Figure 1: Lives of personalities related to Galileo

was the result of small contributions and, above all, a change of
mentality in the history of mankind. The indisputable great role
of Galileo was in the confidence that Nature followed the logic
of mathematics, and the confidence that experiments, without
prejudice, would lead us to find the relationships between nat-
ural phenomena, thus being the first to experiment in as many
areas of physics as he could: astronomy, mechanics, fluids, and
many others, as long as he could make measurements and find
mathematical relationships in them. In astronomy his descrip-
tion of Jupiter’s main satellites on January 6, 1610, Io, Europa,
Ganymede, and Callisto was so accurate, as was his mapping of
moon spots, that it is still valid today.

References to Galileo by other great physicists

Stephen Hawking [8]:
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Galileo, perhaps more than any other single person, was
responsible for the birth of modern science. His

renowned conflict with the Catholic Church was central
to his philosophy, for Galileo was one of the first to argue
that man could hope to understand how the world works,
and, moreover, that we could do this by observing the real

world.”

Albert Einstein [5, 4, 3, 2, 7]:

“The mechanical laws apply equally to a coordinate
system moving uniformly and in a state of rest—this was

the deep insight of Galileo”

“Galileo’s discovery and use of the experimental method
paved the way for the truly scientific attitude. His

greatness lies in his absolute refusal to accept the eternal
authority of Aristotle and the Church in matters of

natural science”

“The genius of Galileo was his realization that motion
does not require a force to sustain it, but rather that a
body in motion remains so unless acted upon. This

simple idea was revolutionary and is the foundation of
modern physics”
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“The most important single step in the history of physics
was Galileo’s realization that natural laws can be
discovered by systematic observation and rational
deduction, rather than reliance on metaphysical

assumptions”

“Propositions arrived at by purely logical means are
completely empty as regards reality. Because Galileo

realised this, and particularly because he drummed it into
the scientific world, he is the father of modern

physics—indeed, of modern science altogether—”





Editor’s foreword 11

About the edition

I have tried to respect the original text as much as possible, but
I have inevitably modified the formatting since I found it as a
series of files in MS-Word format that certainly no longer reflec-
ted the careful style of our author. On the other hand, its con-
version to LATEX/TikZ made me try to enrich and correct the way
of referencing formulas, tables and graphs. Apart from all this
aesthetic issue, there is the issue of content. The way in which
the book was initially presented responds, as the author tells us,
more to memoirs than to a book to be read. I have respected
the order of the chapters, but I thought it necessary to add ap-
pendices and an introduction to adapt it to what we understand
today as a book, perhaps not so much a book to be read, but
one that allows easy access to readers with a high school level of
knowledge of physics. So, we must recognize that yes, it is inev-
itable, that it is necessary to know physics at least at high school
level to understand many of the details described in this book.
However, we believe that what is most interesting is not the au-
thor’s inevitable physical analysis of the experiments, but the
author’s actual repetition and description of the experiments, as
well as the conclusions and criticisms of the historians’ work.
The editor understands that this work may in itself constitute
a sufficient basis to demonstrate beyond doubt that Galileo did
perform these experiments, and from the analysis he made of
these and others, he most probably did not fail to enjoy doing
them all with the greater skill than in those times, when there
were not even units of measurement whose standard could be
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more distant than the limits of the city where one lived.
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Preface by the author

Juan Luis Alcántara speaking at a
book presentation. October 22, 2009

The eight chapters that follow contain an orderly summary of thirty years of

intermittent and disorderly work.

In the first I develop my personal theoretical reflections on the rolling of a

rigid sphere on a deformable plane. Reflections that began in 1994 and have

continued until 2008. The orderly and logical exposition that I present can

make them seem to be the result of a short and intense period of work. Such

an impression is misleading.

In the second chapter I compile the most significant of my experimental work

on the same subject, carried out between 1995 and 2002. The design of the

experimental set-up with which the chapter begins may appear as a logical

consequenceof the theoretical developmentpresented in theprevious chapter.

This is alsomisleading. The truth is that bothworks—the theoretical andexperimental—

were intertwinedover theyears. Theexperimental—aswewill see later—began

in 1979, much earlier than the theoretical one.
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The decision to summarize in these two chapters the basic knowledge that

I have acquired on this subject responds to the desire to put the reader in a

position to get themaximum benefit from reading the remaining six chapters.

I do not believe, however, that it is necessary for the reader to have to study

them in depth on a first reading. In any case, he or she will be able to return

to them later if the subject matter covered in the remaining six chapters is of

interest to the reader.

I begin the third chapter by reproducing the account that Galileo gives in the

‘Discorsi’ of his famous experience with the inclined plane, as well as the ar-

guments put forward by Alexandre Koyré to deny its verisimilitude. I go on

to quote I.B. Cohen, who is in favour of the validity of the experience car-

ried out by T.B. Settle in 1961, replicating the one described by Galileo in his

famous text. I then summarize and comment on the excellent experimental

work done by T.B. Settle, citing the objections that—according to Federico di

Trocchio—Ronald Naylord makes to him. At the end, and after having drawn

my own conclusions on all the above, I exposemy first experimental incursion

in this same subject, which dates back to 1979, when I was just a curious and

undocumented novice.

In the fourth chapter, I detail my own experiences in 1979, which were to verify

at first hand the principle of superposition of motions proposed by Galileo.

These experiences provided me with pleasant and enriching surprises, both

from a personal and professional point of view.

In the fifth chapter I develop my researches around an unpublished folio of

Galileo, the116v, discovered and interpreted in 1973 by StillmanDrake. At the
beginning of these research -at the end of 2003- it had been several months

since I had retired and had access to the use of a computer, a technology that

I had refused to use during my active life as a teacher, but I was still far from
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becoming an Internet user. When I finally gave up -the end of 2006, I dis-

covered on the net the existence of another unpublished folio of Galileo, the

81r. I realized then that my theoretical/practical works about the rolling of a
rigid sphere on a deformable plane could be useful to me to justify and com-

plete the interpretation that Stillman Drake offered in his day of the the folio

116v as well as to propose interpretations of my own invention for the folios
114v and 81r. That is what I set forth in chapter six.

The seventh chapter begins with a description of a small chance find I made

while using my computer’s drawing program. I based myself on that finding

to thread together an account of how Galileo was able to initiate and order

his empirical inquiries into motion, beginning with the one he describes in his

famous account of the ‘Discorsi’ and following those suggested in the three

enigmatic unpublished folios.

In the eighth chapter I give a detailed account of my own home-made experi-

ences in support of all that has been presented in the three previous chapters.

Juan Luis Alcántara López

La Línea de la Concepción, 14–IX–2009
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Chapter 1

Friction in the rolling of a sphere. Theory

1.1 Introduction

From 1979 until 2002—the year I retired as a Physics and Chemistry teacher—

one of the resources I used with my students to introduce them to kinematics

consisted of reproducing with modern material the experience of the sphere

rolling on an inclined plane described briefly by Galileo in the third day of the

‘Discorsi’. One problem on which I concentrated my attention from the be-

ginning was of the dynamic type: How to evaluate the frictional forces that the

plane and the sphere exert on each other?

In January 1994 I beganmy personal research on this matter, since the subject,

perhaps because it is considered of little interest, does not appear treated in

depth in any of the Physics textbooks I have consulted throughout my life. In

the following sections I will try to develop my theoretical reasoning on this

issue.
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1.2 Coefficient of rolling friction

If a metallic sphere rolls on a wooden plane, both will undergo deformations

in the area of mutual contact, but the deformation of the plane—represented

in Figure 1.1 by the arc ⏜AB which subtends an angle 𝜆 at the centre of the

sphere—should be more pronounced than that experienced by the sphere it-

self as metal is stiffer than wood. Themutual interaction will be located in the

small contact zone around the arcs⏜AB of the sphere and ⏜A’B’ of the plane, but
if we consider that 𝜆 will have to be very small we will be able to symbolise
them bymeans of two vectors applied in B and B’. In pure rolling without slid-

ing, points A and A’ must remain at relative rest, while B’ sinks as the sphere

rolls to the right. Therefore the sphere is transferring its kinetic energy to the

plane by working on it through a force applied at B’. We will refer to Figure 1.2

below. In it we can see that 𝛽 = 𝜆/2 as the sides that form both angles are

perpendicular to each other.

CM

A

A’

B

B’

𝑞

𝜆

𝛽

Figure 1.1: Deformation of the plane

𝜆/2 ≡ 𝛽

𝜆

𝛽 ≡ 𝜆/2

CM

A

B

.

.

Figure 1.2: Angles 𝛽 = 𝜆/2
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𝝎
CM

𝐫

𝜆

𝛼

𝐯
CM

𝜆

𝝎 × 𝐫
𝐯

CM

𝐯B’

⋅

⋅

// //

B’

𝐤 = 𝐢 × 𝐣

𝐣

𝐢

×

Figure 1.3: Velocities

In Figures 1.3 and 1.4 we show the same sphere rolling on the same plane, now

with an inclination of 𝛼. The instantaneous velocity with which point B’ sinks
as a consequence of the advance of the sphere will be given by the equation:

𝐯B’ = 𝐯CM + 𝝎 × 𝐫

Note in Figure 1.3 that the angles 𝜆 with vertices at CM (Centre of Mass) and

at B’ are equal to each other because their sides are perpendicular. This allows

us to express the result of the vector product𝝎× 𝐫, in Cartesian coordinates,
by means of:

𝝎 × 𝐫 = −𝑣CM cos 𝜆 𝐢 − 𝑣CM sin 𝜆 𝐣
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CM

A’
B’

𝑟 𝜆

𝛼

𝐹𝑥

𝐹𝑦

Figure 1.4: Forces

and since, on the other hand, 𝐯CM = 𝑣CM 𝐢, the instantaneous velocity of B’
will be given by the vector:

𝐯B’ = 𝑣CM [(1 − cos 𝜆) 𝐢 − sin 𝜆 𝐣]

Figure 1.4 shows the rectangular components of the force that the sphere ap-

plies to the same point B’ as agreed above.

The instantaneous power 𝑃 developed by a constant force—as in our case—is
calculated by the scalar product of that force by the instantaneous velocity at

which its point of application moves.

Therefore the instantaneous power𝑃 = 𝑑𝐸/𝑑𝑡. ¹ whereby the plane receives

¹ Editor’s Note 𝑑𝐸/𝑑𝑡 = 𝐅 ⋅ 𝑑𝐬/𝑑𝑡 = 𝐅 ⋅ 𝐯 = 𝐹𝑥𝑣𝑥 + 𝐹𝑦𝑣𝑦
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energy 𝐸 from the sphere will be given by the scalar product:

𝑃 = (𝐅𝐱 + 𝐅𝐲) ⋅ 𝐯B’

In other words:

𝑃 = 𝑣CM [𝐹𝑥 (1 − cos 𝜆) + 𝐹𝑦 sin 𝜆]

But how:

𝑣CM = 𝑎CM 𝑡

being 𝑎CM the acceleration, constant, of the centre of mass, the amount of

energy transferred to the plane during the interval 𝑑𝑡 will remain:

𝑑𝐸 = [𝐹𝑥 (1 − cos 𝜆) + 𝐹𝑦 sin 𝜆] 𝑎CM 𝑡 𝑑𝑡.

If the sphere starts from rest, a simple integration with respect to time with

respect to time tells us that the energy 𝐸 which the sphere transfers to the

plane during rolling will be given by

𝐸 = [𝐹𝑥 (1 − cos 𝜆) + 𝐹𝑦 sin 𝜆]
1
2𝑎CM 𝑡2

or:

𝐸 = [𝐹𝑥 (1 − cos 𝜆) + 𝐹𝑦 sin 𝜆] 𝑠 (1.1)

where 𝑠 is the path of theCM of the sphere during the considered time inter-

val.

If we remember that 𝜆 → 0, so that 1 − cos 𝜆 → 0 and sin 𝜆 → 𝜆, the
above equation will look like this:
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𝜆 → 0 ⇒ 𝐸 = 𝜆𝐹𝑦 𝑠 (1.2)

𝜆

𝛼

𝐹frict = 𝜆𝐹𝑦

𝐹𝑦 = 𝑚𝑔 cos𝛼

𝜆 =
𝐹frict
𝐹𝑦

𝑚: mass of the sphere

𝑔: gravitational acceleration

Figure 1.5: Angle 𝜆 in the plane deformation

Therefore we can consider that 𝜆 plays in the equation 1.2 the function of a
‘coefficient of rolling friction’ according to the usual definition of such coeffi-

cients. ². See Figure 1.5.

The 𝐹frict shown in Figure 1.5 and the 𝐹𝑥 shown in Figure 1.4 play completely
different roles in terms of the energy transfer that the sphere makes to the

plane: The role of 𝐹𝑥 is zero in practice, by virtue of the equation 1.1, so that
the energy transfer is almost exclusively taken care of by𝐹frict, which depends,

² Editor’s Note The frictional force that slows down the sliding of one body over another,

whichhasbeenwidely studied, is𝐹frict = 𝜇𝐹𝑦, and itswork, the energy that is transferred
to the plane due to this force: 𝐸 = 𝐹frict 𝑠 = 𝜇𝐹𝑦 𝑠. Where 𝜇 is the dynamic friction

coefficient which, for example, for glass-wood surfaces has a value of 0.2
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as we have just shown, on 𝜆 and 𝐹𝑦.

1.3 How can the value of this coefficient be obtained?

To achieve this we will pose the equation of motion for the sphere considering

the simultaneous rotation/translation as a pure rotation around the instantan-

eous axis of rotation passing through point A and perpendicular to the plane

of the paper. is perpendicular to the plane of the paper. See Figure 1.6. We

will have:

𝐫 × 𝐰 + 𝐪 × 𝐅 = 𝐼A 𝜸

being 𝐼A the moment of inertia of the sphere and 𝛾 the angular acceleration.
According to Steiner’s theorem [1], the expression for the moment of inertia

𝐼A with respect to A will be:

𝐼A = 𝐼CM +𝑚𝑟2 = 2
5𝑚 𝑟2 +𝑚𝑟2

or:

𝐼A =
7
5 𝑚 𝑟2

where𝑚 is the mass of the sphere.

Let us now consult Figure 1.2 to express the vector 𝐪 and we will find that:

𝐪 = 𝑞𝑥 𝐢 + 𝑞𝑦 𝐣 = 𝑞 sin 𝜆2 𝐢 + 𝑞 cos 𝜆2 𝐣

Havingmade the relevant substitutions and operations in the equation ofmo-
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CM

A B

𝜆

𝛼

𝐹𝑥

𝐹𝑦

𝐅

𝐫
𝐪

𝐤
= 𝐢 × 𝐣

𝐣

𝐢

𝜆/2

𝑤 cos𝛼

𝑤 sen𝛼𝐰
𝛼

Figure 1.6: 𝐫 ×𝐰+ 𝐪× 𝐅 = 𝐼A 𝜸

tion, we will have of motion we will have:

𝑟𝑚𝑔 sin 𝛼 − 𝑞𝐹𝑥 sin
𝜆
2 − 𝑞𝐹𝑦 cos

𝜆
2 =

7
5 𝑚 𝑟 𝑎CM

where 𝑎CM represents the linear acceleration of the centre of mass since: 𝛾 =
𝑎CM/𝑟.

Since 𝜆 → 0, we will have cos 𝜆2 → 1 and sin 𝜆2 → 𝜆
2 , so that the above

equation can be written as follows:

𝑟𝑚𝑔 sin 𝛼 − 𝜆
2 𝑞𝐹𝑥 − 𝑞𝐹𝑦 =

7
5 𝑚 𝑟 𝑎CM
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If both members of the above equation are divided by 𝑟 and the approxima-
tion, also acceptable, is made that

𝑞
𝑟 → 𝜆, the above equation will be:

𝑚𝑔 sin 𝛼 − 𝜆2
𝐹𝑥
2 − 𝜆𝐹𝑦 =

7
5 𝑚𝑎CM

o bien:

𝜆2
𝐹𝑥
2 + 𝜆𝐹𝑦 +𝑚(75 𝑎CM − 𝑔 sin 𝛼) = 0

This second degree equation allows the calculation of 𝜆 from two quantities

whose values are experimentally determinable: The angle 𝛼 formed by the

plane with the horizontal and the acceleration 𝑎CM. As for the rectangular

components of the force that the plane exerts on the sphere we will have that

they will be:

𝐹𝑦 = 𝑚𝑔 cos 𝛼 𝐹𝑥 = 𝑚(𝑔 sin 𝛼 − 𝑎CM)

It is evident that if the plane and the sphere were both perfectly rigid, so that

𝜆 = 0, the mutual contact would be reduced to a single point. In this case
there would be no friction and the acceleration would be the theoretical one

denoted by
–
𝑎CM:

𝑚(75 –𝑎CM − 𝑔 sin 𝛼) = 0

which leads to the well-known result:

𝜆 = 0 ⇒
–
𝑎CM = 5

7 𝑔 sin 𝛼

for the acceleration that we call theoretical of the centre of mass
–
𝑎CM, equa-

tion valid in the ideal case of absence of friction forces and, therefore, without

dissipation of energy 𝜆 = 0.
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A realistic approximation without supposing𝜆 totally null,—since the absolute
rigidity does not exist—would be obtained by disregarding the quadratic term

in the equation of second degree, since if 𝜆 → 0 will do so with much more
reason its square and substituting also 𝐹𝑦 for the value obtained before, we
would obtain:

𝜆 = tan 𝛼 −
7𝑎CM

5𝑔 cos 𝛼,

or:

𝜆 = sec 𝛼 (sin 𝛼 −
7𝑎CM

5𝑔 ) (1.3)

mathematical expression that describes a functional relationship between 𝜆
and a pair of independent variables: the angle of inclination of the plane𝛼 and
the real acceleration of the centre of mass of the sphere 𝑎CM. That is to say:

𝜆 = 𝑓(𝛼, 𝑎CM).

References

[1] Wikipedia. Steiner’s theorem. 2023.

https://en.wikipedia.org/wiki/Parallel_axis_theorem
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1.4 A new interpretation of 𝜆

If the metallic sphere rolls on the inclined wooden plane, part of its initial

gravitational potential energy will be dissipated along the path, and when it

reaches the foot of the plane, its kinetic energy content will be lower than ex-

pected.

O

A

B

ℎAℎB

ℎA − ℎB

𝛽𝛼

𝛼 − 𝛽 𝑠

Figure 1.7: Nueva interpretación de 𝜆

If the rolling sphere starts from rest frompoint A and travels the length 𝑠until it
reaches𝑂—the plane forming an angle𝛼with the horizontal—the unavoidable
dissipation of energy will cause a practical effect equivalent to that of having

carried out the same rolling without dissipation of energy, but on a plane of

inclination 𝛽 < 𝛼. Figure 1.7 We can evaluate the dissipated energy by:

Δ𝐸𝑝 = 𝑚𝑔Δℎ

or:

𝑚𝑔Δℎ = 𝑚𝑔ℎA −𝑚𝑔Δℎ = 𝑚𝑔ℎB

Simplifying is:

Δℎ = ℎA − ℎB
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which, multiplying and dividing by 𝑠, leaves:

Δℎ = 𝑠 (
ℎA
𝑠 − ℎB

𝑠 )

or, finally:

Δℎ = 𝑠 (sin 𝛼 − sin 𝛽)

The parenthesis of the last relation above can be expressed in this way:

sin 𝛼 − sin 𝛽 = 2 sin
𝛼 − 𝛽
2 cos

𝛼 + 𝛽
2

If we consider that 𝜆 = 𝛼 − 𝛽 must be a very small angle we can admit that
𝛽 → 𝛼 and also that sin 𝜆 → 𝜆, so that the above expression would be:

sin 𝛼 − sin 𝛽 = 𝜆 cos 𝛼

hence we are able to write:

Δℎ = 𝑠𝜆 cos 𝛼 (1.4)

But, since the experimental value of the linear acceleration of the centre of

mass of the sphere must fit the equation:

𝑎CM = 5
7𝑔 sin 𝛽

we would have:

sin 𝛽 =
7𝑎CM

5𝑔

and it would also turn out to be true that we can expressΔℎ in this other way:
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Δℎ = 𝑠 (
ℎA
𝑠 −

7𝑎CM

5𝑔 ) (1.5)

Equating the second members of 1.4 and 1.5 and operating we obtain:

𝜆 = sec 𝛼 (
ℎA
𝑠 −

7𝑎CM

5𝑔 )

o:

𝜆 = sec 𝛼 (sin 𝛼 −
7𝑎CM

5𝑔 ) (1.6)

This equation 1.6—identical to 1.3—allows the evaluation of 𝜆 from 𝛼 and 𝑎CM.

The novelty in this case is that𝜆now represents neither theplane strainnor the
coefficient of rolling frictionbut the differencebetween the real𝛼 andapparent
inclinations 𝛽 of it.

An interesting consequence of the above is that we can and should distinguish

between
–
𝑎CM, theoretical or ideal acceleration—that which would possess the

rolling sphere’s CM in the ideal case of zero friction—and 𝑎CM, the experi-

mental or real acceleration, that which presents in practice the sphere’s CM,

since the friction forces are inescapable causing the consequent dissipation of

energy. Both accelerations can be calculated by:

–
𝑎CM = 5

7 𝑔 sin 𝛼

𝑎CM = 5
7 𝑔 sin 𝛽

𝛽 = 𝛼 − 𝜆

(1.7)



Chapter 1 Friction in the rolling of a sphere. Theory 40

1.5 Sphere rolling on a rectangular section groove

In a famous experiment carried out in 1961 by T. B. Settle—replicating the one

described by Galileo—this researcher rolled his spheres on a rectangular sec-

tion groove carved on the narrowest face of its inclined plane. In this exper-

iment the rolling sphere has two small zones of contact with the support, as

shown in Figure 1.8.

CM

w

𝑟′

w/2

𝑟

𝑟′2 = 𝑟2 − (𝑤/2)2

Figure 1.8: Apparent radius 𝑟′

In Figure 1.9 we present a side view of the same sphere rolling on the groove

of the inclined plane at an angle 𝛼 with respect to the horizontal.

Suppose that the sphere starts from rest, being itsCM at a heightℎ above the
horizontal, and rolls along a length 𝑠. In the ideal assumption of nomechanical
energy dissipation in the rolling we would have that:

𝑚𝑔ℎ = 1
2 𝑚 –

𝑣2CM +
1
2 𝐼 –𝜔

2
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CM

r’

𝐯
CM

angular

velocity:

𝜔 =
𝑣
CM

𝑟′

Figure 1.9: Velocity 𝑣CM

where𝑚 is the mass of the sphere and 𝐼 its moment of inertia with respect to
the axis of rotation.

As 𝐼 = 2
5 𝑚 𝑟2 and

–
𝜔2 = (–

𝑣CM
𝑟′ )

2
we will have:

𝑔𝐻 = 1
2 –𝑣

2
CM +

1
5(
𝑟
𝑟′)

2

–
𝑣2CM

Taking into account that:
–
𝑣2CM = 2

–
𝑎CM𝑠 and that sin 𝛼 =

ℎ
𝑠 we get:

–
𝑎CM = 1

1 + 2

5
( 𝑟𝑟′)

2
𝑔 sin 𝛼 (1.8)

Expression that allows us to calculate the ideal or theoretical acceleration
–
𝑎CM

of the CM of the sphere rolling under these conditions. The coefficient en-

closed in square brackets is easy to calculate (see Figure 1.8) y reduces to the

familiar
5

7
in the case where 𝑟 = 𝑟′.

By virtue of the relations 1.7 this same equation 1.8 will serve to calculate the
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experimental acceleration𝑎CM by simply substituting sin 𝛼 for sin 𝛽, since the
expression enclosed in the bracket is a purely geometrical factor.

1.6 Calculation of the percentage of energy dissipated in the

rolling movement

We will show that this percentage 𝜒 can be calculated by:

𝜒 = 100 (1 −
𝑎CM

–
𝑎CM

)

In absence of friction all gravitational potential energy in A would be con-

𝐯
CM

A

B

𝛼

S

H

Figure 1.10: Percentage of energy dissipated 𝜒
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served inB as kinetic, which we could express by:

–
𝐸 = 𝐾

–
𝑣2CM

being:

𝐾 = 𝑚(12 +
1
5 (

𝑟
𝑟′)

2)

or:

–
𝐸 = 2 𝑠𝐾

–
𝑎CM

since:

–
𝑣2CM = 2

–
𝑎CM𝑠

where
–
𝑎CM represents the ideal or theoretical accelerationof the centre ofmass.

But in an analogous way the energy 𝐸 can be expressed as kinetic energy 𝐸,
which will be conserved inB:

𝐸 = 2𝑠𝐾𝑎CM

being now 𝑎CM the real or experimental acceleration.

The quotient𝐸/
–
𝐸, which reduces to 𝑎CM/–𝑎CM by simplifying it, represents the

percent for one of the conserved initial energy.

The so much per one of dissipated energy will be obtained by means of:

–
𝐸 − 𝐸

–
𝐸 = –

𝑎CM − 𝑎CM

–
𝑎CM

or:
Δ𝐸
𝐸 = 1 −

𝑎CM

–
𝑎CM
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and the percentage 𝜒 of dissipated energy will be given by:

𝜒 = 100 (1 −
𝑎CM

–
𝑎CM

) (1.9)

It is very easy to prove that the equation:

𝜒 = 100 (1 − (
𝑣CM
–
𝑣CM

)
2
) (1.10)

allows us the same calculation as the 1.9 from the relation between velocities

(real and theoretical) of the centre of mass of the sphere.



Chapter 2

Friction in the rolling of a sphere. Experiences

2.1 Experimental setup

Either of the equations 1.3 or 1.6 suggests a laboratory setup that would allow

one to calculate values of 𝜆 by empirically determining values of 𝑎CM and ℎ.
Such a setup is depicted in Figure 2.1. A bubble level, a graduated ruler-square

Square

ruler

h

Electromagnet

Stopwatch

stopping

the ball

𝑠

𝛼

Stopwatch

hitting

the switch

Battery

Bubble level

Figure 2.1: Experimental setup to calculate 𝜆

and an aluminium square used in the manufacture of windows, together with

nuts, clamps and supports—which are not shown in the figure—make assembly

very simple and easy to transport. The aluminiumsquare, placedon the labor-

atory table, must be adjusted with coins, for example, checking that it is per-

fectly horizontal using a bubble level.
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Special mention should be made of the procedure used to measure the run-

ning times, which consists of starting the digital chronometer simultaneously

with the departure of the sphere at rest (opening the electromagnet’s power

supply circuit by hitting the switch with the chronometer spring), and stop-

ping the chronometer at the same time as the sphere reaches the end of its

travel (waiting for it with the spring arranged so that it is hit by the sphere).

It is necessary to arrange the electromagnet and the chronometer in such a

way—suggested in the figure—that the time 𝑡 timed corresponds to the travel
𝑠made by the centre of mass of the sphere.

2.2 Metal sphere on wooden plane

In this experiment the inclined plane consisted of a square of pine of 105 cm
of length, 10 cm ofwidth and2 cm of thickness. Along the thickness, two par-

allel fishing lineswere stretched—separated5mm. fromeachother—delimiting

a path where an iron sphere of 12.5mm radius will roll, keeping a small con-

tact area with the plane, as we have already described in the previous chapter.

The fishing lines have the taskof correcting thepossibledeviationof the sphere

from its rectilinear trajectory with a minimum energy cost.

The length 𝑠 travelled for each slopeℎwas always the same (100 cm) and the

rolling times were measured ten times for each ℎ, taking the average value
as representative. However, the timing procedure is so accurate that a single

time measurement for each slope would suffice, so that the experiment can

be carried out in the classroom during class time without boring the students.
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Of course the experimental acceleration 𝑎CM is calculated by:

𝑎CM = 2𝑠
𝑡2

and the slope ℎ is measured with the ruler-square, as indicated in Figure 2.1.
The data are collected in Table 2.1 and plotted in Graph 2.1.

The blue line in Figure 2.1 shows the empirical relationship between 𝑎CM and

ℎ obtained in this way, while the red line shows the theoretical relationship

that would be obtained between the theoretical acceleration
–
𝑎CM and ℎ in the

absence of energy dissipation. We have calculated it by the simple equation:

–
𝑎CM = 7ℎ

which is obtained from:

–
𝑎CM = 5

7 𝑔 sin 𝛼

remembering that:

sin 𝛼 = ℎ
100

The empirical equation: 𝑎CM = 6.85 (ℎ−0.23)was obtained by relating the
two data sets 𝑎CM, ℎ shown in Table 2.1 using the linear regression method.

The correlation index turned out to be worth 𝑟 = 0.999.

If we take this empirical relation to the theoretical equation 1.6 and perform

the relevant operations we will obtain:

𝜆 = sec 𝛼 (2.20 × 10−4 ℎ + 2.23 × 10−3)

which gives us the functional relation 𝜆 = 𝑓(𝛼, ℎ) in the particular case of
our metallic sphere rolling on our inclined plane of pine wood.



Chapter 2 Friction in the rolling of a sphere. Experiences 48

# 𝛼𝑜 ℎ cm 𝑡 s 𝑎CM cm/s2
1 0.57 1.0 6.32 5.0
2 1.14 2.0 4.04 12.3
3 1.66 2.9 3.31 18.3
4 2.18 3.8 2.86 24.4
5 2.92 5.1 2.44 33.6
6 3.50 6.1 2.24 39.9
7 4.07 7.1 2.06 47.1
8 4.53 7.9 1.95 52.6
9 5.16 9.0 1.82 60.4
10 5.85 10.2 1.71 68.5
11 6.54 11.4 1.62 76.2

Table 2.1

2 4 6 8 10 12

20

40

60

80

ℎ

–
𝑎

6,85 (ℎ − 0,23)

–
𝑎 = 7ℎ

Graph 2.1: Results of 𝑎CM and –𝑎CM of
metal sphere on wood

If the sphere rolls on the horizontally disposed plane, so that𝛼 = 0, it follows
from the above relation that the value𝜆 = 2.23×10−3 radians will represent
the deformation of the plane or also the value of the rolling coefficient in this

case.

2.3 Metal sphere on metal plane

In another experiment, the same sphere was rolled on a duralumin ruler and

made to travel 100 cm following the same procedure described in the previ-

ous section. The results obtained are shown in Table 2.2.
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# 𝛼𝑜 ℎ cm 𝑡 s 𝑎CM cm/s2
1 1.14 2.0 3.90 13.1
2 1.89 3.3 2.99 22.4
3 2.35 4.1 2.70 27.4
4 2.75 4.8 2.49 32.2
5 3.09 5.4 2.36 35.9
6 3.27 5.7 2.29 38.1
7 3.90 6.8 2.10 45.3
8 4.18 7.3 2.03 48.5
9 4.64 8.1 1.92 54.2
10 5.10 8.9 1.84 59.1
11 5.45 9.5 1.77 63.8

Table 2.2

2 4 6 8 10

20

40

60

ℎ

–
𝑎

6,68 (ℎ − 3 × 10−3)

–
𝑎 = 7ℎ

Graph 2.2: Results of 𝑎CM and –𝑎CM ofmetal
sphere on duralumin

The empirical equation:

𝑎CM = 6.68 (ℎ − 3 × 10−3)

has also been obtained by the linear regressionmethod, with both data series

showing a correlation index 𝑟 = 0.999. Taking this empirical relationship to
the theoretical equation 1.6 we will have:

𝜆 = sec 𝛼 (4.6 × 10−4ℎ + 2.8 × 10−5)

The data are represented in Graph 2.2.

In both cases—graphs 2.1 and 2.2—the red lines pass, as is logical, through the

point of coordinates (0, 0), while the blue lines always cut the horizontal axis
and have a positive abscissa at the origin.
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2.4 Metal sphere on rectangular section groove

In the experiment I am going to present below, I used Boyle’s ruler as an in-

clinedplane. I named it thiswaybecause it is a thickmetallic ruler belonging to

an assembly destined to the verification of the laws of gases (Boyle-Mariotte,

Gay-Lussac, etc.). Itmeasures110 cm in length, has a grooved face (11.0mm
of channel width) and the other smooth and flat faces, in one of which there is

a scale of 100 cm that allows to appreciate up to millimetres. Figure 2.2 illus-

trates the double use that can be made of this Boyle’s ruler: In A the sphere

is shown rolling between two fishing lines (the little green circles) so that the

rolling sphere has one area of contact with the plane. In B the same sphere is

shown rolling along the groove or channel now having two contact zones.

A B

Figure 2.2: Boyle´s ruler

In the experience I am about to describe, the Boyle’s ruler was used in the B

form. Later I will present a couple of experiments in which it was used in both

forms using the same rolling sphere.

In the one I describe below, an old iron sphere, of23.84 gmass and0.9 cm ra-

dius, which had lost its surface nickel plating and had completely rusted away,

was used. The oxide layer was partially removed by rubbing with a cloth. The

time taken to travel (s = 100.0 cm) over the rectangular groove of the rail (A
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= 11.0mm) was timed by varying the slope ℎ thirteen times, taking a single
time measurement 𝑡 for each value of the slope. The experimental acceler-
ation 𝑎CM was calculated for each ℎ and the corresponding graphical repres-
entation of 𝑎CM and

–
𝑎CM versus ℎ was plotted (Figure 2.3).

# ℎ cm 𝛼𝑜 𝑡 s 𝑎CM cm/s2
1 3.0 1.72 4.29 10.9
2 4.2 2.41 3.34 17.9
3 5.0 2.86 2.99 22.4
4 5.4 3.09 2.79 25.7
5 6.0 3.44 2.63 28.9
6 6.9 3.96 2.42 34.2
7 7.6 4.36 2.28 38.5
8 8.6 4.93 2.11 44.9
9 9.9 5.68 1.97 51.5
10 10.9 6.26 1.90 55.4
11 11.9 6.83 1.79 62.4
12 13.0 7.47 1.70 69.2
13 14.0 8.05 1.63 75.3

Table 2.3

2 4 6 8 10 12 14

20

40

60

ℎ

–
𝑎

5,78 (ℎ − 1,03)

–
𝑎 = 5,98 ℎ

Graph 2.3: Results of 𝑎CM and –𝑎CM of
metal sphere on metal groove

The equation
–
𝑎CM = 5.98ℎ has been obtained using the formula 1.8 from

the previous topic, while the 𝑎CM = 5.78, (ℎ − 1.03) has been obtained
by relating the experimental data using the linear regression procedure with a

correlation index 𝑟 = 0.999.

Using the equation 1.6 from the previous topic we find that, in this case:

𝜆 = sec 𝛼 (1.7 × 10−3ℎ + 8.5 × 10−3)
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2.5 The percentage of energy dissipated as a function of ℎ

If we apply the equation 1.9 from the previous topic to the experience we have

just analysed we will have that:

𝜒 = 100 (1 − 5.78 (ℎ − 1.03)
5.98 ℎ )

By performing the pertinent operations we arrive at:

𝜒 = 3.34 + 99.5
ℎ

valid for ℎ ≥ 1.03.

The equation that we have just obtained admits the representation that we

offer in the Graph 2.4. This is an interesting result to which we will return in

the future. It is clear that the total available energy increases as ℎ increases,
but also that the percentage of that which is dissipated decreases in the same

direction.
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Graph 2.4: 𝜒 versus ℎ

2.6 Two experiences of January 2001

On January 22, 2001, I used the set-up described in Figure 2.2 by taking the

Boyle’s ruler as shown in Figure 2.2A. The next day I repeated the experience

but using the Boyle’s ruler as shown in Figure 2.04B. I rolled in both cases a

nickel-plated sphere of radius 12mm along the available 100 cm by meas-

uring ten times the time corresponding to each heightℎ to take themean value
of 𝑡 in the calculation of the experimental accelerations 𝑎CM.

The data related to both experiments are shown in Tables 2.5 and 2.6.

Those in Table 2.5 correspond to 20 rolls in which between the sphere and the

support there is‘a single contact zone’ varying the angle of inclination between
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# ℎ cm 𝑡 s 𝑎CM cm/s2
1 0.90 6.11 5.4
2 1.00 5.69 6.2
3 1.20 5.19 7.4
4 1.60 4.51 9.8
5 1.85 4.14 11.6
6 2.10 3.84 13.5
7 2.30 3.66 14.9
8 2.60 3.43 16.9
9 2.80 3.31 18.3
10 2.90 3.24 18.9
11 3.10 3.14 20.3
12 3.30 3.03 21.7
13 3.50 2.94 23.2
14 3.65 2.86 24.4
15 3.90 2.80 25.5
16 4.05 2.72 26.9
17 4.30 2.64 28.6
18 4.50 2.57 30.3
19 4.70 2.51 31.6
20 5.00 2.44 33.5

Table 2.5

1 2 3 4 5

10

20

30

ℎ

–
𝑎

6,89 (ℎ − 0,14)

–
𝑎 = 7ℎ

Graph 2.5: One contact zone

0.51° and 2.86°. Applying the linear regression method to establish the rela-
tionship between 𝑎CM and ℎ we obtain:

𝑎CM = 6.89 (ℎ − 0.14) with a correlation index 0.999

By the procedure already known we find that:

𝜆 = sec 𝛼 (1.38 × 10−3 + 1.6 × 10−4ℎ)

Those in Table 2.6 correspond to 20 rolls in which between the same sphere

and the same support there are ‘two contact zones’, varying the angle of in-

clination between 0.48° and 2.69°. Applying the linear regression method
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# ℎ cm 𝑡 s 𝑎CM cm/s2
1 0.85 8.01 3.1
2 1.00 6.95 4.1
3 1.25 6.08 5.4
4 1.50 5.26 7.2
5 1.70 4.94 8.2
6 1.95 4.53 9.7
7 2.10 4.32 10.7
8 2.30 4.10 11.9
9 2.55 3.86 13.4
10 2.75 3.71 14.5
11 2.85 3.62 15.2
12 3.00 3.49 16.4
13 3.15 3.40 17.3
14 3.30 3.30 18.3
15 3.60 3.15 20.2
16 3.90 3.02 21.9
17 4.10 2.93 23.3
18 4.25 2.88 24.1
19 4.45 2.80 25.5
20 4.70 2.71 27.1

Table 2.6

1 2 3 4 5

10

20

30

ℎ

–
𝑎

6,23 (ℎ − 0,37)

–
𝑎 = 6,505 ℎ

Graph 2.6: Two contact zones

we obtain for the relationship between 𝑎CM and ℎ:

𝑎CM = 6.23 (ℎ − 0.37)

with a correlation index 0.999.

By the same procedure we find that:

𝜆 = sec 𝛼 (3.54 × 10−3 + 4.2 × 10−4ℎ)

Since for the interval of 𝛼 in which we move sec 𝛼 → 1 we can dispense
with this refinement in the above equations to compare with each other the
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coefficients of ℎ and the independent terms, resulting:

3.54 × 10−3

1.38 × 10−3 = 2.56 ≈ 2.6

y

4.2 × 10−4

1.6 × 10−4 = 2.62 ≈ 2.6

In these twoexperiments thematerials in contactare the same, the only differ-

ence being that in A the sphere rolls on the ‘smooth plane’ and in B on ‘a rail or

groove’. The calculations we have just made reveal that, very approximately:

𝜆B = 2.6 𝜆A

Theexperimentwasdesignedprecisely todemonstrate this differencebetween

the two coefficients of rolling friction. It was expected that𝜆Bwouldbe at least
twice as large as 𝜆A. Presumably the width of the rail, relative to the diameter
of the rolling sphere, will also play a role.

The accelerations ideal in the absence of friction
–
𝑎CM that would correspond in

both cases would be:

–
𝑎CM = 7.000 ℎ (on the smooth plane)

and

–
𝑎CM = 6.505 ℎ (on the rail)

Using the equation 1.9 from the previous topic we can see that the energy dis-

sipation rates are, on average, 2.6 times higher in the case of the sphere rolling
on the rail.



Chapter 3

Themuch-discussed experience of the inclined plane

3.1 Galileo’s experiment

He himself describes it as follows in [3]:

‘A piece of wooden moulding or scantling, about 12 cubits
long, half a cubitwide, and three finger-breadths thick, was
taken; on its edge was cut a channel a little more than one
finger in breadth; having made this groove very straight,
smooth, and polished, and having lined it with parchment,
also as smooth and polished as possible, we rolled along it
a hard, smooth, and very round bronze ball.
“Having placed this board in a sloping position, by lifting
one end some one or two cubits above the other, we rolled
the ball, as I was just saying, along the channel, noting,
in a manner presently to be described, the time required
to make the descent. We repeated this experiment more
than once in order to measure the time with an accuracy
such that the deviation between two observations never ex-
ceeded one-tenth of a pulse-beat. Having performed this
operation and having assured ourselves of its reliability, we
now rolled the ball only one-quarter the length of the chan-
nel; and having measured the time of its descent, we found
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it precisely one-half’of the former. Next we tried other dis-
tances, comparing the time for the whole length with that
for the half, or with that for two-thirds, or three-fourths,
or indeed for any fraction; in such experiments, repeated
a full hundred times, we always found that the spaces tra-
versed were to each other as the squares of the times, and
this was true for all inclinations of the plane, i. e., of the
channel, along which we rolled the ball. We also observed
that the times of descent, for various inclinations of the
plane, bore to one another precisely that ratio which, as we
shall see later, the Author had predicted and demonstrated
for them.
For the measurement of time, we employed a large vessel
of water placed in an elevated position; to the bottom of
this vessel was soldered a pipe of small diameter giving a
thin jet of water, which we collected in a small glass during
the time of each descent, whether for the whole length of
the channel or for a part of its length; the water thus col-
lected was weighed, after each descent, on a very accurate
balance; the differences and ratios of these weights gave us
the differences and ratios of the times, and this with such
accuracy that although the operation was repeated many,
many times, there was no appreciable discrepancy in the
results.’

Between 1937 and 1961 it was fashionable to doubt the efficacy and verisimilit-

ude of the experience contained in this brief account. The prestigious historian

of science Alexandre Koyré expresses himself in this respect as follows [6]:
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‘Une boule en bronze roulant dans une rainure «lisse et polie» taillée dans du bois!

Un récipient d’eau avec un petit trou par lequel l’eau passe et que l’on recueille

dans un petit verre pour la peser ensuite et mesurer ainsi les temps de descente (la

clepsydre romaine, celle de Ctésibius, était un bien meilleur instrument): quelle ac-

cumulation de sources d’erreur et d’inexactitude!

Il est évident que les expériences de Galilée sont complètement dénuées de valeur :

la perfection même de leurs résultats est une preuve rigoureuse de leur inexactitude.

Les historiens modernes, accoutumés à voir les expériences de Galilée faites à l’in-

tention des étudiants dons nos laboratoires scolaires, acceptent. cet exposé étonnent

comme vérité d’évangile et louent Galilée d’avoir établi ainsi non seulement la valid-

ité empirique de le loi de chute, mois cette dernière aussi. (Cf., parmi beaucoup

d‘autres, N. Bourbaki, Élements demathématique, 9, première partie, liv. IV, chap. I-

III, Note historique, p. 150 («Actualités scientifiques et Industrielles» nº 1074, Paris,

Hermann, 1949). Cf. Appendice 1.

Il n’est pas étonnant que Galilée, qui est sans doute pleinement conscient de tout

cela, évite autant que possible (par exemple dans les Discours) de donner une valeur

concrète pour l’accélération; et que, chaque fois qu’il en donne une (comme dans le

Dialogue), celle-ci soit radicalement fausse. Tellement fausse que le P. Mersenne a

été incapable de dissimuler sa surprise:

«Or il suppose, écrit-il à Peiresc 2, que le boulet tombe cent brasses dans cinq

secondes, d’où il s’ensuit qu’il ne tombera que quatre brasses dans une seconde

quoique je sois assuré qu’il tombe de plus haut.»

En effet, quatre coudées —pas même sept pieds 8— sont moins que la moitié de la

vraie valeur; et environ la moitié de la valeur que le P. Mersenne établira lui-même.

Et pourtant, le fait que les chiffres donnés par Galilée soient grossièrement inexacts

n’a rien de surprenant; tout au contraire: il serait surprenant, et même miraculeux,

qu’ils ne le fussent pas. Ce qui est surprenant, c’est le fait que Mersenne, dont les

moyens d’expérimentation n’étaient pas beaucoup plus riches que ceux de Galilée,

ait pu obtenir des résultats tellement meilleurs.’

‘A bronze ball rolling in a ‘smooth and polished’ groove cut
in wood! A container of water with a small hole through



Chapter 3 The much-discussed experience of the inclined plane 60

which the water passes and which is collected in a small
glass so that it can be weighed and the descent times meas-
ured (the Roman clepsydra, that of Ctesibius, was a much
better instrument): what an accumulation of sources of er-
ror and inaccuracy! It is obvious that Galileo’s experiments
are completely worthless: the very perfection of their res-
ults is rigorous proof of their inaccuracy. Modern histori-
ans, accustomed to seeing Galileo’s experiments done for
students in our school laboratories, accept this astonish-
ing statement as gospel truth and praise Galileo for hav-
ing thus established not only the empirical validity of the
law of falling, but the latter as well (Cf., among many oth-
ers, N. Bourbaki, Eléments de mathématique, 9, première
partie, liv. IV, chap. I-III, Note historique, p. 150!- Ac-
tualités scientifiques et Industrielles – nº 1074, Paris, Her-
mann, 1949). Cf. Appendix 1
It is not surprising that Galileo, who was no doubt fully
aware of all this, avoided as much as possible (for example
in the Discourses) giving a concrete value for acceleration;
and that, whenever he did give one (as in the Dialogue), it
was radically false. So wrong that P. Mersenne was unable
to conceal his surprise:
‘Now he supposes,’ he wrote to Peiresc 2, ‘that the cannon-
ball falls one hundred fathoms in five seconds, from which
it follows that it will only fall four fathoms in one second,
although I am assured that it falls from a greater height.’
‘In fact, four cubits—not even seven feet 8—is less than half
of the true value, and about half of the value that Father
Mersenne himself will establish. And yet, the fact that the
figures given by Galileo are grossly inaccurate is not sur-
prising; on the contrary, it would be surprising, and even
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miraculous, if they were not. What is surprising is the fact
that Mersenne, whose means of experimentation were not
much richer than Galileo’s, was able to obtain such better
results.’

In another of his articles on the story of the Tower of Pisa, Koyré writes [6]:

‘Il nous faudrait admettre que Galilée, qui ne s’est pas privé de nous conter et de

nous présenter comme faites effectivement des expériences qu’il s’était borné à ima-

giner, nous aurait soigneusement caché une expérience glorieuse effectivement réal-

isée. C’est tellement improbable que l’on ne peut l’admettre sérieusement. La seule

explication possible de ce silence est la suivante : si Galilée ne parle jamais de l’ex-

périence de Pise, c’est qu’il ne l’a pas faite. Très heureusement pour lui, d’ailleurs.

Car, s’il l’avait faite, en formulant le défi que, pour lui, formulent ses historiens, elle

eût tourné à sa confusion.’

‘We would have to admit that Galileo, who did not hesit-
ate to tell us about and present to us as actually done ex-
periments that he had merely imagined, would have care-
fully hidden from us a glorious experiment that had actu-
ally been carried out. This is so improbable that it cannot
be taken seriously. The only possible explanation for this
silence is as follows: if Galileo never mentions the Pisa ex-
periment, it’s because he didn’t do it. Very fortunately for
him, in fact. For, if he had done it, by formulating the chal-
lenge that his historians formulated for him, it would have
turned out to be confusing.’

Does Koyré include the inclined plane experiment among the ‘imagined’ ones

that Galileo presents to us as ‘realized’? I personally find this comment of-
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fensive. What need did Galileo have to lie about this matter?

Let’s continue with Koyré [5, 6]:

‘Mais, en fait, nous ne pouvons pas penser au mouvementdans le sens de l’effort et

de l’impelus ; nous pouvons seulementnous l’imaginer. Nous devons donc choisir

entrepenser et imaginer. Penser avec Galilée ou imaginer avecle sens commun. Car

c’est la pensée, la pensée pure et sansmélange, et non l’expérience et la perception

des sens,qui est à la base de la «nouvelle science» de Galileo Galilée.

Galilée le dit très clairement. Ainsi, en discutant le fameux exemple de la balle

tombant du haut du mât d’un navire en mouvement, Galilée explique longuement le

principe de la relativité physique du mouvement, la différence entre le mouvement

du corps par rapport à la Terre et son mouvement par rapport au navire; puis, sans

faire aucune mention de l’expérience, il conclut que le mouvement de la balle par

rapport au navire ne change pas avec le mouvement de ce dernier. De plus, quand

son adversaire aristotélicien, imbu d’esprit empiriste, lui pose la question : «Avez-

vous fait une expérience?» Galilée déclare avec fierté: «Non, et je n’ai pas besoin de

la faire, et je peux affirmer sans aucune expérience qu’il en est ainsi, car il ne peut en

être autrement»’

‘But, in fact, we cannot think about movement in the sense
of effort and impulse; we can only imagine it. So we have
to choose between thinking and imagining. To think with
Galileo or to imaginewith common sense. For it is thought,
pure and unadulterated thought, and not the experience
and perception of the senses, that is the basis of Galileo
Galilei’s ‘new science’.

Galileo makes this very clear. Thus, in discussing the fam-
ous example of the ball falling from the top of the mast
of a moving ship, Galileo explains at length the principle
of the physical relativity of motion, the difference between
the motion of the body relative to the Earth and its motion
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relative to the ship; then, without making any mention of
experience, he concludes that the motion of the ball relat-
ive to the ship does not changewith themotion of the latter.
What’s more, when asked by his empiricist-minded Aris-
totelian opponent, ‘Have you done an experiment?’ Ga-
lileo proudly declares: ‘No, and I don’t need to do it, and I
can affirm without any experiment that it is so, because it
cannot be otherwise.’’

Koyré’s attitude regarding the credibility that can be granted to Galileo is, at

least, curious: He grants him credit in the case we have just cited, in which

Galileo appears to us as a pure Platonist, and denies it when Galileo himself

relates and ponders the accuracy and reiteration of the results obtained with

the experiment of the inclined plane, in which he presents us with his experi-

mentalist streak.

According to I. Bernard Cohen, another eminent historian of science, says in

Supplement 4: “Galileo’s Experimental Foundation of the Science of Motion”

[2]:

‘In the decades following World War II, many scholars—
following the lead of Alexandre Koyré — had concluded
that in the stages of discovery and development of the prin-
ciples of motion, the role of true experiment was minimal.
Galileo was seen as a thinker and analyst, not one who
put direct questions to the test of experience. It was even
doubted that Galileo had ever performed the inclined-
plane experiment described in the Two New Sciences as
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a confirmation of the conclusions arrived at by mathem-
atical analysis. Most scholars agreed that the reported ex-
actness of observations within “a tenth of a pulse-beat” far
exceeded the capacity of this apparatus; here was apparent
evidence that Galileo had probably never done this exper-
iment. The best that could be said for Galileo was that he
had boastfully exaggerated the results. This point of view
seemed all themore justified to the degree thatGalileo gave
no numerical data. Doubts concerning the inclined plane
were not voiced for the first time in the twentieth century.
In Galileo’s own time. Father Marin Mersenne wrote in
1636 [8] page 112:

“Je doute que le père Galilee ait effectué les expériences des chutes sur le plan,

puisqu’il n’en parle nullement, et que la proportion qui donne un résultat contra-

dictoire avec l’expérience. Je voudrais également que plusieurs personnes effectuent

des expériences sur des plans différents, en prenant toutes les précautions néces-

saires, afin qu’ils comparent leurs expériences aux nôtres et qu’ils puissent en tirer

des leçons pour élaborer un théorème sur la vitesse de ces chutes obliques. Les ef-

fets de la gravité pourraient endommager les carreaux, ce qui serait d’autant plus

grave que la pente est moins inclinée vers l’horizon et que la ligne perpendiculaire

est approchée.”

“I doubt that Professor Galilee carried out the experiments
of falls on the plane, since he makes no mention of it, and
that the proportion which gives a result contradictory to
the experiment. I would also like several people to carry
out experiments on different planes, taking all the neces-
sary precautions, so that they can compare their experi-
ments with ours and learn from them to develop a theorem
on the speed of these oblique falls. The effects of gravity
could damage the tiles, which would be all the more seri-
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ous when the slope is less inclined towards the horizon and
the perpendicular line is closer.”

Today our view of the matter has undergone a radical
change. In 1961, Thomas B. Settle devised and performed
an experiment that closely replicated the one described by
Galileo in the Two Mew Sciences. In his report (“An Ex-
periment in the History of Science,” [10]), Settle showed
that the results were, just as Galileo said, easily accurate to
within a tenth of a pulse-beat. Others confirmed Settle’s
results. Another experimenter, James MacLachlan in 1973
[7], then repeated an effect described by Galileo, which
had been the subject of particular derision and had been
used to underline the fact that Galileo’s experiments were
only “thought-experiments” and obviously could not pos-
sibly give the results described byGalileo. ButMacLachlan
found that this experiment, unbelievable at first encounter,
accorded exactly with Galileo’s description. We have seen
(in Supplement 3) that in the early 1590’s, while still at
Pisa, Galileo was making experiments with falling bodies
and that there is a reasonable explanation for the bizarre
result he recorded that a light body starts out ahead of a
heavy body when both are released “simultaneously.”’

However, in ‘The Lies of Science’ (1993) Federico di Trocchio writes [11]:

‘Alexandre Koyré, uno dei più grandi storici della scienza, ha sostenuto la prima

ipotesi, vale a dire che Galilei non ha mai fatto l’esperimento del piano inclinato. La

cosa sembrò a molti incredibile sicché nel 1961 Thomas S. Settle decise di provare a

farlo nelle stesse identiche condizioni indicate da Galileo. Egli constatò che Galileo
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avrebbe potuto ottenere risultati empirici «soddisfacenti», cioè vicini anche se non

proprio identici a quelli da lui riferiti, nelmodo da lui sostenuto. Le cose sembravano

così tornare finalmente a posto e Stillman Drake, il più noto studioso americano di

Galileo, poté affermare con soddisfazione che «le ben note asserzioni di Galileo circa

i suoi esperimenti su piani inclinati erano state completamente convalidate»

Purtroppo nel 1973RonaldNaylor, nel ripetere ancora una volta l’esperimento di Ga-

lileo, individuò delle discrepanze tra ciò che aveva fatto Settle e la descrizione di Ga-

lileo. Settle aveva innanzitutto fatto rotolare una palla non già dentro la scanalatura

del piano inclinato ma sospesa sui bordi di essa. In questo modo riduceva notevol-

mente l’effetto della rotazione, che priva la palla di gran parte della sua accelerazione,

fornendo così dati più strettamente concordanti con la legge. Ma Galileo non aveva

fatto l’esperimento in questo modo. Il suo piano inclinato aveva una scanalatura ab-

bastanza ampia da contenere la palla. Alcuni studiosi hanno supposto che il segreto

del successo dell’esperimento galileiano stesse proprio nell’uso della pergamena che,

essendo liscia, riduceva al minimo l’attrito. Secondo Naylor in realtà l’effetto fu con-

trario. Dal momento che la pergamena, essendo fatta con pelle di vitello o di pecora,

non può superare la lunghezza di tre piedi, per quanto accuratamente si possano

congiungere le estremità queste non possono essere abbastanza lisce da assicurare

un passaggio senza ostacoli.

Insomma l’accelerazione della palla sarebbe stata periodicamente ridotta dalla ne-

cessità di superare i punti di giuntura tra i vari pezzi di pergamena e, se Galileo

avesse eseguito veramente l’esperimento, si sarebbe subito accorto che l’uso della

pergamena non solo non era di alcun aiuto ma era controproducente.’

‘Alexandre Koyré, one of the greatest historians of science,
supported the first hypothesis, namely that Galileo never
performed the inclined plane experiment. This seemed in-
credible tomany, so in 1961 Thomas S. Settle decided to try
it under the exact same conditions as Galileo. He found
that Galileo could have obtained ‘satisfactory’ empirical
results, i.e. close if not quite identical to those he had re-
ported, in the way he had claimed. Things thus seemed to
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finally fall into place and Stillman Drake, the best known
American Galileo scholar, was able to state with satisfac-
tion that ‘Galileo’s well-known assertions about his exper-
iments on inclined planes had been completely validated’.

Unfortunately, in 1973 Ronald Naylor, in repeating Ga-
lileo’s experiment once again, identified discrepancies
between what Settle had done and Galileo’s description.
Settle had first rolled a ball not into the groove of the in-
clined plane but suspended on the edges of it. In this way
he greatly reduced the effect of the rotation, which de-
prived the ball of much of its acceleration, thus providing
data that more closely agreed with the law. But Galileo had
not performed the experiment in this way. His inclined
plane had a groove wide enough to hold the ball. Some
scholars have assumed that the secret of the success of the
Galilean experiment lay in the use of parchment which, be-
ing smooth, minimised friction. According to Naylor, the
effect was actually the opposite. Since parchment, being
made from calfskin or sheepskin, cannot exceed a length
of three feet, no matter how carefully the ends are joined
they cannot be smooth enough to ensure an unobstructed
passage.

In short, the acceleration of the ball would have been
periodically reduced by the need to overcome the joints
between the various pieces of parchment and, if Galileo
had actually performed the experiment, he would have im-
mediately realised that the use of parchment was not only
unhelpful but counterproductive.’
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3.2 The experience by Thomas B. Settle

Original text from 2009

On January 17, 2008, through the Internet andon thewebsite of the ‘Fondazione

Galileo Galilei’, I found the text of Thomas B. Settle’s article ‘An Experiment

in The History of Science’ (1961) to which I refer above. With my precarious

knowledge of English and the invaluable help of my son JuanManuel, I set out

to translate it.

The work of T.B. Settle is impressive. As the author uses the Anglo-Saxon sys-

tem to express lengths, I decided to convert his data to the decimal metric

system and speculate a bit about it.

The plan used by Settle measured

18 ft (5.48m) long,

6 ″ (15.0 cm) wide and

2 ″ (5.0 cm) thick,

and endowed it with an inclination of 3°44′. He tells us that he practised a
rectangular section groove of

1

4
″
(6mm) (6mm) width along the edge of the

plane. He used a standard billiard ball of 21
4
″
(5.7 cm) diameter and a steel

bearing ball of
7

8
″
(2.2 cm) diameter to roll them. To measure time intervals

he used an ‘ordinary pot’ as a water container with a glass tube threaded into

the bottom hole for the water to flow into a graduated cylinder in millilitres

placed underneath. The tube had a length of 4.5 ″ (11.5 cm) and an approx-

imate inner diameter of 0.18 ″ (0.46 cm). The upper end of the tube could be

capped and uncapped with a finger—to start or stop the flow of water—with

the palm of the hand resting on the rim of the pot. By a series of operations,

minutely described by the author, he succeeded in getting a uniform flow of
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billiard

ball

steel

bearing

plane profile with the

rectangular indentation

described by Settle

Figure 3.1: Settle experiment balls

water to flow through the tube, which he evaluated at 19.5ml/s during the
brief intervals of time that the rolls last. Since 1.95ml ≈ 2.0ml equals 0.1 s,
it can be said that with this device one can be accurate up to ‘1/10th of a pulse’,

as Galileo presumed in his description of his own experiment.

As for the measurements of lengths and unevenness—operations for which

Galileo does not describe the material he used—Settle resorts to rigid rulers,

bubble levels and communicating vessels that could well have been used also

by Galileo, to whom we must grant, at the very least, a similar ingenuity and

initiative to those deployed by Settle three hundred and fifty years later.

In the article I am commenting on appears a table in which Settle records the

spaces travelled (in feet, foot) and times spent (in millilitres, ml) by his bil-
liard ball rolling on its inclined plane that forms an angle of 3.44° with the
horizontal. The third column indicates—in the summary Table 3.1 that I make

fromhis original one—thenumber of time takesmade for eachdistance. Settle
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seems to choose themode as the representative time, in the first four exper-

iments, and the arithmetic mean in the last three. In experience No. (2) all

seven shots taken agree in pointing out that 84ml are spent in traversing the
stipulated13 ft. Settle therefore chooses that time as the basis for judging the
goodness of the other experimental times. In Table 3.2 I reproduce these same

# Distances ft Samples Timeml
1 15 (10) 90
2 13 ( 7) 84
3 10 ( 6) 72
4 7 ( 7) 62
5 5 (12) 52
6 3 ( 7) 40
7 1 (15) 23.5

Table 3.1: Settle Table

data expressing the distances in centimetres (cm) and the times in seconds

(s). I add a column where I calculate the acceleration corresponding to each
descent. Within the limits of error imposed by the operative method, it can

be assured that the acceleration remains constant, confirming the desired law

𝑠 ∝ 𝑡2. But that is not the objective I am pursuing: What I seek is to calculate

the percentage of energy that has been dissipated, assuming that this dissip-

ation is responsible for the most reliable experimental values obtained for the

acceleration.

To calculate the acceleration
–
𝑎CM that would correspond to a ideal friction-

less rolling—taking into account that the ball rolls along a rail maintaining two

contact zones with the plane—we must apply the equation 1.8 obtaining:

–
𝑎CM = 697.5 sin 3°44′
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# Distances cm Time s Acceleration cm/s
1 457.0 4.6 43.2
2 396.1 4.3 42.8
3 304.7 3.7 44.5
4 213.3 3.2 41.6
5 152.4 2.7 41.8
6 91.4 2.0 45.7
7 30.5 1.2 42.3
Table 3.2: Settle table with acceleration

Or:

–
𝑎CM = 45.4 cm/s2

This theoretical result invalidates as absurd the value obtained in the experi-

ence number (6) of the Table 3.2, but does not invalidate the others which are

perfectly admissible. The experimental value of the acceleration more trust-

worthy could be the one obtained in the experience number (1), since the ex-

perimental values of departure are those affected by a smaller relative error. Let

us calculate in this case the percentage of dissipated energy, using the equa-

tion 1.9:

𝜒 = 100 (1 − 43.2
45.4)

That is:

𝜒 = 4.8%

(If we were to take experience no. (2), chosen as base by Settle, it would turn

out to be of the 5.7%).)

It is of course impossible to control all the variables that can influence a rolling,

so that—even if the slope and the path of two of them are the same—there will

always be other variables—small differences in the initial position of the ball,
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irregularities in its shape and in its path on the plane—that will make them

slightly different. So, the friction forces will also act a bit differently in two

identical rollings.

The differences between Galileo’s experience and that of Settle consist in the

fact that the plane used by the former was somewhat longer; in that the angle

which I attribute to it in the analysis which I shall make later of the folio 81r, is

somewhat smaller; and that—inmyopinion—the indentationor channel through

which the ball would descend in Galileo’s plane was not of rectangular section

but an arc of circumference, a criticism in which I agree with that expressed by

Naylor.

Figure 3.2: Idealisation of the profile of the plane with
the semicircular channel. Galileo says that ‘this channel,
cut as straight as possible, was made extremely smooth
and even by placing a piece of parchment paper inside
it, polished to the maximum’. This observation leads me
to believe that this channel, ‘a little more than a finger’s
width’, must have had a curved profile, obtained with a
curved gouge. This profile would, if possible, provide a
single zone of contact between the ball and the plane.

SinceGalileodoesnot informusof thedimensionsof theball heused—limiting
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himself to say that it was ‘of very hard bronze, well rounded and polished’—I

have allowed myself to represent it in Figure 3.2 similar to the steel bearing

used by Settle. Another difference consisted in the fact that Galileo weighed

the water collected in each operation instead of measuring its volume. But

Settle himself informs us that by the sixteenth century there were balances

capable of weighing weights up to 0.2 g, thus acknowledging that the time
measurements practised by Galileomay have beenmuch better than his own.

The experience carried out by Settle shows that the law 𝑠 ∝ 𝑡2 could be sub-
jected to efficient empirical verification with the means described by Galileo

in the famous passage of the ‘Discorsi’. But Galileo goes even further when he

states that:

‘This could be applied to all inclinations of the plane, i.e., of
the channel through which the ball was lowered.’

If by inclination of the plane we understand the sine of the angle it forms with

the horizontal it is very easy today to propose an experiment to verify if the

law 𝑠 ∝ 𝑡2 is applicable ‘to all the inclinations of the plane’, as Galileo assured.
Let us see:

𝑠 ∝ (sin 𝛼) 𝑡2

𝑠 ∝ ( ℎ𝐿 ) 𝑡
2

If by 𝐿 we mean the length of the plane, which is a constant, we can simplify
the above expression:

𝑠 ∝ ℎ 𝑡2

Was Galileo able to experimentally verify the above statement?
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𝛼2

𝛼3

−ℎ3

−ℎ2
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Figure 3.3: Was Galileo able to verify this experimentally?

There is an empirically verifiable consequence that follows from the above

equation:

𝑡𝑎
𝑡𝑏
=
√

𝑠𝑎 ℎ𝑏
𝑠𝑏 ℎ𝑏

(3.1)

where 𝑡𝑎 and 𝑡𝑏 represent the times spent by the ball in travelling any dis-
tances 𝑠𝑎 and 𝑠𝑏 on planes of different inclinations ℎ𝑎 and ℎ𝑏.

Settle subjected this consequence to empirical verification. Let us clarify first

that to determine the sine of the angle of inclination Settle chooses a fixed

length (𝐿 = 8 ft = 96 ″) and measures the heights ℎ, corresponding to each
angle, also in inches, so that:

sin 𝛼 = ℎ
96

I reproduce below (Table 3.3) the second and last table published by Settle in

his article, in which the data obtained by him with his billiard ball are collec-

ted to prove experimentally whether Galileo’s assertion is correct: The data
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# 𝑠 ft ℎ ″ 𝑡 ml
1 12 2,92 117
2 13 6,25 84
3 9 11,47 53

Table 3.3: Settle table with billiard ball

of experience no. (2) are extracted from Table 3.1. Anyone who is curious can

check that the data contained in Table 3.3 satisfy the condition expressed in

the equation 3.1.

It seems obvious to me that if Settle successfully made these empirical veri-

fications with such precariousmeans, so could Galileo three hundred and fifty

years earlier.

I translate from Settle’s article [10] a paragraph that I would like to comment

on in some detail:

‘The results of the tests made with the steel ball were just as
good, but I found that they were not comparable with those
made with the billiard ball. For instance, on the shallowest
slope, the billiard ball made the 16-foot mark in 136 millilitres
but the steel ball took 4 millilitres longer. This seemed odd;
theoretically, neither the mass nor the radius should affect the
acceleration. By the correct formula we can calculate that both
balls should have traversed the distance in 132 millilitres. Ac-
tually, because the balls run on the two edges of the groove,
their ”running” circumferences are slightly less than their real
ones, so they require more revolutions, and more time, to cover
the same distance. A rough calculation shows that this fact
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probably accounts for most of the discrepancies. Had Galileo
noticed similar differences between results for balls of differ-
ent size, he probably would have ascribed them to frictional
retardation. In any case, it appears that they would not have
controverted his proportionalities.’

This paragraph is interesting because in it Settle notes with acuity an exper-

imental observation and suggests a theoretical explanation that is accurate

only up to a point. It is curious that he downplays friction as the main cause

of the observed retardation and attributes it to purely geometrical factors

such as ‘smaller-than-actual rolling circumferences’. In this he aligns himself

with historians who have addressed the enigma of Galileo’s unpublished fo-

lios, which we will discuss later. We shall now demonstrate that it is friction

that is chiefly responsible for that strange observation made and sharply noted

by Settle.

When he alludes to ‘the correct formula’, Settle is undoubtedly referring to the

equation:

𝑠 = 1
2 (
5
7 𝑔 sin 𝛼) 𝑡

2

for, indeed, using it, we obtain that both balls—irrespective of theirmasses and

radii—should take 6.77 s (equivalent to 132ml) to travel 16 ft.

But a rigorous calculation—and not ‘approximate’, as suggested by Settle—can

be made from the equation 1.8. This calculation shows that the 16 ft should
have been traversed by 6.78 s by the billiard ball and by 6.79 by the steel
bearing. However, basedon the experimental data, it turns out that thebilliard

ball takes 6.97 s (0.19 smore) and the steel ball 7.18 s (0.39 smore)…
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No doubt this additional delay must be put down to rolling friction, and Galileo

would have been fully correct in thinking that way.

It can be verified—applying the same equation—that the ideal accelerations in

frictionless rolling on the rectangular rail carved by Settle should be:

Para la bola de billar:
–
𝑎CM = 21.18 cm/s2

Para la bola de acero:
–
𝑎CM = 21.13 cm/s2

While the experimental accelerations turn out to be:

Para la bola de billar:
–
𝑎CM = 20.06 cm/s2

Para la bola de acero:
–
𝑎CM = 18.90 cm/s2

From these data it is obtained that the billiard ball dissipates in rolling a 5.3%
of its energy, while the steel ball dissipates up to a 10.6%. There is nothing
strange about this: The billiard ball—see Figure 4.1—rolls on the rail keeping

the two contact zones relatively close to each other in relation to its own dia-

meter, whereas this is not the case for the steel ball, hence the percentage

of dissipated energy in the latter case is higher. This is in agreement with my

own experimental results contained in the section 2.6 (page 53) entitled “Two

experiences of January 2001”.

The calculations we have just made also show that in Settle’s experience—ball

rolling on the edges of the groove—‘the sphere is not deprived of much of its

acceleration’ relative to Galileo’s experience—ball rolling on the bottom of the

groove—as the latter describes it. The width of the groove practised by Settle

is so small in relation to the diameter of the billiard ball used that there is no

appreciable difference between the accelerations acquired by the same ball

in both cases. The objection that Trocchio attributes to R. Naylor on this point
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seems to me to be meaningless.

More serious seemsNaylor’s objection concerning the parchment ‘smooth and

smooth’ with which Galileo claims to have coated the bottom of the groove.

My opinion, however, is that Galileo ‘if he had actually carried out the exper-

iment’ would not only have noticed this detail but would have successfully

solved it by sanding more thoroughly the ‘joining zones between the different

pieces of parchment’…

In connection with all this I will allowmyself to relate my first experience with

the inclined plane, in which there was an unresolved ‘zone of union’ or ‘solution

of continuity’, such as those adduced by Naylor in his critique.

3.3 My first inclined plane

Original text from 2003

During the summer of 1979 my colleague Adolfo Cruz acted as a member of

an examining board for a physics and chemistry teacher of Bachillerato. On

his return, he toldme that in the report presented by one of the candidates he

had seen an attempt to reproduce Galileo’s experience with the inclined plane

using a V-shaped profile channel. Adolfowas of the opinion that the friction at

the two points of contact of the little sphere with the two walls of the channel

would make the project unfeasible. I told him that I was going to try it, but

looking for another procedure that would allow only one point of contact to

reduce friction as much as possible.
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My unconditional sympathy for Galileo was already old, but my information

about his life andwork, in 1969, was reduced to the biography of Cortés Pla [9]

and the commentsdedicated tohimby JohnD.Bernal [1]. In spite of everything,

I had the audacity to choose his figure as the subject for the inaugural lecture

of the 69/70 academic year, which fell on me—poor interim—when the pro-

fessors of the Instituto Nacional de Bachillerato, where I had been working for

two years, avoided the commitment with various pretexts. Ten years later,

when I made this experience, my knowledge of Galileo had been somewhat

expanded by Gerald Holton’s references [4].

When on October 28, 1979, I set out to measure the rolling times of a glass

marble (16mm diameter), along a channel (5mm wide)-improvised with

two taut, parallel fishing lines-over the narrowest faces (2 cm) of two aligned

boards (181.5 cm long each), slanting only 1°, I could not even imagine that
I had found an inexhaustible source of wholesome amusement and wisdom

fromwhich I would drink to this day. In Table 3.4 are the results as I consigned

them, at the time:

𝑥 cm 𝑡 s 𝐾 = 𝑥/𝑡2
360 8.4 5.1
330 7.8 5.4
300 7.4 5.5
270 7.0 5.5
240 6.6 5.5
210 6.3 5.3
180 5.8 5.4
150 5.0 6.0
120 4.4 6.2
90 3.9 5.9
60 3.1 6.2

Table 3.4: Rolling of glass sphere over a channel



Chapter 3 The much-discussed experience of the inclined plane 80

The two boards functioned as side trims (Formica-covered chipboard) for my

children’s beds. My father-in-law (a retired carpenter)would release themarble

and I would press the stopwatch. We achieved simultaneity (?) by the pro-

cedure of ‘one, two… three’. At the end of its run, the marble would hit the

bottom of an empty peanut can, next to which I was located, and the sound

of this collision would serve (in addition to the direct vision) to stop the stop-

watch. Luis (my oldest son of ten years) took note of the readings. To achieve

the inclination of both planes, three wooden blocks of 32.5mm each (com-

ing frommy son’s and collaborator’s architecture set) were used, two of them

wedging the first plane, and the third wedging the continuity solution with the

second plane, whose other end rested on the floor, so that the inclination was

the same in both of them. Several measurements were taken (never less than

three) of each time and the average values were recorded in the table. Three

hours were invested in the experience—according to the report written at the

time and which I now consult—and it was carried out in the dining room of this

sixth floor where I live on the shores of the Bay of Algeciras. All the mater-

ial used, except for the analogue chronometer capable of measuring double

tenths of a second, was strictly home-made, within anyone’s reach. As far as

the chronometer is concerned, today digital models, capable of reading hun-

dredths of a second, can be purchased very cheaply in any bazaar.

C

A

B

D
E

Figure 3.4: (A) Small ball. (B) Empty peanut can that acted as a warning
device to stop the stopwatch. (C) Books. (D) y (E) Cleats intended to
wedge the planes to give them the right inclination.

We can agree with Koyré about Galileo’s Platonism, but to deny him ingenuity
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and experimental skill and, above all, to ignore the stimulating power of exper-

iment (however crude and inexact it may be) in a curious and acute mind is,

in my opinion, Koyré’s defect and that of all historians of science who have

held the same position. I think they have contributed to the myth that exper-

iments in mechanics are very difficult, not at all convincing, and that it is not

worth taking the trouble to do them because… they will not come out because

of frictional forces…!

I immediately proceeded to calculate the theoretical acceleration with which

the marble must have rolled using the equation:

𝑎CM = 5
7 𝑔 sin 𝛼,

siendo:

sin 𝛼 = 3.25
181.5 = 0.0179

and resulting:

𝑎CM = 12.53 cms2

This resultwasquite in agreementwith theexperimental valueobtained, which

would range between 10.2 and 12.2 cm/s2. There is a solution of continu-
ity (a bump) between the two planes and, moreover, it is utopian to claim

that the two would have exactly the same inclination. Any curious person can

verify, by calculation, that twelve hundredths of a sexagesimal degree of dif-

ference between the two slopes is sufficient to justify the observed disagree-

ment between the first seven and the last four values ofK in Table 3.1. This is

what I call the stimulating power of experiment, crude and inexact as it is.

My father-in-lawand collaboratormade somehelpful suggestions tome, along

with theAristotelian statement that ‘the timeof rollingwill dependon theweight
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of the little sphere used’. I did not bother to refute his assertion in the expecta-

tion that experience itself would take care of that. Whenwe tried it with a little

sphere of iron of 16mm diameter he became very serious and muttered: ‘If

I don’t see it I don’t believe it… I would have liked not to have had to work as a

carpenter all my life to devote myself to these things’. I suppose I can regard

this reaction as another example of what I have called ‘the stimulating power

of experiment’.
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Chapter 4

Parabolic trajectories

Original text from 2003

4.1 Background

OnNovember 17, 1979, I hadmyhome-made inclinedplane set up in the labor-

atory when I had the idea of adding a horizontal plane to it. I wanted to test

if it was possible to record, and relate to each other, some points of the para-

bolic trajectory that the little sphere describes when it leaves the edge of the

horizontal plane after traveling through the inclined one.

In June 1977 a good student, Juan Falgueras Cano, together with others who,

like himself, had just passed the Selectividad exam ¹, asked me to contact the

Physics laboratory. My own contacts at that time were very rudimentary and

full of prejudices, like those of most of my middle-level teaching colleagues;

prejudices that I will call “Koyrésian”, although at that time I had not read any-

thing by Koyré… I had read quite a lot about Galileo, but almost nothing of

what Galileo hadwritten. I proposed to the aforementioned group the realiza-

tion of a practice described in the manual of a team (Torres Quevedo) related

toparabolic trajectories. While I participated—at last successfully—in the I.N.B.

attaché examinations held that summer, they worked on the subject on their

¹ Editor’s Note A test to which young students in Spain are subjected to gain access to uni-

versity
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own. One afternoon I paid them a visit and they presented me with the res-

ults. They were not bad at all, but to obtain them they had been obliged to

repeat many impacts for each point (the accelerating plane consisted of two

parallel cylindrical bars through which the sphere descendedmaintaining two

points of contact; the waxed table of the laboratory served as a horizontal de-

flector plane (?); between the bars and the table therewas a small jump…etc.),

and the impacts obtained for the same point were very ungrouped. The res-

ults were not very encouraging, but rather fed the “Koyrésian” prejudices that

almost all of us carry inscribed in our genes.

4.2 The horizontal register

But on the aforementioned date, encouraged by the good results obtained

with the inclined plane, I remembered the work done by my students in the

past and decided to repeat it and, if possible, improve it. To do so, I assembled

the set-up shown in Figure 4.1 (Horizontal register):

Boards B and C were nothing more than the removable shelves of one of the

laboratory cabinets. Board C was glued to a long strip of white paper covered

by another strip of carbon paper, so that when the little sphere impacted it

left a circular mark. The major difficulty was to ensure (who could do it?) the

perfect horizontality of the plane C in the successive positions 1, 2, etc. That

is why we fixed in advance the ordinates 𝑦 that with our means (bars, sup-
ports, tables etc.) we could obtain with relative comfort, while the abscissae

𝑥 would be read on the register of marks on the paper. Thus we would have
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Laboratory table

A

B

𝑥

Ground

6

5

4

3

2

1

C

A = Inclined plane (181,5 cm)
B = Horizontal plane (38,3 cm)
C = Board (86,4 cm × 38,3 cm) that is kept

parallel to the ground and moves

successively to points 1, 2, 3, …

Figure 4.1: Registro Horizontal

the coordinates of each point in a rectangular reference system with origin at

the edge of the board B, where the coordinate axes 𝑥 and 𝑦 intersect.

The conditions under which this first record was made were:

a) The little sphere always travelled 180 cm, starting from rest, over the

inclined plane.

b) Four impacts (which were highly clustered) were recorded for each po-

sition on board C. Themean value in each case was taken as represent-

ative of the abscissa.

The results are shown in Table 4.1:

As it is known, the physical interpretation of the constantK = y/x2 is:

𝐾 =
𝑔
2 𝑣2

where 𝑣 is the instantaneous speed of the small ball as it emerges horizontally
from the edge of the horizontal board and 𝑔 is the gravitational acceleration.
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𝑥 cm 𝑦 cm 𝑦/𝑥2
15.0 9.4 0.0417
28.7 33.0 0.0400
33.8 45.0 0.0394
38.3 57.5 0.0392
46.2 83.8 0.0392
49.6 95.8 0.0389
Table 4.1: Record with 180

From there we can calculate the value of 𝑣, which turns out to be:

𝑣 = 112.0 cm/s,

if we take

𝐾 = 0.039 cm−1

y

𝑔 = 980.0 cm/s2

But there is another way to find out the speed
–
𝑣 of the small ball at the point

where the inclined plane ends and the horizontal plane begins.

H

h

𝛼

Figure 4.2: 𝐻 = 31.4 cm ℎ = 20.9 cm 𝐻 − ℎ = 10.5 cm

sin 𝛼 = 10.5
181.5 = 0.0578
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𝑎CM = 5
7 𝑔 sin 𝛼 = 40.5 cm/s2

–
𝑣 = √2𝑎𝑥 = 10.7 cm/s

This is recorded in the report I wrote that day. I do not remember the reason

that moved me to make the calculation of the acceleration by this procedure,

instead of doing it by measuring the time taken to travel the 180.0 cm of in-

clined plane, data that I possibly took, but that does not appear in the record.

Perhaps I wanted to obtain the “theoretical” value of the acceleration to eval-

uate the percentage of speed lost. Such percentage turns out to be 7.3% I

assumed that this loss was due to several reasonable reasons, such as loss of

the vertical component of the velocity due to collision on theboard (calculable

and not very significant), energy dissipation, both in the inclined plane and in

the horizontal plane (of doubtful horizontality), as well as in the continuity

solution (inevitable bump) between both planes.

4.3 The stimulating power of the experiment

With all this empirical data in my possession I set out to calculate what would

happen if I repeated the experience for various paths of the sphere (135 cm,

90 cm, 45 cm) on the inclined plane. The calculations of the corresponding
–
𝑣

and 𝑣, taking into account the percentage of lost rapidity is easy. The results
are given in Table 4.2.

Needless to say, I immediately launched into experimental testing. The results

are shown in the Tables 4.3:
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𝑥 cm 𝑣 cm/s
–
𝑣 cm/s

135.0 105.0 97.2
90.0 85.7 79.4
45.0 60.6 56.1

Table 4.2: Sphere over planes of 135 cm, 90 cm and 45 cm

Record with 135 Record with 90 Record with 45

𝑥 𝑦 𝑦/𝑥2 𝑥 𝑦 𝑦/𝑥2 𝑥 𝑦 𝑦/𝑥2
12.9 9.4 0.056 10.7 9.4 0.082 7.5 9.4 0.167
24.7 33.0 0.054 20.2 33.0 0.081 14.1 33.0 0.166
29.4 45.0 0.052 23.8 45.0 0.079 16.8 45.0 0.159
33.0 57.5 0.052 26.7 57.5 0.080 18.9 57.5 0.161
39.7 83.8 0.053 32.6 83.8 0.079 23.0 83.8 0.158
42.7 95.8 0.052 34.9 95.8 0.078 24.6 95.8 0.158

Table 4.3: Experimental data

–
𝑣 = 96.1 cm/s

–
𝑣 = 78.4 cm/s

–
𝑣 = 55.16 cm/s

Compare these experimental values of
–
𝑣 with those calculated in Table 4.2.

I took advantage of this experience to interest my COU ² students of that year.

I took groups of volunteers to the laboratory in the afternoons and divided

them into four teams. I explained the experimental technique and team (1)

took the points of the 180 log. Then team (2) did the same for the 135 log. In

themeantime team (1) interpreted their data and I challenged them to predict

the results that team (2) would obtain. The interest of each group to check

the degree of accuracy of their predictions animated the atmosphere, and the

questions (Does the sphere take the same time to travel through all the para-

bolas? Can we calculate it? Can wemeasure it? Why do the marks left by the

² Editor’s Note COU stands for “Curso de Orientación Universitaria”
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sphere increase in diameter as we advance in the record?) came up naturally

and I encouraged them to look for the answers and to devise experimental

techniques to check them. A real delight for them and, of course, for me.

4.4 The vertical register

On November 19, Adolfo Cruz Lobo, my Seminar partner at that time, sug-

gested to me the idea of making vertical records. In fact, that was my initial

intention, as it appeared in the manual of the Torres Quevedo team. When it

came down to it, however, it seemed more feasible to keep a 86.4 cm board

horizontal than vertical, and I decided to go for horizontal. Since I was begin-

ning to stop being ”Koyrésian”, and the empiricism fever had taken hold ofme,

I jumped to the task at once. On a long strip of paper I made a ladder with di-

visions spaced two by two centimetres, glued it to one of the boards and laid

it horizontally on the floor to serve as an abscissa axis. Another vertical board

with the corresponding register and carbon paper would be placed on top of

it. The aspect of the assembly is as shown in Figure 4.3 (Vertical register), and

the conditions were the same as described above. In this case the abscissae

were fixed on the graduated scale while the ordinates would be recorded on

the mark register covered by the carbon paper. In this way we would have the

coordinates of themarks with respect to the same reference system as before.

The results are shown in Table 4.4:

When compared with Table 4.1 we find reason to be puzzled:
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Laboratory table

A = Inclined plane (181,5 cm)
B = Horizontal plane (38,3 cm)
C = Board (86,4 × 38,3) which is kept perpendicular to the

ground and moves successively to points 1, 2…

A

B

Ground
1 2 3 4 5 6

𝑥

𝑦

Figure 4.3: Vertical register

𝑥 cm 𝑦 cm 𝑦/𝑥2
20.0 14.5 0.0362
22.0 17.5 0.0361
24.0 20.9 0.0363
26.0 24.5 0.0362
28.0 28.3 0.0361
30.0 33.4 0.0371
32.0 38.5 0.0376
34.0 42.8 0.0370
36.0 48.5 0.0374
38.0 53.6 0.0371
42.0 63.7 0.0361
44.0 70.4 0.0364
46.0 77.4 0.0366
Table 4.4: Record with 180

a) The constant does not have the same value:

Here it comes out𝐾 = 0.037 cm−1
compared to that obtained in the

horizontal register𝐾 = 0.039 cm−1
.

b) It is very flattering, but puzzling, that in this case the𝐾 values aremore
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clustered, and not in decreasing progression, as in the horizontal log.

c) The output velocity turns out to be worth 115.0 cm/s instead of the
112.0 that came out with the horizontal log data.

However, there seems to be something suspicious in such perfection. A few

hours later, almost without consciously thinking about it, the solution to the

enigma revealed itself.

4.5 The importance of the centre of mass

In both the horizontal and vertical recordings, circular black spots or marks are

obtained on the white paper. The coordinates of the centre of each of these

marks tell us about the coordinates of the centre of mass of the sphere at each

impact.

What we are interested in are the coordinates (𝑥, 𝑦) of the CM in the ref-

erence frame with origin located at the CM of the sphere at the instant the

sphere exits the edge of the board (red axes in the figure), but what we obtain

in both registers (horizontal and vertical) are the coordinates (𝑥, 𝑦) centres of
the marks in the reference frame with origin at the edge of the board (blue

axes in the figure).

In the horizontal log the values of both pairs of coordinates (red and blue) co-

incide, but not so in the vertical log, where a correction must be made to take

into account the value of the radius 𝑟 of the sphere itself. I suppose Figure 4.4
is more eloquent than any meticulous clarification.
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𝑥

𝑦

𝑥

𝑦

Mark

Horizontal register

𝑟
𝑥 − 𝑟

𝑦

𝑥

𝑦

Mark

Vertical Register

Figure 4.4: Difference in horizontal and vertical register markings

The small ball used had a radius 𝑟 = 0.8 cm Once the relevant correction

has been made the result can be seen in Table 4.5: The agreement with the

𝑥 − 𝑟 cm 𝑦 + 𝑟 cm (𝑦 + 𝑟)/(𝑥 − 𝑟)2
19.2 15.3 0.0415
21.2 18.3 0.0407
23.2 21.7 0.0403
25.2 25.3 0.0398
27.2 29.1 0.0393
29.2 34.2 0.0401
31.2 39.3 0.0404
33.2 43.6 0.0396
35.2 49.3 0.0398
37.2 54.4 0.0393
41.2 64.5 0.0379
43.2 71.2 0.0381
45.2 78.2 0.0383

Table 4.5: Vertical register
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Table 4.1 is perfect, as it could not be otherwise: In both cases the coordinates

of the centre of mass of the small ball with respect to the correct reference

frame are already being considered. As we go down in both Tables 4.1 and 4.5,

it is observed that the value of the constant tends to stabilize at 0.038 cm−1
,

after starting with values of 0.041 cm−1
. The stabilization and reliability of

the value of𝐾 as onemoves down both tables is due to the fact that the relat-

ive error of themeasurements decreases in the same direction, an observation

and practical teaching of extraordinary interest to students.

The importance of the centre of mass of a system stands out naturally in this

experience. Experience that I took advantage of to confront my students with

the enigma and spur them on in search of the solution.

4.6 Complete prototype

During the summer of 1980, the prototype underwent several improvements,

such as:

a) At the suggestion and initiative of Mercedes Marfil, a COU student dur-

ing that course, the horizontal plane was replaced by a thick wooden

ruler B of 50.5 cm, covered by a glass plate C. It was intended to ob-

tain a lively edge at the exit of the sphere, as well as to attenuate friction,

and it seemed to us that the use of glass would improve both circum-

stances with respect to the wood that had been used until then.
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b) To place two graduated rulers (F), attached by means of a jack (D) to

the horizontal ruler, which would serve as guides to determine the 𝑥 of
the centre of mass of the small ball. With them the correction of the

radius could be made automatically.

c) On these guides would slide another thick vertical ruler (E), crossed by

a horizontal support screw, which would serve to locate the (Y) of the

centre of mass of the small ball.

d) The use of a strip of graph paper, covered with another strip of carbon

paper, on the vertical ruler to record the marks corresponding to each

impact.

e) Record the zero impact by placing the ruler carrying the record (E) ex-

actly on the edge of the glass (C). From the centre of the mark thus

obtained the ordinates Y of the remaining points would be measured.

f) Record only one impact for each point, varying the abscissa from 𝑥 =
5.0 cm onwards from centimetre to centimetre. The marks for 𝑥 <
5.0 cm are so close together that they form practically a single spot.

The prototype was as shown in Figure4.5: A record obtained with this setup is

reproduced in Figure 4.6 and Table 4.6. The sphere has travelled 150 cm. on

the inclined plane accelerating from the rest. Then it has travelled 50.5 cm on

the horizontal rule and has gone to impact on the vertical carrying the register

The zero impact is observed at the head of the record. The other impacts have

been numbered for easy location and to measure their ordinate

The impact marks all have the same diameter, 4mm, since the horizontal

component of the quantity of motion is conserved throughout all parabolic

flights. The horizontal component of the velocity can easily be estimated as
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Laboratory table

F

E

D

A

C

B

𝑦

𝑥

A = Inclined plane (181,5 cm)
B = Horizontal plane (50,5 cm)
C = Glass cover

D = Jack for fastening horizontal guides

E = Vertical ruler covered with a strip of graph paper,

which in turn is covered with a strip of carbon paper

F = Horizontal guides on which it is possible to slide E

Figure 4.5: Prototype for vertical registration

127.4 cm/s.
The zigzagging of the marks, which we have reproduced as faithfully as pos-

sible, is due to the obvious fact that the direction of the exit velocity is not

always the same. This direction oscillates within a narrow range due to the

fact that the channel improvised on the glass with the two parallel taut fishing

lines is 5mm. wide. Note that the zigzagging becomes more pronounced as

we move down the register.
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Figure 4.6

# 𝑥 cm 𝑦 cm 𝑦/𝑥2
1 5.0 0.8 0.0320
2 6.0 1.1 0.0305
3 7.0 1.5 0.0306
4 8.0 2.0 0.0312
5 9.0 2.4 0.0296
6 10.0 3.1 0.0310
7 11.0 3.6 0.0297
8 12.0 4.4 0.0305
9 13.0 5.0 0.0296
10 14.0 6.0 0.0306
11 15.0 6.7 0.0298
12 16.0 7.7 0.0300
13 17.0 8.7 0.0301
14 18.0 9.7 0.0299
15 19.0 10.7 0.0296
16 20.0 12.1 0.0302
17 21.0 13.1 0.0297
18 22.0 14.9 0.0307
19 23.0 15.9 0.0300
20 24.0 17.5 0.0304
21 25.0 18.9 0.0302
22 26.0 20.5 0.0303
23 27.0 22.2 0.0304
24 28.0 23.7 0.0302

Table 4.6: This page reproduces a record obtained on
January 17, 1994 with the device described in the
previous page.
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4.7 The final model

In 1998 Antonio Molina Fernández, my Seminar colleague, built a one-piece

aluminiummodel, whichhas the advantagesof not having any continuity solu-

tion between the inclined and horizontal planes and of being easily transport-

able to the classrooms. It has the disadvantage that the angle of inclination is

fixed (4°53′), which is more than compensated by the advantagesmentioned
above. I have called it the ”finalmodel”, whose perspective can be seen below,

because it seems to me that it can no longer be improved.

It is easy to calculate the instantaneous speed of the small ball CM at the

instant when it passes from the inclined plane to the horizontal plane: 𝑣 =
116.6 cm/s.

The record obtained in the experience of November 17, 1999, is reproduced

on page 100. The result is unbeatable. From the value of the constant 𝐾 =
0.0380 cm−1

it can be deduced that the instantaneous speed of the CM of

the small ball in the instant in which this one leaves the horizontal plane is

worth 113.4 cm/s. As expected, the small ball, no matter how perfect it is

and how horizontal the plane is arranged, experiences a deceleration mainly

due to rolling friction.

The ruler carrying the vertical register is, in this case, made of aluminium and

is supported on the horizontal guides by two parallelepipeds that prevent os-

cillation and ensure verticality. This is an undeniable advantage with respect

to the prototype, in which the screw that crosses the wooden rule is not so ef-

fective in assuring both conditions.

The fact that the horizontal guides are solid with the horizontal plane is also

an advantage over the prototype, in which the horizontal plastic rulers had to
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Electromagnet

Inclined plane

Taut
fishing linesTape

measure

Wooden
supports

Horizontal
plane

Bubble
level

Tape measure
over the horizontal
guides

Vertical register
to record
the marks

Figure 4.7:

– Length of inclined plane = 120.0 cm
– Travel time = 2.06 s
– Acceleration of CM of the sphere = 56.6 cm/s2

be fastened by means of a not entirely secure jack. The small ball used in this

experiment is the same as in the previous record. The impact marks are, in

this case, 2mm in diameter for two reasons: The horizontal component of

the velocity is smaller (113.4 cm/s vs. 127.4 cm/s), and, above all, because
the carrier ruler is made of aluminium instead of wood.

The zigzagging of themarks along the vertical, which we have faithfully repro-

duced, has the same cause as in the previous recording.
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# 𝑥 cm 𝑦 cm 𝑦/𝑥2
1 5.0 1.0 0.0400
2 6.0 1.4 0.0389
3 7.0 1.9 0.0388
4 8.0 2.4 0.0375
5 9.0 3.1 0.0383
6 10.0 3.9 0.0390
7 11.0 4.5 0.0372
8 12.0 5.4 0.0375
9 13.0 6.5 0.0385
10 14.0 7.5 0.0383
11 15.0 8.7 0.0387
12 16.0 10.1 0.0395
13 17.0 11.2 0.0387
14 18.0 12.6 0.0389
15 19.0 13.9 0.0385
16 20.0 15.4 0.0385
17 21.0 16.9 0.0382
18 22.0 18.4 0.0380
19 23.0 20.1 0.0380
20 24.0 21.9 0.0380
21 25.0 23.8 0.0381

Table 4.8: Vertical register carrier rule
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The folio 116v
Original 2003 text revised in 2005

5.1 Description

In November 1985 I read an article by Pierre Thuillier entitled ‘Galileo and ex-

perimentation’ [12]. Through it I learned that StillmanDrake [4] had published

another, in 1973, about the reverse (
v
) of folio 116 of volume 72 of Galileo’s

unpublishedmanuscripts preserved in theNational Library of Florence (116v).
On the back of the folio there is a graph and some annotations by Galileo,

which are reproduced below:
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table 828 puncts height

300

600

800

1000

828

8001172

should be 1131

dif: 41

1328

should be 1306

dif: 22

1340

should be 1330

dif: 10

1500

should be 1460

dif: 40

Figure 5.1: Reproduction of the 116v

5.2 Stillman Drake’s interpretation

Stillman Drake considers that the curves represent parabolic trajectories de-

scribed by a ball, which leaves horizontally to the left along the edge of a table,

after having been accelerated from rest along an inclined plane provided with

a horizontal deflector at its lower end. The notations next to the vertical axis

would correspond to the heights ℎ, measured from the table surface, of the

points on the inclined plane from which the ball has been allowed to depart

in each case. The notations next to the horizontal axis (possibly the ground)

would correspond to the distances 𝑑,measured from the foot of the table, at
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which the ball would have landed after each of its parabolic flights. The nota-

tions preceded by the phrase ‘should be’ would be the distances 𝑑 calculated
by Galileo according to some hypothesis that he would try to submit to em-

pirical verification.

What Galileo would intend by such an experiment would be, according to

Drake, to test whether the velocity of the sphere, as it leaves the edge of the

deflector, remains constant as the horizontal component of that which will an-

imate the ball throughout each parabolic flight.

According to Drake, Galileo should have already identified, around 1609, the

rolling of a sphere on an inclined plane and the free fall of any body in the air as

motions of constant acceleration. This enabled him to deduce that the square

of the speed of the sphere as it leaves the edge of the deflector must be dir-

ectly proportional to ℎ. From that instant, if his hypothesis were correct, the

distances 𝑑 should be directly proportional to that speed and, therefore, the
square of 𝑑 would be directly proportional to ℎ. That is, expressed mathem-
atically:

𝑑2 =
–
𝐾ℎ (5.1)

To determine in advance, by calculation, the value of
–
𝐾 would require, on Ga-

lileo’s part, knowledge of the value of the acceleration in free fall 𝑔 and the
dynamics of the joint rotation-translationmotion that animates the ball along

the inclined plane, both knowledge, obviously, beyond his reach. Thus, ac-

cording to Drake, Galileo used the pair of experimental values (ℎ = 300 p
and 𝑑 = 800 p)—the only one on the graph that is not accompanied by the
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phrase ‘should be’—to obtain one value of
–
𝐾:

–
𝐾 = 8002

300 = 2 133 p

from which he calculated the others (‘should be’) to compare them with the

supposedly experimental ones. It is significant that Galileo noted the differ-

ence in each case, apart from the fact that the relevant calculations appear in

the same folio.

(The unit of length, the dot punctus used by Galileo, we can express it in cen-

timetres since, according to Thuillier, 180 p equals 169mm)¹

5.3 The physical meaning of the constant
–
𝐾

In Thuillier’s article there is no development of any physical-mathematical ar-

gument in favour of this interpretation. I do not know if Stillman Drakemakes

any in his original article, since I have not been able to get hold of it, and I

would very much like to consult it.

I suppose that anyone interested in this subject may have thought of the ar-

guments I am going to present below, and I do not rule out the possibility that

thismayhavebeen the case. Butwhat is certain is that they havebeen appear-

ing to me as I have gone deeper into the subject, and I believe—that is why I

¹ Editor’s Note On measurements in the time of Galileo, including the punctus, see [2]. On

Galileo’s laboratory in Florence see [11]
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am going to present them—that such arguments favour the interpretation that

Stillman Drake offers us of the chart in the 116v.

To interpretphysically themeaning of
–
𝐾wewill start froma couple of assump-

tions:

a) That the rolling of the sphere along its entire length is pure, that is, that

there is no slippage of the point of contact between the sphere and its

material support.

b) Since we lack data about the shape and dimensions of the deflector, we

will assume that it isan ideal agent thatwill not influence the value of the

velocity of the centre ofmass (CM) of the sphere, limiting itself tomodify

its original spatial orientation—the one imposed by the inclination of the

plane—until it becomes horizontal

Therefore, by applying our present knowledge about the value of 𝑔 and the
simultaneous rotation/translationmotion of the small ball in its pure frictionless

rolling, we will come to the following conclusions:

The acceleration of the sphere’sCM along the inclined plane will be given by:

𝑎CM = 5
7 𝑔 sin 𝛼 (𝛼 = angle of the plane with the horizontal)

On the other hand the instantaneous speed of the sphereCM when reaching

the deflector will be:

𝑣2 = 2𝑎ℎ
sin 𝛼 (ℎ = difference in level from the starting point)
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The time of flight of the small ball (the same in all parabolas) will be given by:

𝑡2 = 2𝐻
𝑔 (𝐻 = table height)

Since the distance 𝑑 travelled horizontally in each flight must be able to be

calculated by:

𝑑 = 𝑣 𝑡

according to the hypothesis which, according to Drake, Galileo intended to

prove by his experience, we have everything ready to reach:

𝑑2 = 20𝐻
7 ℎ

from which it follows that the physical interpretation of the constant
–
𝐾—we

will call it² now𝐾—we will see why- is as follows:

‘Twenty-sevenths of the 𝐻 value of the vertical free fall of the
sphere’s CM’

that is:

𝐾 = 20
7 𝐻 (5.2)

In the case of the folio 116v its numeric value ‘should be’:

𝐾 = 20 × 828
7 = 2 366 p

² Editor’s Note The notation used in this edition for the theoretical values is
–
𝐾,

–
𝑎,
–
𝑣, there

are no new names, only marks over the original
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Since we have made the deduction and calculation of 𝐾 without taking into

account the dissipation of energy that occurs in the process we have to con-

clude that the experimental value
–
𝐾 < 𝐾, found and used by Galileo in his

calculations, takes into account—ignoring it himself of course—the unavoidable

presence of such dissipation. In other words: The values consigned by Ga-

lileo are experimental without any doubt³. The graph in the folio reflects an

experience not only “imagined”—in the Koyrésian sense of the word—but also

“carried out” with his own hands by Galileo himself.

5.4 Evaluation of dissipated energy

We will now show that the percentage 𝜒 of the initial energy dissipated in the

processes described in the folio 116v will be given by:

𝜒 = 100 (1 − –
𝐾
𝐾) (5.3)

Let’s see: Taking the surface of the table as a reference, themechanical energy

available at the beginning of each roll is given by the equation:

𝐸𝑝 = 𝑚𝑔ℎ

and the one thatwill finally be conservedas kinetic at the beginning of the para-

³ Editor’s Note Editor’s boldface
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bolic flight will be given by:

𝐸𝑐 =
7
10 𝑚𝑣2

which is the same as must be conserved as kinetic—derived from 𝑣 (the hori-
zontal component of the velocity during flight)—when the sphere touches the

ground. We can overlook the energy dissipated by friction with the air during

the short flight.

The quotient:

𝐸𝑐
𝐸𝑝

= 7𝑚𝑣2
10𝑚𝑔ℎ

represents the so much for one of energy lost, and it is easily reduced to:

𝐸𝑐
𝐸𝑝

= 𝑑2
ℎ × 7

20𝐻 = 𝑑2/ℎ
20𝐻/7ℎ

or
𝐸𝑐
𝐸𝑝

= –
𝐾
𝐾

From here to the equation 5.3 is immediate.

Table 5.1 shows the percentages of energy dissipated in each of the five pro-

cesses recorded by Galileo in the folio. 116v. It is significant enough, in favour

ℎ p 𝑑 p
–
𝐾

–
𝐾/𝐾 𝜒% dissipated

300 800 2 133 0.901 9.8
600 1 172 2 289 0.967 3.2
800 1 328 2 204 0.932 6.8
828 1 340 2 168 0.916 8.3

1 000 1 500 2 250 0.951 4.9
Table 5.1: Dissipated energies in Galileo’s experiment of the folio 116v
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of Drake’s thesis, that all the quotients
–
𝐾/𝐾 turn out to be less than unity.

Galileo could not have invented such realistic data, from which current ana-

lysis can deduce and calculate the percentage of energy dissipated in each of

the rolling of the sphere.⁴

5.5 The inclination of the plane

According to Thuillier, in 1975 Stillman Drake repeated the experiment sug-

gested in the 116v and published a new paper [5] in collaboration with James

McLachlan. He sought with it to improve on the demonstration made in the

previous one. Of this new article Thuillier says ⁵:

‘When we first analysed Galileo’s data in 1972, one of us
(Drake) believed the inclined plane Galileo used for the ex-
periment recorded in f. 116 was probably tilted at an angle
of 64 degrees to the table, the steepest angle that could be
accounted for. Now, however, we believe that, for that ex-
periment as well as for the continuation of the work we
shall discuss below, Galileo employed a plane at an angle
of only 30 degrees to the table. A plane at that angle is easy
to set up with considerable precision, and it also lends it-
self to easy computation.’

⁴ Editor’s Note Bolded by the editor

⁵ Editor’s Note I quote here the original article [5]
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With respect to the content of this paragraph, the following should be noted:

The inclination of the plane is unknown, since Galileo does not record it in the

folio116v. But, moreover, any inclination is valid in principle, provided that the
plane is sufficiently long to allow the experimenter to reach amaximum level

of 1 000 p on the table, which is precisely the greatest of all those tested by
Galileo in the experiment described. I do not know the reason why Drake and

McLachlan began to test with an inclination of 64° and the criterion followed
to stop and give for good that of 30°.

I copy below an excerpt from the above-mentioned andmuch-discussed pas-

sage from the ‘Discorsi’ [8]whereGalileo himself describes the plane he claims

to have used in his alleged experiments: ⁶

A piece of wooden moulding or scantling, about 12 cubits
long, half a cubitwide, and three finger-breadths thick, was
taken; on its edge was cut a channel a little more than one
finger in breadth; having made this groove very straight,
smooth, and polished, and having lined it with parchment,

⁶ Editor’s Note Quoted from [7] original page scanned by Google [6]
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also as smooth and polished as possible, we rolled along it
a hard, smooth, and very round bronze ball.
Having placed this board in a sloping position, by lifting
one end some one or two cubits above the other, we rolled
the ball, as I was just saying, along the channel, noting, in
a manner presently to be described, the time required to
make the descent.

If we give credit to the author of this description, the inclination of its plane

must have oscillated between 4.8° and 9.6°—‘as it would seem’—and the ball
should maintain one single contact zone with the channel, because, if not, it

would make no sense ‘to place a parchment paper polished to the maximum

inside of it’

In Figure 5.2 appears faithfully represented (to scale) the plane described by

Galileo endowedwith precisely of an inclination of two elbows. Arranged in this

way Galileo would have the plane justly necessary to take the data cited in the

folio 116v. Why not give credit to the descriptions that the author himself

makes?
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300p

600p

800p

1000p

Deflector

table

(828 p) Support for the plane

Figure 5.2: Faithful reproduction of the 116v experiment. The Florentine cubit ,
probably used by Galileo, says Alexandre Koyré [10] in page 295, is equal to
50.8 cm a

aEditor’s Note La coudée florentine, utilisée sans doute par Galilée, contient 20
pouces, c’est-à-dire 1 pied et 8 pouces, et le pied florentin est égal eu pied romain,
qui est égal à 29,57 cm.
The Florentine cubit, probably used by Galileo, contains 20 inches, i.e. 1 foot
and 8 inches, and the Florentine foot is equal to the Roman foot, which is
equal to 29.57 cm.

5.6 A 1979 experience

The analysis of the data from the experience I carried out between Novem-

ber 17th and 20th, 1979, could perhaps help us to support what we have just

stated.

The horizontal records obtained in this experiment appear in Chapter 4 (p. 84)

dedicated to ‘The parabolic trajectories’. If such data are consulted there we

find an unintentional replica of the folio. And I qualify it as ‘unintentional’

because Thuillier’s article would still take six years to reach my hands, al-

though Stillman Drake’s—which I still do not know—had been published six

years earlier.

It should be noted that the deflector used in these experiments was 38.3 cm
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long, so we can consider it responsible for part of the dissipated energy. In

addition, the accelerating inclined plane formed an angle of 3.32° with the
horizontal.

The heights ℎ were not measured originally, but they have been calculated

from the data given in the cited chapter.

𝐻 = 95,8 cm
height of

the table

ℎ

𝑑

2,6 cm

5,2 cm

7,8 cm

10,4 cm

24,6 cm42,7 cm

34,9 cm49,6 cm

Figure 5.3: Horizontal records made by Galileo

The constant𝐾 is:

𝐾 = 20 × 95.8
7 = 273.7 cm

The
–
𝐾 values, obtained from 𝑑 and ℎ, range from 236.6 to 232.7 cm, so the

percentages of energy dissipated are between 14% and 15%. If we discount
the one we can attribute to the long horizontal deflector the results do not
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differ toomuch from the onewe have calculated for the 116v experience. An-
other factor to be taken into account is that the angle 𝛼 in this experience is

3.32°, and not 9.6° which is the one we attribute to Galileo’s, and we have
already shown in Chapter 2 (p. 45) that between the angle of inclination 𝛼 and
the energy yield 𝜒 there is a quantifiable relation.

5.7 To conclude

Thuillier’s article came to my hands in 1985 through Juan Falgueras, leader of

the group of students that during the summer of 1977 worked on the problem

of parabolic trajectories. Juan Falgueras, who was my best student in those

years, ended up graduating in Physics and currently works as a university pro-

fessor. Reading the article moved me at the time because of the parallelism

between Galileo’s experience, as interpreted by Drake, and the stimulating

graded work that I designed for my groups of students during the 1979/80

academic year, work that I describe briefly in Chapter 4 (p. 84) entitled ‘Para-

bolic Trajectories’

At the end of 2003, when I was writing precisely Chapter 4, Thuillier’s article

came back tomymemory and I went deeper into its contents and found some

of the arguments that I present in this one. But it has been during the last few

days (I write these lines on March 7, 2005) that I have reached, in my opinion,

to the bottom of the question. It is like the culmination of a curious ‘puzzle’ in

which the pieces have been arranging themselves over the years.

My sympathy for Galileo began in 1957, when I was a 6th grade student and
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our Religion teacher defended in class the Church’s position in theGalileo case

using the arguments of Bertrand L. Conway, CSP. [3] Such sympathy has only

increased over the years. I was therefore very much struck by the enthusiasm

put forth by Stillman Drake in writing his biography [8] (pp. 160–161) and in

examining these unpublished folios for evidence of Galileo’s side as an exper-

imenter, so discredited by Alexandre Koyré.

So I also had great fun, having just read Thuillier’s article in 1985, reworking

James McLachlan’s ethyl experience—who in turn reworked the one described

by Galileo [10] (p. 252)—willingly sacrificing in it a bottle of red wine…

‘Having taken a glass globe which had a mouth of about the
same diameter as a straw, I filled it with water and turned
it mouth downwards; nevertheless, the water, although quite
heavy and prone to descend, and the air, which is very light
and disposed to rise through the water, refused, the one to des-
cend and the other to ascend through the opening, but both
remained stubborn and defiant. On the other hand, as soon
as I apply to this opening a glass of red wine, which is almost
inappreciably lighter than water, red streaks are immediately
observed to ascend slowly through the water while the water
with equal slowness descends through the wine without mix-
ing, until finally the globe is completely filled with wine and
the water has all gone down into the vessel below.…’

Salviati is perplexed by this account, so Alexandre Koyré [10] (p. 252) takes the

opportunity to launch into an attack by saying:
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‘I confess that I share Salviati’s perplexity. It is indeed difficult
to propose an explanation of the surprising experiment he has
just referred to. All the more so because if it were done again
as he describes it, we would see the wine go up into the glass
vessel (filled with water) and the water go down into the glass
(filled with wine); but we would not see the water and the wine
purely and simply replace each other: we would see a mixture
take place.’

Koyré wonders:

‘What is there to conclude: must we admit that the (red) wines
of the 17th century possessed qualities that today’s wines no
longer possess (…)?’

Or may we suppose that Galileo, who no doubt had never put water in his

wine—wine was for him ‘the reincarnation of sunlight’—never made this ex-

periment, but, having heard of it, reconstituted it in his imagination, admitting

as something indubitable the essential and total incompatibility of water and

wine? For my part I believe that the latter supposition is the good one.

What is certain is that the experiences—both McLachlan’s and my own—ratify

the veracityofGalileo’s account, thusproving thatKoyré, in his inordinate eager-

ness to make Galileo a pure Platonist, did not take the trouble to verify the

veracity of Galileo’s account, did not take the trouble to verify the account

himself but, with excessive glee, came to the conclusion that Galileo had done

nothing more than to ‘present us with experiments that he had merely ima-

gined…’
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Perhaps from the success I obtained in remaking the ethyl experience comes

the question I askmyself above: ‘Why not credit the author’s own descriptions?’

That, no doubt, is what has led me to check whether the description and the

inclination of the plane outlined by Galileo in the ‘Discorsi’ are consistent with

the data contained in the chart on folio 116v.

TheKoyrésian assertion thatGalileo’s discoveries (fall of objects, parabolic tra-

jectories) have a Platonic root is not incompatible with the fact that he carried

out the proving experiments he describes. The main difficulty (lack of means

to accuratelymeasure small time intervals) is ingeniously circumvented in the

experiment that is condensed in the folio 116v. On the other hand there is
the ‘heuristic’ function—as Thuillier says—of the experiment to ‘suggest more

or less directly a new theoretical idea’. I modestly attest to the efficacy of this

‘heuristic function of the experiment’ to correctly assimilate theoretical ideas

even if they are old.

Finally, Thuillier’s article cites Pierre Costabel [1] as the author of an argument,

published in 1975, against the experimental character of the folio 116v. He
does not develop it either because ‘is’—he says—‘enough complicated to detail

it here’. Of course I would also love to know that argument of Pierre Costabel.



Chapter 5 The folio 116v 118

5.8 Appendix

October 30, 2008

An article by Alexander Hahn [9] discusses a revision by Stillman Drake, circa

1985, of his first interpretation of the folio 116v in an attempt to improve on
the results obtained in the first one. It is not very clear to me what Drake in-

tended by it. To understand it I would have to collect and translate several of

the articles cited by Hanh in his, a task that may be ideal for a retiree like the

one who writes this.

The revision consisted of considering that the ball used by Galileo measured

20 p in diameter and the plane channel 8.5 p in width, so that the ball would
roll while maintaining two points of contact with the plane, cases which I my-

self have dealt with experimentally with my students. I would try thereby to

come closer, by means of a reconstruction purely mathematical to Galileo’s

experimental values.

This new attempt confirmsme in the suspicion that nobody has thought of the

dissipation of energy, or that they have considered the influence of this factor

negligible beforehand, assigning to the frictional force the task static and ex-

clusive of avoiding the sliding and assuring the rotation synchronized with the

translation of the ball.

Even without knowing in depth the reasons that impelled S. Drake to make

this revision I do not see it in agreement with the description of the plane that

Galileomakes in the ‘Discorsi’. Where does Drake get the data of the diameter

of the ball? Why would Galileo have to place a ‘parchment paper polished

to the maximum inside (of the channel)’ if the ball was not going to touch the

bottom but to roll leaning on the edges?
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Chapter 6

Folios 114v and 81r

6.1 Introduction

The day I start writing this chapter—January 6, 2007—is almost two months

since my initiation as an Internet user. I have located on the Internet—but I

have not been able to access them—the articles that Stillman Drake (alone or

in collaborationwith J.McLachlan), R.H.Naylor andD.Hill dedicated in their day

to these unpublished Galileo’s folios. On the other hand, I have located full-

size electronic reproductions of the aforementioned folios [2], as well as two

articles—one in Spanish [1] and one in English [3]—with abundant information

on the contents of the aforementioned folios, which are inaccessible tome for

the time being.

Although I was aware of the existence of the folio 114v—a reproduction of
it appears in Thuillier’s article already cited—the graphic that appears in the

folio anverso of folio 81r—r
for recto or

v
for anverso—has constituted for me

a complete novelty. The initial intention of my Internet search was to satisfy

my curiosity as to why Drake and McLachlan approached the reconstruction

of the folio 116v experience by choosing for the plane an inclination of 30°,
after starting the test with an angle of 64°, but all the material accumulated
during these days have firedmy curiosity and imagination beyond thismodest
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limit, so I have proposed to elaborate my own opinion about the folios 114v

and 81r.

After a long time spent translating fromAlexanderHanh’s article [3]—myknow-

ledge of English is very rudimentary—I have come to the conclusion that the

researchers involved in this adventure used kinematic and dynamic—and even

purely mathematical—arguments to elaborate their own reconstructions, but

that they ignored or overlooked the energetic aspect. It seems as if for them

therewere noenergydissipation in rolling, or at least no allusion ismade to this

subject inProfessorHanh’s extensive summary. Hehimself—amathematician—

obtains in the case of the folio 116v a relation between the height of the table
𝐻, those of departure of the ball ℎ and the horizontal range of the flights 𝑑
identical to that obtained by me in the previous chapter, but he does not rely

for it on energetic arguments but on the kinematic and dynamic ones already

mentioned. He writes it as:

𝑑 = 2√
5
7 𝐻

√ℎ

and clarifies that with it the values of 𝑑 would be obtained in some ideal con-
ditions, among which one counts ‘a friction force that makes the ball rotate

without slidingandwithout causingadditional impediment’. He apparentlydoes

not realize the interesting meaning of the theoretical constant:

𝐾 = 20𝐻
7 (6.1)

that together with his approximate empirical values:

–
𝐾 = 𝑑2

ℎ (6.2)
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being 𝐻, 𝑑 and ℎ the data provided by Galileo himself, allow to calculate the

percentage of the energy forcibly dissipated, as I have already shown in the

previous chapter.

However, he comments that ‘alternatively this equation can be established us-

ing the lawof conservationof energy’ and refers us to an article [3] (p. 397–400)

by W. R. Shea and N. S. Wolf—physicists apparently—who polemicised very

early with Drake about the reconstruction of the experience of the folio 116v.
I have located this article, but I have not been able to access it either, so I do

not know if these authors allude to the dissipative effect.

The article in Spanish [1] is signed by J. L. Álvarez G. and Y. Posadas V., pro-

fessors at the Universidad Nacional Autónoma de México. It contains tables

with the numerical results of the reconstructions carried out by the aforemen-

tioned historians, as well as the ball exit heights ℎ and the angles 𝑎𝑙𝑝ℎ𝑎 they
gave to their inclined planes.

As for the dissipative effect of the frictional forces on the rolling, neither is al-

luded to in this text, the authors limiting themselves tomaking them respons-

ible for the coupledmotion of rotation and translation of the ball, commenting

that this ‘was not a problem for Galileo to be successful…’. ‘AlthoughGalileowas

not aware of the influence of these factors, his investigations of an experimental

nature resulted in a very small margin of error. At this point we cannot decide

whether it was luck or the intuition of a visionary’
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6.2 My starting assumptions

In previous chapters I have quoted at length Galileo’s description of his plane,

of how he raised one end of it ‘to the height of one or two cubits, as it seemed’¹,

and shown that an inclination of two cubits is sufficient—if the whole length

of the plane is taken up—to reach the maximum ℎ of 1 000 p recorded in fo-
lio 116v. Why would I have to raise it to 64° or 30° as Drake and McLachlan
claim? I have the intuition, quite logical on the other hand, that Galileo ob-

tained his experimental results using the simplest means. I do not believe that

he employed—in the experiments suggested in these folios—angles greater

than the9.5° that can be obtained by elevating atmost two cubits (101.6 cm)

one of the ends of his twelve-cubit plane (609.6 cm).

On theother hand I amconvinced that thedata recorded in these controversial

folios are experimental and not the product of calculations. That is very clear

in folio 116v, in which the calculated (‘should be’) data and the experimental
values appearwell differentiated and comparedwith each other, but the same

is not true in the other two folios.

I will use the equations 6.1 and 6.2 in the discussions that follow to estimate

the values of ℎ possibly used by Galileo. The confidence I place in his word—
along with those estimated values of ℎ—will allow me to assign values to the

angles of inclination𝛼 inexorably. That is: I will establish an forced relationship
between both parameters (ℎ, 𝛼) by applying the strictest logic to Galileo’s
own account. Then I will reconstruct theoretically the experiences of the folios

114v and 81r, and only the results obtained can serve us to judge about the
plausibility of the story I propose.

¹ Editor’s Note A cubit is an ancient unit of length based on the distance from the tip of a

person’s middle finger to the elbow
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Another of my intuitions dictates tome that Galileo was aware of what he was

aiming at in designing the experiences of the folios 81r and 114v, and that
he designed and carried them out to perfection in that of the folio 116v. In
the only experience with the inclined plane that Galileo described in detail [2]

(p. 299) he confirmed the law relating the paths 𝑠 to the squares of the times 𝑡
invested in the rolling starting from rest. He then assumed that this law could

be extended to the free fall of any body, also starting from rest. A little later

he came to the conclusion that in the records of parabolic flights it must be

fulfilled that:

𝑑2 ∝ ℎ (6.3)

or, in other words:

𝑣2 ∝ ℎ (6.4)

is something that—involving also the principle of inertia and superposition of

motions—can reasonably be expected from Galileo’s genius. The relation 6.3

he puts it explicitly to the test in folio 116v, being also implicitly in 114v, and
the equation 6.4—where 𝑣 is the speed of the ball at the instant it reaches
the lower edge of the plane—is, to my mind, at the origin of the experience

described in folio 81r.

Drake’s view, shared by other scholars, that folios 114v and 81r correspond
to failed experiments because [3] ‘without analytical geometry (Galileo) lacked

the (necessary) mathematical tool to obtain success, that being the reason why

he never mentions these investigations’, seems to me unfortunate. For my part

I am in full agreement with the opinion expressed by Naylor who says thus

[3] (pp. 105–134): ‘The view that Galileo would roll spheres on inclined planes,



Chapter 6 Folios 114v and 81r 126

compile a list of observations, and then realize his inability to interpret such in-

formation, certainly strikes me as uncharacteristic of the character’.

Anyone who has read the previous chapters will already be aware of my fa-

miliarity with the inclined plane and related energy dissipation. All that work

I believe qualifies me to venture a plausible interpretation of folios 114v and
81r.

6.3 Folio 114v

Rather, it is a fragment of a folio containing a diagram and some numbers,

which we copy in Figure 6.1. The rest of the folio is filled with calculations that

shed no light on the enigmatic diagram.

253 337 395 451 495 534 573

Figure 6.1: Transcription of folio 114v

All the historians cited above agree that we are dealing with a series of para-
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bolic trajectories obtained without a horizontal deflector, the numbers at the

foot of each parabola representing the respective horizontal ranges 𝑑. Galileo
does not report the height above the ground𝐻 at which the lower edge of the

inclined plane is located, nor the heights ℎ from which the ball starts to fly

until it touches the ground, nor the angle 𝛼 that the inclined plane forms with
the horizontal….

The mathematical tool needed to tackle this problem of oblique projection is

detailed below and to capture it well I have drawn Figure 6.2:

𝐻

ℎ 𝛼

𝑑

Figure 6.2: Data for the oblique projection problem

The equation:

𝑣 = √
10 𝑔ℎ
7 (6.5)

where 𝑔 is the acceleration in free fall, allows us to calculate the speed of the
CM of the sphere as it emerges from the lower edge of the inclined plane. It is

obtained by an energy balance on the assumption that the energy is conserved

entirely as kinetic. The equations:
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𝑑 = 𝑣𝑡 cos 𝛼 (6.6)

and

𝐻 = 𝑣𝑡 sin 𝛼 + 1
2 𝑔𝑡

2
(6.7)

relate the horizontal ranges 𝑑 and distance 𝐻 to the time of flight 𝑡 and the
angle 𝛼 formed by the plane with the horizontal. These are simply applic-

ations to this case of the parametric equations of the parabola. Combining

these equations together we obtain:

𝑑 = −57 ℎ sin(2𝛼) +√[57 ℎ sin(2𝛼)]
2
+ 20

7 ℎ𝐻 cos2 𝛼 (6.8)

In short: If wewant to ideally reproduce the𝑑 values that appear at the bottom
of each of the supposed parabolas in the 114v, we will have to choose terns
of appropriate values for ℎ,𝐻 and 𝛼. What criteria should we follow to make

such a choice?

Drake used an angle of 26° in the reconstruction he did alone. In a later one,
withMcLachlan, he increased it to 30°. In both cases I do not know the criteria
used to make such choices. Nor do I know why Hill used an angle of 12.5° to
make his. I have found no justification for fixing the series of heights ℎ nor for
the choice of𝐻 in either case. All of them obtain values for 𝑑 close to those
recorded by Galileo… One thing seems clear, and that is that the problem ad-

mits infinite solutions, as infinite are the combinationswe canmakebyassigning

values to the three variables handled.

To work out my own theoretical reconstruction I begin by assuming that𝐻 =
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828 p, what Galileo calls ‘height of the table’ in the folio116v. This assumption
follows from two previous ones, namely, that according to the numbering of

the folios the experience of the114vmust have been somewhat earlier in time
than that of the 116v and that Galileo would have already installed his plane,
but still without the attachment of the horizontal deflector.

This assumption justifies that, in principle, we assign to the theoretical constant

𝐾 the same value that corresponded to it in the 116v, that is: 𝐾 = 2 366 p.
Nowwe can venture to the estimative calculation of the series of valuesℎ that
Galileo could have chosen to let the ball split, since it must be fulfilled in any

case that such ℎ must be greater than those obtained by means of the quo-

tients 𝑑2/𝐾 being 𝑑 the values of the series experimentally recorded by Galileo
in the folio 114v, and 𝐾 the theoretical constant which we have already as-

sumed.

In the experience of the folio 116v Galileo tested ℎ explicitly with integer val-
ues of ℎ. This authorizes us to round the estimated values by 𝑑2/𝐾 up to

integers, taking into account the unavoidable energy dissipation that will ac-

company each rolling. The result of all this is given in Table 6.1: We can estim-

Galileo 𝑑 Estimated values 𝑑2/𝐾 Values of ℎ chosen
253 27.0 30.00
337 48.0 50.00
395 65.9 70.00
451 85.9 90.00
495 103.5 110.00
534 120.5 130.00
573 138.7 150.00

Table 6.1: Estimated values of ℎ for folio 116v
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ate 𝛼𝑏𝑦𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔h = 150 p by the 6 500 p that the plane measures:

sin 𝛼 = 150
6 500 = 0.02307 which corresponds to: 𝛼 = 1.32°

We now have everything we need to obtain the ideal values of the horizontal

displacements 𝑑 from the equation 6.8. See Table 6.2.

The values thus calculated are higher than the experimental ones recorded in

the 114v, but the differences are more than justified by the unavoidable dis-
sipation of energy along the rolling. The theoretical constant 𝐾 and the for-

Calculated values

𝐻 = 828; 𝛼 = 1.32° Galileo

114v
Differences

ℎ
–
𝑑 𝑑 Δ

30 265 253 12
50 342 337 5
70 404 395 9
90 458 451 7
110 506 495 11
130 549 534 15
150 589 573 16

Table 6.2: Estimated values and those taken by Galileo

mula for calculating the percentage of energy dissipated in rolling are valid

strictly under the conditions (horizontal projection of the ball) under which

they were deduced. If I have dared to use them here to make an estimative

calculation of the values of ℎ it has been on the basis of my conviction—we

shall see why—that Galileo must have made use of very small values for the

angle 𝛼. See that the projection of the sphere in the experience recorded in
the folio 114v turns out to be almost horizontal.



Chapter 6 Folios 114v and 81r 131

I venture now to make an estimate of the percentages of energy dissipated.

See Table 6.3. They are somewhat lower, but of the same order, than those

obtained at the time for the folio 116v experience. It should be remembered
that in the experience we are now analyzing there is no horizontal deflector,

which means a saving in the energy dissipated. I am of the opinion, therefore,

ℎ 𝐾 =
–
𝑑2/ℎ

–
𝐾 = 𝑑2/ℎ 𝜒 = 100 (1 −

–
𝐾/𝐾)

30 2.341 2.133 8.9
50 2.339 2.271 2.9
70 2.334 2.229 4.5
90 2.329 2.260 3.0
110 2.326 2.227 4.3
130 2.322 2.193 5.6
150 2.319 2.189 5.6
Table 6.3: Galileo’s verification of 𝑑2 ∝ ℎ in 114v

that Galileo did not need analytic geometry to interpret the experience of the

folio 114v.

To test his previous deduction𝑑2 ∝ ℎ he needed to drive the spheremeasurably
ℎ and for the outgoing velocity to be nearly horizontal 𝛼 → 0.

To do this, disposing of the total length of his plane, he was able to perform

as many as seven trials spaced twenty points apart, for ℎ. In the quotients of
the third column of Table 6.3, the numerators 𝑑 are measurements made by
Galileo himself, and the denominators ℎ measurements projected and made

also by himself according to a plan which is revealed to have been consciously

drawn. In my opinion this is the most economical solution that can be given

to the enigma posed by the folio 114v.
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6.4 Folio 81r

It is an almost blank sheet of paper on which there are three curves—Figu-

re 6.3—as well as a Latin phrase, the translation of which we offer in the same

figure, and two groups of numbers that are obviously related to the graph.

All scholars of the subject agree that the three curves represent ‘horizontal’

records, consisting of intercepting the flight of the ball by means of a board,

parallel to the ground, placed at different vertical distances (ordinates) from

the lower edge of the inclined plane, to record on it the horizontal distances

(abscissae) of some points of the presumed parabolic trajectories described in

each flight. There is a similaritywith the folio114v, except that in that oneonly
one point was recorded for each trajectory and the absence of a horizontal

deflector was suggested, which is not done here.

In their article [1] (pp. 62–74), Professors Alvarez and Posadas write: ‘About

1600, the Marquis Guidobaldo del Monte suggested to Galileo an experiment

capable of revealing the shape of the trajectory followed by objects as they fall

after rolling through an inclined plane’. They further add that: ‘In 1603, Galileo

attempts to repeat Guidobaldo’s experiment’. They then describe the usual set-

up for carrying out the experiment, and they suppose that the one in the folio

81r is aimed at demonstrating that these trajectories are parabolic.
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a

b

c
250A250B250C

146

77,5

53

53

170177,5178

121130,5131

8187,589

250 - 250

170 - 177,5
121 - 130,5
81 -

The heights in ab are measured with the

same scale as the cross-sectional heights bc

Figure 6.3: Transcription of the 81r

6.5 My opinion on folio 81r

I began by assuming that the ball was projected obliquely, but with a small

and fixed angle, since no suggestion appears in the figure and in view of the

preceding one sitting in the folio 114v. I set out to calculate the approximate
theoretical value of the constant𝐾 considering the distance (𝑎, 𝑏) as the value
𝐻 = 329.5 p, resulting to be𝐾 = 941.43 p.

I took the largest values corresponding to 𝑑 in the three parabolas to estimate
those of the heights ℎ from which Galileo should have let the sphere depart

in each case. Convinced that Galileo would have chosen the values of ℎ ac-

cording to some sequence I set out to find out by dividing each estimated ℎ
value by the smallest of them all ℎA, finding something not at all surprising,
as recorded in the fourth column of Table 6.4: But this obviousness immedi-

atelymademe suspect thatGalileo was trying to test the validity of the relation
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Galileo 81r 𝑑 ℎ ≥ 𝑑2/𝐾 ℎ/ℎA
Curve (A) 250 66.389 1.0
Curve (B) 500 265.555 4.0
Curve (C) 750 597.495 9.0

Table 6.4: Verification of 𝑑2 ∝ ℎ in the 81r

between the exit heightℎ and the speed of the ball 𝑣when it reaches the bottom
edge of the plane, that is, to test whether it holds that:

𝑣2 ∝ ℎ

or, in other words, if:

𝑣 ∝ √ℎ

and would have chosen for this purpose heights related to each other such that

the velocities at the foot of the plane were 𝑣, 2𝑣 and 3𝑣, which would translate
into horizontal ranges 𝑑, 2𝑑 and 3𝑑 related in the same way.

But this would imply that the time of flight should be the same for all para-

bolas, i.e., the ball should be projected horizontally… However, since the quo-

tients 𝑦/𝑥2 do not remain constant for each parabola, as would be required
in such a case, they must be, without doubt, oblique projections… (It is not pos-

sible to describe the excitement of suddenly coming face to face with all this

seemingly contradictory information.)

Once I calmeddown, I supposed thatGalileomust have started fromtheheights

ℎA = 70 p, ℎB = 280 p and ℎC = 630 p because of the predilection that I
attribute to him towards the integers…

For my part I justified this choice as appropriate to attempt a theoretical re-
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construction, since it is already evident that part of the initial potential energy

will be dissipated in the rolling. But which projection angle to choose?

I thought that if Galileo used the same plane as the one he used in the exper-

iments in the folios 114v and 116v, applying the criterion of taking advantage
of all its length, we would have that:

sin 𝛼 = 630
6 500 = 0.0969

that is:

𝛼 = 5.56°

I calculated the values of 𝑑, taking the angle of 5.56°, and found that those
for curve A, but that those for curves B and C are nonsensical. I then thought

about whether the length of the planewould allow him to perform at least two

trials, ie:

sin 𝛼 = 280
6 500 = 0.0431

so that:

𝛼 = 2.47°

By testing with this new angle, I obtained for
–
𝑑 the values shown in Table 6.5:

The first three points of each curve conform fairly well to what might be ex-

pected: The calculated values are higher than the experimental ones, as was

to be expected, the differences being between 11 and 22 p, always in favour
of the calculated ones, since they have been so on the assumption that no

energy is dissipated in rolling. Even the fourth point of curve A meets all the

requirements, except that the difference is too small with respect to the pre-

vious three.
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Height Theoretical value Galileo Differences

ℎ𝑒 –
𝑑 𝑑𝑒 Δ

Curve A ℎ = 70 p ; 𝛼 = 2.47°
53.0 98.6 81 17.6
106.0 141.2 121 20.1
183.5 187.1 170 17.1
329.5 252.1 250 2.1

Curve B ℎ = 280 p ; 𝛼 = 2.47°
53.0 189.2 168.5 20.7
106.0 274.2 251.5 22.7
183.5 365.9 347.5 18.4
329.5 496.0 500.0 −4.0

Curve C ℎ = 630 p ; 𝛼 = 2.47°
53.0 272.2 257.5 14.7
106.0 399.3 382.5 16.8
183.5 536.7 525.5 11.2
329.5 731.6 750.0 −18.4

Table 6.5: Differences in theoretical and Galileo curves in 114v and 116v

As for the fourth point of the other two curves, the differences are negative.

This detail, disconcerting in its absurdity in relation to the other data, made

me think that of the three notes made by Galileo in the lower transversal only

the first—the 250 p corresponding to curve A—corresponds to an experimental
data necessary to design the test, the other two being anticipated expressions

of the results he expected to obtain if the hypothesis he was submitting to veri-

fication turned out to be correct.

But such a hypothesis cannot be endorsed with complete accuracy by an ex-

perience inwhich the ball is projected obliquely, as it appears to be in this case.

Galileo was perhaps perfectly aware of this, but, in my opinion, he was obliged

to look for a procedure that would allow him to reconcile two conflicting needs:

to propel the ball in a measurable way ℎ and to achieve this without distorting
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thehorizontality toomuch. The ideaof attaching ahorizontal deflector tomake

the horizontality condition independent of the need to measure ℎ had not yet
occurred to him. It is possible that the idea of the deflector arose immediately

after the 114v experience.

Naturally Galileo was ignorant of everything concerning the inevitable dissip-

ation of energy, but this circumstance,whichwould affect with some uniformity

all his results, would not prevent him from an approximate confirmation of his

hypothesis. What I find very strange is that the historians and mathematicians

who have dealt with thismatter during the last thirty years have not involved the

dissipation of energy in their reconstructions.

Another secondary enigma is how Galileo would manage to record the points

relative to the curve C, whose coordinates are shown in the diagram, but are

not recorded in the list in the upper left corner of the folio. I suppose that Galileo

would initially design the experiment for the heights ℎ of 70 and 280 pwhich
were accessible to himwithhis twelve-cubit plane. Hemust have thought later

that ‘one swallow does not make a summer’, and it is possible that he decided

to hunt a second swallowusing the twelve elbows plane as a deflector, without

altering the angle of 2.47° achieved, attaching to it at the top another plane
with a higher inclination that would allow him to reach the necessary 630 p
without resorting to an exaggerated length.

If the interpretation that I offer is admitted, the empty of the reverse and of

the lower half of this folio, empty which have been considered by Alexander

Hanh as ‘proof of Galileo’s inability to interpret the curves obtained’, cease to be

strange. But—in my opinion—Galileo did not have to interpret anything. Per-

haps he expected to check only whether the experimental results conformed

to the expectations created by the conditions he himself had imposed and

empirically bounded with the first test, that of curve A. And the truth is that the
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fit is quite good and must have satisfied its author. This is not, in my opinion,

a failed or abandoned experiment, but a success that reveals Galileo’s sagacity

and skill as an experimenter.

As the numbering of the folios suggests, the experience embodied in this one

must havebeenprior to thoseof theother two. Thewidespreadopinion among

historians that Galileo was trying to provewith the 81r the suggestion of Guid-
obaldo del Monte about ‘the shape of the trajectory followed by falling bodies

after being propelled’, seems to me to be very strange and far-fetched. If that

was Galileo’s intention hemight well have focused on one single curve and ob-

tained more points from it instead of recording only four points from three dif-

ferent curves.

I mean to suggest by this that the experience of the folio 81r must have been
aimed rather at verifying the hypothesis 𝑣2 ∝ ℎ than at proving something

whichwould turnout tobemathematically true if his experimentswere crowned

with success.

6.6 Conclusions

I believe I have offered a consistent interpretation of the experiences con-

tained in folios 81r and 114v based on:

a) Galileo’s description of his plane

b) The purpose that I attribute to it to take advantage of its full length in

each trial
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c) The interpretation offered by Stillman Drake of the folio 116v

d) My own interpretation of the theoretical meaning of the𝐾 constant

e) My own experimental work on this issue over the years

These pieces from such different backgrounds seem to fit together reasonably

well.

The fact that part of the initial gravitational potential energy must be dissip-

ated in the rolling—which seems not to have been taken into account so far—

seems to me fundamental to interpret these sheets. An purely mathematical

interpretation—such as the one made by A. Hanh’s interpretation of the data

recorded in folio 81r—rather overshadows than clarifies the intention pursued
by Galileo with the design of this experiment.
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Chapter 7

An illustrated story

March 16-19, 2009

Yesterday, March 16, I woke up at half past seven in the morning, as has been

usual for me for some time now. With nothing better to do, I thought I would

dedicate a few hours to exercise with the drawing program, which has been

very neglected during the last few months.

I also decided to tackle a long-delayed project: to make 1/5 scale reproduc-

tions of the trajectories drawn by Galileo in the folio 81r and of those that
would have been obtained in the absence of friction, according to the theory I

exposed in Chapter 6 (p. 121). After a while I had finishedmywork, which I now

set out in Figure 7.1: As I had time ahead of me, I decided to draw the plane

used by Galileo, according to his own description, arranging it with the angle

of 2.47° that—according to my theoretical reconstruction—Galileo must have
given it to obtain the curves that appear in the folio 81r. I chose the scale 1/50
and I amusedmyself drawing also to the same scale a human figure of 1.70m
of stature that should represent Galileo himself.

Why, I asked myself, not add a reproduction at the foot of the plan at the same

scale as the folio 81r?

I did… And I got Figure 7.2, which gave me a curious surprise:
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53
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Folio 81r
In red the “experimental” graphs

In blue the “theoretical” graphs

Approximate scale: 1/5

Figure 7.1: Reproduction of 81r trajectories

ℎ = 70 p
ℎ = 280 p

Figure 7.2: Galileo taking the data of the first two parabolas from the 81r

My God—I thought—when Galileo made this experience he most

likely had the plane on the ground!

I remembered that Galileo assigns to his plane ‘half a cubit in width more or

less’. I calculated that half a cubit is272 p as opposed to the329.5 pmeasured
by the vertical axis that appears in the folio 81r. But Galileo himself qualifies
his statement with a ‘more or less’. We must bear in mind that this description

of the plan was written thirty years after some events that must have taken

place between 1603 and 1604, when Galileo was 39 years old and a stout fel-
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low capable of handling—alone or with the help of another—a plank of more

than fifty kilos of mass…

It is possible that before taking the data of the folio 81r, Galileo had been
carrying out—with his plane of little inclination resting on the ground—the ex-

periments that he describes in the ‘Discorsi’ to justify empirically the relation

𝑠 ∝ 𝑡2.

(In an article—which I have already discussed—T. B. Settle describes his own

reconstruction of these experiments—the only ones concerning the inclined

plane described in some detail in the ‘Discorsi’—showing that it is possible to

measure times with a margin of error of less than ‘one tenth of a pulse’ with

means analogous to those used in his day by Galileo).

By adding a little imagination to the matter we may suppose that after per-

forming this famous and much discussed experiment—and without changing

the inclination of the plane—Galileo could go on to check whether it was true

that 𝑣 ∝ ℎ—a consequence of the law he had just discovered extended to

free fall combined with the principle of inertia and that of superposition of

motions—as I have already developed in Chapter 6 (p. 121). He would take the

first experimental datum on the ground (𝑖𝑑 = 250 p for ℎ = 70 p), and pos-
sibly also the other datum (𝑑 = 500 p for ℎ = 280 p), which would confirm
his suspicion. Then he would resort to thick books in which to support a paper to

register the six remaining points of the two more closed parabolas, which, well

looked at, also come to confirm his suspicion within admissible limits of error.

Toobtain thedata corresponding to the thirdparabola—themost open—Galileo

should have had a plane of about 14m long tomaintain the same angle of in-

clination of 2.47°. To obviate this inconvenience he could well have placed
a short auxiliary plane coupled to the first one, thus being able to reach the
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height ℎ = 630 p while keeping the first plane as a non-horizontal deflector
𝛼 = 2.47° as shown in Figure 7.3:

ℎ = 70 p ℎ = 280 p
ℎ = 630 p

Figure 7.3: How could Galileo have taken the data corresponding to the third para-
bola of the 81r

A factor that has contributed to my confusion over the years is

that, being the originals of the three folios 81r, 114v and 116v of
analogous dimensions, the parabolas of the 81r appear greatly
enlarged in relation to those of the other two. I am ashamed to

admit that it was not until I reduced the three to the same 1/50

scale to make the preceding drawings that I realized the new pos-

sibilities of interpretation that they offer me.

I have shown in Chapter 6 (p. 121) that by arranging that same plane with an

inclination of 𝛼 = 1.32° and placing the lower end at a height of 828 p, the
parabolas appearing in the folio 114v can be accounted for as illustrated in
Figure 7.4.

Galileo intends to check experimentally whether 𝑑2/ℎ remains constant with
a certain approximation—another consequence of the extension of his newly

discovered law to free fall combinedwith the principle of inertia—intuiting that

the closer the plane is to the horizontal, the better it should turn out. The

828 p of free fall have not been chosen at random: this is the height of the
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Figure 7.4: Fragment of the 81r

table which is to serve as the horizontal deflector in the following experiment

contained in the folio 116v.

There is a clear link between the explanations I offer for the folios 81r and
114v: The plane used is the same in both cases and its entire length is exploited,
which inexorably determines the values of 𝛼 in both cases. On the other hand

the folios 114v and 116v are linked to each other, moreover, by the height of the
deflecting table.

Of course, perfection is achieved by Galileo with the experience reflected in

the folio 116v. When he adds the horizontal deflector, things begin to work

better, because in this series of experiments the time spent in traversing each

of the parabolas is the same with total independence of ℎ. But it is not known
which angle Galileo chose to tilt the plane. Again, following his own descrip-

tion, I calculate that it must have been an angle of 9.6°, which allows using the
same plane along its entire length and Galileo to place the ball at the highest
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Figure 7.5: Fragment of the 114v

30 50 70 90 110 130 150

Figure 7.6: Galileo taking the data from the 114v

possible point, as shown in Figure 7.5:
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300 600 800

828
1.000

Figure 7.7: Galileo taking the data from the 116v

Figure 7.8: Fragment of 116v



Chapter 8

Latest comments and experiences

8.1 23rd(4) of April 2009

The suspicion stated at the beginning of the preceding chapter about the gen-

esis of the folio81r has promptedme to deepen the study I began in Chapter 6
(p. 121).

To facilitate the work I have passed to the International System of Units the

experimental data recorded at ‘points’ (p) by Galileo. These data—drop height
𝐻 and distance travelled horizontally 𝑑—are related by the equations 6.6 and
6.7 that allow us to calculate the velocity 𝑣CM of the centre of mass of the

rolling sphere at the instant when it emerges from the edge of the plane to

describe each of the parabolas. Combining these equations yields the follow-

ing equations:

𝑡 =
√

2 (𝐻 − 𝑑 tan 𝛼)
𝑔 (8.1)

y

𝑣CM = 𝑑
𝑡 cos 𝛼 (8.2)
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The results obtained for 𝑣CM would allow us to judgewhether the value 2.47°,
which I attributed at the time to the angle 𝛼, is convincing.

On the other hand the equation 6.5 allows the calculation of the velocity
–
𝑣CM

that should present at that same instant the centre of mass of the rolling ball

in the ideal case of absence of friction. The percentage of energy dissipated in

each rolling can be obtained by 1.10.

This percentage can also provide clues to judge the goodness of the interpret-

ation we propose.

8.2 Was Galileo very careful in measuring lengths?

It seems so, since he shows himself able to appreciate up to the ‘half a point’

in four of the annotations that appear in the folio 81r, which seems incredible
if we take into account that the point is equivalent to 0.94mm. But my own

experience teaches me that I can appreciate up to ‘half a millimetre’ when

locating the centre of the circular track left by a ball on impact, so let’s give

Galileo a margin of confidence.

But what reference did Galileo use to measure the abscissae noted on the

aforementioned sheet? It seems to be a vertical axis, but in view of Figures 7.2

and 7.3 of Chapter 7 (pp. 141 and 143) we may wonder whether such an axis

would not form an angle of 2.47° to the right of the vertical.

In my opinion Galileo designed this experiment to test an idea that I have

already stated at the time. We can now imagine that by letting the ball roll
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from the 70 p of height annotated that it came to impact on the ground at
250 p counted from…where? It is possible that he took as reference the point
where the inclined plane rested on the ground, with which he would be com-

mitting an error by excess of about 14 p when writing down the horizontal

reach of that impact– All the abscissae that appear in the folio 81r would be
affected by easy-to-calculate errors if we accept this assumption.

I have already expressed elsewhere my opinion that the abscissa of that par-

ticular point is experimental, but that those of the other two points recorded on

the same horizontal would not be, rather, it would express Galileo’s expecta-

tions if the idea he was testing turned out to be correct. All the other recorded

points, except those two, would be experimental and suitable to proceed to

the calculation of 𝑣CM by application of the equations 8.1 and 8.2 after the

appropriate corrections in 𝑑. (See Figure 8.1) Table 8.1 shows the results ob-

23,4546,970,35

15,9532,649,3

11,3523,635,9

7,615,824,1

30,9

17,2

9,9

4,95

← 𝑑 𝐻 1,3 Δ𝑑

0,7

0,4

0,2

𝛼 = 2,47°

Approximate scale 1/6,7 (in cm)

In black: Uncorrected distances 𝑑
In green: Appropriate correctionsΔ𝑑
In red: Galileo’s expectations

In blue: Falling heights𝐻

Figure 8.1: Accuracy of Galileo data

tained by applying these equations to the most closed parabola. The velocity
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–
𝑣CM in the absence of friction would be:

–
𝑣CM =√

10 × 980 × 6.57
7 = 95.7 cm/s (70p equivalen a 6.57 cm)

𝐻 cm 𝑑 cm 𝑣CM cm/s 𝜒 %
4.95 7.4 76.2 37
9.9 10.95 78.9 32
17.2 15.25 82.9 25
30.9 22.15 89.7 12

Table 8.1: Equations of the parabolas in the 81r

Ideally for our purposes, the columns headedby𝑣CM and𝜒would have shown
constant values. In any case, the last values, marked in blue, are the most re-

liable since the starting data are those affected by a minimum relative error.

The increasing progression (76.2 to 89.7), recorded in the velocity column,
would be much more pronounced (78.3 to 95.8) if we had used the 𝑑 un-

corrected values. On the other hand, the value (95.8) is precisely that which
results from the calculation of

–
𝑣CM in the absence of friction, which makes it

absurd since, as we already know, friction is inescapable. These considerations

show that the corrections made in 𝑑 are appropriate.

For the intermediate parabola it results:

–
𝑣CM = 191.8 cm

Table 8.2 shows the results obtained for this parabola.

The values marked in red should be discarded for two reasons:

a) The horizontal distance (45.6 cm) is not an experimental value.
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𝐻 cm 𝑑 cm 𝑣CM cm/s 𝜒 %
4.95 15.6 167.1 24
9.9 23.2 172.3 19
17.2 31.9 177.6 15
30.9 45.6 187.8 4

Table 8.2: Values for the intermediate parabola

b) The speedobtained (187.8 cm/s) is very close to the ideal speedwithout
friction.

Therefore, the most reliable values are those marked in blue, since they have

been calculated from corrected experimental data and present a percentage

of dissipated energy of the same order as the most reliable result of the pre-

vious parabola.

For the most open parabola we will have:

–
𝑣CM = 291.6 cm/s

Table 8.3 shows the results obtained for it. The results marked in red should

𝐻 cm 𝑑 cm 𝑣CM cm/s 𝜒 %
4.95 23.9 267.2 16
9.9 35.5 272.1 13
17.2 48.6 277.1 10
30.9 69.05 289.5 1.4

Table 8.3: Values for the most open parabola

be discarded for the two reasons already stated.

The one marked in blue is the best, but the other two are also quite good.



Chapter 8 Latest comments and experiences 152

This is not surprising, since the starting data in this parabola are affected by

minimum values of relative error. In all three tables the results marked in blue

have values for 𝜒 between 10 and 15%. We will return to this fact later. The

analysis I have just made of these parabolas confirms that:

a) The first twowereobtainedwith aplaneof twelve elbows, perhaps rest-

ing on the ground, and inclined at an angle of 2.47° above the hori-
zontal, as planned.

b) To obtain the third parabola Galileo had to make use of an auxiliary

plane.

c) The experiment was designed by Galileo to confirm empirically a bril-

liant hypothesis, and it was not necessary to make any mathematical

interpretation of it.

d) The experience was a resounding success, confirming the initial hypo-

thesis.

8.3 Reproduction of the experience outlined on folio 81r
25th(6) of April 2009

Yesterday I couldnot resist the temptationofdustingoffmyold inclinedplane—

the one described in Chapter 4 (p. 84)—to attempt a reproduction of Galileo’s

experience in the folio 81r. I endowed my plane with an inclination of 2.37°,
an angle very close to that which I suppose Galileo used, and calculated that
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by marking on it distances 𝑠 of 20, 80, and 180 centimetres, starting from its

lower end, I would obtain the necessary heights ℎ. Namely:

ℎ1 = 0.827 cm for 𝑆 = 20 cm

ℎ2 = 3.308 cm (ℎ1 × 22) for 𝑆 = 80 cm

ℎ3 = 7.443 cm (ℎ1 × 32) for 𝑆 = 180 cm

I set up a 37 × 24 × 1.6 cm board—whose horizontality I checked at each

change of position with a bubble level—to record the impacts on a sheet of

white paper covered by another sheet of carbon paper. I gradually raised the

board using thick books as a support, thus obtaining eighteen pairs of co-

ordinates of as many points corresponding to three parabolas analogous to

those supposedly obtained by Galileo. The output velocities without friction

obtained by calculation turn out to be:

–
𝑣1 = 34.0 cm/s

–
𝑣2 = 68.0 cm/s

–
𝑣1 = 102.0 cm/s

Table 8.4 shows the results obtained, using the 𝑑 corrected values, in the ana-
lysis of themost closed parabola: The results obtained in the sameway in the

𝐻 cm 𝑑 cm 𝑣CM cm/s 𝜒 %
2.6 2.20 30.7 18.5
6.2 3.44 30.6 19.0
9.7 4.40 31.6 13.6
13.1 5.06 31.2 15.8
16.7 5.72 31.2 15.8
20.3 6.36 31.5 14.2

Table 8.4: Corrections to Galileo data

analysis of the intermediate and outer parabolas are shown in Tables 8.5 and
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7,2 ← 𝑑13,620,2

6,412,618,2

5,610,716,2

4,89,113,8

3,77,511,0

2,34,67,1

20,3

16,7

13,1

9,7

6,2

2,6

𝛼 = 2,37°

𝐻 0,84 Δ𝑑

0,68

0,54

0,40

0,26

0,10

Approximate scale 1/2,5 (in cm)

In black: Uncorrected distances 𝑑
In green: Appropriate correctionsΔ𝑑
In blue: Falling heights𝐻

Figure 8.2: Corrections to 81r data

8.6:

𝐻 cm 𝑑 cm 𝑣CM cm/s 𝜒 %
2.6 4.50 64.2 10.9
6.2 7.24 66.0 5.8
9.7 8.70 63.1 13.9
13.1 10.16 63.2 13.6
16.7 11.91 65.5 7.2
20.3 12.76 63.6 12.5

Table 8.5: Corrections to intermediate
parabola

𝐻 cm 𝑑 cm 𝑣CM cm/s 𝜒 %
2.6 7.00 101.9 0.4
6.2 10.74 99.1 5.6
9.7 13.40 98.1 7.5
13.1 15.66 98.2 7.3
16.7 17.51 97.0 9.6
20.3 19.36 97.1 9.4

Table 8.6: Corrections to external para-
bola

It is curious that in this experiment the most reliable percentages of energy
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dissipated range from 9.4 to 14.2%, analogous to the most reliable percent-
ages also calculated by me on the data in the folio 81r, which range from 10

to 15%. It is very clear, as I have already discussed in Chapter 3 (p. 57), that
the small ball never rolls twice exactly the same, so the percentage of energy

dissipated turns out to be somewhat random, but in section 2.5 of Chapter 2

(p. 52) the possibility that—superimposed to this randomness—there is a re-

lation between the percentage and the angle of inclination 𝛼 of the plane is

pointed out. (Of course the result marked in red in Table 8.6 is clearly erro-

neous).

8.4 Reproduction of the experience outlined on folio 116v
26th(7) of April 2009

In Chapter 5 (p. 101) I imagined that Galileo arranged his twelve-cubit plane

with an inclination of 9.6° to achieve a maximum height of 1 000 p. Table 5.1
in the same chapter gives the percentages of energy dissipated, which range

from a minimum of 3.2 to a maximum of 9.8%. I have devoted today to re-
produce with my plane the experience of the folio 116v in order to obtain
empirical data and to decide, in passing, whether it is reasonable to admit that

there is any relation between the slope𝛼 and the percentage of energy dissip-
ated 𝜒. The limitations imposed by the furniture of my office and the lack of
suitable material for the assembly have not allowed me to provide my plane

with an inclination of 9.6°, so that I have had to be satisfied with 7.75°. The
heightsℎ have not beenmeasured but calculated frommeasured lengths (30;

60; 90; 120 and 150 cm) over the total length of the plane. I have repeated
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ℎ (cm) 4,045 8,09 12,13 16,18 20,22

𝐻 = 105,4 cm

A

𝑑

Approximate scale 1/20

Plane length = 181,5 cm
Horizontal deflector = 17,0 cm
Angle of inclination = 7,75°

Figure 8.3: Reproduction of the 116v experience

ten times the launch for eachℎ and used for the calculation of the percentage
of the dissipated energy themean value 𝑑𝑚 of the ten readings.

Let’s remember—see Chapter 5 (p. 101)—that:

𝜒 = 100 (1 − –
𝐾
𝐾)

being

–
𝐾 = 𝑑2

ℎ and 𝐾 = 20𝐻
7

In our case𝐾 = 301.1 cm, as can be seen. Table 8.7 summarizes the result of

this experience: When compared with the results given in Table ref Table 5.1

in Chapter 5 (p. 108) the parallelism is striking, right down to the detail that𝜒
is maximum for the minimum ℎ.

In the reproduction of the experience outlined in folio 81r I merely took a
single value of the coordinates of the points of each parabola and used them
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# ℎ cm 𝑑𝑚 cm
–
𝐾 = 𝑑2𝑚/ℎ cm/s 𝜒 %

1 4.045 33.3 274.1 9.0
2 8.09 47.6 280.0 7.0
3 12.13 58.8 285.0 5.3
4 16.18 68.5 290.0 3.7
5 20.22 75.8 284.1 5.6

Table 8.7: 116v experience considering energy loss

in the relevant calculations. In the reproduction of the experience relative to

the folio 116v, as I have already said, I have taken ten times the coordinates of
each point and I have used in the calculations the mean values 𝑑𝑚.

It may not be superfluous to note the observations I have made in this con-

nection:

a) In the impact record, the circular tracks left by the small ball are 3mm
in diameter. I have marked the centre of each mark by a dot—practised

with a fine-tipped redpen—tomeasure thedistances𝑑 topointA,marked
on the record by a plumb bob suspended from the edge of the hori-

zontal deflector. (See Figure 8.3).

b) Of course the ten traces corresponding to eachℎ appear scattered over
a small area that increases as ℎ grows. For example, the footprints cor-
responding to ℎ = 4.045 cm are concentrated in a circle of radius

0.75 cm. This radius increases progressively until it reaches 1.5 cm for

the traces corresponding to ℎ = 20.22 cm. This dispersion confirms

that the ball does not roll twice exactly the same despite the fact that we

try to reproduce the initial conditions as much as possible.

c) I have noted the values 𝑑maximum andminimum for each ℎ and pro-
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ceeded to calculate the values corresponding to the percentage 𝜒 of

dissipated energy. This is shown in Table 8.8 and Table 8.9.

# ℎ cm 𝑑mín cm –
𝐾 = 𝑑2

mín
/ℎ cm/s 𝜒 %

1 4.045 32.7 264.7 12.1
2 8.09 47.2 275.4 8.5
3 12.13 57.8 275.4 8.5
4 16.18 67.7 283.3 5.9
5 20.22 74.5 274.5 8.8

Table 8.8: Minimum dissipated energy calculations

# ℎ cm 𝑑max cm –
𝐾 = 𝑑2max/ℎ cm/s 𝜒 %

1 4.045 33.6 279.1 7.3
2 8.09 48.2 287.2 4.6
3 12.13 59.8 294.8 2.1
4 16.18 69.0 294.2 2.3
5 20.22 77.1 294.0 2.4

Table 8.9: Maximum energy calculations

It is found, then, that for an angle of 7.75° the percentage of energy dissip-
ated can vary randomly between a minimumminimum of one 2 percent and
a maximummaximum of one 12% and that this percentage𝜒 decreases pro-

gressively as increases ℎ.

To be able to decide experimentally on the dependence of 𝜒 versus 𝛼 we

would need more data, although we already have those relating to the angle

of 2.37° which, together with those we have just obtained, seem to confirm

our suspicion.
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8.5 Reproduction of the experience outlined on folio 114v

The interpretation of this folio, presented in Chapter 6 (page 121), fits well with

those of the other two, except in the detail that the percentages of energy dis-

sipated seem to me to be too low in relation to the angle of inclination 1.32°
that I must attribute to the plane. To reproduce this experience as far as pos-

ℎ (cm) 0,83 1,66 2,49 3,33 4,16 4,99

𝐻 = 105,4 cm

A

𝑑

Approximate scale 1/20

Plane length = 181,5 cm
Angle of inclination = 1,59°

Figure 8.4: Reproduction of the 114v experience

sible I gave my plane an inclination of 1.59°, so that the lengths measured
on it (30; 60; 90; 120 and 150 cm) now correspond to the heights shown in

Figure 8.4. I took ten measurements of 𝑑 for each ℎ and used the mean value
𝑑𝑚 tomake the calculations using the equations outlined in section8.1 (p. 147),

which are appropriate in this case where there is no horizontal deflector. The

results are summarized in Table 8.10. It is observed, as in the previous case,

that𝜒 decreases asℎ increases, varying between 18 and 14%. Doing a similar
study to the previous one, which I do not detail for brevity, using the 𝑑max and
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# 𝐻 cm ℎ cm 𝑑𝑚 cm 𝑣 cm/s
–
𝑣 cm/s 𝜒 %

1 105.4 0.83 14.3 30.9 34.1 17.9
2 ” 1.66 20.4 44.1 48.2 16.3
3 ” 2.49 25.3 54.7 59.0 14.0
4 ” 3.33 29.0 62.8 68.3 15.4
5 ” 4.16 32.8 71.0 76.3 13.4
6 ” 4.99 35.8 77.6 83.6 13.8
Table 8.10: Variation of dissipated energy with ℎ

𝑑min it is found that the bounds of this variation are further extended between
a 20 and a 12%.

These results confirm experimentally, in general lines, our suspicion that between

the percentage of dissipated energy𝜒 and the angle of inclination𝛼 there ex-
ists relation, as it was already demonstrated in the penultimate section (2.5)

of the Chapter 2 (p. 52).

As I have already pointed out the explanation of folio 114v suffers from a de-

fect:

The percentages of dissipated energy calculated in Chapter 6
(p. 121) are too low to be compatible with the small angle of
inclination that I attribute to the plane in the analysis that I
make there.

But we have already seen that a slight error in the measurement of 𝑑 has a

decisive influence on the values of 𝜒. That is why it occurs to me to think
whether Galileo overlooked, in this case, another tiniest detail, as I supposed

happened to him when taking the measurements recorded in the folio 81r:
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If we look at Figure 8.4 and assume that Galileo used as a reference tomeasure

𝑑 the base of the piece of furniture on which we imagine the plane rests, it

is easy to show that he would be making a systematic error of 0.71 cm per

excess when measuring 𝑑. I have calculated that this simple error would raise
the value of 𝜒 to a 15% in the most closed parabola, and between a 7% and

a 8.5% in the others.
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EPILOGUE

September 15, 2009

The empirical equation:

𝑎CM = 𝐴 (𝐻 − 𝐵)

and the theoretical:

𝜆 = sec 𝛼 (sin 𝛼 − 7𝑎
5𝑔 )

can give this one:

𝜆 = sec 𝛼 (𝐶𝐻 + 𝐷)

I have not seen them reflected so far in any text, so I would dare to consider

them my property without this meaning that others could not have found

them before, after or simultaneously. Nor have I found anything similar to

my lucubrations on how to calculate the percentage of the energy dissipated in

the non-slip rolling of a sphere. That is why in the introduction to the Chapter 1

(pág. 27) I expressmy suspicion that this subjectmust be of very little practical

interest.

Historians of science—from Alexandre Koyré to Stillman Drake to Thomas B.

Settle—fulfil theirmission by discovering newdocuments, analysing them, cri-

ticizing them, andeven trying to reproduce theexperiments suggested in them.

On the other hand, professional physicists cannot devote themselves to these
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tasks because other more serious investigations demand their ingenuity and

effort.

I—who am not a professional physicist but a chemist fond of physics—have

dedicated many years of my life to teach both sciences at secondary school

level, and I have been fortunate to stumble at the end of my professional life

with a small historical enigma that has keptme excited and entertained during

these last years.

But the resolution I offer of this little historical enigma is likely to be of some

interest. In the first place, it may contribute to a better understanding of the

mental process that may have led Galileo to the discovery of his kinematic

laws, a process that must not have been purely platonic, whatever Alexandre

Koyré may think.

Secondly, there is its possibledidactic interest: The role of friction forces in pure

rolling is treated in most of the texts I have consulted in a very superficial, if

not frankly far-fetched, manner. The same is true of the physical concept of

work of (sic) a force.

The experimental part of my work was interrupted in June 2002, followingmy

retirement. Since I love to write and had written some meticulous class and

lab journals during the last twenty-three years of active life, I decided to start

writing a series of articles about my teaching experience, in case they might

be useful to anyone.

To my surprise I turned out to be the first to benefit, because I found that I

could and should delve more deeply into the theoretical part of rolling, so that

sections 1.4 and 1.6 of Chapter 1 (pp. 37 and 42) and 2.5 (p. 52) of the second are

of very recent writing, as well as the exhaustive analysis of the data contained
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in section 2.6 (p. 53) of this same Chapter 2, which at the time were taken with

all care with no other interest than pure pleasure and recreation.

It was then when I decided to go deeper into the interpretation of Galileo’s

enigmatic folios by applying my own ideas about the percentage of dissip-

ated energy. Having completed this analysis in the first half of Chapter 8, I

recoveredmy plan—which I had left in my old workplace—to submit to exper-

imental verification what I had just found in that first half. With all this my

retired distraction has stretched to the end of April of the current year with

great satisfaction on my part.

Juan Luis Alcántara López





Appendix A.

On the rolling friction of a ball

A simple experimental study of rolling friction and rolling en-
ergy loss in a ball on a wooden groove can be found in [1]. These
authors start from the practical assumption that rolling friction
is constant and independent of the material, only depending on
the normal force exerted by the ball on the surface, as with static
and dynamic sliding friction. The equation from which they
start is therefore:

𝐹𝑟 = 𝜇𝑁

These authors perform a simple experiment in which they wait
for a ball oscillating on a wooden trough and also on a plastic
trough to stop. For this purpose they use short but concave curved
boards so that the finalmotion of the ball resembles that of a pen-
dulum. In any case, after a series of oscillations that resemble
a damped pendulum, the ball will eventually stop. The main
reason, disregarding other factors of much lesser influence, why
the ball will stop is because of its friction with the grooved sur-
face. Thus, if we assume that the force that stops the ball is in-
dependent of the velocity, all its kinetic energy will be converted
into heat at first by the work of the frictional force.
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The normal can be approximated by the weight. The error will
be less than 30% given that the surface had an inclination of less
than 15°, and it would be

𝑁 = 𝑚𝑔 cos(0.15/0.57) = 0.97𝑚𝑔

With all that we can assume a horizontal path to stop and a total
work:

𝑊 = −𝜇𝑚𝑔 𝑠

being 𝑠 the total distance travelled to stop. The calculations of
these authors lead them to the following values

𝜇wood = 2.0 × 10−3

y
𝜇plastic = 0.75 × 10−3

A.1 Easy evaluation of the coefficient of rolling
friction

A simple experiment is schematized in Figure A.1. Assuming
that the loss of mechanical energy (Δ𝐸 = 𝐸B − 𝐸A) is consumed
only by friction: 𝐸𝑟, and taking into account that the rolling fric-
tion is produced by a constant force, as these studies claim, we
would have:
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𝐸A = 𝐸B + 𝐹𝑟 𝑠𝑟; Δ𝐸 = 𝐹𝑟 𝑠𝑟 (A.1)

Being 𝑠𝑟 the distance real travelled by the ball since it starts from
the endAwith 𝑣0 = 0 until it reaches the other endBwith 𝑣𝑓 = 0
at a somewhat lower height in Δℎ due to the lost energy.

For simplicity, we are taking half a period since the motion has
constant period although with decreasing linear amplitude due
to the constancy of 𝐹𝑟. The energy decrement, given that the ini-

A B

𝑣 = 0

𝐯

𝐯

𝑣 = 0
Δℎ

𝛼
Δ𝑠 ℎ

𝑚𝐠

𝐍

A B

𝑣 = 0

𝐯

𝐯

𝑣 = 0
Δℎ

𝛼
Δ𝑠 ℎ

𝑚𝐠

𝐍

Figure A.1: Frictional energy loss

tial total energy, potential only, is 𝐸𝑖 = 𝑚𝑔ℎ and the final energy,
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potential only, is 𝐸𝑓 = 𝑚𝑔 (ℎ − Δℎ):

Δ𝐸 = 𝑚𝑔Δℎ = 𝐹𝑟 𝑠𝑟

being 𝑠𝑟 the space travelled in that oscillation.

𝐹𝑟 𝑠𝑟 = 𝐹𝑟 (𝑠 − Δ𝑠) = 𝑚𝑔Δℎ

or,

𝐹𝑟 =
𝑚𝑔Δℎ
𝑠 − Δ𝑠

Considering that 𝐹𝑟 is constant along the path and proportional
to the normal force that we can approximate directly with the
weight since the angle of inclination of the track is small, it would
be:

𝜇𝑚𝑔 =
𝑚𝑔Δℎ
𝑠 − Δ𝑠

and since Δℎ is more difficult to measure than Δ𝑠 we use Δℎ =
sin𝛼Δ𝑠 so,using thewell-known approximation, sin 𝛼 = ℎ/(𝑠/2),
we are left with:

𝜇 = Δ𝑠 sin 𝛼
𝑠 − Δ𝑠 = sin𝛼

𝑠
Δ𝑠

− 1
(A.2)
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